Category Archives: Uncategorized

Canada and a mandatory survey on nanomaterials due February 2016

If memory serves, this is the second nanomaterials reporting survey that the Canadian federal government has requested in the seven years that I’ve blogging on the topic Canadian nanotechnology. (As usual, I’ve gotten my information from a source outside the country.) Thanks to Lynn Bergeson (US lawyer) and her July 27, 2015 posting on Nanotechnology Now where she covers nanotechnology’s regulatory developments (Note: A link has been removed),

The July 25, 2015, Canada Gazette includes a notice announcing that the Minister of the Environment requires, for the purpose of assessing whether the substances described in the notice are toxic or are capable of becoming toxic, or for the purpose of assessing whether to control, or the manner in which to control the listed substances, any person described in the notice who possesses or who may reasonably be expected to have access to the information required to provide that information. See http://www.gazette.gc.ca/rp-pr/p1/2015/2015-07-25/html/notice-avis-eng.php The notice applies to a substance that has a size of between 1 and 100 nanometers in at least one external dimension, or internal or surface structure; and is provided in the list in Schedule 1 of the notice. The list includes over 200 substances. The notice applies to any person who, during the 2014 calendar year, manufactured a total quantity greater than 100 kilograms (kg) of a substance set out in Schedule 1. …

You can find the Canada Gazette notice (Notice with respect to certain nanomaterials in Canadian commerce) here: http://www.gazette.gc.ca/rp-pr/p1/2015/2015-07-25/html/notice-avis-eng.php but you may find the Guidance for responding to the Notice: http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=AACFB2C0-1 more helpful (Note: Links have been removed),

1.1- Purpose of the Notice

In 2011, the Canada-United States Regulatory Cooperation Council (RCC) Nanotechnology InitiativeFootnote[1] was launched to increase alignment in regulatory approaches for nanomaterials between Canada and the US to reduce risk to human health and the environment; to promote sharing of scientific and regulatory expertise; and to foster innovation. Completed in February 2014, the RCC Nanotechnology Initiative included a work element on Commercial Information.Footnote[2] This work element was aimed at increasing knowledge of commercial uses of nanomaterials in Canada and the US. The primary output from this work element was a Nanomaterials Use Matrix which identified nanomaterials by type and use category based on the most up-to-date information, at the time, on commercially available nanomaterials. The nanomaterial types were cross-referenced with the DSL to identify nanomaterials which could be considered existing in Canada. The result is a preliminary reference list and may not be comprehensive of all nanomaterials. Ongoing engagement with stakeholders through voluntary initiatives and other fora will inform further development of the list of existing nanomaterials in Canada.

The purpose of the Notice is to gather information on 206 nanomaterials identified as potentially in commerce in Canada from the primary reference list. [emphasis mine] The information collected from the Notice will support the development of a list of nanomaterials in commerce in Canada by confirming their commercial status, and subsequent prioritization activities for these substances, which may include risk assessment and risk management activities, if required. This will ensure that future decision making is based on the best available information.

The list of reportable substances is long and not alphabetized but before you check you may want to review this,

2.1- Reporting criteria

To determine whether a company is required to respond, the following factors must be considered:

Type of substance (i.e., nanoscale form)
Type of activity
Calendar year
Quantity
The quantity should be determined based on the quantity of the substance itself at the nanoscale, and not on the quantity of the product or mixture containing the substance.

The purpose of the Notice is to gather information on nanomaterials in commerce in Canada. A response is only required if the conditions set out in Schedule 1 and Schedule 2 of the notice are met.

The Notice applies to any person who, during the 2014 calendar year [emphasis mine], satisfied any of the following criteria:

Manufactured a total quantity greater than 100 kg of a substance listed in Schedule 1 that is at the nanoscale.
Imported a total quantity greater than 100 kg of a substance listed in Schedule 1 that is at the nanoscale, at any concentration, whether alone, in a mixture or in a product.

The reporting threshold of 100 kg is based on activity with the substance in the nanoscale (i.e. you manufacture, or imported a total quantity greater than 100 kg of a substance with a size between 1 and 100 nanometres, inclusive, in at least one external dimension, or internal or surface structure).

Your response to the information requested should also be based on activities with the substance in the nanoscale.

If you are engaged with a substance that is not in the nanoscale (i.e. same CAS RN, but not nanoscale) and would like to identify yourself as a stakeholder for that substance, you may submit a Declaration of Stakeholder Interest (see section 7 of this document).

You may find this flowchart (from the guidance webpage), useful,

Figure 1:  Reporting Diagram for Nanomaterials [downloaded from: http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=AACFB2C0-1]

Figure 1: Reporting Diagram for Nanomaterials [downloaded from: http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=AACFB2C0-1]

The information you provide needs to cover the 2014 calendar year and is due,

10. Responding to the Notice

Responses to the Notice must be provided no later than February 23, 2016, 5 p.m. Eastern Standard Time using the online reporting system available through Environment Canada’s Single Window available from the Chemical Substances Web site.

Good luck to all those who must report.

Call for AAAS Kavli science journalism award submission goes international, for the first time

From a June 22, 2015 American Association for the Advancement of Science (AAAS) news release in my mailbox,

The contest year for the 2015 AAAS Kavli Science Journalism Awards will close on 15 July. Be sure to enter your best work that appeared in print, online or on air between 1 July 2014 and 15 July 2015. The entry deadline is August 1, 2015. [emphasis mine]

Thanks to an expanded endowment from The Kavli Foundation, the competition is open for the first time to professional journalists from around the world in each of the eight reporting categories. There is no entry fee. Please read the Contest Rules and Frequently Asked Questions before submitting.

Note: If the submitted work was published or broadcast in a language other than English, you must provide an English translation.

The awards recognize outstanding reporting for a general audience and honor individuals for coverage of the sciences, engineering, and mathematics. Stories on the environment, energy, science policy, and health qualify if they deal in a substantive way with underlying science. Independent committees of journalists select the winning entries.

The categories:
·  Large Newspaper (circulation of 150,000 or more, daily or weekly)
·  Small Newspaper (circulation of less than 150,000, daily or weekly)
·  Magazine
·  TV – Spot News/Feature Reporting (20 minutes or less)
·  TV – In-Depth Reporting (more than 20 minutes)
·  Radio
·  Online
·  Children’s Science News (reporting on science for children, including young teens up to age 14)

You can find Contest Rules here and you can find Frequently Asked Questions (FAQs) here,

Q: I work for a state-funded news organization. Am I eligible?

A. The news outlet must be editorially independent. Questions about eligibility are decided by the awards administrator in consultation with the Managing Committee (an advisory panel of science journalists.)

Q. Are commentaries or articles in advocacy publications eligible for the award?

A. No.

Q. Are books eligible?

No, books, book chapters and e-books are not eligible.

Q. Are stories written by public information officers or freelancers for university-funded research magazines or Web sites eligible for the awards?

A. No. The Managing Committee has determined that such publications are not eligible for the awards.

Q. Are podcasts eligible for the award?

A. Some podcasts are eligible for consideration within the Online category. They must be science-news-only podcasts aimed at a general audience and prepared by reporters. Institutional podcasts from university news or research offices, or podcasts featuring news as well as other types of segments are not eligible.

Q. Are blogs eligible?

A. Yes, in the “Online” category. The judges will determine whether a blog entry meets the standards of professional journalism and is accessible to a general audience.

Finally, you can make your submission by clicking the link on this page which includes a summary of the rules and FAQs.

Good luck!

ATTACH for smart clothes and personalized heating and cooling

If this research into clothing that can heat or warm you as needed sounds familiar, it is. A team out of Stanford University (US) reported on research they conducted (pun noted) using special cloth coated with metallic nanowires to achieve personalized heating and cooling (my Jan. 9, 2015 post).

Now there is a second US team, also based in southern California, working on personalized heating and cooling. Researchers at the University of California at San Diego (UCSD) have received a $2.6M grant to pursue this goal, from a June 1, 2015 news item on Nanowerk,

Imagine a fabric that will keep your body at a comfortable temperature—regardless of how hot or cold it actually is. That’s the goal of an engineering project at the University of California, San Diego, funded with a $2.6M grant from the U.S. Department of Energy’s Advanced Research Projects Agency – Energy (ARPA-E). Wearing this smart fabric could potentially reduce heating and air conditioning bills for buildings and homes.

The project, named ATTACH (Adaptive Textiles Technology with Active Cooling and Heating), is led by Joseph Wang, distinguished professor of nanoengineering at UC San Diego.

By regulating the temperature around an individual person, rather than a large room, the smart fabric could potentially cut the energy use of buildings and homes by at least 15 percent, Wang noted.

“In cases where there are only one or two people in a large room, it’s not cost-effective to heat or cool the entire room,” said Wang. “If you can do it locally, like you can in a car by heating just the car seat instead of the entire car, then you can save a lot of energy.”

A June 1, 2015 UCSD news release (also on EurekAlert), which originated the news item, describes the team’s hopes and dreams for the technology and provides some biographical information (Note: Some links have been removed),

The smart fabric will be designed to regulate the temperature of the wearer’s skin–keeping it at 93° F–by adapting to temperature changes in the room. When the room gets cooler, the fabric will become thicker. When the room gets hotter, the fabric will become thinner. To accomplish this feat, the researchers will insert polymers that expand in the cold and shrink in the heat inside the smart fabric.

“Regardless if the surrounding temperature increases or decreases, the user will still feel the same without having to adjust the thermostat,” said Wang.

“93° F is the average comfortable skin temperature for most people,” added Renkun Chen, assistant professor of mechanical and aerospace engineering at UC San Diego, and one of the collaborators on this project.

Chen’s contribution to ATTACH is to develop supplemental heating and cooling devices, called thermoelectrics, that are printable and will be incorporated into specific spots of the smart fabric. The thermoelectrics will regulate the temperature on “hot spots”–such as areas on the back and underneath the feet–that tend to get hotter than other parts of the body when a person is active.

“This is like a personalized air-conditioner and heater,” said Chen.

Saving energy

“With the smart fabric, you won’t need to heat the room as much in the winter, and you won’t need to cool the room down as much in the summer. That means less energy is consumed. Plus, you will still feel comfortable within a wider temperature range,” said Chen.

The researchers are also designing the smart fabric to power itself. The fabric will include rechargeable batteries, which will power the thermoelectrics, as well as biofuel cells that can harvest electrical power from human sweat. Plus, all of these parts–batteries, thermoelectrics and biofuel cells–will be printed using the technology developed in Wang’s lab to make printable wearable devices. These parts will also be thin, stretchable and flexible to ensure that the smart fabric is not bulky or heavy.

“We are aiming to make the smart clothing look and feel as much like the clothes that people regularly wear. It will be washable, stretchable, bendable and lightweight. We also hope to make it look attractive and fashionable to wear,” said Wang.

In terms of price, the team has not yet concluded how much the smart clothing will cost. This will depend on the scale of production, but the printing technology in Wang’s lab will offer a low-cost method to produce the parts. Keeping the costs down is a major goal, the researchers said.

The research team

Professor Joseph Wang, Department of NanoEngineering

Wang, the lead principal investigator of ATTACH, has pioneered the development of wearable printable devices, such as electrochemical sensors and temporary tattoo-based biofuel cells. He is the chair of the nanoengineering department and the director for the Center for Wearable Sensors at UC San Diego. His extensive expertise in printable, stretchable and wearable devices will be used here to make the proposed flexible biofuel cells, batteries and thermoelectrics.

Assistant Professor Renkun Chen, Department of Mechanical and Aerospace Engineering

Chen specializes in heat transfer and thermoelectrics. His research group works on physics, materials and devices related to thermal energy transport, conversion and management. His specialty in these areas will be used to develop the thermal models and the thermoelectric devices.

Associate Professor Shirley Meng, Department of NanoEngineering

Meng’s research focuses on energy storage and conversion, particularly on battery cell design and testing. At UC San Diego, she established the Laboratory for Energy Storage and Conversion and is the inaugural director for the Sustainable Power and Energy Center. Meng will develop the rechargeable batteries and will work on power integration throughout the smart fabric system.

Professor Sungho Jin, Department of Mechanical and Aerospace Engineering

Jin specializes in functional materials for applications in nanotechnology, magnetism, energy and biomedicine. He will design the self-responsive polymers that change in thickness based on changes in the surrounding temperature.

Dr. Joshua Windmiller, CEO of Electrozyme LLC

Windmiller, former Ph.D. student and postdoc in Wang’s nanoengineering lab, is an expert in printed biosensors, bioelectronics and biofuel cells. He co-founded Electrozyme LLC, a startup devoted to the development of novel biosensors for application in the personal wellness and healthcare domains. Electrozyme will serve as the industrial partner for ATTACH and will lead the efforts to test the smart fabric prototype and bring the technology into the market.

You can find out more about Electrozyme here.

DNA (deoxyribonucleic acid) scaffolding for nonbiological construction

DNA (deoxyribonucleic acid) is being exploited in ways that would have seemed unimaginable to me when I was in high school. Earlier today (June 3, 2015), I ran a piece about DNA and data storage as imagined in an art/science project (DNA (deoxyribonucleic acid), music, and data storage) and now I have this work from the US Department of Energy’s (DOE) Brookhaven National Laboratory, from a June 1, 2015 news item on Nanowerk,

You’re probably familiar with the role of DNA as the blueprint for making every protein on the planet and passing genetic information from one generation to the next. But researchers at Brookhaven Lab’s Center for Functional Nanomaterials have shown that the twisted ladder molecule made of complementary matching strands can also perform a number of decidedly non-biological construction jobs: serving as a scaffold and programmable “glue” for linking up nanoparticles. This work has resulted in a variety of nanoparticle assemblies, including composite structures with switchable phases whose optical, magnetic, or other properties might be put to use in dynamic energy-harvesting or responsive optical materials. Three recent studies showcase different strategies for using synthetic strands of this versatile building material to link and arrange different types of nanoparticles in predictable ways.

The researchers have provided an image of the DNA building blocks,

Controlling the self-assembly of nanoparticles into superlattices is an important approach to build functional materials. The Brookhaven team used nanosized building blocks—cubes or octahedrons—decorated with DNA tethers to coordinate the assembly of spherical nanoparticles coated with complementary DNA strands.

Controlling the self-assembly of nanoparticles into superlattices is an important approach to build functional materials. The Brookhaven team used nanosized building blocks—cubes or octahedrons—decorated with DNA tethers to coordinate the assembly of spherical nanoparticles coated with complementary DNA strands.

A June 1, 2015 article (which originated the news item) in DOE Pulse Number 440 goes on to highlight three recent DNA papers published by researchers at Brookhaven National Laboratory,

The first [leads to a news release], published in Nature Communications, describes how scientists used the shape of nanoscale building blocks decorated with single strands of DNA to orchestrate the arrangement of spheres decorated with complementary strands (where bases on the two strands pair up according to the rules of DNA binding, A to T, G to C). For example, nano-cubes coated with DNA tethers on all six sides formed regular arrays of cubes surrounded by six nano-spheres. The attractive force of the DNA “glue” keeps these two dissimilar objects from self-separating to give scientists a reliable way to assemble composite materials in which the synergistic properties of different types of nanoparticles might be put to use.

In another study [leads to a news release], published in Nature Nanotechnology, the team used ropelike configurations of the DNA double helix to form a rigid geometrical framework, and added dangling pieces of single-stranded DNA to glue nanoparticles in place on the vertices of the scaffold. Controlling the code of the dangling strands and adding complementary strands to the nanoparticles gives scientists precision control over particle placement. These arrays of nanoparticles with predictable geometric configurations are somewhat analogous to molecules made of atoms, and can even be linked end-to-end to form polymer-like chains, or arrayed as flat sheets. Using this approach, the scientists can potentially orchestrate the arrangements of different types of nanoparticles to design materials that regulate energy flow, rotate light, or deliver biomolecules.

“We may be able to design materials that mimic nature’s machinery to harvest solar energy, or manipulate light for telecommunications applications, or design novel catalysts for speeding up a variety of chemical reactions,” said Oleg Gang, the Brookhaven physicist who leads this work on DNA-mediated nano-assembly.

Perhaps most exciting is a study [leads to a news release] published in Nature Materials in which the scientists added “reprogramming” strands of DNA after assembly to rearrange and change the phase of nanoparticle arrays. This is a change at the nanoscale that in some ways resembles an atomic phase change—like the shift in the atomic crystal lattice of carbon that transforms graphite into diamond—potentially producing a material with completely new properties from the same already assembled nanoparticle array. Inputting different types of attractive and repulsive reprogramming DNA strands, scientists could selectively trigger the transformation to the different resulting structures.

“The ability to dynamically switch the phase of an entire superlattice array will allow the creation of reprogrammable and switchable materials wherein multiple, different functions can be activated on demand,” Gang said.

Here are links to and citation for all three papers,

Superlattices assembled through shape-induced directional binding by Fang Lu, Kevin G. Yager, Yugang Zhang, Huolin Xin, & Oleg Gang. Nature Communications 6, Article number: 6912 doi:10.1038/ncomms7912 Published 23 April 2015

Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames by Ye Tian, Tong Wang, Wenyan Liu, Huolin L. Xin, Huilin Li, Yonggang Ke, William M. Shih, & Oleg Gang. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.105 Published online 25 May 2015

Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions by Yugang Zhang, Suchetan Pal, Babji Srinivasan, Thi Vo, Sanat Kumar & Oleg Gang. Nature Materials (2015) doi:10.1038/nmat4296 Published online 25 May 2015

The first study is open access, the second is behind a paywall but there is a free preview via ReadCube Acces, and the third is behind a paywall.

South Korea announces plans to commercialize nanotechnology

A May 4, 2015 article by Jung Suk-yee for Business Korea describes the South Korean government’s nanotechnology investment plans for 2015,

The Korean government will invest 177.2 billion won (US$164.2 million) in the industrialization of nanotechnology this year. The budget goes to seven techniques for industrial applications, including of that for manufacturing 3D nano-electronic devices used in intelligent robots and wearable smart devices, and industry infrastructure for production performance evaluation and the like. Strategic items are also selected so that small firms, which account for 90 percent of the industry, can better compete in the global market.

The Ministry of Science, ICT & Future Planning and the Ministry of Trade, Industry & Energy unveiled the plan on April 30 [2015] at the main office of CrucialTec located in Pangyo, Gyeonggi Province. “The global nanotech product market is estimated to reach US$3 trillion in size in 2020,” they explained, adding, “We will take up 20 percent of the market by means of large-scale investments.”

An April 30, 2015 news item on the Youhap News Agency website also makes the announcement while providing some context for and new details about the nanotechnology effort in South Korea,

South Korea is already one of the leading countries to have developed the advanced technology. The combined output of the country’s nano-convergence sector came to over 92 trillion won ($86 billion) in 2011, accounting for 6.1 percent of its total production.

The government will spend an additional [to the 177.2 billion won  announced earlier] 55 billion won this year to help develop nano-convergence companies and infrastructure that will include a new evaluation system to check the performance of any nanotechnology product, according to the ministry.

This announcement provides an interesting contrast to relatively recent Canadian announcements. As far as I’m aware the only Canadian research area as opposed to an individual institution such as the TRIUMF, Canada’s National Laboratory for  which benefits from serious infusions of cash is the ‘digital highway’ which merits being mentioned in the 2015 federal budget. The other science initiative specifically mentioned in the budget is TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics). For all the talk about commercializing science and technology there doesn’t seem to have been any specific mention in the budget although I have no doubt that various agencies received their allocations and are fully aware that they are expected to deliver on the government’s hopes in those respects. (My April 28, 2015 post offers more details about the science funding in the Canadian government’s 2015 federal budget.)

What colour is your diagnosis?

Mark Lorch has written an April 16, 2015 piece for The Conversation (h/t the Guardian’s April 17, 2015 posting) about a very appealing approach to diagnostics (Note: A link has been removed),

If you’ve ever sat opposite a doctor and wondered what she was scribbling on her notepad, the answer may soon not only be medical notes on your condition, but real-time chemical preparations for an instant diagnostic test.

Thanks to the work of a team of researchers from California Polytechnic State University, recently published in the journal Lab on a Chip, chemicals formed into pencils can be made to react with one another by simply drawing with them on paper. The team may have taken inspiration from colouring books for their take on a chemical toolkit, but their approach could make carrying out simple but common diagnostic tests based on chemical reactions – for example diabetes, HIV, or tests for environmental pollutants – much easier.

Here’s a picture of the pens,

ReagentPencilsDiagnostics

Courtesy: Lab on a Chip

Lorch provides a good description of the technology giving descriptions of reagents and paper-based microfluidics, as well as, describing how the researchers turned the concept of colouring pencils into a diagnostic tool.

Lorch also provides a description of a specific test (Note: Links have been removed),

The team demonstrated a potential use of the reagent pencil technique by using it in place of a common test used by diabetics to check their blood glucose levels, which involves reacting a pinprick blood sample with a chemical solution and examining the result.

One pencil was constructed with a mixture of enzymes, one called horseradish peroxidase (HRP) and the other glucose oxidase (GOx). A second pencil contained a reagent called ABTS. When combined in the presence of glucose these react together to give a blue-coloured product. Comparing the results from their pencils on the pad with the more traditional dropper method used by diabetics the team found the results were identical.

This new ‘pencil kit’ diagnostic technology is easy to use and features a big improvement over the current diagnostic tests,

This is of course extremely easy to set up. Traditional diagnostic tests require training, while this pad and pencil system requires no more than skill than required to colour within the lines. The reagents are extremely stable once made into pencils – usually they would degrade in a matter of days as liquids, limiting how and where the tests can be made. However the reagent pencils showed no sign of degrading after two months.

Being able to use the pencils for two months as opposed to liquids that remain viable for a few days? That’s a huge jump and it makes me wonder about using these kits in harsh conditions such as desert climates and/or emergency situations. Materials that don’t need to be refrigerated and could be used for up to two months and don’t require intensive training could be very helpful. Lorch suggests some other possibilities as well,

… There’s scope to monitor environmental pollutants, carry out diagnostic tests in remote locations – not to mention teach chemistry in primary schools.

Here’s a link to and a citation for the study on the ‘colouring pencil kit’,

Reagent pencils: a new technique for solvent-free deposition of reagents onto paper-based microfluidic devices by Haydn T. Mitchell, Isabelle C. Noxon, Cory A. Chaplan, Samantha J. Carlton, Cheyenne H. Liu, Kirsten A. Ganaja, Nathaniel W. Martinez, Chad E. Immoos, Philip J. Costanzo, and Andres W. Martinez. Lab Chip, 2015, Advance Article DOI: 10.1039/C5LC00297D First published online 08 Apr 2015

This paper is open access but you do have to register on the site unless you have another means of access.

How do I get on these mailing lists? Casting call for a dating reality show

I received this casting call yesterday, April 2, 2015. It’s not the first one I’ve received from these folks but that is all I can offer in the way of legitimacy. The information is being posted here because it amuses me that a reality show casting agency has somehow gotten a science blog on its mailing list and a Canadian at that.

Here’s the casting call,

NBC GOES ON 8 ‘FIRST DATES’ AS NETWORK ORDERS POPULAR U.K. FORMAT TO SERIES BEGINS CASTING

Ellen DeGeneres-Executive Produced Series Will Explore All of the Simple Wonder of a First Date.  Online casting has begun in and around Chicago, Nashville, New York and Seattle at www.FirstDatesCasting.com

UNIVERSAL CITY, Calif. — March 31, 2015 — NBC has ordered 8 episodes of “First Dates,” an observational documentary series from executive producer Ellen DeGeneres and Shed Media that takes a peek at what happens when a couple meets for the first time and love may be in the air.

Whenever a prospective couple goes on a first date, the same question always arises: Will the date blossom into a long-term love affair? It’s the moment when sparks often fly and our imaginations run wild — when two people realize they may have found their soul mate.

Based on a hit U.K. format, this unique hour-long series offers an authentic look at a variety of real first dates happening over one night at the same restaurant. The audience will be along for the full ride in a relatable viewing experience that plays like a real romantic comedy. Viewers will judge for themselves about how the couple is interacting and whether they are a good fit for one another. Is there a palpable sense of chemistry? Will there be an ever-elusive second date, or will it be back to love’s drawing board?

Production will begin in July in Chicago. No premiere date is set.

Apply now: www.Firstdatescasting.com

***Popular Productions, inc. We are a full service casting and development company with nationwide casting and production contacts. Numerous worldwide network and cable television programs. Producing partners, branding and packaging deals. Independent Films, Commercials, Music Videos, Internet, Broadband, Mobile content and Studio Films.

This is an online casting call.
Online Application at: www.Firstdatescasting.com

Please share and re-post this opportunity!
If you are interested in any of our other current television casting opportunities they can be found on our main casting site. Doron Ofir Casting is a legitimate television casting company and our credits can be found on IMDB. We never charge for casting EVER!

Good luck either on your reality tv show and/or dating future!

Making 3D patches for the brain

They’re not ready to start patching any brains yet but the research seems promising. From an April 1, 2015 news item on ScienceDaily,

Damage to neural tissue is typically permanent and causes lasting disability in patients, but a new approach has recently been discovered that holds incredible potential to reconstruct neural tissue at high resolution in three dimensions. Research recently published in the Journal of Neural Engineering demonstrated a method for embedding scaffolding of patterned nanofibers within three-dimensional (3D) hydrogel structures, and it was shown that neurite outgrowth from neurons in the hydrogel followed the nanofiber scaffolding by tracking directly along the nanofibers, particularly when the nanofibers were coated with a type of cell adhesion molecule called laminin. It was also shown that the coated nanofibers significantly enhanced the length of growing neurites, and that the type of hydrogel could significantly affect the extent to which the neurites tracked the nanofibers.

A March 31, 2015 Institute of Neural Regeneration & Tissue Engineering press release on EurekAlert, which originated the news item, describes the thinking underlying this research and future research plans,

“Neural stem cells hold incredible potential for restoring damaged cells in the nervous system, and 3D reconstruction of neural tissue is essential for replicating the complex anatomical structure and function of the brain and spinal cord,” said Dr. McMurtrey, author of the study and director of the research institute that led this work. “So it was thought that the combination of induced neuronal cells with micropatterned biomaterials might enable unique advantages in 3D cultures, and this research showed that not only can neuronal cells be cultured in 3D conformations, but the direction and pattern of neurite outgrowth can be guided and controlled using relatively simple combinations of structural cues and biochemical signaling factors.”

The next step will be replicating more complex structures using a patient’s own induced stem cells to reconstruct damaged or diseased sites in the nervous system. These 3D reconstructions can then be used to implant into the damaged areas of neural tissue to help reconstruct specific neuroanatomical structures and integrate with the proper neural circuitry in order to restore function. Successful restoration of function would require training of the new neural circuitry over time, but by selecting the proper neurons and forming them into native architecture, implanted neural stem cells would have a much higher chance of providing successful outcomes. The scaffolding and hydrogel materials are biocompatible and biodegradable, and the hydrogels can also help to maintain the microstructure of implanted cells and prevent them from washing away in the cerebrospinal fluid that surrounds the brain and spinal cord.

McMurtrey also noted that by making these site-specific reconstructions of neural tissue, not only can neural architecture be rebuilt, but researchers can also make models for studying disease mechanisms and developmental processes just by using skin cells that are induced into pluripotent stem cells and into neurons from patients with a variety of diseases and conditions. “The 3D constructs enable a realistic replication of the innate cellular environment and also enable study of diseased human neurons without needing to biopsy neurons from affected patients and without needing to make animal models that can fail to replicate the full array of features seen in humans,” said McMurtrey.

The ability to engineer neural tissue from stem cells and biomaterials holds great potential for regenerative medicine. The combination of stem cells, functionalized hydrogel architecture, and patterned and functionalized nanofiber scaffolding enables the formation of unique 3D tissue constructs, and these engineered constructs offer important applications in brain and spinal cord tissue that has been damaged by trauma, stroke, or degeneration. In particular, this work may one day help in the restoration of functional neuroanatomical pathways and structures at sites of spinal cord injury, traumatic brain injury, tumor resection, stroke, or neurodegenerative diseases of Parkinson’s, Huntington’s, Alzheimer’s, or amyotrophic lateral sclerosis.

Here’s a link to and a citation for the paper,

Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control by Richard McMurtrey (Journal of Neural Engineering Volume 11 Number 6) 2014 J. J. Neural Eng. 11 066009 doi:10.1088/1741-2560/11/6/066009

This paper is open access.

A little unusually for me, here’s the abstract for the paper,

Objective. Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. Approach. A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environmental scanning electron microscopy. Nanofibers were composed of polycaprolactone (PCL) polymer, PCL mixed with gelatin, or PCL with a laminin coating. Three-dimensional hydrogels were then integrated with embedded aligned nanofibers to support neuronal cell cultures. Microscopic images were captured at high-resolution in single and multi-focal planes with eGFP-expressing neuronal SH-SY5Y cells in a fluorescent channel and nanofiber scaffolding in another channel. Neuronal morphology and neurite tracking of nanofibers were then analyzed in detail. Main results. Aligned nanofibers were shown to enable significant control over the direction of neurite outgrowth in both two-dimensional (2D) and three-dimensional (3D) neuronal cultures. Laminin-functionalized nanofibers in 3D hyaluronic acid (HA) hydrogels enabled significant alignment of neurites with nanofibers, enabled significant neurite tracking of nanofibers, and significantly increased the distance over which neurites could extend. Specifically, the average length of neurites per cell in 3D HA constructs with laminin-functionalized nanofibers increased by 66% compared to the same laminin fibers on 2D laminin surfaces, increased by 59% compared to 2D laminin-coated surface without fibers, and increased by 1052% compared to HA constructs without fibers. Laminin functionalization of fibers also doubled average neurite length over plain PCL fibers in the same 3D HA constructs. In addition, neurites also demonstrated tracking directly along the fibers, with 66% of neurite lengths directly tracking laminin-coated fibers in 3D HA constructs, which was a 65% relative increase in neurite tracking compared to plain PCL fibers in the same 3D HA constructs and a 213% relative increase over laminin-coated fibers on 2D laminin-coated surfaces. Significance. This work demonstrates the ability to create unique 3D neural tissue constructs using a combined system of hydrogel and nanofiber scaffolding. Importantly, patterned and biofunctionalized nanofiber scaffolds that can control direction and increase length of neurite outgrowth in three-dimensions hold much potential for neural tissue engineering. This approach offers advancements in the development of implantable neural tissue constructs that enable control of neural development and reproduction of neuroanatomical pathways, with the ultimate goal being the achievement of functional neural regeneration.

I have a few comments, this work was performed in vitro and I imagine it will be several years before it is attempted in human clinical trials. As well, the ethics issues raised by this work are interesting. While the doctors are talking about repairs to injured tissues, it’s only a matter of time until someone tries to improve on the brain or human enhancement. After all, modern plastic surgery was developed as a form of repair for soldiers and others who were disfigured. These days, much of the practice is concerned with preserving youth or enhancing someone’s looks. Not altogether coincidentally, I wrote about the second volume of a report from the US Presidential Bioethics Commission in my April 2, 2015 post titled: Gray Matters volume 2: Integrative Approaches for Neuroscience, Ethics, and Society issued March 2015 by US Presidential Bioethics Commission.

Finally, you can find out more about the Institute of Neural Regeneration & Tissue Engineering here.

Chemistry jokes for April Fool’s Day 2015

The American Chemistry Society (ACS) has released a follow up to its 2014 video of chemistry jokes according to an April 1, 2015 news release on EurekAlert,

Last year, Reactions shook up the comedy world with a video featuring nothing but chemistry jokes. After overwhelming public acclaim, we’re back for this April Fools’ Day with round two, featuring a number of fan submissions. If you’re looking for a laugh, or maybe a groan or two, check out the video here: https://youtu.be/QbxBsD_tDQw.

Subscribe to the series at http://bit.ly/ACSReactions, and follow us on Twitter @ACSreactions to be the first to see our latest videos.

You can also see the video here,

Happy April Fool’s Day 2015!

For those who can’t get enough chemistry jokes, here’s a link to my April 1, 2014 post featuring the first round.

#MuseumWeek starts March 23, 2015

For the second year in a row museums from all over the world are going to be meeting for a week long programme via Twitter hashtag #MuseumWeek. A March 20, 2015 news item on phys.org describes the event,

The Louvre, New York’s MoMA, the National Gallery of Australia, the Tokyo National Museum, Shakespeare’s Globe in Britain and more than 1,400 [1800 as of March 19, 2015 Pacific Timezone] other museums around the world are coming to Twitter next week.

From Monday, art institutions in 50 countries will be tweeting under the hashtag #MuseumWeek to publicise their collections and to highlight reactions, the US-based social network said in a statement.

French museum officials backed by Twitter and the French culture ministry are steering the week-long event, which seeks to engage with Twitter users worldwide.

A March 12, 2015 report on the press conference, ,which can be found on the #MuseumWeekwebsite noted this,

On Thursday 5th March 2015 at 5 pm, a press conference was held for the launch of the second #MuseumWeek in the Salon des Maréchaux at the Ministry of Culture and Communication. Present were the Minister, Fleur Pellerin, and Dick Costolo, CEO of Twitter.

Benjamin Benita (Universcience), Coordinator of #MuseumWeek 2015, presented its main concepts: the 7 days, 7 themes and 7 hashtags that can be found here. He also spoke about the event’s mode of governance: a steering committee made up of French museum professionals, accompanied by Mar Dixon and backed by Twitter and the French Ministry of Culture and Communication. He reminded all those present of this #MuseumWeek’s dual ambition: to roll out the operation all over the world and attract an even wider public. We are delighted to be able to announce that #MuseumWeek 2015 has already attracted 1,000 participating institutions in 44 countries! The list of participants can be found here.

Innovatory initiatives

Finally, the great innovation of this second #MuseumWeek, new initiatives were presented: a time capsule that will store all the tweets and be kept by the Cité des sciences et de l’industrie, along with a digital work created by the BRIGHT studio and artist Marcin Ignac, based on tweets sent during the operation.This work will be displayed at the Cité de l’architecture & du patrimoine.

There’s a pretty healthy list of Canadian museums and cultural institutions as a March 17, 2015 Global report notes,

Go ahead, tweet a selfie at your favourite museum. It will be encouraged during MuseumWeek, a Twitter event that runs from March 23 to 29.

Inaugurated last year in Europe, the celebration has gone global, with museums around the world planning to tweet about their treasures and inviting visitors to post their own pictures and thoughts on various themes.

More than 55 museums across Canada, large and small, say they will participate, ranging from Science World British Columbia and the Royal Alberta Museum to the Royal Ontario Museum, Montreal Museum of Fine Arts and the Army Museum in Halifax Citadel.

The National Gallery of Canada “jumped at the chance” to get involved, gallery director and CEO Marc Mayer said in a press release. He called the event an opportunity to engage with Canadians “in an authentic way that not only educates but celebrates art.”

All of the national Canadian science museums are represented.

You can keep up-to-date with the latest doings for #MuseumWeek here on this temporary Twitter account. If the temporary feed is anything to go by, this will be a multilingual experience.