Author Archives: Maryse de la Giroday

Five more stories complete the 3rd Frontiers for Young Minds collection of stories by Nobel Laureates

A January 31, 2024 Frontiers (publishers) news release on EurekAlert announces more stories by Nobel Laureates for volume 3 of Frontiers for Young Minds,

Frontiers for Young Minds, a non-profit, open-access scientific journal for kids, has published five new articles written by Nobel Prize-winners. The articles complete the third volume of the Nobel collection, bringing the number of featured Laureates and their discoveries to 30.  

The authors were awarded the Nobel Prize for their contributions to the fields of economics, physiology, and medicine. Within each article, the authors explain their ground-breaking work and the practical or future applications of their science.  

The articles are:  

  • Game Theory— More Than Just Games, written by Robert Aumann, awarded the Nobel Prize in Economics in 2005.  
    Game theory is not just about games. It deals with real-life situations like business, politics, war, or even sharing donuts. Robert Aumann enhanced conflict resolution using game theory – the logic which helps us understand how to improve our decisions, specifically in situations where people might disagree.  
  • Can We Use Math to Design a Brighter Future? written by Eric Maskin, awarded the Nobel Prize in Economics in 2007.  
    Math helps to develop new technologies and engineering techniques that advance our society. Eric Maskin laid the foundations of mechanism design theory, a branch of economics that can shape economies to reach social goals such as reducing pollution and establishing fair voting systems. 
  • T Killer T Cells: Immune System Heroes, written by Peter Doherty, awarded the Nobel Prize in Physiology or Medicine in 1996.  
    Our immune system keeps our body healthy by fighting microbes and protecting us from infections. Peter Doherty discovered how the immune system recognizes virus-infected cells and the clever way our T-cells identify and kill them. This knowledge could develop new treatments for autoimmune diseases and cancer. 
  • Can Grid Cells Help Us Understand the Brain? written by Edvard Moser, awarded the Nobel Prize in Physiology or Medicine in 2014.  
    Grid cells are special brain cells that play a key role in the brain’s navigation system. Edvard Moser co-discovered that these cells generate a positioning system that allows us to navigate our environment and estimate distance. Rapidly developing research on grid cells could eventually help us understand how cognition works. 
  • Hot Chili Peppers Help Uncover the Secrets of Pain, written by David Julius, awarded the Nobel Prize in Physiology or Medicine in 2021.  
    Receptors are small sensing structures present on cell membranes that react to stimuli from the environment or from within the body. David Julius identified a sensor in the nerve endings of the skin that responds to pain and heat. Using chili peppers to study how receptors relate to pain could help develop better drugs for intense and long-term (chronic) pain. 

Launched in 2013, Frontiers for Young Minds publishes accessible and engaging articles in collaboration with exceptional researchers to inspire the next generation of scientists. It provides reliable and up-to-date information on various topics in science, including in technology, engineering, mathematics, and medicine (STEMM). The unique Frontiers for Young Minds review process gives kids confidence and communication skills to engage with leading researchers worldwide and empowers them to ask questions and think critically before they validate the scientific information they read.  

Commenting on the new articles, head of program Laura Henderson says: “Since launching our Nobel Collection volume 1 in 2021, we have been blown away by the impact it has made. With over 1.8 million views and downloads worldwide, we are reaching science enthusiasts all over the world as part of our mission to inspire and engage kids with accessible scientific content. To now have a total of 30 Nobel Prize winners helping us to communicate scientific concepts to young minds is a huge achievement for all our team. I look forward to reaching even more young learners with these articles and our new partner collections coming later this year.” 

Discover all the Nobel Collections here: 

Volume one 
Volume two 
Volume three 

The first half of Volume three was announced here in my November 9, 2023 posting.

Trust in science remains high but public questions scientists’ adherence to science’s norms

A March 4, 2024 Annenberg Public Policy Center of the University of Pennsylvania news release (also on EurekAlert and received via email) announces research into public trust in science in the US,

Science is one of the most highly regarded institutions in America, with nearly three-quarters of the public expressing “a great deal” or “a fair amount” of confidence in scientists. But confidence in science has nonetheless declined over the past few years, since the early days of the Covid-19 pandemic, as it has for most other major social institutions.

In a new article, members of the Strategic Council of the National Academies of Sciences, Engineering, and Medicine [NASEM] examine what has happened to public confidence in science, why it has happened, and what can be done to elevate it. The researchers write that while there is broad public agreement about the values that should underpin science, the public questions whether scientists actually live up to these values and whether they can overcome their individual biases.

The paper, published in the Proceedings of the National Academy of Sciences (PNAS), relies in part on new data being released in connection with this article by the Annenberg Public Policy Center (APPC) of the University of Pennsylvania. The data come from the Annenberg Science Knowledge (ASK) survey conducted February 22-28, 2023, with an empaneled, nationally representative sample of 1,638 U.S. adults who were asked about their views on scientists and science. The margin of error for the entire sample is ± 3.2 percentage points at the 95% confidence level. (See the paper for the findings.) The survey is directed by APPC director Kathleen Hall Jamieson, a member of the Strategic Council and a co-author of the PNAS paper.

Decline in confidence comparable to other institutions

The researchers also examine trends in public confidence in science dating back 20 years from other sources, including the Pew Research Center and the General Social Survey of National Opinion Research at the University of Chicago. These show a recent decline consistent with the decline seen for other institutions.

“We’re of the view that trust has to be earned,” said lead author Arthur Lupia, a member of the NASEM’s Strategic Council for Research Excellence, Integrity, and Trust, and associate vice president for research at the University of Michigan. “We wanted to understand how trust in science is changing, and why, and is there anything that the scientific enterprise can do to regain trust?”

Highlights

“Confidence in science is high relative to nearly all other civic, cultural, and government institutions…,” the article states. In addition:

  • The public has high levels of confidence in scientists’ competence, trustworthiness, and honesty – 84% of survey respondents in February 2023 are very or somewhat confident that scientists provide the public with trustworthy information in the scientists’ area of inquiry.
  • Many in the public question whether scientists share their values and whether scientists can overcome their own biases. For instance, when asked whether scientists will or will not publish findings if a study’s results run counter to the interests of the organization running the study, 70% said scientists will not publish the findings.
  • The public has “consistent beliefs about how scientists should act and beliefs that support their confidence in science despite their concerns about scientists’ possible biases and distortive incentives.” For example, 84% of U.S. adults say it is somewhat or very important for scientists to disclose their funders and 92% say it is somewhat or very important that scientists be open to changing their minds based on new evidence.
  • However, when asked about scientists’ biases, just over half of U.S. adults (53%) say scientists provide the public with unbiased conclusions about their area of inquiry and just 42% say scientists generally are “able to overcome their human and political biases.”

Beyond measurements of trust in science

The Annenberg Public Policy Center’s ASK survey in February 2023 asked U.S. adults more nuanced questions about attitudes toward scientists.

“We’ve developed measures beyond trust or confidence in science in order to understand why some in the public are less supportive of science and scientists than others,” said Jamieson, who is also a professor of communication at the University of Pennsylvania’s Annenberg School for Communication. “Perceptions of whether scientists share one’s values, overcome their human and political biases, and correct mistakes are important as well.”

The ASK survey of U.S. adults found, for instance, that 81% regard scientists as competent, 70% as trustworthy, and 68% as honest, but only 42% say scientists “share my values.”

A more detailed analysis of the variables and effects seen in Annenberg’s surveys was published in September 2023 in PNAS in the paper “Factors Assessing Science’s Self-Presentation model and their effect on conservatives’ and liberals’ support for funding science.”

Confidence in science and Covid-19 vaccination status

The research published in PNAS was initiated by members of the NASEM’s Strategic Council for Research Excellence, Integrity, and Trust, which was established in 2021 to advance the integrity, ethics, resilience, and effectiveness of the research enterprise.

Lupia said the Strategic Council’s conversations about whether trust in science was declining and if so, why, began during the pandemic. “There was great science behind the Covid-19 vaccine, so why was the idea of people taking it so controversial?” he asked. “Covid deaths were so visible and yet the controversy over the vaccine was also so visible – kind of an icon of the public-health implications of declining trust in science.”

The article cites research from the Annenberg Public Policy Center that found important relationships between science-based forms of trust and the willingness to take a Covid-19 vaccine. Data from waves of another APPC survey of U.S. adults in five swing states during the 2020 campaign season – reported in a 2021 article in PNAS – showed that from July 2020 to February 2021, U.S. adults’ trust in health authorities was a significant predictor of the reported intention to get the Covid-19 vaccine. See the article “The role of non-COVID-specific and COVID-specific factors in predicting a shift in willingness to vaccinate: A panel study.”

How to raise confidence in science

Raising public confidence in science, the researchers write, “should not be premised on the assumption that society would be better off with higher levels of uncritical trust in the scientific community. Indeed, uncritical trust in science would violate the scientific norm of organized skepticism and be antithetical to science’s culture of challenge, critique, and self-correction.”

“Instead,” they propose, “researchers, scientific organizations, and the scientific community writ large need to redouble their commitment to conduct, communicate, critique, and – when error is found or misconduct detected – correct the published record in ways that both merit and earn public confidence.”

The data cited in the paper, they conclude, “suggest that the scientific community’s commitment to core values such as the culture of critique and correction, peer review, acknowledging limitations in data and methods, precise specification of key terms, and faithful accounts of evidence in every step of scientific practice and in every engagement with the public may help sustain confidence in scientific findings.”

“Trends in U.S. Public Confidence in Science and Opportunities for Progress” was published March 4, 2024, in PNAS. In addition to Jamieson and Lupia, the authors are David B. Allison, dean of the School of Public Health, Indiana University; Jennifer Heimberg, of the National Academies of Sciences, Engineering, and Medicine; Magdalena Skipper, editor-in-chief of the journal Nature; and Susan M. Wolf, of the University of Minnesota Law and Medical Schools. Allison is co-chair of the National Academies’ Strategic Council; Lupia, Jamieson, Skipper, and Wolf are members of the Council, and Heimberg is the director of the Council.

Here’s a link to and a citation for the paper,

Trends in U.S. public confidence in science and opportunities for progress by Arthur Lupia, David B. Allison, Kathleen Hall Jamieson, and Susan M. Wolf. PNAS March 4, 2024 121 (11) e2319488121 DOI: https://doi.org/10.1073/pnas.2319488121

This paper is open access.

Butterfly mating inspires neuromorphic (brainlike) computing

Michael Berger writes about a multisensory approach to neuromorphic computing inspired by butterflies in his February 2, 2024 Nanowerk Spotlight article, Note: Links have been removed,

Artificial intelligence systems have historically struggled to integrate and interpret information from multiple senses the way animals intuitively do. Humans and other species rely on combining sight, sound, touch, taste and smell to better understand their surroundings and make decisions. However, the field of neuromorphic computing has largely focused on processing data from individual senses separately.

This unisensory approach stems in part from the lack of miniaturized hardware able to co-locate different sensing modules and enable in-sensor and near-sensor processing. Recent efforts have targeted fusing visual and tactile data. However, visuochemical integration, which merges visual and chemical information to emulate complex sensory processing such as that seen in nature—for instance, butterflies integrating visual signals with chemical cues for mating decisions—remains relatively unexplored. Smell can potentially alter visual perception, yet current AI leans heavily on visual inputs alone, missing a key aspect of biological cognition.

Now, researchers at Penn State University have developed bio-inspired hardware that embraces heterogeneous integration of nanomaterials to allow the co-location of chemical and visual sensors along with computing elements. This facilitates efficient visuochemical information processing and decision-making, taking cues from the courtship behaviors of a species of tropical butterfly.

In the paper published in Advanced Materials (“A Butterfly-Inspired Multisensory Neuromorphic Platform for Integration of Visual and Chemical Cues”), the researchers describe creating their visuochemical integration platform inspired by Heliconius butterflies. During mating, female butterflies rely on integrating visual signals like wing color from males along with chemical pheromones to select partners. Specialized neurons combine these visual and chemical cues to enable informed mate choice.

To emulate this capability, the team constructed hardware encompassing monolayer molybdenum disulfide (MoS2) memtransistors serving as visual capture and processing components. Meanwhile, graphene chemitransistors functioned as artificial olfactory receptors. Together, these nanomaterials provided the sensing, memory and computing elements necessary for visuochemical integration in a compact architecture.

While mating butterflies served as inspiration, the developed technology has much wider relevance. It represents a significant step toward overcoming the reliance of artificial intelligence on single data modalities. Enabling integration of multiple senses can greatly improve situational understanding and decision-making for autonomous robots, vehicles, monitoring devices and other systems interacting with complex environments.

The work also helps progress neuromorphic computing approaches seeking to emulate biological brains for next-generation ML acceleration, edge deployment and reduced power consumption. In nature, cross-modal learning underpins animals’ adaptable behavior and intelligence emerging from brains organizing sensory inputs into unified percepts. This research provides a blueprint for hardware co-locating sensors and processors to more closely replicate such capabilities

It’s fascinating to me how many times butterflies inspire science,

Butterfly-inspired visuo-chemical integration. a) A simplified abstraction of visual and chemical stimuli from male butterflies and visuo-chemical integration pathway in female butterflies. b) Butterfly-inspired neuromorphic hardware comprising of monolayer MoS2 memtransistor-based visual afferent neuron, graphene-based chemoreceptor neuron, and MoS2 memtransistor-based neuro-mimetic mating circuits. Courtesy: Wiley/Penn State University Researchers

Here’s a link to and a citation for the paper,

A Butterfly-Inspired Multisensory Neuromorphic Platform for Integration of Visual and Chemical Cues by Yikai Zheng, Subir Ghosh, Saptarshi Das. Advanced Materials SOI: https://doi.org/10.1002/adma.202307380 First published: 09 December 2023

This paper is open access.

Invitation to collect data during April 8, 2024 eclipse for US National Aeronautics and Space Administration (NASA)

An April 2, 2024 news item on phys.org is, in fact, an open invitation to participate in data collection for NASA during the April 8, 2024 eclipse,

On April 8, 2024, as the moon passes between the sun and Earth, thousands of amateur citizen scientists will measure air temperatures and snap pictures of clouds. The data they collect will aid researchers who are investigating how the sun influences climates in different environments.

Among those citizen scientists are the fifth- and sixth-grade students at Alpena Elementary in northwest Arkansas. In the weeks leading up to the eclipse, these students are visiting the school’s weather station 10 times a day to collect temperature readings and monitor cloud cover. They will then upload the data to a phone-based app that’s part of a NASA-led program called GLOBE, short for Global Learning and Observations to Benefit the Environment.

The goal, according to Alpena Elementary science and math teacher Roger Rose, is to “make science and math more real” for his students. “It makes them feel like they’re doing something that’s important and worthwhile.”

The GLOBE eclipse tool is a small part of the much broader GLOBE project, through which students and citizen scientists collect data on plants, soil, water, the atmosphere, and even mosquitoes. Contributors to the eclipse project will only need a thermometer and a smartphone with the GLOBE Observer app downloaded. They can access the eclipse tool in the app. [emphases mine]

An April 1, 2024 NASA article by James Riordon, which originated the news item, provides more information about the GLOBE program and the hopes for the April 8, 2024 eclipse initiative,

This is not the first time the GLOBE eclipse tool has been deployed in North America. During the 2017 North American eclipse, NASA researchers examined the relationship between clouds and air temperature and found that temperature swings during the eclipse were greatest in areas with less cloud cover, while temperature fluctuations in cloudier regions were more muted. It’s a finding that would have been difficult, perhaps impossible, without the assistance of numerous amateur observers along the eclipse path, said Marilé Colón Robles, a meteorologist based at NASA’s Langley Research Center in Hampton, Virginia, and the GLOBE project scientist overseeing the cloud study portion of the project.

GLOBE program volunteers across North America uploaded data coinciding with the July 21, 2017 event to this map. A high concentration of observers make the path of totality in the western part of the U.S. stand out. Credit: NASA Globe program

The number of weather stations along this year’s eclipse path is limited, and while satellites give us a global view, they can’t provide the same level of detail as people on the ground, said Ashlee Autore, a NASA Langley data scientist who will be conducting a follow-up to the 2017 study. “The power of citizen science is that people make the observations, and they can move.”

It’s still unclear how temperature fluctuations during a total eclipse compare across different climate regions, Colón Robles said. “This upcoming eclipse is passing through desert regions, mountainous regions, as well as more moist regions near the oceans.” Acquiring observations across these areas, she said, “will help us dig deeper into questions about regional connections between cloud cover and ground-level temperatures.” The studies should give scientists a better handle on the flow of energy from the Sun that’s crucial for understanding climate.

In many areas, citizen scientists are expected to gather en masse. “We’re inviting basically all of El Paso to campus,” said geophysicist and GLOBE partner John Olgin of El Paso Community College in Texas. The area will experience the eclipse in near totality, with about 80% of the Sun covered at the peak. It’s enough to make for an engaging event involving citizen scientists from the U.S. and Juarez, Mexico, just across the Rio Grande. 

Just a few minutes of midday darkness will have the long-term benefits of increasing awareness of NASA citizen science programs, Olgin said: “It’s going to inspire people to say, ‘Hey look, you can actually do stuff with NASA.’”

More than 30 million people live along the path of the 2024 eclipse, and hundreds of millions more will see a partial eclipse. It will be another 20 years before so many people in North America experience another total solar eclipse again.

With this in mind, Colón Robles has a piece of advice: As the Moon actively blocks the Sun, set your phone and thermometer aside, and marvel at one of the most extraordinary astronomical events of your lifetime.

Visit NASA’s Citizen Science page to learn how you can help NASA scientists study the Earth during eclipses and all year round. The GLOBE Program page provides connections to communities of GLOBE participants in 127 countries, access to data for retrieval and analysis, a roadmap for new participants, and other resources.

For anyone who wants to experience all of the ways that NASA has made their citizen science April 2024 eclipse projects accessible there’s NASA’s ‘general eclipse’ webpage.

Dendritic painting: a physics story

A March 4, 2024 news item on phys.org announces research into the physics of using paints and inks in visual art, Note: A link has been removed,

Falling from the tip of a brush suspended in mid-air, an ink droplet touches a painted surface and blossoms into a masterpiece of ever-changing beauty. It weaves a tapestry of intricate, evolving patterns. Some of them resemble branching snowflakes, thunderbolts or neurons, whispering the unique expression of the artist’s vision.

Okinawa Institute of Science and Technology (OIST) researchers set out to analyze the physical principles of this fascinating technique, known as dendritic painting. They took inspiration from the artwork of Japanese media artist, Akiko Nakayama. The work is published in the journal PNAS Nexus.

Caption: Japanese artist Akiko Nakayama manipulates alcohol and inks to create tree-like dendritic patterns during a live painting session. Credit: Photo Credit: Akiko Nakayama

Yes, the ends definitely look tree-like (maybe cedar). A February 29, 2024 Okinawa Institute of Science and Technology (OIST) press release (also on EurekAlert but published March 1, 2024), which originated the news item, goes on to describe the forces at work and provides instructions for creating your own dendritic paintings, Note: Links have been removed,

During her [Akiko Nakayama] live painting performances, she applies colourful droplets of acrylic ink mixed with alcohol atop a flat surface coated with a layer of acrylic paint. Beautiful fractals – tree-like geometrical shapes that repeat at different scales and are often found in nature – appear before the eyes of the audience. This is a captivating art form driven by creativity, but also by the physics of fluid dynamics.

“I have a deep admiration for scientists, such as Ukichiro Nakaya and Torahiko Terada, who made remarkable contributions to both science and art. I was very happy to be contacted by OIST physicist Chan San To. I am envious of his ability ‘to dialogue’ with the dendritic patterns, observing how they change shape in response to different approaches. Hearing this secret conversation was delightful,” explains Nakayama.

“Painters have often employed fluid mechanics to craft unique compositions. We have seen it with David Alfaro Siqueiros, Jackson Pollock, and Naoko Tosa, just to name a few. In our laboratory, we reproduce and study artistic techniques, to understand how the characteristics of the fluids influence the final outcome,” says OIST Professor Eliot Fried of OIST’s Mechanics and Materials Unit, who likes looking at dendritic paintings from artistic and scientific angles.

In dendritic painting, the droplets made of ink and alcohol experience various forces. One of them is surface tension – the force that makes rain droplets spherical in shape, and allows leaves to float on the surface of a pond. In particular, as alcohol evaporates faster than water, it alters the surface tension of the droplet. Fluid molecules tend to be pulled towards the droplet rim, which has higher surface tension compared to its centre. This is called the Marangoni effect and is the same phenomenon responsible for the formation of wine tears – the droplets or streaks of wine that form on the inside of a wine glass after swirling or tilting.

Secondly, the underlying paint layer also plays an important part in this artistic technique. Dr. Chan tested various types of liquids. For fractals to emerge, the liquid must be a fluid that decreases in viscosity under shear strain, meaning it has to behave somewhat like ketchup. It’s common knowledge that it’s hard to get ketchup out of the bottle unless you shake it. This happens because ketchup’s viscosity changes depending on shear strain. When you shake the bottle, the ketchup becomes less viscous, making it easier to pour it onto your dish. How is this applied to dendritic painting?

“In dendritic painting, the expanding ink droplet shears the underlying acrylic paint layer. It is not as strong as the shaking of a ketchup bottle, but it is still a form of shear strain. As with ketchup, the more stress there is, the easier it is for the ink droplets to flow,” explains Dr. Chan.

“We also showed that the physics behind this dendritic painting technique is similar to how liquid travels in a porous medium, such as soil. If you were to look at the mix of acrylic paint under the microscope, you would see a network of microscopic structures made of polymer molecules and pigments. The ink droplet tends to find its way through this underlying network, travelling through paths of least resistance, that leads to the dendritic pattern,” adds Prof. Fried.

Each dendritic print is one-of-a-kind, but there are at least two key aspects that artists can take into consideration to control the outcome of dendritic painting. The first and most important factor is the thickness of the paint layer spread on the surface. Dr. Chan observed that well-refined fractals appear with paint layer thinner than a half millimetre.

The second factor to experiment with is the concentration of diluting medium and paint in this paint layer. Dr. Chan obtained the most detailed fractals using three parts diluting medium and one part paint, or two parts diluting medium and one part paint. If the concentration of paint is higher, the droplet cannot spread well. Conversely, if the concentration of paint is lower, fuzzy edges will form. 

This is not the first science-meets-art project that members of the Mechanics and Materials Unit have embarked on. For example, they designed and installed a mobile sculpture on the OIST campus. The sculpture exemplifies a family of mechanical devices, called Möbius kaleidocycles, invented in the Unit, which may offer guidelines for designing chemical compounds with novel electronic properties.

Currently, Dr. Chan is also developing novel methods of analysing how the complexity of a sketch or painting evolves during its creation. He and Prof. Fried are optimistic that these methods might be applied to uncover hidden structures in experimentally captured or numerically generated images of flowing fluids.

“Why should we confine science to just technological progress?” wonders Dr. Chan. “I like exploring its potential to drive artistic innovation as well. I do digital art, but I really admire traditional artists. I sincerely invite them to experiment with various materials and reach out to us if they’re interested in collaborating and exploring the physics hidden within their artwork.”

Instructions to create dendritic painting at home

Everybody can have fun creating dendritic paintings. The materials needed include a non-absorbent surface (glass, synthetic paper, ceramics, etc.), a brush, a hairbrush, rubbing alcohol (iso-propyl alcohol), acrylic ink, acrylic paint and pouring medium.

  1. Dilute one part of acrylic paint to two or three parts of  pouring medium, or test other ratios to see how the result changes
  2. Apply this to the non-absorbent surface uniformly using a hairbrush. OIST physicists have found out that the thickness of the paint affects the result. For the best fractals, a layer of paint thinner than half millimetre is recommended.
  3. Mix rubbing alcohol with acrylic ink. The density of the ink may differ for different brands: have a try mixing alcohol and ink in different ratios
  4. When the white paint is still wet (hasn’t dried yet), apply a droplet of the ink with alcohol mix using a brush or another tool, such as a bamboo stick or a toothpick.
  5. Enjoy your masterpiece as it develops before your eyes. 

Here’s a link to and a citation for the paper,

Marangoni spreading on liquid substrates in new media art by San To Chan and Eliot Fried. PNAS Nexus, Volume 3, Issue 2, February 2024, pgae059 DOI: https://doi.org/10.1093/pnasnexus/pgae059 Published: 08 February 2024

This paper is open access.

Canadian Science Policy Centre: a 2024 Canadian federal budget event and a call for 2024 conference proposals *(deadline extension)*

2024 Canadian federal budget event

Canada’s 2024 federal budget will be presented on April 16, 2024, according to this March 4, 2024 Government of Canada media advisory. About two weeks later the Canadian Science Policy Centre (CSPC) will host their annual budget symposium (Decoding Budget 2024 for Science and Innovation). Here’s more from the March 28, 2024 CSPC announcement (received via email),

The CSPC Budget Symposium will be held on Wednesday May 1, 2024 starting at 12pm. The Symposium will feature a detailed budget analysis presented by David Watters and Omer Kaya from Global Advantage Consulting Group followed by panel discussions with leaders from across the country, representing academic, business, and non-profit sectors.

Details

Date: May 1 [2024]
Time: 12:00 pm – 5:00 pm EDT
Event Category: Virtual Session
Registration Page: https://us02web.zoom.us/webinar/register/WN_Zu0_hqZaRZuADWwT7y5rIw

Venue

Zoom

Organizer

Canadian Science Policy Centre
Email info@sciencepolicy.ca

Mark your calendar to be part of insightful discussions around the Federal Budget 2024!

Register Now

Kaya and Watters were both scheduled to speak at last year’s (2023) federal budget symposium and both have been guest speakers in years previous to 2023. Presumably more speakers and specific topics will be identified as the May 1, 2024 budget symposium draws nearer.

2024 Canadian Science Policy Conference (CSPC): call for proposals

I gather the conference organizers (the Canadian Science Policy Centre) are short of ‘panel proposals’ but have enough ‘short talk proposals’ as the the March 28, 2024 CSPC announcement (received via email) highlights the panels only,

Call for Panel Proposals, Three Weeks
Left to the Deadline: April 19, 2024 *(extended to April 26, 2024)* and then **(further extended to May 1, 2024)**

The call for proposals is open with only 3 weeks left until the submission deadline of Friday, April 19, 2024. We invite you to submit proposals that revolve around any of the conference’s six tracks. The theme and topics can be viewed by clicking here, and the submission criteria and panel formats on our website at the link below.

CSPC 2024 Panel Proposal Submission

I have a few details about the 2024 conference, from the CSPC 2024 webpage,

16th Canadian Science Policy Conference

November 20th-22nd, 2024, at the Westin Ottawa hotel

CSPC 2024 Theme:

Empowering Society: The Transformative Value of Science, Knowledge, and Innovation

The 16th Canadian Science Policy Conference (CSPC 2024), will be held in person on November 20th – 22nd, 2024. The conference expects 1000+ participants, more than 300 speakers, in 60 panel sessions. CSPC 2024 will also include a spectacular Gala dinner featuring its award ceremony which has become a signature annual event to celebrate Canadian science and innovation policy achievements.

We invite you to submit proposals in a variety of presentation formats that revolve around any of the conference topics. …

Track One: Science, Knowledge, and Policy

*The national STI ecosystem: Strategy for the next ten years; building on strengths and opportunities; addressing weaknesses
*Managing the evolving/changing research landscape: AI, Open Science
*Evidence for policy
*Science policy futures

Track Two: Science, Knowledge, and Society


*Systemic racism, otherism

*Science, Knowledge, and Truth and Reconciliation
*Ethics of emerging technologies

*Citizen Scientist

Track Three: Innovation Policy and Economic Development

*Emerging economic opportunities
*Emerging and disruptive technologies

*Scale up and commercialization

Track Four: Science, International Affairs and Security


*Science diplomacy, research security and geopolitics
*Scientists on the move

Track Five: Science and the Next Generation


*Enabling the next generation of researchers with non-research skills
*Trainees’ well-being
*Grassroots science policy networks, opportunities and lessons learned

Track Six: Grand Challenges – Adaptation, Resilience, Canada’s Role

*Climate change
*The North
*Food, agriculture, water

For details about proposal submissions for either a short talk or a panel, go to the 2024 CSPC proposal webpage. If you’re curious about previous conferences, you can find the proceedings for the 2023 CSPC here.

*Deadline for 2024 CSPC conference proposals extended to April 26, 2024.*

**Deadline for 2024 CSPC conference proposals further extended to May 1, 2024.**

Who owns prehistory? The relationship between science and sovereignty

Brachiopod (photo taken in Alberta, Canada). Courtesy: AlbertaWow.com

This February 28, 2024 news item on phys.org takes the discussion about appropriating cultural artifacts out of the world of art and into museum fossil collections , Note: Links have been removed,

Many museums and other cultural institutions in the West have faced, in recent years, demands for artistic repatriation. The Elgin Marbles, currently housed in the British Museum, are perhaps the most prominent subject of this charge, with numerous appeals having been made for their return to their original home in Greece.

Taking up the issue of cultural imperialism is a new article in Isis [journal of the History of Science Society],.

“Fossils and Sovereignty: Science Diplomacy and the Politics of Deep Time in the Sino-American Fossil Dispute of the 1920s” by author Hsiao-pei Yen, narrates the controversy surrounding paleontological excavation in the interwar period through a conflict between the American Museum of Natural History and the emerging Chinese scientific nationalist movement, and, ultimately, examines the place of fossil ownership in global politics.

A February 28, 2024 (?) University of Chicago Press news release, which originated the news item, delves further into the topic,

In the early decades of the 20th century, many scientists were convinced that the key to understanding human origins, the so-called “missing link,” could be found in Central Asia. A delegation from the American Museum of Natural History (AMNH) was sent to the Gobi Desert in search of this great intellectual prize and failed to find any evidence of human ancestry in the region, but, over the course of the first half of the 1920s, sent many other valuable fossils and archaeological relics back to the United States. In 1928, however, amidst the changing political landscape of Chiang Kai-shek’s revolutionary reunification of China, the Americans were frustrated to discover that their findings had been detained under orders of the Beijing Society for the Preservation of Cultural Objects (SPCO). The resulting negotiations between the Americans and the Chinese inspired conflicting perspectives not only regarding the ownership of these prehistoric remains, but also the very nature of the relationship between fossils and sovereignty.

Nationalists in China were keen to correct the historical imbalance in treaties concerning trade between their country and rich Western nations. The debate over the fate of relics uncovered in China represented a unique opportunity to reclaim a measure of autonomy. As Yen writes, “The antiquities were deemed priceless national treasures not only because they were a link to China’s past but because … they were also resources of cultural capital with high academic value as research objects that would enable native scholars to establish and develop their own knowledge framework.” The representatives of the AMNH and those of the SPCO initially agreed to share botanical, zoological, and mineral specimens, while all archaeological materials and invertebrate fossils were to be kept in China, and all vertebrate fossils sent to America, with duplicates returning to their home country. The AMNH was insistent on this distinction between archaeological remains and fossils. Paleontological fossils, they claimed, “were formed in geological time and had no historical or cultural attachment to the people of the place where they were found.” As a result, argued the AMNH, they could be exported and retained by representatives of any country.

Following this agreement, however, the Chinese government called for a reclassification of fossils as sovereign property. This decision, part of a “vertical turn” in geopolitical history, was summarized by one government official: “’the territory of a nation-state is not limited to the surface. The terrain up to the sky and down to the subterranean should all be included in the national domain.’” As of 1930, China rejected the interpretation of fossils and the geological time they represented as universal, and therefore easily exploitable by more powerful countries, and claimed them instead as local, and contingent. The protections around Chinese fossils by no means limited the production of knowledge surrounding their discovery, but meant, instead, that the Chinese state had more control over their study and their diplomatic applications. The author concludes, “A vertical sensitivity enacted a new political and temporal imagination: geoscience and Earth history might be universal, but they should be explored within national boundaries.”

Since its inception in 1912, Isis has featured scholarly articles, research notes, and commentary on the history of science, medicine, and technology and their cultural influences. Review essays and book reviews on new contributions to the discipline are also included. An official publication of the History of Science Society, Isis is the oldest English-language journal in the field.

Founded in 1924, the History of Science Society is the world’s largest society dedicated to understanding science, technology, medicine, and their interactions with society in historical context.

Here’s a link to and a citation for the paper,

Fossils and Sovereignty: Science Diplomacy and the Politics of Deep Time in the Sino-American Fossil Dispute of the 1920s by Hsiao-pei Yen. Isis Volume 115, Number 1 March 2024 DOI: https://doi.org/10.1086/729176

This paper is behind a paywall.

Study says quantum computing will radically alter the application of copyright law

I was expecting more speculation about the possibilities that quantum computing might afford with regard to copyright law. According to the press release, this study is primarily focused on the impact that greater computing speed and power will have on copyright and, presumably, other forms of intellectual property. From a March 4, 2024 University of Exeter press release (also on EurekAlert),

Quantum computing will radically transform the application of the law – challenging long-held notions of copyright, a new study says.

Faster computing will bring exponentially greater possibilities in the tracking and tracing of the legal owners of art, music, culture and books.  

This is likely to mean more copyright infringements, but also make it easier for lawyers to clamp down on lawbreaking. However, faster computers will also be able to potentially break and get around certain older enforcement technologies.

The research says quantum computing could lead to an “exponentially” greater number of re-uses of copyright works without permission, and tracking of anyone breaking the law is likely to be possible in many circumstances.

Dr James Griffin, from the University of Exeter [UK] Law School, who led the study, said: “Quantum computers will have sufficient computing power to be able to make judgement calls [emphasis mine] as to whether or not re-uses are likely to be copyright infringements, skirting the boundaries of the law in a way that has yet to be fully tested in practice.

“Copyright infringements could become more commonplace due to the use of quantum computers, but the enforcement of such laws could also increase. This will potentially favour certain forms of content over others.”

Content with embedded quantum watermarks will be more likely to be protected than earlier forms of content without such watermarks. The exponential speed of quantum computing brings will make it easier to be able to produce more copies of existing copyright works.

Existing artworks will be altered on a large scale for use in AI-generated artistic works. Enhanced computing power will see the reuse of elements of films such as scenes, characters, music and scripts.

Dr Griffin said: “The nature of quantum computing also means that there could be more enforcement of copyright law. we can expect that there will be more use of technological protection measures, as well as copyright management information devices such as watermarks, and more use of filtering mechanisms to be able to detect, prevent and contain copyright infringements.

Copyright management information techniques are better suited to quantum computers because they allow for more finely grained analysis of potential infringements, and because they require greater computing power to be able to be applied both broadly to computer software and the actions of the users of such software.

Dr Griffin said: “A quantum paradox [emphasis mine] is thus developing, in that there are likely to be more infringements possible, whilst technical devices will simultaneously develop in an attempt to prevent any alleged possible or potential copyright infringements. Content will increasingly be made in a manner difficult to break, with enhanced encryption.

“Meanwhile, due to the expense of large-scale quantum computing, we can expect more content to be streamed and less owned; content will be kept remotely in order to enhance the notion that utilising such data in breach of contractual terms would be akin to breaking into someone’s physical house or committing a similar fraudulent activity.

Quantum computers allow enable creators to make a large number of small-scale works. This could pose challenges regarding the tests of copyright originality. For example story written for a quantum computer game could be constantly changing and evolving according to the actions of the player, and not just simply according to predefined paths but utilising complex AI algorithms. [emphasis mine]

Some interesting issues are raised in this press release. (1) Can any computer, quantum or otherwise, make a judgment call? (2) The ‘quantum paradox’ seems like a perfectly predictable outcome. After all, regular computers facilitated all kinds of new opportunities for infringement and prevention. What makes this a ‘quantum paradox’? (3) The evolving computer game seems more like an AI issue. What makes this a quantum computing problem? The answers to these questions may be in the study but that presents a problem.

Ordinarily, I’d offer a link to the study but it’s not accessible until 2025. Here’s a citation,

Quantum Computing and Copyright Law: A Wave of Change or a Mere Irrelevant Particle? by James G. H. Griffin. Intellectual Property Quarterly 2024 Issue 1, pp. 22 – 39. Published February 21, 2024. Under embargo until 21 February 2025 [emphasis mine] in compliance with publisher policy

There is an online record for the study on this Open Research Exeter (ORE) webpage where you can request a copy of the paper.

Archaeomagnetism, anomalies in space, and 3,000-year-old Babylonian bricks

While i don’t usually cover the topic of magnetic fields, this fascinating research required a combination of science and the humanities, a topic of some interest to me. First, there’s the news and then excerpts from Rae Hodge’s December 25, 2023 commentary “How 3,000-year-old Babylonian tablets help scientists unravel one of the weirdest mysteries in space” for Salon.

A December 19, 2023 University College London (UCL; also on EurekAlert but published December 18, 2023) explains how Babylonian artefacts led to a discovery about earth’s magnetic fields,

Ancient bricks inscribed with the names of Mesopotamian kings have yielded important insights into a mysterious anomaly in Earth’s magnetic field 3,000 years ago, according to a new study involving UCL researchers.

The research, published in the Proceedings of the National Academy of Sciences (PNAS), describes how changes in the Earth’s magnetic field imprinted on iron oxide grains within ancient clay bricks, and how scientists were able to reconstruct these changes from the names of the kings inscribed on the bricks.

The team hopes that using this “archaeomagnetism,” which looks for signatures of the Earth’s magnetic field in archaeological items, will improve the history of Earth’s magnetic field, and can help better date artefacts that they previously couldn’t.

Co-author Professor Mark Altaweel (UCL Institute of Archaeology) said: “We often depend on dating methods such as radiocarbon dates to get a sense of chronology in ancient Mesopotamia. However, some of the most common cultural remains, such as bricks and ceramics, cannot typically be easily dated because they don’t contain organic material. This work now helps create an important dating baseline that allows others to benefit from absolute dating using archaeomagnetism.”

The Earth’s magnetic field weakens and strengthens over time, changes which imprint a distinct signature on hot minerals that are sensitive to the magnetic field. The team analysed the latent magnetic signature in grains of iron oxide minerals embedded in 32 clay bricks originating from archaeological sites throughout Mesopotamia, which now overlaps with modern day Iraq. The strength of the planet’s magnetic field was imprinted upon the minerals when they were first fired by the brickmakers thousands of years ago.

At the time they were made, each brick was inscribed with the name of the reigning king which archaeologists have dated to a range of likely timespans. Together, the imprinted name and the measured magnetic strength of the iron oxide grains offered a historical map of the changes to the strength of the Earth’s magnetic field.

The researchers were able to confirm the existence of the “Levantine Iron Age geomagnetic Anomaly,” a period when Earth’s magnetic field was unusually strong around modern Iraq between about 1050 to 550 BCE for unclear reasons. Evidence of the anomaly has been detected as far away as China, Bulgaria and the Azores, but data from within the southern part of the Middle East itself had been sparse.

Lead author Professor Matthew Howland of Wichita State University said: “By comparing ancient artefacts to what we know about ancient conditions of the magnetic field, we can estimate the dates of any artifacts that were heated up in ancient times.”

To measure the iron oxide grains, the team carefully chipped tiny fragments from broken faces of the bricks and used a magnetometer to precisely measure the fragments.

By mapping out the changes in Earth’s magnetic field over time, this data also offers archaeologists a new tool to help date some ancient artefacts. The magnetic strength of iron oxide grains embedded within fired items can be measured and then matched up to the known strengths of Earth’s historic magnetic field. The reigns of kings lasted from years to decades, which offers better resolution than radiocarbon dating which only pinpoints an artefact’s date to within a few hundred years.

An additional benefit of the archaeomagnetic dating of the artefacts is it can help historians more precisely pinpoint the reigns of some of the ancient kings that have been somewhat ambiguous. Though the length and order of their reigns is well known, there has been disagreement within the archaeological community about the precise years they took the throne resulting from incomplete historical records. The researchers found that their technique lined up with an understanding of the kings’ reigns known to archaeologists as the “Low Chronology”.

The team also found that in five of their samples, taken during the reign of Nebuchadnezzar II from 604 to 562 BCE, the Earth’s magnetic field seemed to change dramatically over a relatively short period of time, adding evidence to the hypothesis that rapid spikes in intensity are possible.

Co-author Professor Lisa Tauxe of the Scripps Institution of Oceanography (US) said: “The geomagnetic field is one of the most enigmatic phenomena in earth sciences. The well-dated archaeological remains of the rich Mesopotamian cultures, especially bricks inscribed with names of specific kings, provide an unprecedented opportunity to study changes in the field strength in high time resolution, tracking changes that occurred over several decades or even less.”

The research was carried out with funding from the U.S.-Israel Binational Science Foundatio

Here’s a link to and a citation for the paper,

Exploring geomagnetic variations in ancient Mesopotamia: Archaeomagnetic study of inscribed bricks from the 3rd–1st millennia BCE by Matthew D. Howland, Lisa Tauxe, Shai Gordin, and Erez Ben-Yosef. PNAS (Proceedings of the National Academy of Sciences) December 18, 2023 120 (52) e2313361120 DOI: https://doi.org/10.1073/pnas.2313361120

This paper is behind a paywall.

The Humanities and their importance to STEM (science, technology, engineering, and mathematics)

Rae Hodge’s December 25, 2023 commentary explains why magnetic fields might be of interest to a member of the general public (that’s me) and more about the interdisciplinarity, which drove the project, Note 1: This is a US-centric view but the situation in Canada (and I suspect elsewhere) is similar. Note 2: Links have been removed,

Among the most enigmatic mysteries of modern science are the strange anomalies which appear from time to time in the earth’s geomagnetic field. It can seem like the laws of physics behave differently in some places, with unnerving and bizarre results — spacecraft become glitchy, the Hubble Space Telescope can’t capture observations and satellite communications go on the fritz. Some astronauts orbiting past the anomalies report blinding flashes of light and sudden silence. They call one of these massive, growing anomalies the Bermuda Triangle of space — and even NASA [US National Aeronautics and Space Administration] is now tracking it. 

With all the precisely tuned prowess of modern tech turning its eye toward these geomagnetic oddities, you might not expect that some key scientific insights about them could be locked inside a batch of 3,000-year-old Babylonian cuneiform tablets. But that’s exactly what a recently published study in Proceedings of the National Academy of Sciences suggests. 

This newly discovered connection between ancient Mesopotamian writing and modern physics is more than an amusing academic fluke. It highlights just how much is at stake for 21st-century scientific progress when budget-slashing lawmakers, university administrators and private industry investors shovel funding into STEM field development while neglecting — and in some case, actively destroying — the humanities.

… Despite advances in the past five years or so, archaeomagnetism is still methodologically complex and often tedious work, often cautious data sifting to arrive at accurate interpretations. The more accurate of which come from analyzing layers upon layers of strata. 

But when combined with the expertise of the humanities — from historians and linguists, to religious scholars and anthropologists? Archaeomagnetism opens up new worlds of study across all disciplines. 

In fact, the team’s results show that the strength of the magnetic field in Mesopotamia was more than one and a half times stronger than it is in the area today, with a massive spike happening sometimes between 604 B.C. and 562 B.C. By combining the results of archaeomagnetic tests and the transcriptions of ancient languages on the bricks, the team was able to confirm this spike likely occurred during the reign of Nebuchadnezzar II.

Hand in hand with the sciences, the LIAA [Levantine Iron Age Anomaly] trail was illuminated by historical accounts of descriptively similar events, recorded from ancient authors as far west as the Iberian peninsula and well into Asia. Archaeomagnetism has now allowed researchers to not only confirm the presence of the LIAA in ancient Mesopotamia from 1050 to 550 B.C. — itself a first for science — but offers cultural historians a new way to verify and apply context to a vast tide of early scientific information.

Hodge further explores the importance of interdisciplinary work, December 25, 2023 commentary, Note: Links have been removed,

The symbiotic interdependence between the humanities and sciences deepens further in the thicket of time when one considers that the original locations of the team’s fragments likely include the earliest known centers of astrology and mathematics in Sumeria, such as Nineveh near modern-day Mosul, Iraq. At the ancient city’s royal library of the Assyrian Empire, a site dating back to around 650 B.C., a trove of thousands of tablets were excavated in the mid-1800s containing precise astronomical data surpassing that found in any previous discovery.

Among those, the “The Plough Star” tablets bear inscriptions dating to 687 B.C. and are the first known instances of humans tracking lunar and planetary orbits through both the solar ecliptic and 17 constellations. The same trove yielded the awe-striking collection known as the Astronomical Diaries, currently held in the Ashmolean Museum at Oxford, originating from near modern-day Baghdad. The oldest of which dates to 652 B.C. The latest, 61 B.C.

Hermann Hunger and David Pingree, the foremost historians on their excavation, minced no words on their value to to modern science. 

“That someone in the middle of the eighth century BC conceived of such a scientific program and obtained support for it is truly astonishing; that it was designed so well is incredible; and that it was faithfully carried out for 700 years is miraculous,” they wrote.  

In his 2021 book, “A Scheme of Heaven,” data scientist Alexander Boxer cites the two historians and observes that the “enormity of this achievement” lay in the diaries’ preservation of a snapshot of celestial knowledge of the age which — paired with accounts of weather patterns, river water tables, grain prices and even political news — allow us to pinpoint historical events from thousands of years ago, in time-windows as narrow as just a day or two.

“Rivaled only by the extraordinary astronomical records from ancient China, the Babylonian Astronomical Diaries are one of, if not the longest continuous research program ever undertaken,” writes Boxer. 

The cuneiform tablets studied by the UCL team extend this interdisciplinary legacy of the sciences and humanities beautifully by allowing us to read not only the celestially relevant data of geomagnetic history, but by reaffirming the importance of early cultural studies. One fragment, for instance, is dedicated by Nebuchadnezzar II to a temple in Larsa. The site was devoted to carrying out astrological divination traditions, and it’s where we get our earliest clue about the authorship of the Astronomical Diaries. 

Charmingly, that clue appears in the court testimony of a temple official who gets scolded for sounding a false-alarm about an eclipse, embarrassing the temple scholars in front of the whole city.

These Neo-Assyrian and Old Babylonian astrologers gave us more than antics, though. In further records at Nineveh, they would ultimately help researchers at the University of Tsukuba [Japan] — some 2,700 years later — track what were likely massive solar magnetic storms in the area, enabled by geomagnetic disruptions that may be yet linked to the LIAA.

In their dutifully recorded daily observations, one astrologer records a “red cloud” while another tablet-writer observes that “red covers the sky” in Babylon.

“These were probably manifestations of what we call today stable auroral red arcs, consisting of light emitted by electrons in atmospheric oxygen atoms after being excited by intense magnetic fields,” the authors said. “These findings allow us to recreate the history of solar activity a century earlier than previously available records…This research can assist in our ability to predict future solar magnetic storms, which may damage satellites and other spacecraft.”

Hodge ends with an observation, from her December 25, 2023 commentary,

When universities short sell the arts and humanities, we humanities students might lose our poetry, but we can write more. The science folk, on the other hand, might cost themselves another 75 years of research and $70 billion in grants trying to re-invent the Babylonian wheel because the destruction of its historical blueprint was “an arts problem.”

If you have time, do read Hodge’s December 25, 2023 commentary.