Category Archives: Uncategorized

D-PLACE: an open access database of places, language, culture, and enviroment

In an attempt to be a bit more broad in my interpretation of the ‘society’ part of my commentary I’m including this July 8, 2016 news item on ScienceDaily (Note: A link has been removed),

An international team of researchers has developed a website at d-place.org to help answer long-standing questions about the forces that shaped human cultural diversity.

D-PLACE — the Database of Places, Language, Culture and Environment — is an expandable, open access database that brings together a dispersed body of information on the language, geography, culture and environment of more than 1,400 human societies. It comprises information mainly on pre-industrial societies that were described by ethnographers in the 19th and early 20th centuries.

A July 8, 2016 University of Toronto news release (also on EurekAlert), which originated the news item, expands on the theme,

“Human cultural diversity is expressed in numerous ways: from the foods we eat and the houses we build, to our religious practices and political organisation, to who we marry and the types of games we teach our children,” said Kathryn Kirby, a postdoctoral fellow in the Departments of Ecology & Evolutionary Biology and Geography at the University of Toronto and lead author of the study. “Cultural practices vary across space and time, but the factors and processes that drive cultural change and shape patterns of diversity remain largely unknown.

“D-PLACE will enable a whole new generation of scholars to answer these long-standing questions about the forces that have shaped human cultural diversity.”

Co-author Fiona Jordan, senior lecturer in anthropology at the University of Bristol and one of the project leads said, “Comparative research is critical for understanding the processes behind cultural diversity. Over a century of anthropological research around the globe has given us a rich resource for understanding the diversity of humanity – but bringing different resources and datasets together has been a huge challenge in the past.

“We’ve drawn on the emerging big data sets from ecology, and combined these with cultural and linguistic data so researchers can visualise diversity at a glance, and download data to analyse in their own projects.”

D-PLACE allows users to search by cultural practice (e.g., monogamy vs. polygamy), environmental variable (e.g. elevation, mean annual temperature), language family (e.g. Indo-European, Austronesian), or region (e.g. Siberia). The search results can be displayed on a map, a language tree or in a table, and can also be downloaded for further analysis.

It aims to enable researchers to investigate the extent to which patterns in cultural diversity are shaped by different forces, including shared history, demographics, migration/diffusion, cultural innovations, and environmental and ecological conditions.

D-PLACE was developed by an international team of scientists interested in cross-cultural research. It includes researchers from Max Planck Institute for the Science of Human history in Jena Germany, University of Auckland, Colorado State University, University of Toronto, University of Bristol, Yale, Human Relations Area Files, Washington University in Saint Louis, University of Michigan, American Museum of Natural History, and City University of New York.

The diverse team included: linguists; anthropologists; biogeographers; data scientists; ethnobiologists; and evolutionary ecologists, who employ a variety of research methods including field-based primary data collection; compilation of cross-cultural data sources; and analyses of existing cross-cultural datasets.

“The team’s diversity is reflected in D-PLACE, which is designed to appeal to a broad user base,” said Kirby. “Envisioned users range from members of the public world-wide interested in comparing their cultural practices with those of other groups, to cross-cultural researchers interested in pushing the boundaries of existing research into the drivers of cultural change.”

Here’s a link to and a citation for the paper,

D-PLACE: A Global Database of Cultural, Linguistic and Environmental Diversity by Kathryn R. Kirby, Russell D. Gray, Simon J. Greenhill, Fiona M. Jordan, Stephanie Gomes-Ng, Hans-Jörg Bibiko, Damián E. Blasi, Carlos A. Botero, Claire Bowern, Carol R. Ember, Dan Leehr, Bobbi S. Low, Joe McCarter, William Divale, Michael C. Gavin.  PLOS ONE, 2016; 11 (7): e0158391 DOI: 10.1371/journal.pone.0158391 Published July 8, 2016.

This paper is open access.

You can find D-PLACE here.

While it might not seem like that there would be a close link between anthropology and physics in the 19th and early 20th centuries, that information can be mined for more contemporary applications. For example, someone who wants to make a case for a more diverse scientific community may want to develop a social science approach to the discussion. The situation in my June 16, 2016 post titled: Science literacy, science advice, the US Supreme Court, and Britain’s House of Commons, could  be extended into a discussion and educational process using data from D-Place and other sources to make the point,

Science literacy may not be just for the public, it would seem that US Supreme Court judges may not have a basic understanding of how science works. David Bruggeman’s March 24, 2016 posting (on his Pasco Phronesis blog) describes a then current case before the Supreme Court (Justice Antonin Scalia has since died), Note: Links have been removed,

It’s a case concerning aspects of the University of Texas admissions process for undergraduates and the case is seen as a possible means of restricting race-based considerations for admission.  While I think the arguments in the case will likely revolve around factors far removed from science and or technology, there were comments raised by two Justices that struck a nerve with many scientists and engineers.

Both Justice Antonin Scalia and Chief Justice John Roberts raised questions about the validity of having diversity where science and scientists are concerned [emphasis mine].  Justice Scalia seemed to imply that diversity wasn’t esential for the University of Texas as most African-American scientists didn’t come from schools at the level of the University of Texas (considered the best university in Texas).  Chief Justice Roberts was a bit more plain about not understanding the benefits of diversity.  He stated, “What unique perspective does a black student bring to a class in physics?”

To that end, Dr. S. James Gates, theoretical physicist at the University of Maryland, and member of the President’s Council of Advisers on Science and Technology (and commercial actor) has an editorial in the March 25 [2016] issue of Science explaining that the value of having diversity in science does not accrue *just* to those who are underrepresented.

Dr. Gates relates his personal experience as a researcher and teacher of how people’s background inform their practice of science, and that two different people may use the same scientific method, but think about the problem differently.

I’m guessing that both Scalia and Roberts and possibly others believe that science is the discovery and accumulation of facts. In this worldview science facts such as gravity are waiting for discovery and formulation into a ‘law’. They do not recognize that most science is a collection of beliefs and may be influenced by personal beliefs. For example, we believe we’ve proved the existence of the Higgs boson but no one associated with the research has ever stated unequivocally that it exists.

More generally, with D-PLACE and the recently announced Trans-Atlantic Platform (see my July 15, 2016 post about it), it seems Canada’s humanities and social sciences communities are taking strides toward greater international collaboration and a more profound investment in digital scholarship.

A new Shrinky Dinks story: super-wrinkled and super-crumpled graphene for self-cleaning surfaces and other applications

Caption: Wrinkles and crumples, introduced by placing graphene on shrinky polymers, can enhance graphene's properties. Credit: Hurt and Wong Labs / Brown University

Caption: Wrinkles and crumples, introduced by placing graphene on shrinky polymers, can enhance graphene’s properties. Credit: Hurt and Wong Labs / Brown University

A March 21, 2016 news item on ScienceDaily describes how Brown University (US) researchers developed super-wrinkled and super-crumpled graphene,

Crumple a piece of paper and it’s probably destined for the trash can, but new research shows that repeatedly crumpling sheets of the nanomaterial graphene can actually enhance some of its properties. In some cases, the more crumpled the better.

The research by engineers from Brown University shows that graphene, wrinkled and crumpled in a multi-step process, becomes significantly better at repelling water–a property that could be useful in making self-cleaning surfaces. Crumpled graphene also has enhanced electrochemical properties, which could make it more useful as electrodes in batteries and fuel cells.

A March 21, 2016 Brown University news release (also on EurekAlert), which originated the news item, provides more detail about the current and previous research,

This new research builds on previous work done by Robert Hurt and Ian Wong, from Brown’s School of Engineering. The team had previously showed that by introducing wrinkles into graphene, they could make substrates for culturing cells that were more similar to the complex environments in which cells grow in the body. For this latest work, the researchers led by Po-Yen Chen, a Hibbit postdoctoral fellow, wanted to build more complex architectures incorporating both wrinkles and crumples. “I wanted to see if there was a way to create higher-generational structures,” Chen said.

To do that, the researchers deposited layers of graphene oxide onto shrink films–polymer membranes that shrink when heated (kids may know these as Shrinky Dinks [emphasis mine]). As the films shrink, the graphene on top is compressed, causing it to wrinkle and crumple. To see what kind of structures they could create, the researchers compressed same graphene sheets multiple times. After the first shrink, the film was dissolved away, and the graphene was placed in a new film to be shrunk again.

The researchers experimented with different configurations in the successive generations of shrinking. For example, sometimes they clamped opposite ends of the films, which caused them to shrink only along one axis. Clamped films yielded graphene sheets with periodic, basically parallel wrinkles across its surface. Unclamped films shrank in two dimensions, both length- and width-wise, creating a graphene surface that was crumpled in random shapes.

The team experimented with those different modes of shrinking over three successive generations. For example, they might shrink the same graphene sheet on a clamped film, then an unclamped film, then clamped again; or unclamped, clamped, unclamped. They also rotated the graphene in different configurations between shrinkings, sometimes placing the sheet perpendicular to its original orientation.

The team found that the multi-generational approach could substantially compress the graphene sheets, making them as small as one-fortieth their original size. They also showed that successive generations could create interesting patterns along the surface–wrinkles and crumples that were superimposed onto each other, for example.

“As you go deeper into the generations you tend to get larger wavelength structures with the original, smaller wavelength structure from earlier generations built into them,” said Robert Hurt, a professor of engineering at Brown and one of the paper’s corresponding authors.

A sheet that was shrunk clamped, unclamped, and then clamped looked different from ones that were unclamped, clamped, unclamped, for example.

“The sequence matters,” said Wong, also a corresponding author on the paper. “It’s not like multiplication where 2 times 3 is the same as 3 times 2. The material has a ‘memory’ and we get different results when we wrinkle or crumple in a different order.”

The researchers generated a kind of taxonomy of structures born from different shrinking configurations. They then tested several of those structures to see how they altered the properties of the graphene sheets.

Enhanced properties

They showed that a highly crumpled graphene surface becomes superhydrophobic–able to resist wetting by water. When water touches a hydrophobic surface, it beads up and rolls off. When the contact angle of those water beads with an underlying surface exceeds 160 degrees–meaning very little of the water bead’s surface touches the material–the material is said to be superhydrophobic. The researchers showed that they could make superhydrophobic graphene with three unclamped shrinks.

The team also showed that crumpling could enhance the electrochemical behaviors of graphene, which could be useful in next-generation energy storage and generation. The research showed that crumpled graphene used as a battery electrode had as much as a 400 percent increase in electrochemical current density over flat graphene sheets. That increase in current density could make for vastly more efficient batteries.

“You don’t need a new material to do it,” Chen said. “You just need to crumple the graphene.”

In additional to batteries and water resistant coatings, graphene compressed in this manner might also be useful in stretchable electronics–a wearable sensor, for example.

The group plans to continue experimenting with different ways of generating structures on graphene and other nanomaterials.

“There are many new two-dimensional nanomaterials that have interesting properties, not just graphene,” Wong said. “So other materials or combinations of materials may also organize into interesting structures with unexpected functionalities.”

Here’s a link to and a citation for the paper,

Multiscale Graphene Topographies Programmed by Sequential Mechanical Deformation by Po-Yen Chen, Jaskiranjeet Sodhi, Yang Qiu, Thomas M. Valentin, Ruben Spitz Steinberg, Zhongying Wang, Robert H. Hurt, and Ian Y. Wong. Advanced Materials DOI: 10.1002/adma.201506194 Article first published online: 21 MAR 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

As for Shrinky Dinks, I first featured this material and its use in science research in an Aug. 16, 2010 posting about Shrinky Dinks and nanopatterning. It was originally developed by Betty J. Morris as craft material for children. Both she and the scientist kindly answered some followup questions inspired by the original news release and published in the 2010 post.

The Weyl fermion and new electronics

This story concerns a quasiparticle (Weyl fermion) which is a different kind of particle than the nanoparticles usually mentioned here. A March 17, 2016 news item on Nanowerk profiles research that suggests the Weyl fermion may find applications in the field of electronics,

The Weyl fermion, just discovered in the past year, moves through materials practically without resistance. Now researchers are showing how it could be put to use in electronic components.

Today electronic devices consume a lot of energy and require elaborate cooling mechanisms. One approach for the development of future energy-saving electronics is to use special particles that exist only in the interior of materials but can move there practically undisturbed. Electronic components based on these so-called Weyl fermions would consume considerably less energy than present-day chips. That’s because up to now devices have relied on the movement of electrons, which is inhibited by resistance and thus wastes energy.

Evidence for Weyl fermions was discovered only in the past year, by several research teams including scientists from the Paul Scherrer Institute (PSI). Now PSI researchers have shown — within the framework of an international collaboration with two research institutions in China and the two Swiss technical universities, ETH Zurich and EPF Lausanne — that there are materials in which only one kind of Weyl fermion exists. That could prove decisive for applications in electronic components, because it makes it possible to guide the particles’ flow in the material.

A March 17, 2016 Paul Scherrer Institute (PSI) press release by Paul Piwnicki, which originated the news item, describes the work in more detail (Note: There is some redundancy),

In the past year, researchers of the Paul Scherrer Institute PSI were among those who found experimental evidence for a particle whose existence had been predicted in the 1920s — the Weyl fermion. One of the particle’s peculiarities is that it can only exist in the interior of materials. Now the PSI researchers, together with colleagues at two Chinese research institutions as well as at ETH Zurich and EPF Lausanne, have made a subsequent discovery that opens the possibility of using the movement of Weyl fermions in future electronic devices. …

Today’s computer chips use the flow of electrons that move through the device’s conductive channels. Because, along the way, electrons are always colliding with each other or with other particles in the material, a relatively high amount of energy is needed to maintain the flow. That means not only that the device wastes a lot of energy, but also that it heats itself up enough to necessitate an elaborate cooling mechanism, which in turn requires additional space and energy.

In contrast, Weyl fermions move virtually undisturbed through the material and thus encounter practically no resistance. “You can compare it to driving on a highway where all of the cars are moving freely in the same direction,” explains Ming Shi, a senior scientist at the PSI. “The electron flow in present-day chips is more comparable to driving in congested city traffic, with cars coming from all directions and getting in each other’s way.”

Important for electronics: only one kind of particle

While in the materials examined last year there were always several kinds of Weyl fermions, all moving in different ways, the PSI researchers and their colleagues have now produced a material in which only one kind of Weyl fermion occurs. “This is important for applications in electronics, because here you must be able to precisely steer the particle flow,” explains Nan Xu, a postdoctoral researcher at the PSI.

Weyl fermions are named for the German mathematician Hermann Weyl, who predicted their existence in 1929. These particles have some striking characteristics, such as having no mass and moving at the speed of light. Weyl fermions were observed as quasiparticles in so-called Weyl semimetals. In contrast to “real” particles, quasiparticles can only exist inside materials. Weyl fermions are generated through the collective motion of electrons in suitable materials. In general, quasiparticles can be compared to waves on the surface of a body of water — without the water, the waves would not exist. At the same time, their movement is independent of the water’s motion.

The material that the researchers have now investigated is a compound of the chemical elements tantalum and phosphorus, with the chemical formula TaP. The crucial experiments were carried out with X-rays at the Swiss Light Source (SLS) of the Paul Scherrer Institute.

Studying novel materials with properties that could make them useful in future electronic devices is a central research area of the Paul Scherrer Institute. In the process, the researchers pursue a variety of approaches and use many different experimental methods.

Here’s a link to and a citation for the paper,

Observation of Weyl nodes and Fermi arcs in tantalum phosphide by N. Xu, H. M. Weng, B. Q. Lv, C. E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autès, O. V. Yazyev, Z. Fang, X. Dai, T. Qian, J. Mesot, H. Ding & M. Shi. Nature Communications 7, Article number: 11006  doi:10.1038/ncomms11006 Published 17 March 2016

This paper is open access.

Job at Sense about Science

Sense about Science is advertising for a Campaigns Manager. From the job posting webpage on the website,

Sense about Science is an independent campaigning charity that monitors and challenges the misrepresentation of science and scientific evidence in public life. We advocate for openness and honesty about scientific claims and findings, and mobilise the public to ask questions about science and evidence.

We are recruiting for this post to run the AllTrials campaign and parts of other Sense About Science campaigns and responsive work, reporting to the campaigns director. The AllTrials campaign for clinical trials transparency has already resulted in new regulations, commitments from organisations and support from thousands of people. We now need to build a vibrant international campaign, coordinating activity across the many groups championing trial reporting to change the culture of clinical trial reporting forever.

The role will include:

  • Day to day running of the AllTrials campaign:
    • Developing publicity and communications on the need for clinical trial transparency, including in the media, for supporters, in fundraising appeals and grant applications
    • Coordinating campaign responses to public and political consultations
    • Building and maintaining networks of organisations and experts, in the UK and globally, and coordinating activity
    • Liaising with the team at Sense About Science USA and helping to coordinate AllTrials work in the US
    • Organising and running meetings and communications with the AllTrials campaign steering group
    • Managing Campaign Support Officer, campaign interns and campaign volunteers
  • Supporting the Director of Campaigns in devising and implementing campaign strategies, deputising for the Director of Campaigns
  • Initiating responsive campaigns to new issues and linking our body of work to new discussions
  • Representing Sense About Science at meetings, giving talks, chairing sessions and writing articles

The successful candidate will be articulate, motivated and ambitious about social change. It is a busy office and no two days are the same so you need to be able to plan well but adapt quickly. The ideal candidate will need:

  • a higher degree in a related subject and a background in research
  • experience of building and maintaining networks
  • experience coordinating and delivering projects and a well-tested ability to prioritise
  • the ability to analyse situations and act when in uncertain territory
  • confident and personable communication and a demonstrable ability to produce good written material which is suited to public awareness campaigns
  • good judgment and negotiating skills

Salary c. £28K – £32K. Holiday: 28 days (inc public holidays), 1 additional day after each year in post, and discretionary Christmas break days. Central London (EC1R). Will include some international travel and out of hours activity.

Email a CV and cover letter to the assistant director Emily Jesper ejesper@senseaboutscience.org by midnight on Friday 18th March 2016 [emphasis mine]. Please call Emily if you want to discuss the post and your suitability: 020 7490 9590.

If you don’t have a CV that matches the requirements but you are absolutely convinced you are right for us and this role, feel free to write to us to make the case.

Good luck and don’t forget the deadline is March 18, 2016.

January 31, 2016 deadlines for early bird tickets (ESOF) and conference abstracts (emerging technologies)

ESOF 2016 (EuroScience Open Forum)

Early bird tickets for this biennial science conference are available until Jan.  31, 2016 according to a Jan. 18, 2016 email notice,

Our most affordable tickets are available to purchase until the end of the month, so make sure you get yours before they disappear. Prices start from only £75 for a full four-day pass for early careers researchers (up to 5 years post doc), and £225 for a full delegate pass. All registrations are entitled to a year long complimentary subscription to Nature at this time.

You can also book your accommodation when you register to attend ESOF. We have worked hard with our city partners to bring you the best deals for your stay in Manchester. With the summer set to be busy with not only ESOF but major international sporting events, make sure you take advantage of these deals.

To register to attend please click here

You can find out more about the event which takes place from July 23 – 27, 2016 in Manchester, England here and/or you can watch this video,

For any interested journalists, media registration has opened (from the Jan. 18, 2016 notice),

Media registration opens

We are delighted to announce our ESOF press accreditation is available for journalists and science communications professionals to register for the conference. Accreditation provides complimentary access to the full ESOF programme, social events and a range of exclusive press only activities. Further details of the eligibility criteria and registration process can be found here.

Nature Publishing Group offers journalists a travel grant which will cover most if not all the expenses associated with attending 2016 ESOF (from the ESOF Nature Travel Grant webpage),

The Nature Travel Grant Scheme offers journalists and members of media organisations from around the world the opportunity to attend ESOF for free. The grant offers complimentary registration as well as help covering travel and accommodation costs.

1. Purpose

Created by EuroScience, the biennial ESOF – EuroScience Open Forum – meeting is the largest pan-European general science conference dedicated to scientific research and innovation. At ESOF meetings leading scientists, researchers, journalists, business people, policy makers and the general public from all over the world discuss new discoveries and debate the direction that research is taking in the sciences, humanities and social sciences.

Springer Nature is a leading global research, educational and professional publisher, home to an array of respected and trusted brands providing quality content through a range of innovative products and services, including the journal Nature. Springer Nature was formed in 2015 through the merger of Nature Publishing Group, Palgrave Macmillan, Macmillan Education and Springer Science+Business Media. Nature Publishing Group has supported ESOF since its very first meeting in 2004.

Similar to the 2012 and 2014 edition of meeting, Springer Nature is funding the Nature Travel Grant Scheme for journalists to attend ESOF2016 with the aim to increase the impact of ESOF.

2. The Scheme

In addition to free registration, the Nature Travel Grant Scheme offers a lump sum of £450 for UK based journalists, £600 for journalists based in Europe and £800 for journalists based outside of Europe, to help cover the costs of travel and accommodation to attend ESOF2016.

3. Who can apply?

All journalists irrespective of their gender, age, nationality, place of residence and media type (paper, radio, TV, web) are welcome to apply. Media accreditation will be required.

4. Application procedure

To submit an application sign into the EuroScience Conference and Membership Platform (ESCMP) and click on “Apply for a Grant”. Follow the application procedure.

On submitting the application form for travel grants, you agree to the full acceptance of the rules and to the decision taken by the Selection Committee.

The deadline for submitting an application is February 29th 2016, 12:00 pm CET.

Good luck!

4th Annual Governance of Emerging Technologies: Law, Policy and Ethics Conference

Here’s more about the conference (deadline for abstracts is Jan. 31, 2016) from the conference’s Call for Abstract’s webpage,

Fourth Annual Conference on
Governance of Emerging Technologies: Law, Policy, and Ethics

May 24-26, 2016, Tempe, Arizona

Call for abstracts:

The co-sponsors invite submission of abstracts for proposed presentations.  Submitters of abstracts need not provide a written paper, although provision will be made for posting and possible post-conference publication of papers for those presenters interested in such options.  Although abstracts are invited for any aspect or topic relating to the governance of emerging technologies, some particular themes that will be emphasized at this year’s conference include existential or catastrophic risks, governance implications of algorithms, resilience and emerging technologies, artificial intelligence, military technologies, and gene editing.

Abstracts should not exceed 500 words.
Abstracts must be submitted by January 31, 2016 to be considered.
Decisions on abstracts will be made by the program committee and communicated by February 29 [2016]. 

Funding: The sponsors will pay for the conference registration (including all conference meals) for one presenter for each accepted abstract.  In addition, we will have limited funds available for travel subsidies in whole or in part.  After completing your abstract online, you will be asked if you wish to apply for a travel subsidy.  Any such additional funding will be awarded based on the strength of the abstract, demonstration of financial need, and/or the potential to encourage student authors and early-career scholars.  Accepted presenters for whom conference funding is not available will need to pay their own transportation and hotel costs.

For more information, please contact Lauren Burkhart at Lauren.Burkhart@asu.edu.

You don’t often see conference organizers offering to pay registration and meals for a single presenter from each accepted submission. Good luck!

Origami and our pop-up future

They should have declared Jan. 25, 2016 ‘L. Mahadevan Day’ at Harvard University. The researcher was listed as an author on two major papers. I covered the first piece of research, 4D printed hydrogels, in this Jan. 26, 2016 posting. Now for Mahadevan’s other work, from a Jan. 27, 2016 news item on Nanotechnology Now,

What if you could make any object out of a flat sheet of paper?

That future is on the horizon thanks to new research by L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, Organismic and Evolutionary Biology, and Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). He is also a core faculty member of the Wyss Institute for Biologically Inspired Engineering, and member of the Kavli Institute for Bionano Science and Technology, at Harvard University.

Mahadevan and his team have characterized a fundamental origami fold, or tessellation, that could be used as a building block to create almost any three-dimensional shape, from nanostructures to buildings. …

A Jan. 26, 2016 Harvard University news release by Leah Burrows, which originated the news item, provides more detail about the specific fold the team has been investigating,

The folding pattern, known as the Miura-ori, is a periodic way to tile the plane using the simplest mountain-valley fold in origami. It was used as a decorative item in clothing at least as long ago as the 15th century. A folded Miura can be packed into a flat, compact shape and unfolded in one continuous motion, making it ideal for packing rigid structures like solar panels.  It also occurs in nature in a variety of situations, such as in insect wings and certain leaves.

“Could this simple folding pattern serve as a template for more complicated shapes, such as saddles, spheres, cylinders, and helices?” asked Mahadevan.

“We found an incredible amount of flexibility hidden inside the geometry of the Miura-ori,” said Levi Dudte, graduate student in the Mahadevan lab and first author of the paper. “As it turns out, this fold is capable of creating many more shapes than we imagined.”

Think surgical stents that can be packed flat and pop-up into three-dimensional structures once inside the body or dining room tables that can lean flat against the wall until they are ready to be used.

“The collapsibility, transportability and deployability of Miura-ori folded objects makes it a potentially attractive design for everything from space-bound payloads to small-space living to laparoscopic surgery and soft robotics,” said Dudte.

Here’s a .gif demonstrating the fold,

This spiral folds rigidly from flat pattern through the target surface and onto the flat-folded plane (Image courtesy of Mahadevan Lab) Harvard University

This spiral folds rigidly from flat pattern through the target surface and onto the flat-folded plane (Image courtesy of Mahadevan Lab) Harvard University

The news release offers some details about the research,

To explore the potential of the tessellation, the team developed an algorithm that can create certain shapes using the Miura-ori fold, repeated with small variations. Given the specifications of the target shape, the program lays out the folds needed to create the design, which can then be laser printed for folding.

The program takes into account several factors, including the stiffness of the folded material and the trade-off between the accuracy of the pattern and the effort associated with creating finer folds – an important characterization because, as of now, these shapes are all folded by hand.

“Essentially, we would like to be able to tailor any shape by using an appropriate folding pattern,” said Mahadevan. “Starting with the basic mountain-valley fold, our algorithm determines how to vary it by gently tweaking it from one location to the other to make a vase, a hat, a saddle, or to stitch them together to make more and more complex structures.”

“This is a step in the direction of being able to solve the inverse problem – given a functional shape, how can we design the folds on a sheet to achieve it,” Dudte said.

“The really exciting thing about this fold is it is completely scalable,” said Mahadevan. “You can do this with graphene, which is one atom thick, or you can do it on the architectural scale.”

Co-authors on the study include Etienne Vouga, currently at the University of Texas at Austin, and Tomohiro Tachi from the University of Tokyo. …

Here’s a link to and a citation for the paper,

Programming curvature using origami tessellations by Levi H. Dudte, Etienne Vouga, Tomohiro Tachi, & L. Mahadevan. Nature Materials (2016) doi:10.1038/nmat4540 Published online 25 January 2016

This paper is behind a paywall.

Star Trek, Schrödinger’s cat, quantum entanglement, and more in memory teleportation scheme

A Jan. 13, 2016 news item on Nanowerk introduces Star Trek and Schrödinger’s cat as means to explain a quantum teleportation theory (Note: A link has been removed),

In “Star Trek”, a transporter can teleport a person from one location to a remote location without actually making the journey along the way. Such a transporter has fascinated many people. Quantum teleportation shares several features of the transporter and is one of the most important protocols in quantum information.

In a recent study (“Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator”), Prof. Tongcang Li at Purdue University [US] and Dr. Zhang-qi Yin at Tsinghua University [China] proposed the first scheme to use electromechanical oscillators and superconducting circuits to teleport the internal quantum state (memory) and center-of-mass motion state of a microorganism.

They also proposed a scheme to create a Schrödinger’s cat state in which a microorganism can be in two places at the same time. This is an important step towards potentially teleporting an organism in future.

A Jan. 13, 2016 Science China Press news release on EurekAlert, which originated the news item, expands on the theme,

In 1935, Erwin Schrödinger proposed a famous thought experiment to prepare a cat in a superposition of both alive and dead states. The possibility of an organism to be in a superposition state dramatically reveals the profound consequences of quantum mechanics, and has attracted broad interests. Physicists have made great efforts in many decades to investigate macroscopic quantum phenomena. So far, matter-wave interference of electrons, atoms, and molecules (such as C60) have been observed. Recently, quantum ground state cooling and the creation of superposition states of mechanical oscillators have been realized. For example, a group in Colorado, US has cooled the vibration of a 15-micrometer-diameter aluminum membrane to quantum ground state, and entangled its motion with microwave photons. However, quantum superposition of an entire organism has not been realized. Meanwhile, there have been many breakthroughs in quantum teleportation since its first experimental realization in 1997 with a single photon. Besides photons, quantum teleportation with atoms, ions, and superconducting circuits have been demonstrated. In 2015, a group at University of Science and Technology of China demonstrated the quantum teleportation of multiple degrees of freedom of a single photon. However, existing experiments are still far away from teleporting an organism or the state of an organism.

In a recent study, Tongcang Li and Zhang-qi Yin propose to put a bacterium on top of an electromechanical membrane oscillator integrated with a superconducting circuit to prepare quantum superposition state of a microorganism and teleport its quantum state. A microorganism with a mass much smaller than the mass of the electromechanical membrane will not significantly affect the quality factor of the membrane and can be cooled to the quantum ground state together with the membrane. Quantum superposition and teleportation of its center-of-mass motion state can be realized with the help of superconducting microwave circuits. With a strong magnetic field gradient, the internal states of a microorganism, such as the electron spin of a glycine radical, can be entangled with its center-of-mass motion and be teleported to a remote microorganism. Since internal states of an organism contain information, this proposal provides a scheme for teleporting information or memories between two remote organisms.

The proposed setup is also a quantum-limited magnetic resonance force microscope. It not only can detect the existence of single electron spins (associated to protein defects or DNA defects) like conventional MRFM, but also can coherently manipulate and detect the quantum states of electron spins. It enables some isolated electron spins that could not be read out with optical or electrical methods to be used as quantum memory for quantum information.

Li says “We propose a straightforward method to put a microorganism in two places at the same time, and provide a scheme to teleport the quantum state of a microorganism. I hope our unconventional work will inspire more people to think seriously about quantum teleportation of a microorganism and its potential applications in future.” Yin says “Our work also provides insights for future studies about the effects of biochemical reactions in the wave function collapses of quantum superposition states of an organism.”

Here’s a link to and a citation for the researchers’ latest paper,

Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator by Tongcang Li and Zhang-Qi Yin. Science Bulletin pp 1-9 DOI: 10.1007/s11434-015-0990-x First online: 11 January 2016

This paper is behind a paywall.

Cell Press and its first ever science writing internships

Cell Press is offering three rounds of internships. I believe the first round has ended but there are opportunities to enter the second round, from the Cell Press Newsroom webpage,

Science Writing Internship @ Cell Press

In 2016, the Press Office of Cell Press is offering its first science writing internship program. Three paid positions will be available:

+ Winter (16 weeks, Feb-May, M-F, $15/hr) for grads/post-grads
+ Summer (10 weeks, June-August, M-Th, $12/hr) for undergrads; recent college graduates are also eligible
+ Fall (16 weeks, September-December, M-F, $15/hr) for grads/post-grads

The internships willl be extremely hands-on, giving interns the full experience of being a press officer at a major publishing operation. In addition to public relations experience, interns will also be assigned journalism-type pieces to be published on Cell.com and in the print issues of Cell. Interns will also learn about the entire production process of how a scientific paper goes from the laboratory to a story in a major media outlet and have the opportunity to collaborate with other business teams, including marketing, commercial sales, editorial, and production.

Summer internship application available in March
Finalists will be asked to take a short editorial test and to provide three writing samples, and the contact information for two references.

Summer Internship
Meant for an individual who is looking to explore science communications as a career. Experience not necessary, just a proven interest in writing/public relations/science .

The undergraduate Science Writing Intern will report to Media Relations Manager Joseph Caputo and will be located in the Elsevier Cambridge, MA office. This will be a 10-week internship over the summer of 2016. The internship will be 4 days per week, Monday through Thursday, 9-5, and will be paid at an hourly rate of $12. The internship spans Monday, June 6, 2016 – Thursday, August 11, 2016.

The Internship will provide the intern with 10+ clips including press releases, news blurbs, blog posts, and original reporting. Tasks will include:

+ Responding to inquiries in the press inbox.
+ Writing press releases about research published in Cell Press journals, distributing press releases, and pitching to relevant journalists.
+ Pitching and developing Cell Press news, CrossTalk blog, podcast, and Elsevier Connect content.
+ Developing and posting Cell Press social media content.
+ Completing miscellaneous projects as assigned by Media Relations Manager.

At the end of the internship, the intern should add to their working knowledge of how to strategize, develop, and execute PR campaigns for various audience segments, write compelling PR content for the web/social media, and measure and analyze campaign outcomes.

Qualifications

The ideal candidate for the internship will:

+ Be studying for or have completed a Bachelor’s in Public Relations, Journalism, or Biology.
+ Have experience preparing and telling a story (specifically pitching, conducting interviews, and writing pieces of journalism or public relations materials).
+ Have proficiency with Microsoft Office (Word, Excel, Outlook).
+ Have work experience within an office environment.

Be comfortable working alone as well as with a team, know how to juggle many time-sensitive tasks, be able to proactively seek information to complete a project, and maintain a friendly attitude while dealing with the high number of requests received from journalists and institutions from around the world.

Internship Position and Timing

Location: Cell Press’s office at 50 Hampshire Street, Cambridge, MA. No housing or relocation assistance will be provided.
Timing: Start date June 6th, end date August 11th.
Hours/Schedule: 7 hours per day, 4 days per week, Monday through Thursday; 9 a.m. to 5 p.m.
Internship Supervisor: Joseph Caputo, Media Relations Manager
Remuneration: Paid – $12/hr – Contractor

No permanent position is available at the end of the internship, although candidates will be considered for available positions should they apply and performance/circumstances warrant it.

In case you missed it in that welter of information, an application for the second round will be available in March 2016.  I imagine you could use the following contact information although they don’t seem to be encouraging questions,

Joseph Caputo
Media Relations Manager
Phone: +1 (617) 397-2802
Cambridge, MA, USA
E-mail: press@cell.com; jcaputo@cell.com

There is no word yet as to when the third and final round will be opened up but it is intended for graduate students.

NISE Net, the acronym remains the same but the name changes

NISE Net, the US Nanoscale Informal Science Education Network is winding down the nano and refocussing on STEM (science, technology, engineering, and mathematics). In short, NISE Net will now stand for National Informal STEM Education Network. Here’s more from the Jan. 7, 2016 NISE Net announcement in the January 2016 issue of the Nano Bite,

COMMUNITY NEWS

NISE Network is Transitioning to the National Informal STEM Education Network

Thank you for all the great work you have done over the past decade. It has opened up totally new possibilities for the decade ahead.

We are excited to let you know that with the completion of NSF funding for the Nanoscale Informal Science Education Network, and the soon-to-be-announced NASA [US National Aeronautics and Space Administration]-funded Space and Earth Informal STEM Education project, the NISE Network is transitioning to a new, ongoing identity as the National Informal STEM Education Network! While we’ll still be known as the NISE Net, network partners will now engage audiences across the United States in a range of STEM topics. Several new projects are already underway and others are in discussion for the future.

Current NISE Net projects include:

  • The original Nanoscale Informal Science Education Network (NISE Net), focusing on nanoscale science, engineering, and technology (funded by NSF and led by the Museum of Science, Boston)
  • Building with Biology, focusing on synthetic biology (funded by NSF and led by the Museum of Science with AAAS [American Association for the Advancement of Science], BioBuilder, and SynBerc [emphases mine])
  • Sustainability in Science Museums (funded by Walton Sustainability Solutions Initiatives and led by Arizona State University)
  • Transmedia Museum, focusing on science and society issues raised by Mary Shelley’s Frankenstein (funded by NSF and led by Arizona State University)
  • Space and Earth Informal STEM Education (funded by NASA and led by the Science Museum of Minnesota)

The “new” NISE Net will be led by the Science Museum of Minnesota in collaboration with the Museum of Science and Arizona State University. Network leadership, infrastructure, and participating organizations will include existing Network partners, and others attracted to the new topics. We will be in touch through the newsletter, blog, and website in the coming months to share more about our plans for the Network and its projects.

In the mean time, work is continuing with partners within the Nanoscale Informal Science Education Network throughout 2016, with an award end date of February 28, 2017. Although there will not be a new NanoDays 2016 kit, we encourage our partners to continue to engage audiences in nano by hosting NanoDays events in 2016 (March 26 – April 3) and in the years ahead using their existing kit materials. The Network will continue to host and update nisenet.org and the online catalog that includes 627 products of which 366 are NISE Net products (public and professional), 261 are Linked products, and 55 are Evaluation and Research reports. The Evaluation and Research team is continuing to work on final Network reports, and the Museum and Community Partnerships project has awarded 100 Explore Science physical kits to partners to create new or expanded collaborations with local community organizations to reach new underserved audiences not currently engaged in nano. These collaborative projects are taking place spring-summer 2016.

Thank you again for making this possible through your great work.

Best regards,

Larry Bell, Museum of Science
Paul Martin, Science Museum of Minnesota and
Rae Ostman, Arizona State University

As noted in previous posts, I’m quite interested in the synthetic biology focus the network has established in the last several months starting in late Spring 2015 and the mention of two (new-to-me) organizations, BioBuilder and Synberc piqued my interest.

I found this on the About the foundation page of the BioBuilder website,

What’s the best way to solve today’s health problems? Or hunger challenges? Address climate change concerns? Or keep the environment cleaner? These are big questions. And everyone can be part of the solutions. Everyone. Middle school students, teens, high school teachers.

At BioBuilder, we teach problem solving.
We bring current science to the classroom.
We engage our students to become real scientists — the problem solvers who will change the world.
At BioBuilder, we empower educators to be agents of educational reform by reconnecting teachers all across the country with their love of teaching and their own love of learning.

Synthetic biology programs living cells to tackle today’s challenges. Biofuels, safer foods, anti-malarial drugs, less toxic cancer treatment, biodegradable adhesives — all fuel young students’ imaginations. At BioBuilder, we empower students to tackle these big questions. BioBuilder’s curricula and teacher training capitalize on students’ need to know, to explore and to be part of solving real world problems. Developed by an award winning team out of MIT [Massachusetts Institute of Technology], BioBuilder is taught in schools across the country and supported by thought leaders in the STEM community.

BioBuilder proves that learning by doing works. And inspires.

As for Synberc, it is the Synthetic Biology Engineering Research Center and they has this to say about themselves on their About us page (Note: Links have been removed),

Synberc is a multi-university research center established in 2006 with a grant from the National Science Foundation (NSF) to help lay the foundation for synthetic biology Our mission is threefold:

develop the foundational understanding and technologies to build biological components and assemble them into integrated systems to accomplish many particular tasks;
train a new cadre of engineers who will specialize in engineering biology; and
engage the public about the opportunities and challenges of engineering biology.

Just as electrical engineers have made it possible for us to assemble computers from standardized parts (hard drives, memory cards, motherboards, and so on), we envision a day when biological engineers will be able to systematically assemble biological components such as sensors, signals, pathways, and logic gates in order to build bio-based systems that solve real-world problems in health, energy, and the environment.

In our work, we apply engineering principles to biology to develop tools that improve how fast — and how well — we can go through the design-test-build cycle. These include smart fermentation organisms that can sense their environment and adjust accordingly, and multiplex automated genome engineering, or MAGE, designed for large-scale programming and evolution of cells. We also pursue the discovery of applications that can lead to significant public benefit, such as synthetic artemisinin [emphasis mine], an anti-malaria drug that costs less and is more effective than the current plant-derived treatment.

The reference to ‘synthetic artemisinin’ caught my eye as I wrote an April 12, 2013 posting featuring this “… anti-malaria drug …” and the claim that the synthetic “… costs less and is more effective than the current plant-derived treatment” wasn’t quite the conclusion journalist, Brendan Borrell arrived at. Perhaps there’s been new research? If so, please let me know.

Why Factory publishes book about research on nanotechnology in architecture

The book titled, Barba. Life in the Fully Adaptable Environment, published by nai010 and the Why Factory, a think tank operated by Dutch architectural firm, MVRDV, and Delft University of Technology in the Netherlands, is a little difficult to describe.  From a Nov. 16, 2015 MVRDV press release,

Is the end of brick and mortar near? How could nanotechnology change buildings and cities in the future? A speculation of The Why Factory on this topic is illustrated in the best tradition of science fiction in the newly published book Barba. Life in the Fully Adaptable Environment. It forms the point of departure for a series of interactive experiments, installations and proposals towards the development of new, body-based and fully adaptive architectures. A beautiful existential story comes alive. A story closer to us then you’d ever have thought. Imagine a new substance that could be steered and altered in real time. Imagine creating a flexible material that could change its shape, that could shrink and expand, that could do almost anything. The Why Factory calls this fictional material Barba. With Barba, we would be able to adapt our environment to every desire and to every need.

The press release delves into the inspiration for the material and the book,

… The first inspiration came from ‘Barbapapa’, an illustrated cartoon character from the 1970s. Invented and drawn by Talus Taylor and Annette Tison, the friendly, blobby protagonist of the eponymous children’s books and television programme could change his shape to resemble different objects. With Barbapapa’s smooth morphosis in mind, The Why Factory wondered how today’s advancements in robotics, material science and computing might allow us to create environments that transform themselves as easily as Barbapapa could. Neither Barbapapa’s inventors nor anybody else from the team behind the cartoon were involved in this project, but The Why Factory owes them absolute gratitude for the inspiration of Barbapapa.

“Barba is a fantastic matter that does whatever we wish for” says Winy Maas, Professor at The Why Factory and MVRDV co-founder. “You can programme your environment like a computer game. You could wake up in a modernist villa that you transform into a Roman Spa after breakfast. Cities can be totally transformed when offices just disappear after office hours.”

The book moves away from pure speculation, however, and makes steps towards real world application, including illustrated vision, programming experiments and applied prototypes. As co-author of the book, Ulf Hackauf, explains, “We started this book with a vision, which we worked out to form a consistent future scenario. This we took as a point of departure for experiments and speculations, including programming, installations and material research. It eventually led us to prototypes, which could form a first step for making Barba real.”

Barba developed through a series of projects organized by The Why Factory and undertaken in collaboration between Delft University of Technology, ETH Zürich and the European Institute of Innovation and Technology. The research was developed over the course of numerous design studios at the Why Factory and elsewhere. Students and collaborators of the Why Factory have all contributed to the book.

The press release goes on to offer some information about Why Factory,

The Why Factory explores possibilities for the development of our cities by focusing on the production of models and visualisations for cities of the future. Education and research of The Why Factory are combined in a research lab and platform that aims to analyse, theorise and construct future cities. It investigates within the given world and produces future scenarios beyond it; from universal to specific and global to local. It proposes, constructs and envisions hypothetical societies and cities; from science to fiction and vice versa. The Why Factory thus acts as a future world scenario making machinery, engaging in a public debate on architecture and urbanism. Their findings are then communicated to the wider public in a variety of ways, including exhibitions, publications, workshops, and panel discussions.

Based on the Why Factory description, I’m surmising that the book is meant to provoke interactivity in some way. However, there doesn’t seem to be a prescribed means to interact with the Why Factory or the authors (Winy Maas, Ulf Hackauf, Adrien Ravon, and Patrick Healy) so perhaps the book is meant to be a piece of fiction/manual for interested educators, architects, and others who want to create ‘think tank’ environments where people speculate about nanotechnology and architecture.

In any event, you can order the book from this nai010 webpage,

How nanotechnology might drastically change cities and architecture

> New, body-based and fully adaptive architecture
How could nanotechnology change buildings and cities in the future? Imagine a new substance, that could be steered and altered in real time. Imagine …

As for The Why Factory, you can find out more here on the think tank’s About page.

One last comment, in checking out MVRDV, the Dutch architectural firm mentioned earlier as one of The Why Factory’s operating organizations, I came across this piece of news generated as a consequence of the Nov. 13, 2015 Paris bombings,

The Why Factory alumna Emilie Meaud died in Friday’s Paris attacks. Our thoughts are with their family, friends and colleagues.

Nov 17, 2015

To our great horror and shock we received the terrible news that The Why Factory alumna Emilie Meaud (29) died in the Paris attacks of last Friday. She finished her master in Architecture at TU-Delft in 2012 and worked at the Agence Chartier-Dalix. She was killed alongside her twin sister Charlotte. Our thoughts are with their family, friends and colleagues.

Amen.