Category Archives: Uncategorized

January 31, 2016 deadlines for early bird tickets (ESOF) and conference abstracts (emerging technologies)

ESOF 2016 (EuroScience Open Forum)

Early bird tickets for this biennial science conference are available until Jan.  31, 2016 according to a Jan. 18, 2016 email notice,

Our most affordable tickets are available to purchase until the end of the month, so make sure you get yours before they disappear. Prices start from only £75 for a full four-day pass for early careers researchers (up to 5 years post doc), and £225 for a full delegate pass. All registrations are entitled to a year long complimentary subscription to Nature at this time.

You can also book your accommodation when you register to attend ESOF. We have worked hard with our city partners to bring you the best deals for your stay in Manchester. With the summer set to be busy with not only ESOF but major international sporting events, make sure you take advantage of these deals.

To register to attend please click here

You can find out more about the event which takes place from July 23 – 27, 2016 in Manchester, England here and/or you can watch this video,

For any interested journalists, media registration has opened (from the Jan. 18, 2016 notice),

Media registration opens

We are delighted to announce our ESOF press accreditation is available for journalists and science communications professionals to register for the conference. Accreditation provides complimentary access to the full ESOF programme, social events and a range of exclusive press only activities. Further details of the eligibility criteria and registration process can be found here.

Nature Publishing Group offers journalists a travel grant which will cover most if not all the expenses associated with attending 2016 ESOF (from the ESOF Nature Travel Grant webpage),

The Nature Travel Grant Scheme offers journalists and members of media organisations from around the world the opportunity to attend ESOF for free. The grant offers complimentary registration as well as help covering travel and accommodation costs.

1. Purpose

Created by EuroScience, the biennial ESOF – EuroScience Open Forum – meeting is the largest pan-European general science conference dedicated to scientific research and innovation. At ESOF meetings leading scientists, researchers, journalists, business people, policy makers and the general public from all over the world discuss new discoveries and debate the direction that research is taking in the sciences, humanities and social sciences.

Springer Nature is a leading global research, educational and professional publisher, home to an array of respected and trusted brands providing quality content through a range of innovative products and services, including the journal Nature. Springer Nature was formed in 2015 through the merger of Nature Publishing Group, Palgrave Macmillan, Macmillan Education and Springer Science+Business Media. Nature Publishing Group has supported ESOF since its very first meeting in 2004.

Similar to the 2012 and 2014 edition of meeting, Springer Nature is funding the Nature Travel Grant Scheme for journalists to attend ESOF2016 with the aim to increase the impact of ESOF.

2. The Scheme

In addition to free registration, the Nature Travel Grant Scheme offers a lump sum of £450 for UK based journalists, £600 for journalists based in Europe and £800 for journalists based outside of Europe, to help cover the costs of travel and accommodation to attend ESOF2016.

3. Who can apply?

All journalists irrespective of their gender, age, nationality, place of residence and media type (paper, radio, TV, web) are welcome to apply. Media accreditation will be required.

4. Application procedure

To submit an application sign into the EuroScience Conference and Membership Platform (ESCMP) and click on “Apply for a Grant”. Follow the application procedure.

On submitting the application form for travel grants, you agree to the full acceptance of the rules and to the decision taken by the Selection Committee.

The deadline for submitting an application is February 29th 2016, 12:00 pm CET.

Good luck!

4th Annual Governance of Emerging Technologies: Law, Policy and Ethics Conference

Here’s more about the conference (deadline for abstracts is Jan. 31, 2016) from the conference’s Call for Abstract’s webpage,

Fourth Annual Conference on
Governance of Emerging Technologies: Law, Policy, and Ethics

May 24-26, 2016, Tempe, Arizona

Call for abstracts:

The co-sponsors invite submission of abstracts for proposed presentations.  Submitters of abstracts need not provide a written paper, although provision will be made for posting and possible post-conference publication of papers for those presenters interested in such options.  Although abstracts are invited for any aspect or topic relating to the governance of emerging technologies, some particular themes that will be emphasized at this year’s conference include existential or catastrophic risks, governance implications of algorithms, resilience and emerging technologies, artificial intelligence, military technologies, and gene editing.

Abstracts should not exceed 500 words.
Abstracts must be submitted by January 31, 2016 to be considered.
Decisions on abstracts will be made by the program committee and communicated by February 29 [2016]. 

Funding: The sponsors will pay for the conference registration (including all conference meals) for one presenter for each accepted abstract.  In addition, we will have limited funds available for travel subsidies in whole or in part.  After completing your abstract online, you will be asked if you wish to apply for a travel subsidy.  Any such additional funding will be awarded based on the strength of the abstract, demonstration of financial need, and/or the potential to encourage student authors and early-career scholars.  Accepted presenters for whom conference funding is not available will need to pay their own transportation and hotel costs.

For more information, please contact Lauren Burkhart at Lauren.Burkhart@asu.edu.

You don’t often see conference organizers offering to pay registration and meals for a single presenter from each accepted submission. Good luck!

Origami and our pop-up future

They should have declared Jan. 25, 2016 ‘L. Mahadevan Day’ at Harvard University. The researcher was listed as an author on two major papers. I covered the first piece of research, 4D printed hydrogels, in this Jan. 26, 2016 posting. Now for Mahadevan’s other work, from a Jan. 27, 2016 news item on Nanotechnology Now,

What if you could make any object out of a flat sheet of paper?

That future is on the horizon thanks to new research by L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, Organismic and Evolutionary Biology, and Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). He is also a core faculty member of the Wyss Institute for Biologically Inspired Engineering, and member of the Kavli Institute for Bionano Science and Technology, at Harvard University.

Mahadevan and his team have characterized a fundamental origami fold, or tessellation, that could be used as a building block to create almost any three-dimensional shape, from nanostructures to buildings. …

A Jan. 26, 2016 Harvard University news release by Leah Burrows, which originated the news item, provides more detail about the specific fold the team has been investigating,

The folding pattern, known as the Miura-ori, is a periodic way to tile the plane using the simplest mountain-valley fold in origami. It was used as a decorative item in clothing at least as long ago as the 15th century. A folded Miura can be packed into a flat, compact shape and unfolded in one continuous motion, making it ideal for packing rigid structures like solar panels.  It also occurs in nature in a variety of situations, such as in insect wings and certain leaves.

“Could this simple folding pattern serve as a template for more complicated shapes, such as saddles, spheres, cylinders, and helices?” asked Mahadevan.

“We found an incredible amount of flexibility hidden inside the geometry of the Miura-ori,” said Levi Dudte, graduate student in the Mahadevan lab and first author of the paper. “As it turns out, this fold is capable of creating many more shapes than we imagined.”

Think surgical stents that can be packed flat and pop-up into three-dimensional structures once inside the body or dining room tables that can lean flat against the wall until they are ready to be used.

“The collapsibility, transportability and deployability of Miura-ori folded objects makes it a potentially attractive design for everything from space-bound payloads to small-space living to laparoscopic surgery and soft robotics,” said Dudte.

Here’s a .gif demonstrating the fold,

This spiral folds rigidly from flat pattern through the target surface and onto the flat-folded plane (Image courtesy of Mahadevan Lab) Harvard University

This spiral folds rigidly from flat pattern through the target surface and onto the flat-folded plane (Image courtesy of Mahadevan Lab) Harvard University

The news release offers some details about the research,

To explore the potential of the tessellation, the team developed an algorithm that can create certain shapes using the Miura-ori fold, repeated with small variations. Given the specifications of the target shape, the program lays out the folds needed to create the design, which can then be laser printed for folding.

The program takes into account several factors, including the stiffness of the folded material and the trade-off between the accuracy of the pattern and the effort associated with creating finer folds – an important characterization because, as of now, these shapes are all folded by hand.

“Essentially, we would like to be able to tailor any shape by using an appropriate folding pattern,” said Mahadevan. “Starting with the basic mountain-valley fold, our algorithm determines how to vary it by gently tweaking it from one location to the other to make a vase, a hat, a saddle, or to stitch them together to make more and more complex structures.”

“This is a step in the direction of being able to solve the inverse problem – given a functional shape, how can we design the folds on a sheet to achieve it,” Dudte said.

“The really exciting thing about this fold is it is completely scalable,” said Mahadevan. “You can do this with graphene, which is one atom thick, or you can do it on the architectural scale.”

Co-authors on the study include Etienne Vouga, currently at the University of Texas at Austin, and Tomohiro Tachi from the University of Tokyo. …

Here’s a link to and a citation for the paper,

Programming curvature using origami tessellations by Levi H. Dudte, Etienne Vouga, Tomohiro Tachi, & L. Mahadevan. Nature Materials (2016) doi:10.1038/nmat4540 Published online 25 January 2016

This paper is behind a paywall.

Star Trek, Schrödinger’s cat, quantum entanglement, and more in memory teleportation scheme

A Jan. 13, 2016 news item on Nanowerk introduces Star Trek and Schrödinger’s cat as means to explain a quantum teleportation theory (Note: A link has been removed),

In “Star Trek”, a transporter can teleport a person from one location to a remote location without actually making the journey along the way. Such a transporter has fascinated many people. Quantum teleportation shares several features of the transporter and is one of the most important protocols in quantum information.

In a recent study (“Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator”), Prof. Tongcang Li at Purdue University [US] and Dr. Zhang-qi Yin at Tsinghua University [China] proposed the first scheme to use electromechanical oscillators and superconducting circuits to teleport the internal quantum state (memory) and center-of-mass motion state of a microorganism.

They also proposed a scheme to create a Schrödinger’s cat state in which a microorganism can be in two places at the same time. This is an important step towards potentially teleporting an organism in future.

A Jan. 13, 2016 Science China Press news release on EurekAlert, which originated the news item, expands on the theme,

In 1935, Erwin Schrödinger proposed a famous thought experiment to prepare a cat in a superposition of both alive and dead states. The possibility of an organism to be in a superposition state dramatically reveals the profound consequences of quantum mechanics, and has attracted broad interests. Physicists have made great efforts in many decades to investigate macroscopic quantum phenomena. So far, matter-wave interference of electrons, atoms, and molecules (such as C60) have been observed. Recently, quantum ground state cooling and the creation of superposition states of mechanical oscillators have been realized. For example, a group in Colorado, US has cooled the vibration of a 15-micrometer-diameter aluminum membrane to quantum ground state, and entangled its motion with microwave photons. However, quantum superposition of an entire organism has not been realized. Meanwhile, there have been many breakthroughs in quantum teleportation since its first experimental realization in 1997 with a single photon. Besides photons, quantum teleportation with atoms, ions, and superconducting circuits have been demonstrated. In 2015, a group at University of Science and Technology of China demonstrated the quantum teleportation of multiple degrees of freedom of a single photon. However, existing experiments are still far away from teleporting an organism or the state of an organism.

In a recent study, Tongcang Li and Zhang-qi Yin propose to put a bacterium on top of an electromechanical membrane oscillator integrated with a superconducting circuit to prepare quantum superposition state of a microorganism and teleport its quantum state. A microorganism with a mass much smaller than the mass of the electromechanical membrane will not significantly affect the quality factor of the membrane and can be cooled to the quantum ground state together with the membrane. Quantum superposition and teleportation of its center-of-mass motion state can be realized with the help of superconducting microwave circuits. With a strong magnetic field gradient, the internal states of a microorganism, such as the electron spin of a glycine radical, can be entangled with its center-of-mass motion and be teleported to a remote microorganism. Since internal states of an organism contain information, this proposal provides a scheme for teleporting information or memories between two remote organisms.

The proposed setup is also a quantum-limited magnetic resonance force microscope. It not only can detect the existence of single electron spins (associated to protein defects or DNA defects) like conventional MRFM, but also can coherently manipulate and detect the quantum states of electron spins. It enables some isolated electron spins that could not be read out with optical or electrical methods to be used as quantum memory for quantum information.

Li says “We propose a straightforward method to put a microorganism in two places at the same time, and provide a scheme to teleport the quantum state of a microorganism. I hope our unconventional work will inspire more people to think seriously about quantum teleportation of a microorganism and its potential applications in future.” Yin says “Our work also provides insights for future studies about the effects of biochemical reactions in the wave function collapses of quantum superposition states of an organism.”

Here’s a link to and a citation for the researchers’ latest paper,

Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator by Tongcang Li and Zhang-Qi Yin. Science Bulletin pp 1-9 DOI: 10.1007/s11434-015-0990-x First online: 11 January 2016

This paper is behind a paywall.

Cell Press and its first ever science writing internships

Cell Press is offering three rounds of internships. I believe the first round has ended but there are opportunities to enter the second round, from the Cell Press Newsroom webpage,

Science Writing Internship @ Cell Press

In 2016, the Press Office of Cell Press is offering its first science writing internship program. Three paid positions will be available:

+ Winter (16 weeks, Feb-May, M-F, $15/hr) for grads/post-grads
+ Summer (10 weeks, June-August, M-Th, $12/hr) for undergrads; recent college graduates are also eligible
+ Fall (16 weeks, September-December, M-F, $15/hr) for grads/post-grads

The internships willl be extremely hands-on, giving interns the full experience of being a press officer at a major publishing operation. In addition to public relations experience, interns will also be assigned journalism-type pieces to be published on Cell.com and in the print issues of Cell. Interns will also learn about the entire production process of how a scientific paper goes from the laboratory to a story in a major media outlet and have the opportunity to collaborate with other business teams, including marketing, commercial sales, editorial, and production.

Summer internship application available in March
Finalists will be asked to take a short editorial test and to provide three writing samples, and the contact information for two references.

Summer Internship
Meant for an individual who is looking to explore science communications as a career. Experience not necessary, just a proven interest in writing/public relations/science .

The undergraduate Science Writing Intern will report to Media Relations Manager Joseph Caputo and will be located in the Elsevier Cambridge, MA office. This will be a 10-week internship over the summer of 2016. The internship will be 4 days per week, Monday through Thursday, 9-5, and will be paid at an hourly rate of $12. The internship spans Monday, June 6, 2016 – Thursday, August 11, 2016.

The Internship will provide the intern with 10+ clips including press releases, news blurbs, blog posts, and original reporting. Tasks will include:

+ Responding to inquiries in the press inbox.
+ Writing press releases about research published in Cell Press journals, distributing press releases, and pitching to relevant journalists.
+ Pitching and developing Cell Press news, CrossTalk blog, podcast, and Elsevier Connect content.
+ Developing and posting Cell Press social media content.
+ Completing miscellaneous projects as assigned by Media Relations Manager.

At the end of the internship, the intern should add to their working knowledge of how to strategize, develop, and execute PR campaigns for various audience segments, write compelling PR content for the web/social media, and measure and analyze campaign outcomes.

Qualifications

The ideal candidate for the internship will:

+ Be studying for or have completed a Bachelor’s in Public Relations, Journalism, or Biology.
+ Have experience preparing and telling a story (specifically pitching, conducting interviews, and writing pieces of journalism or public relations materials).
+ Have proficiency with Microsoft Office (Word, Excel, Outlook).
+ Have work experience within an office environment.

Be comfortable working alone as well as with a team, know how to juggle many time-sensitive tasks, be able to proactively seek information to complete a project, and maintain a friendly attitude while dealing with the high number of requests received from journalists and institutions from around the world.

Internship Position and Timing

Location: Cell Press’s office at 50 Hampshire Street, Cambridge, MA. No housing or relocation assistance will be provided.
Timing: Start date June 6th, end date August 11th.
Hours/Schedule: 7 hours per day, 4 days per week, Monday through Thursday; 9 a.m. to 5 p.m.
Internship Supervisor: Joseph Caputo, Media Relations Manager
Remuneration: Paid – $12/hr – Contractor

No permanent position is available at the end of the internship, although candidates will be considered for available positions should they apply and performance/circumstances warrant it.

In case you missed it in that welter of information, an application for the second round will be available in March 2016.  I imagine you could use the following contact information although they don’t seem to be encouraging questions,

Joseph Caputo
Media Relations Manager
Phone: +1 (617) 397-2802
Cambridge, MA, USA
E-mail: press@cell.com; jcaputo@cell.com

There is no word yet as to when the third and final round will be opened up but it is intended for graduate students.

A nanoparticle ‘printing press’

This research comes from Montréal, Canada via a Jan. 7, 2016 McGill University news release (also on EurekAlert*),

Gold nanoparticles have unusual optical, electronic and chemical properties, which scientists are seeking to put to use in a range of new technologies, from nanoelectronics to cancer treatments.

Some of the most interesting properties of nanoparticles emerge when they are brought close together – either in clusters of just a few particles or in crystals made up of millions of them. Yet particles that are just millionths of an inch in size are too small to be manipulated by conventional lab tools, so a major challenge has been finding ways to assemble these bits of gold while controlling the three-dimensional shape of their arrangement.

One approach that researchers have developed has been to use tiny structures made from synthetic strands of DNA to help organize nanoparticles. Since DNA strands are programmed to pair with other strands in certain patterns, scientists have attached individual strands of DNA to gold particle surfaces to create a variety of assemblies. But these hybrid gold-DNA nanostructures are intricate and expensive to generate, limiting their potential for use in practical materials. The process is similar, in a sense, to producing books by hand.

Enter the nanoparticle equivalent of the printing press. It’s efficient, re-usable and carries more information than previously possible. In results reported online in Nature Chemistry, researchers from McGill’s Department of Chemistry outline a procedure for making a DNA [deoxyribonucleic acid] structure with a specific pattern of strands coming out of it; at the end of each strand is a chemical “sticky patch.”  When a gold nanoparticle is brought into contact to the DNA nanostructure, it sticks to the patches. The scientists then dissolve the assembly in distilled water, separating the DNA nanostructure into its component strands and leaving behind the DNA imprint on the gold nanoparticle. …

The researchers have made an illustration of their concept available,

Credit: Thomas Edwardson

Credit: Thomas Edwardson

“These encoded gold nanoparticles are unprecedented in their information content,” says senior author Hanadi Sleiman, who holds the Canada Research Chair in DNA Nanoscience. “The DNA nanostructures, for their part, can be re-used, much like stamps in an old printing press.”

The news release includes suggestions for possible future applications,

From stained glass to optoelectronics

Some of the properties of gold nanoparticles have been recognized for centuries.  Medieval artisans added gold chloride to molten glass to create the ruby-red colour in stained-glass windows – the result, as chemists figured out much later, of the light-scattering properties of tiny gold particles.

Now, the McGill researchers hope their new production technique will help pave the way for use of DNA-encoded nanoparticles in a range of cutting-edge technologies. First author Thomas Edwardson says the next step for the lab will be to investigate the properties of structures made from these new building blocks. “In much the same way that atoms combine to form complex molecules, patterned DNA gold particles can connect to neighbouring particles to form well-defined nanoparticle assemblies.”

These could be put to use in areas including optoelectronic nanodevices and biomedical sciences, the researchers say. The patterns of DNA strands could, for example, be engineered to target specific proteins on cancer cells, and thus serve to detect cancer or to selectively destroy cancer cells.

Here’s a link to and a citation for the paper,

Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles by Thomas G. W. Edwardson, Kai Lin Lau, Danny Bousmail, Christopher J. Serpell, & Hanadi F. Sleiman. Nature Chemistry (2016)  doi:10.1038/nchem.2420 Published online 04 January 2016

This paper is behind a paywall.

*’also on EurekAlert’ added on Jan. 8, 2016.

NISE Net, the acronym remains the same but the name changes

NISE Net, the US Nanoscale Informal Science Education Network is winding down the nano and refocussing on STEM (science, technology, engineering, and mathematics). In short, NISE Net will now stand for National Informal STEM Education Network. Here’s more from the Jan. 7, 2016 NISE Net announcement in the January 2016 issue of the Nano Bite,

COMMUNITY NEWS

NISE Network is Transitioning to the National Informal STEM Education Network

Thank you for all the great work you have done over the past decade. It has opened up totally new possibilities for the decade ahead.

We are excited to let you know that with the completion of NSF funding for the Nanoscale Informal Science Education Network, and the soon-to-be-announced NASA [US National Aeronautics and Space Administration]-funded Space and Earth Informal STEM Education project, the NISE Network is transitioning to a new, ongoing identity as the National Informal STEM Education Network! While we’ll still be known as the NISE Net, network partners will now engage audiences across the United States in a range of STEM topics. Several new projects are already underway and others are in discussion for the future.

Current NISE Net projects include:

  • The original Nanoscale Informal Science Education Network (NISE Net), focusing on nanoscale science, engineering, and technology (funded by NSF and led by the Museum of Science, Boston)
  • Building with Biology, focusing on synthetic biology (funded by NSF and led by the Museum of Science with AAAS [American Association for the Advancement of Science], BioBuilder, and SynBerc [emphases mine])
  • Sustainability in Science Museums (funded by Walton Sustainability Solutions Initiatives and led by Arizona State University)
  • Transmedia Museum, focusing on science and society issues raised by Mary Shelley’s Frankenstein (funded by NSF and led by Arizona State University)
  • Space and Earth Informal STEM Education (funded by NASA and led by the Science Museum of Minnesota)

The “new” NISE Net will be led by the Science Museum of Minnesota in collaboration with the Museum of Science and Arizona State University. Network leadership, infrastructure, and participating organizations will include existing Network partners, and others attracted to the new topics. We will be in touch through the newsletter, blog, and website in the coming months to share more about our plans for the Network and its projects.

In the mean time, work is continuing with partners within the Nanoscale Informal Science Education Network throughout 2016, with an award end date of February 28, 2017. Although there will not be a new NanoDays 2016 kit, we encourage our partners to continue to engage audiences in nano by hosting NanoDays events in 2016 (March 26 – April 3) and in the years ahead using their existing kit materials. The Network will continue to host and update nisenet.org and the online catalog that includes 627 products of which 366 are NISE Net products (public and professional), 261 are Linked products, and 55 are Evaluation and Research reports. The Evaluation and Research team is continuing to work on final Network reports, and the Museum and Community Partnerships project has awarded 100 Explore Science physical kits to partners to create new or expanded collaborations with local community organizations to reach new underserved audiences not currently engaged in nano. These collaborative projects are taking place spring-summer 2016.

Thank you again for making this possible through your great work.

Best regards,

Larry Bell, Museum of Science
Paul Martin, Science Museum of Minnesota and
Rae Ostman, Arizona State University

As noted in previous posts, I’m quite interested in the synthetic biology focus the network has established in the last several months starting in late Spring 2015 and the mention of two (new-to-me) organizations, BioBuilder and Synberc piqued my interest.

I found this on the About the foundation page of the BioBuilder website,

What’s the best way to solve today’s health problems? Or hunger challenges? Address climate change concerns? Or keep the environment cleaner? These are big questions. And everyone can be part of the solutions. Everyone. Middle school students, teens, high school teachers.

At BioBuilder, we teach problem solving.
We bring current science to the classroom.
We engage our students to become real scientists — the problem solvers who will change the world.
At BioBuilder, we empower educators to be agents of educational reform by reconnecting teachers all across the country with their love of teaching and their own love of learning.

Synthetic biology programs living cells to tackle today’s challenges. Biofuels, safer foods, anti-malarial drugs, less toxic cancer treatment, biodegradable adhesives — all fuel young students’ imaginations. At BioBuilder, we empower students to tackle these big questions. BioBuilder’s curricula and teacher training capitalize on students’ need to know, to explore and to be part of solving real world problems. Developed by an award winning team out of MIT [Massachusetts Institute of Technology], BioBuilder is taught in schools across the country and supported by thought leaders in the STEM community.

BioBuilder proves that learning by doing works. And inspires.

As for Synberc, it is the Synthetic Biology Engineering Research Center and they has this to say about themselves on their About us page (Note: Links have been removed),

Synberc is a multi-university research center established in 2006 with a grant from the National Science Foundation (NSF) to help lay the foundation for synthetic biology Our mission is threefold:

develop the foundational understanding and technologies to build biological components and assemble them into integrated systems to accomplish many particular tasks;
train a new cadre of engineers who will specialize in engineering biology; and
engage the public about the opportunities and challenges of engineering biology.

Just as electrical engineers have made it possible for us to assemble computers from standardized parts (hard drives, memory cards, motherboards, and so on), we envision a day when biological engineers will be able to systematically assemble biological components such as sensors, signals, pathways, and logic gates in order to build bio-based systems that solve real-world problems in health, energy, and the environment.

In our work, we apply engineering principles to biology to develop tools that improve how fast — and how well — we can go through the design-test-build cycle. These include smart fermentation organisms that can sense their environment and adjust accordingly, and multiplex automated genome engineering, or MAGE, designed for large-scale programming and evolution of cells. We also pursue the discovery of applications that can lead to significant public benefit, such as synthetic artemisinin [emphasis mine], an anti-malaria drug that costs less and is more effective than the current plant-derived treatment.

The reference to ‘synthetic artemisinin’ caught my eye as I wrote an April 12, 2013 posting featuring this “… anti-malaria drug …” and the claim that the synthetic “… costs less and is more effective than the current plant-derived treatment” wasn’t quite the conclusion journalist, Brendan Borrell arrived at. Perhaps there’s been new research? If so, please let me know.

Why Factory publishes book about research on nanotechnology in architecture

The book titled, Barba. Life in the Fully Adaptable Environment, published by nai010 and the Why Factory, a think tank operated by Dutch architectural firm, MVRDV, and Delft University of Technology in the Netherlands, is a little difficult to describe.  From a Nov. 16, 2015 MVRDV press release,

Is the end of brick and mortar near? How could nanotechnology change buildings and cities in the future? A speculation of The Why Factory on this topic is illustrated in the best tradition of science fiction in the newly published book Barba. Life in the Fully Adaptable Environment. It forms the point of departure for a series of interactive experiments, installations and proposals towards the development of new, body-based and fully adaptive architectures. A beautiful existential story comes alive. A story closer to us then you’d ever have thought. Imagine a new substance that could be steered and altered in real time. Imagine creating a flexible material that could change its shape, that could shrink and expand, that could do almost anything. The Why Factory calls this fictional material Barba. With Barba, we would be able to adapt our environment to every desire and to every need.

The press release delves into the inspiration for the material and the book,

… The first inspiration came from ‘Barbapapa’, an illustrated cartoon character from the 1970s. Invented and drawn by Talus Taylor and Annette Tison, the friendly, blobby protagonist of the eponymous children’s books and television programme could change his shape to resemble different objects. With Barbapapa’s smooth morphosis in mind, The Why Factory wondered how today’s advancements in robotics, material science and computing might allow us to create environments that transform themselves as easily as Barbapapa could. Neither Barbapapa’s inventors nor anybody else from the team behind the cartoon were involved in this project, but The Why Factory owes them absolute gratitude for the inspiration of Barbapapa.

“Barba is a fantastic matter that does whatever we wish for” says Winy Maas, Professor at The Why Factory and MVRDV co-founder. “You can programme your environment like a computer game. You could wake up in a modernist villa that you transform into a Roman Spa after breakfast. Cities can be totally transformed when offices just disappear after office hours.”

The book moves away from pure speculation, however, and makes steps towards real world application, including illustrated vision, programming experiments and applied prototypes. As co-author of the book, Ulf Hackauf, explains, “We started this book with a vision, which we worked out to form a consistent future scenario. This we took as a point of departure for experiments and speculations, including programming, installations and material research. It eventually led us to prototypes, which could form a first step for making Barba real.”

Barba developed through a series of projects organized by The Why Factory and undertaken in collaboration between Delft University of Technology, ETH Zürich and the European Institute of Innovation and Technology. The research was developed over the course of numerous design studios at the Why Factory and elsewhere. Students and collaborators of the Why Factory have all contributed to the book.

The press release goes on to offer some information about Why Factory,

The Why Factory explores possibilities for the development of our cities by focusing on the production of models and visualisations for cities of the future. Education and research of The Why Factory are combined in a research lab and platform that aims to analyse, theorise and construct future cities. It investigates within the given world and produces future scenarios beyond it; from universal to specific and global to local. It proposes, constructs and envisions hypothetical societies and cities; from science to fiction and vice versa. The Why Factory thus acts as a future world scenario making machinery, engaging in a public debate on architecture and urbanism. Their findings are then communicated to the wider public in a variety of ways, including exhibitions, publications, workshops, and panel discussions.

Based on the Why Factory description, I’m surmising that the book is meant to provoke interactivity in some way. However, there doesn’t seem to be a prescribed means to interact with the Why Factory or the authors (Winy Maas, Ulf Hackauf, Adrien Ravon, and Patrick Healy) so perhaps the book is meant to be a piece of fiction/manual for interested educators, architects, and others who want to create ‘think tank’ environments where people speculate about nanotechnology and architecture.

In any event, you can order the book from this nai010 webpage,

How nanotechnology might drastically change cities and architecture

> New, body-based and fully adaptive architecture
How could nanotechnology change buildings and cities in the future? Imagine a new substance, that could be steered and altered in real time. Imagine …

As for The Why Factory, you can find out more here on the think tank’s About page.

One last comment, in checking out MVRDV, the Dutch architectural firm mentioned earlier as one of The Why Factory’s operating organizations, I came across this piece of news generated as a consequence of the Nov. 13, 2015 Paris bombings,

The Why Factory alumna Emilie Meaud died in Friday’s Paris attacks. Our thoughts are with their family, friends and colleagues.

Nov 17, 2015

To our great horror and shock we received the terrible news that The Why Factory alumna Emilie Meaud (29) died in the Paris attacks of last Friday. She finished her master in Architecture at TU-Delft in 2012 and worked at the Agence Chartier-Dalix. She was killed alongside her twin sister Charlotte. Our thoughts are with their family, friends and colleagues.

Amen.

Science City: Manchester 2016

Manchester (UK) is celebrating its designation as the European City of Science concurrently with the European Open Science Forum (ESOF) 2016 which will be held there as I noted in a May 8, 2015 posting, which focused largely on the forum. An Oct. 22, 2015 Manchester: European City of Science announcement reveals early details about the city’s celebration of science,

Be part of the Manchester Science Formula

We’re concocting something special for Manchester for 2016. You might have already heard about Manchester becoming the European City of Science, and we would like to invite you to get involved!

Manchester’s year was started by celebrating alongside the launch 2015 Manchester Science Festival, at the Museum of Science and Industry. We captured everyone’s enthusiasm for science in our pop-up photo booth, where many made a promise to bring science alive in Manchester over the next year.  You can see more pictures and promises here.

We’re inviting everyone to be involved and make the most of the focus on science in Manchester in 2016. If you would like to find out how to join us, please visit manchestersciencecity.com to join our newsletter and you can also discover more about our plans for The Manchester Robot Orchestra and the Big School Science Share, just two of the exciting developments announced at the launch.

The 2015 Manchester Science Festival is still ongoing and once it ends Manchester is hosting a science policy week,

Manchester Science Festival

Running from 22 October – 1 November, the Manchester Science Festival is in its 9th year and promises to be bigger and better than ever before.

Curated by the Museum of Science and Industry, there will be events held city-wide that are suitable for all ages.

Keep an eye on #MSF15 for trending topics and the website for all the available events.

Manchester Policy Week

For five jam-packed days in November, the Manchester Policy Week takes over the University of Manchester. There will be everything from lectures to workshops to films and they’re open to everyone.

This year, Manchester Policy Week has the theme of ‘Science, Technology and Public Policy’ as part of the European City of Science.

Policy week runs from 2-6 November.

I’m quite taken with what they’re doing in Manchester and with how this ‘city of science’ festival has grown. I believe it was introduced by the Irish when they hosted ESOF 2012 in Dublin and later adopted by Copenhagen when they hosted ESOF 2014. Each city has given this festival its own flavour and it is becoming a richer experience each time. Bravo!

The sense of touch via artificial skin

Scientists have been working for years to allow artificial skin to transmit what the brain would recognize as the sense of touch. For anyone who has lost a limb and gotten a prosthetic replacement, the loss of touch is reputedly one of the more difficult losses to accept. The sense of touch is also vital in robotics if the field is to expand and include activities reliant on the sense of touch, e.g., how much pressure do you use to grasp a cup; how much strength  do you apply when moving an object from one place to another?

For anyone interested in the ‘electronic skin and pursuit of touch’ story, I have a Nov. 15, 2013 posting which highlights the evolution of the research into e-skin and what was then some of the latest work.

This posting is a 2015 update of sorts featuring the latest e-skin research from Stanford University and Xerox PARC. (Dexter Johnson in an Oct. 15, 2015 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineering] site) provides a good research summary.) For anyone with an appetite for more, there’s this from an Oct. 15, 2015 American Association for the Advancement of Science (AAAS) news release on EurekAlert,

Using flexible organic circuits and specialized pressure sensors, researchers have created an artificial “skin” that can sense the force of static objects. Furthermore, they were able to transfer these sensory signals to the brain cells of mice in vitro using optogenetics. For the many people around the world living with prosthetics, such a system could one day allow them to feel sensation in their artificial limbs. To create the artificial skin, Benjamin Tee et al. developed a specialized circuit out of flexible, organic materials. It translates static pressure into digital signals that depend on how much mechanical force is applied. A particular challenge was creating sensors that can “feel” the same range of pressure that humans can. Thus, on the sensors, the team used carbon nanotubes molded into pyramidal microstructures, which are particularly effective at tunneling the signals from the electric field of nearby objects to the receiving electrode in a way that maximizes sensitivity. Transferring the digital signal from the artificial skin system to the cortical neurons of mice proved to be another challenge, since conventional light-sensitive proteins used in optogenetics do not stimulate neural spikes for sufficient durations for these digital signals to be sensed. Tee et al. therefore engineered new optogenetic proteins able to accommodate longer intervals of stimulation. Applying these newly engineered optogenic proteins to fast-spiking interneurons of the somatosensory cortex of mice in vitro sufficiently prolonged the stimulation interval, allowing the neurons to fire in accordance with the digital stimulation pulse. These results indicate that the system may be compatible with other fast-spiking neurons, including peripheral nerves.

And, there’s an Oct. 15, 2015 Stanford University news release on EurkeAlert describing this work from another perspective,

The heart of the technique is a two-ply plastic construct: the top layer creates a sensing mechanism and the bottom layer acts as the circuit to transport electrical signals and translate them into biochemical stimuli compatible with nerve cells. The top layer in the new work featured a sensor that can detect pressure over the same range as human skin, from a light finger tap to a firm handshake.

Five years ago, Bao’s [Zhenan Bao, a professor of chemical engineering at Stanford,] team members first described how to use plastics and rubbers as pressure sensors by measuring the natural springiness of their molecular structures. They then increased this natural pressure sensitivity by indenting a waffle pattern into the thin plastic, which further compresses the plastic’s molecular springs.

To exploit this pressure-sensing capability electronically, the team scattered billions of carbon nanotubes through the waffled plastic. Putting pressure on the plastic squeezes the nanotubes closer together and enables them to conduct electricity.

This allowed the plastic sensor to mimic human skin, which transmits pressure information as short pulses of electricity, similar to Morse code, to the brain. Increasing pressure on the waffled nanotubes squeezes them even closer together, allowing more electricity to flow through the sensor, and those varied impulses are sent as short pulses to the sensing mechanism. Remove pressure, and the flow of pulses relaxes, indicating light touch. Remove all pressure and the pulses cease entirely.

The team then hooked this pressure-sensing mechanism to the second ply of their artificial skin, a flexible electronic circuit that could carry pulses of electricity to nerve cells.

Importing the signal

Bao’s team has been developing flexible electronics that can bend without breaking. For this project, team members worked with researchers from PARC, a Xerox company, which has a technology that uses an inkjet printer to deposit flexible circuits onto plastic. Covering a large surface is important to making artificial skin practical, and the PARC collaboration offered that prospect.

Finally the team had to prove that the electronic signal could be recognized by a biological neuron. It did this by adapting a technique developed by Karl Deisseroth, a fellow professor of bioengineering at Stanford who pioneered a field that combines genetics and optics, called optogenetics. Researchers bioengineer cells to make them sensitive to specific frequencies of light, then use light pulses to switch cells, or the processes being carried on inside them, on and off.

For this experiment the team members engineered a line of neurons to simulate a portion of the human nervous system. They translated the electronic pressure signals from the artificial skin into light pulses, which activated the neurons, proving that the artificial skin could generate a sensory output compatible with nerve cells.

Optogenetics was only used as an experimental proof of concept, Bao said, and other methods of stimulating nerves are likely to be used in real prosthetic devices. Bao’s team has already worked with Bianxiao Cui, an associate professor of chemistry at Stanford, to show that direct stimulation of neurons with electrical pulses is possible.

Bao’s team envisions developing different sensors to replicate, for instance, the ability to distinguish corduroy versus silk, or a cold glass of water from a hot cup of coffee. This will take time. There are six types of biological sensing mechanisms in the human hand, and the experiment described in Science reports success in just one of them.

But the current two-ply approach means the team can add sensations as it develops new mechanisms. And the inkjet printing fabrication process suggests how a network of sensors could be deposited over a flexible layer and folded over a prosthetic hand.

“We have a lot of work to take this from experimental to practical applications,” Bao said. “But after spending many years in this work, I now see a clear path where we can take our artificial skin.”

Here’s a link to and a citation for the paper,

A skin-inspired organic digital mechanoreceptor by Benjamin C.-K. Tee, Alex Chortos, Andre Berndt, Amanda Kim Nguyen, Ariane Tom, Allister McGuire, Ziliang Carter Lin, Kevin Tien, Won-Gyu Bae, Huiliang Wang, Ping Mei, Ho-Hsiu Chou, Bianxiao Cui, Karl Deisseroth, Tse Nga Ng, & Zhenan Bao. Science 16 October 2015 Vol. 350 no. 6258 pp. 313-316 DOI: 10.1126/science.aaa9306

This paper is behind a paywall.

IBM, the Cognitive Era, and carbon nanotube electronics

IBM has a storied position in the field of nanotechnology due to the scanning tunneling microscope developed in the company’s laboratories. It was a Nobel Prize-winning breakthough which provided the impetus for nanotechnology applied research. Now, an Oct. 1, 2015 news item on Nanowerk trumpets another IBM breakthrough,

IBM Research today [Oct. 1, 2015] announced a major engineering breakthrough that could accelerate carbon nanotubes replacing silicon transistors to power future computing technologies.

IBM scientists demonstrated a new way to shrink transistor contacts without reducing performance of carbon nanotube devices, opening a pathway to dramatically faster, smaller and more powerful computer chips beyond the capabilities of traditional semiconductors.

While the Oct. 1, 2015 IBM news release, which originated the news item, does go on at length there’s not much technical detail (see the second to last paragraph in the excerpt for the little they do include) about the research breakthrough (Note: Links have been removed),

IBM’s breakthrough overcomes a major hurdle that silicon and any semiconductor transistor technologies face when scaling down. In any transistor, two things scale: the channel and its two contacts. As devices become smaller, increased contact resistance for carbon nanotubes has hindered performance gains until now. These results could overcome contact resistance challenges all the way to the 1.8 nanometer node – four technology generations away. [emphasis mine]

Carbon nanotube chips could greatly improve the capabilities of high performance computers, enabling Big Data to be analyzed faster, increasing the power and battery life of mobile devices and the Internet of Things, and allowing cloud data centers to deliver services more efficiently and economically.

Silicon transistors, tiny switches that carry information on a chip, have been made smaller year after year, but they are approaching a point of physical limitation. With Moore’s Law running out of steam, shrinking the size of the transistor – including the channels and contacts – without compromising performance has been a vexing challenge troubling researchers for decades.

IBM has previously shown that carbon nanotube transistors can operate as excellent switches at channel dimensions of less than ten nanometers – the equivalent to 10,000 times thinner than a strand of human hair and less than half the size of today’s leading silicon technology. IBM’s new contact approach overcomes the other major hurdle in incorporating carbon nanotubes into semiconductor devices, which could result in smaller chips with greater performance and lower power consumption.

Earlier this summer, IBM unveiled the first 7 nanometer node silicon test chip [emphasis mine], pushing the limits of silicon technologies and ensuring further innovations for IBM Systems and the IT industry. By advancing research of carbon nanotubes to replace traditional silicon devices, IBM is paving the way for a post-silicon future and delivering on its $3 billion chip R&D investment announced in July 2014.

“These chip innovations are necessary to meet the emerging demands of cloud computing, Internet of Things and Big Data systems,” said Dario Gil, vice president of Science & Technology at IBM Research. “As silicon technology nears its physical limits, new materials, devices and circuit architectures must be ready to deliver the advanced technologies that will be required by the Cognitive Computing era. This breakthrough shows that computer chips made of carbon nanotubes will be able to power systems of the future sooner than the industry expected.”

A New Contact for Carbon Nanotubes

Carbon nanotubes represent a new class of semiconductor materials that consist of single atomic sheets of carbon rolled up into a tube. The carbon nanotubes form the core of a transistor device whose superior electrical properties promise several generations of technology scaling beyond the physical limits of silicon.

Electrons in carbon transistors can move more easily than in silicon-based devices, and the ultra-thin body of carbon nanotubes provide additional advantages at the atomic scale. Inside a chip, contacts are the valves that control the flow of electrons from metal into the channels of a semiconductor. As transistors shrink in size, electrical resistance increases within the contacts, which impedes performance. Until now, decreasing the size of the contacts on a device caused a commensurate drop in performance – a challenge facing both silicon and carbon nanotube transistor technologies.

IBM researchers had to forego traditional contact schemes and invented a metallurgical process akin to microscopic welding that chemically binds the metal atoms to the carbon atoms at the ends of nanotubes. This ‘end-bonded contact scheme’ allows the contacts to be shrunken down to below 10 nanometers without deteriorating performance of the carbon nanotube devices.

“For any advanced transistor technology, the increase in contact resistance due to the decrease in the size of transistors becomes a major performance bottleneck,” Gil added. “Our novel approach is to make the contact from the end of the carbon nanotube, which we show does not degrade device performance. This brings us a step closer to the goal of a carbon nanotube technology within the decade.”

Every once in a while, the size gets to me and a 1.8nm node is amazing. As for IBM’s 7nm chip, which was previewed this summer, there’s more about that in my July 15, 2015 posting.

Here’s a link to and a citation for the IBM paper,

End-bonded contacts for carbon nanotube transistors with low, size-independent resistance by Qing Cao, Shu-Jen Han, Jerry Tersoff, Aaron D. Franklin†, Yu Zhu, Zhen Zhang‡, George S. Tulevski, Jianshi Tang, and Wilfried Haensch. Science 2 October 2015: Vol. 350 no. 6256 pp. 68-72 DOI: 10.1126/science.aac8006

This paper is behind a paywall.