Category Archives: Uncategorized

Why Factory publishes book about research on nanotechnology in architecture

The book titled, Barba. Life in the Fully Adaptable Environment, published by nai010 and the Why Factory, a think tank operated by Dutch architectural firm, MVRDV, and Delft University of Technology in the Netherlands, is a little difficult to describe.  From a Nov. 16, 2015 MVRDV press release,

Is the end of brick and mortar near? How could nanotechnology change buildings and cities in the future? A speculation of The Why Factory on this topic is illustrated in the best tradition of science fiction in the newly published book Barba. Life in the Fully Adaptable Environment. It forms the point of departure for a series of interactive experiments, installations and proposals towards the development of new, body-based and fully adaptive architectures. A beautiful existential story comes alive. A story closer to us then you’d ever have thought. Imagine a new substance that could be steered and altered in real time. Imagine creating a flexible material that could change its shape, that could shrink and expand, that could do almost anything. The Why Factory calls this fictional material Barba. With Barba, we would be able to adapt our environment to every desire and to every need.

The press release delves into the inspiration for the material and the book,

… The first inspiration came from ‘Barbapapa’, an illustrated cartoon character from the 1970s. Invented and drawn by Talus Taylor and Annette Tison, the friendly, blobby protagonist of the eponymous children’s books and television programme could change his shape to resemble different objects. With Barbapapa’s smooth morphosis in mind, The Why Factory wondered how today’s advancements in robotics, material science and computing might allow us to create environments that transform themselves as easily as Barbapapa could. Neither Barbapapa’s inventors nor anybody else from the team behind the cartoon were involved in this project, but The Why Factory owes them absolute gratitude for the inspiration of Barbapapa.

“Barba is a fantastic matter that does whatever we wish for” says Winy Maas, Professor at The Why Factory and MVRDV co-founder. “You can programme your environment like a computer game. You could wake up in a modernist villa that you transform into a Roman Spa after breakfast. Cities can be totally transformed when offices just disappear after office hours.”

The book moves away from pure speculation, however, and makes steps towards real world application, including illustrated vision, programming experiments and applied prototypes. As co-author of the book, Ulf Hackauf, explains, “We started this book with a vision, which we worked out to form a consistent future scenario. This we took as a point of departure for experiments and speculations, including programming, installations and material research. It eventually led us to prototypes, which could form a first step for making Barba real.”

Barba developed through a series of projects organized by The Why Factory and undertaken in collaboration between Delft University of Technology, ETH Zürich and the European Institute of Innovation and Technology. The research was developed over the course of numerous design studios at the Why Factory and elsewhere. Students and collaborators of the Why Factory have all contributed to the book.

The press release goes on to offer some information about Why Factory,

The Why Factory explores possibilities for the development of our cities by focusing on the production of models and visualisations for cities of the future. Education and research of The Why Factory are combined in a research lab and platform that aims to analyse, theorise and construct future cities. It investigates within the given world and produces future scenarios beyond it; from universal to specific and global to local. It proposes, constructs and envisions hypothetical societies and cities; from science to fiction and vice versa. The Why Factory thus acts as a future world scenario making machinery, engaging in a public debate on architecture and urbanism. Their findings are then communicated to the wider public in a variety of ways, including exhibitions, publications, workshops, and panel discussions.

Based on the Why Factory description, I’m surmising that the book is meant to provoke interactivity in some way. However, there doesn’t seem to be a prescribed means to interact with the Why Factory or the authors (Winy Maas, Ulf Hackauf, Adrien Ravon, and Patrick Healy) so perhaps the book is meant to be a piece of fiction/manual for interested educators, architects, and others who want to create ‘think tank’ environments where people speculate about nanotechnology and architecture.

In any event, you can order the book from this nai010 webpage,

How nanotechnology might drastically change cities and architecture

> New, body-based and fully adaptive architecture
How could nanotechnology change buildings and cities in the future? Imagine a new substance, that could be steered and altered in real time. Imagine …

As for The Why Factory, you can find out more here on the think tank’s About page.

One last comment, in checking out MVRDV, the Dutch architectural firm mentioned earlier as one of The Why Factory’s operating organizations, I came across this piece of news generated as a consequence of the Nov. 13, 2015 Paris bombings,

The Why Factory alumna Emilie Meaud died in Friday’s Paris attacks. Our thoughts are with their family, friends and colleagues.

Nov 17, 2015

To our great horror and shock we received the terrible news that The Why Factory alumna Emilie Meaud (29) died in the Paris attacks of last Friday. She finished her master in Architecture at TU-Delft in 2012 and worked at the Agence Chartier-Dalix. She was killed alongside her twin sister Charlotte. Our thoughts are with their family, friends and colleagues.


Science City: Manchester 2016

Manchester (UK) is celebrating its designation as the European City of Science concurrently with the European Open Science Forum (ESOF) 2016 which will be held there as I noted in a May 8, 2015 posting, which focused largely on the forum. An Oct. 22, 2015 Manchester: European City of Science announcement reveals early details about the city’s celebration of science,

Be part of the Manchester Science Formula

We’re concocting something special for Manchester for 2016. You might have already heard about Manchester becoming the European City of Science, and we would like to invite you to get involved!

Manchester’s year was started by celebrating alongside the launch 2015 Manchester Science Festival, at the Museum of Science and Industry. We captured everyone’s enthusiasm for science in our pop-up photo booth, where many made a promise to bring science alive in Manchester over the next year.  You can see more pictures and promises here.

We’re inviting everyone to be involved and make the most of the focus on science in Manchester in 2016. If you would like to find out how to join us, please visit to join our newsletter and you can also discover more about our plans for The Manchester Robot Orchestra and the Big School Science Share, just two of the exciting developments announced at the launch.

The 2015 Manchester Science Festival is still ongoing and once it ends Manchester is hosting a science policy week,

Manchester Science Festival

Running from 22 October – 1 November, the Manchester Science Festival is in its 9th year and promises to be bigger and better than ever before.

Curated by the Museum of Science and Industry, there will be events held city-wide that are suitable for all ages.

Keep an eye on #MSF15 for trending topics and the website for all the available events.

Manchester Policy Week

For five jam-packed days in November, the Manchester Policy Week takes over the University of Manchester. There will be everything from lectures to workshops to films and they’re open to everyone.

This year, Manchester Policy Week has the theme of ‘Science, Technology and Public Policy’ as part of the European City of Science.

Policy week runs from 2-6 November.

I’m quite taken with what they’re doing in Manchester and with how this ‘city of science’ festival has grown. I believe it was introduced by the Irish when they hosted ESOF 2012 in Dublin and later adopted by Copenhagen when they hosted ESOF 2014. Each city has given this festival its own flavour and it is becoming a richer experience each time. Bravo!

The sense of touch via artificial skin

Scientists have been working for years to allow artificial skin to transmit what the brain would recognize as the sense of touch. For anyone who has lost a limb and gotten a prosthetic replacement, the loss of touch is reputedly one of the more difficult losses to accept. The sense of touch is also vital in robotics if the field is to expand and include activities reliant on the sense of touch, e.g., how much pressure do you use to grasp a cup; how much strength  do you apply when moving an object from one place to another?

For anyone interested in the ‘electronic skin and pursuit of touch’ story, I have a Nov. 15, 2013 posting which highlights the evolution of the research into e-skin and what was then some of the latest work.

This posting is a 2015 update of sorts featuring the latest e-skin research from Stanford University and Xerox PARC. (Dexter Johnson in an Oct. 15, 2015 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineering] site) provides a good research summary.) For anyone with an appetite for more, there’s this from an Oct. 15, 2015 American Association for the Advancement of Science (AAAS) news release on EurekAlert,

Using flexible organic circuits and specialized pressure sensors, researchers have created an artificial “skin” that can sense the force of static objects. Furthermore, they were able to transfer these sensory signals to the brain cells of mice in vitro using optogenetics. For the many people around the world living with prosthetics, such a system could one day allow them to feel sensation in their artificial limbs. To create the artificial skin, Benjamin Tee et al. developed a specialized circuit out of flexible, organic materials. It translates static pressure into digital signals that depend on how much mechanical force is applied. A particular challenge was creating sensors that can “feel” the same range of pressure that humans can. Thus, on the sensors, the team used carbon nanotubes molded into pyramidal microstructures, which are particularly effective at tunneling the signals from the electric field of nearby objects to the receiving electrode in a way that maximizes sensitivity. Transferring the digital signal from the artificial skin system to the cortical neurons of mice proved to be another challenge, since conventional light-sensitive proteins used in optogenetics do not stimulate neural spikes for sufficient durations for these digital signals to be sensed. Tee et al. therefore engineered new optogenetic proteins able to accommodate longer intervals of stimulation. Applying these newly engineered optogenic proteins to fast-spiking interneurons of the somatosensory cortex of mice in vitro sufficiently prolonged the stimulation interval, allowing the neurons to fire in accordance with the digital stimulation pulse. These results indicate that the system may be compatible with other fast-spiking neurons, including peripheral nerves.

And, there’s an Oct. 15, 2015 Stanford University news release on EurkeAlert describing this work from another perspective,

The heart of the technique is a two-ply plastic construct: the top layer creates a sensing mechanism and the bottom layer acts as the circuit to transport electrical signals and translate them into biochemical stimuli compatible with nerve cells. The top layer in the new work featured a sensor that can detect pressure over the same range as human skin, from a light finger tap to a firm handshake.

Five years ago, Bao’s [Zhenan Bao, a professor of chemical engineering at Stanford,] team members first described how to use plastics and rubbers as pressure sensors by measuring the natural springiness of their molecular structures. They then increased this natural pressure sensitivity by indenting a waffle pattern into the thin plastic, which further compresses the plastic’s molecular springs.

To exploit this pressure-sensing capability electronically, the team scattered billions of carbon nanotubes through the waffled plastic. Putting pressure on the plastic squeezes the nanotubes closer together and enables them to conduct electricity.

This allowed the plastic sensor to mimic human skin, which transmits pressure information as short pulses of electricity, similar to Morse code, to the brain. Increasing pressure on the waffled nanotubes squeezes them even closer together, allowing more electricity to flow through the sensor, and those varied impulses are sent as short pulses to the sensing mechanism. Remove pressure, and the flow of pulses relaxes, indicating light touch. Remove all pressure and the pulses cease entirely.

The team then hooked this pressure-sensing mechanism to the second ply of their artificial skin, a flexible electronic circuit that could carry pulses of electricity to nerve cells.

Importing the signal

Bao’s team has been developing flexible electronics that can bend without breaking. For this project, team members worked with researchers from PARC, a Xerox company, which has a technology that uses an inkjet printer to deposit flexible circuits onto plastic. Covering a large surface is important to making artificial skin practical, and the PARC collaboration offered that prospect.

Finally the team had to prove that the electronic signal could be recognized by a biological neuron. It did this by adapting a technique developed by Karl Deisseroth, a fellow professor of bioengineering at Stanford who pioneered a field that combines genetics and optics, called optogenetics. Researchers bioengineer cells to make them sensitive to specific frequencies of light, then use light pulses to switch cells, or the processes being carried on inside them, on and off.

For this experiment the team members engineered a line of neurons to simulate a portion of the human nervous system. They translated the electronic pressure signals from the artificial skin into light pulses, which activated the neurons, proving that the artificial skin could generate a sensory output compatible with nerve cells.

Optogenetics was only used as an experimental proof of concept, Bao said, and other methods of stimulating nerves are likely to be used in real prosthetic devices. Bao’s team has already worked with Bianxiao Cui, an associate professor of chemistry at Stanford, to show that direct stimulation of neurons with electrical pulses is possible.

Bao’s team envisions developing different sensors to replicate, for instance, the ability to distinguish corduroy versus silk, or a cold glass of water from a hot cup of coffee. This will take time. There are six types of biological sensing mechanisms in the human hand, and the experiment described in Science reports success in just one of them.

But the current two-ply approach means the team can add sensations as it develops new mechanisms. And the inkjet printing fabrication process suggests how a network of sensors could be deposited over a flexible layer and folded over a prosthetic hand.

“We have a lot of work to take this from experimental to practical applications,” Bao said. “But after spending many years in this work, I now see a clear path where we can take our artificial skin.”

Here’s a link to and a citation for the paper,

A skin-inspired organic digital mechanoreceptor by Benjamin C.-K. Tee, Alex Chortos, Andre Berndt, Amanda Kim Nguyen, Ariane Tom, Allister McGuire, Ziliang Carter Lin, Kevin Tien, Won-Gyu Bae, Huiliang Wang, Ping Mei, Ho-Hsiu Chou, Bianxiao Cui, Karl Deisseroth, Tse Nga Ng, & Zhenan Bao. Science 16 October 2015 Vol. 350 no. 6258 pp. 313-316 DOI: 10.1126/science.aaa9306

This paper is behind a paywall.

IBM, the Cognitive Era, and carbon nanotube electronics

IBM has a storied position in the field of nanotechnology due to the scanning tunneling microscope developed in the company’s laboratories. It was a Nobel Prize-winning breakthough which provided the impetus for nanotechnology applied research. Now, an Oct. 1, 2015 news item on Nanowerk trumpets another IBM breakthrough,

IBM Research today [Oct. 1, 2015] announced a major engineering breakthrough that could accelerate carbon nanotubes replacing silicon transistors to power future computing technologies.

IBM scientists demonstrated a new way to shrink transistor contacts without reducing performance of carbon nanotube devices, opening a pathway to dramatically faster, smaller and more powerful computer chips beyond the capabilities of traditional semiconductors.

While the Oct. 1, 2015 IBM news release, which originated the news item, does go on at length there’s not much technical detail (see the second to last paragraph in the excerpt for the little they do include) about the research breakthrough (Note: Links have been removed),

IBM’s breakthrough overcomes a major hurdle that silicon and any semiconductor transistor technologies face when scaling down. In any transistor, two things scale: the channel and its two contacts. As devices become smaller, increased contact resistance for carbon nanotubes has hindered performance gains until now. These results could overcome contact resistance challenges all the way to the 1.8 nanometer node – four technology generations away. [emphasis mine]

Carbon nanotube chips could greatly improve the capabilities of high performance computers, enabling Big Data to be analyzed faster, increasing the power and battery life of mobile devices and the Internet of Things, and allowing cloud data centers to deliver services more efficiently and economically.

Silicon transistors, tiny switches that carry information on a chip, have been made smaller year after year, but they are approaching a point of physical limitation. With Moore’s Law running out of steam, shrinking the size of the transistor – including the channels and contacts – without compromising performance has been a vexing challenge troubling researchers for decades.

IBM has previously shown that carbon nanotube transistors can operate as excellent switches at channel dimensions of less than ten nanometers – the equivalent to 10,000 times thinner than a strand of human hair and less than half the size of today’s leading silicon technology. IBM’s new contact approach overcomes the other major hurdle in incorporating carbon nanotubes into semiconductor devices, which could result in smaller chips with greater performance and lower power consumption.

Earlier this summer, IBM unveiled the first 7 nanometer node silicon test chip [emphasis mine], pushing the limits of silicon technologies and ensuring further innovations for IBM Systems and the IT industry. By advancing research of carbon nanotubes to replace traditional silicon devices, IBM is paving the way for a post-silicon future and delivering on its $3 billion chip R&D investment announced in July 2014.

“These chip innovations are necessary to meet the emerging demands of cloud computing, Internet of Things and Big Data systems,” said Dario Gil, vice president of Science & Technology at IBM Research. “As silicon technology nears its physical limits, new materials, devices and circuit architectures must be ready to deliver the advanced technologies that will be required by the Cognitive Computing era. This breakthrough shows that computer chips made of carbon nanotubes will be able to power systems of the future sooner than the industry expected.”

A New Contact for Carbon Nanotubes

Carbon nanotubes represent a new class of semiconductor materials that consist of single atomic sheets of carbon rolled up into a tube. The carbon nanotubes form the core of a transistor device whose superior electrical properties promise several generations of technology scaling beyond the physical limits of silicon.

Electrons in carbon transistors can move more easily than in silicon-based devices, and the ultra-thin body of carbon nanotubes provide additional advantages at the atomic scale. Inside a chip, contacts are the valves that control the flow of electrons from metal into the channels of a semiconductor. As transistors shrink in size, electrical resistance increases within the contacts, which impedes performance. Until now, decreasing the size of the contacts on a device caused a commensurate drop in performance – a challenge facing both silicon and carbon nanotube transistor technologies.

IBM researchers had to forego traditional contact schemes and invented a metallurgical process akin to microscopic welding that chemically binds the metal atoms to the carbon atoms at the ends of nanotubes. This ‘end-bonded contact scheme’ allows the contacts to be shrunken down to below 10 nanometers without deteriorating performance of the carbon nanotube devices.

“For any advanced transistor technology, the increase in contact resistance due to the decrease in the size of transistors becomes a major performance bottleneck,” Gil added. “Our novel approach is to make the contact from the end of the carbon nanotube, which we show does not degrade device performance. This brings us a step closer to the goal of a carbon nanotube technology within the decade.”

Every once in a while, the size gets to me and a 1.8nm node is amazing. As for IBM’s 7nm chip, which was previewed this summer, there’s more about that in my July 15, 2015 posting.

Here’s a link to and a citation for the IBM paper,

End-bonded contacts for carbon nanotube transistors with low, size-independent resistance by Qing Cao, Shu-Jen Han, Jerry Tersoff, Aaron D. Franklin†, Yu Zhu, Zhen Zhang‡, George S. Tulevski, Jianshi Tang, and Wilfried Haensch. Science 2 October 2015: Vol. 350 no. 6256 pp. 68-72 DOI: 10.1126/science.aac8006

This paper is behind a paywall.

PrepareAthon and ShakeOut! Get ready for disaster


A Sept. 28, 2015 “prepareathon” notice came courtesy of the US Geological Survey (USGS). While this particular programme is US-centric (their ShakeOut mentioned later in this post is international in scope), sign-up or registration is not required and there is good general information about how to prepare and what to do in a variety of disaster-scenarios on the Hazards page of their website.  For those who can participate, here’s more,

Science Feature: Join America’s PrepareAthon!
Practice what to do in the event of a disaster or emergency.

Join millions of people participating in America’s PrepareAthon! on Sept. 30. This campaign encourages the nation to conduct drills, discussions and exercises to practice what to do before, during and after a disaster or emergency strikes.

The campaign will focus on preparing for floods, wildfires, hurricanes and power outages. Each year, the campaign holds two national days of action, with each day highlighting different hazards. This is the second national day of action this year.

Start with Science

USGS science is essential to understanding a wide range of hazards—including volcanoes, landslides, wildlife health and many others beyond this specific campaign—and provides a basis on which preparedness actions are developed.

USGS real-time monitoring of the nation’s rivers and streams provides officials with critical information for flood warnings, forecasts and evacuation warnings.

Before, during and after wildfire disasters, the USGS provides tools to identify wildfire risks and reduce subsequent hazards, such as landslides. USGS scientists also provide real-time maps and satellite imagery to firefighters.

For major storms or hurricanes, USGS science helps forecast the likelihood of coastal impacts. The USGS also measures storm surge and monitors water levels of inland rivers and streams.

Power outages can have many causes, including geomagnetic storms that result from the dynamic interaction of solar wind and the Earth’s magnetic field. The USGS operates a unique network of observatories that provide real-time data on magnetic storm conditions.

Coordination and Community

America’s PrepareAthon! is part of President Obama’s Presidential Policy Directive 8: National Preparedness and led by The Federal Emergency Management Agency (FEMA). The USGS is one of many supporting and contributing agencies. This campaign is coordinated with federal, state, local, tribal and territorial governments, the private sector and non-governmental organizations.


The same Sept. 28, 2015 USGS notice includes some information about a “ShakeOut” (of particular interest to someone who lives in what’s known as the Ring of Fire or less colourfully as the circum-Pacific Belt earthquake/volcanic zone [Wikipedia entry]). This is an international (Japan, Italy, Canada, and others in addition to the US) event,

Get Ready to ShakeOut on October 15

Sign up for the next Great ShakeOut earthquake drill on October 15, 2015, and practice “drop, cover, and hold on,” the recommended safety action to take during an earthquake.

You can check out your state, province, or country, as I did for British Columbia (Canada). Here’s what I found,

On October 15* [2015], officially “ShakeOut BC Day,” millions of people worldwide will practice how to Drop, Cover, and Hold On at 10:15 a.m. during Great ShakeOut Earthquake Drills!

British Columbians can join by registering for the 2015 Great British Columbia ShakeOut.

The page hosts an embedded video and it’s available en français. It also offers these statistics: 610,000 have already signed up the 2015 event; last year (2014), there were over 740,000 participants.

Characterizing anatase titanium dixoide at the nanoscale

An international collaboration of researchers combined atomic force microscopy (AFM) and scanning tunneling microscopy (STM) to characterize anatase titanium dixoxide. From a Sept. 14, 2015 news item on Azonano,

A [Japan National Institute for Materials Science] NIMS research team successfully identified the atoms and common defects existing at the most stable surface of the anatase form of titanium dioxide by characterizing this material at the atomic scale with scanning probe microscopy. This work was published under open access policy in the online version of Nature Communications on June 29, 2015.

A June 29, 2015 NIMS press release, which originated the news item, includes the paper’s abstract in numbered point form,

  1. The research team consisting of Oscar Custance and Tomoko Shimizu, group leader and senior scientist, respectively, at the Atomic Force Probe Group, NIMS, Daisuke Fujita and Keisuke Sagisaka, group leader and senior researcher, respectively, at the Surface Characterization Group, NIMS, and scientists at Charles University in the Czech Republic, Autonomous University of Madrid in Spain, and other organizations combined simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) measurements with first-principles calculations for the unambiguous identification of the atomic species at the most stable surface of the anatase form of titanium dioxide (hereinafter referred to as anatase) and its most common defects.
  2. In recent years, anatase has attracted considerable attention, because it has become a pivotal material in devices for photo-catalysis and for the conversion of solar energy to electricity. It is extremely challenging to grow large single crystals of anatase, and most of the applications of this material are in the form of nano crystals. To enhance the catalytic reactivity of anatase and the efficiency of devices for solar energy conversion based on anatase, it is critical to gain in-depth understanding and control of the reactions taking place at the surface of this material down to the atomic level. Only a few research groups worldwide possess the technology to create proper test samples and to make in-situ atomic-level observations of anatase surfaces.
  3. In this study, the research team used samples obtained from anatase natural single crystals extracted from naturally occurring anatase rocks. The team characterized the (101) surface of anatase at atomic level by means of simultaneous AFM and STM. Using single water molecules as atomic markers, the team successfully identified the atomic species of this surface; result that was additionally confirmed by the comparison of simultaneous AFM and STM measurements with the outcomes of first-principles calculations.
  4. In regular STM, in which an atomically sharp probe is scanned over the surface by keeping constant an electrical current flowing between them, it is difficult to stably image anatase surfaces as this material presents poor electrical conductivity over some of the atomic positions of the surface. However, simultaneous operation of AFM and STM allowed imaging the surface with atomic resolution even within the materials band gap (a region where the flow of current between the probe and the surface is, in principle, prohibited). Here, the detection of inter-atomic forces between the last atom of the atomically sharp probe and the atoms of the surface by AFM was of crucial importance. By regulating the probe-surface distance using AFM, it was possible to image the surface at atomic-scale while collecting STM data over both conductive and not conductive areas of the surface. By comparing simultaneous AFM and STM measurements with theoretical simulations, the team was not only able to discern which atomic species were contributing to the AFM and the STM images but also to identify the most common defects found at the surface.
  5. In the future, based on the information gained from this study, the NIMS research team will conduct research on molecules of technologically relevance that adsorb on anatase and characterize these hybrid systems by using simultaneous AFM and STM. Their ultimate goal is to formulate novel approaches for the development of photo-catalysts and solar cell materials and devices.

Here’s a link to and a citation for the paper,

Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy by Oleksandr Stetsovych, Milica Todorović, Tomoko K. Shimizu, César Moreno, James William Ryan, Carmen Pérez León, Keisuke Sagisaka, Emilio Palomares, Vladimír Matolín, Daisuke Fujita, Ruben Perez, & Oscar Custance. Nature Communications 6, Article number: 7265 doi:10.1038/ncomms8265 Published 29 June 2015

This is an open access paper.

Monitoring your saliva via mouth guard and smart phone

I first came across the notion that saliva instead of blood and urine could be used to assess and monitor health in a presentation abstract for the 2004 American Association for the Advancement of Science (AAAS) annual meeting held in Seattle, Washington (as per my Feb. 15, 2011 posting). There have been a few ‘saliva’ health monitoring projects mentioned here over the years but this proof-of-concept version seems like it has the potential to get to the marketplace. An August 31, 2015 news item on Nanowerk features a ‘saliva’ health monitoring project from the University of California at San Diego (UCSD),

Engineers at the University of California, San Diego, have developed a mouth guard that can monitor health markers, such as lactate, cortisol and uric acid, in saliva and transmit the information wirelessly to a smart phone, laptop or tablet.
The technology, which is at a proof-of-concept stage, could be used to monitor patients continuously without invasive procedures, as well as to monitor athletes’ performance or stress levels in soldiers and pilots. In this study, engineers focused on uric acid, which is a marker related to diabetes and to gout. Currently, the only way to monitor the levels of uric acid in a patient is to draw blood.

An August 31, 2015 UCSD news release (also on EurekAlert), which originated the news item, describes the research and the mouth guard in more detail,

In this study, researchers showed that the mouth guard sensor could offer an easy and reliable way to monitor uric acid levels. The mouth guard has been tested with human saliva but hasn’t been tested in a person’s mouth.

Researchers collected saliva samples from healthy volunteers and spread them on the sensor, which produced readings in a normal range. Next, they collected saliva from a patient who suffers from hyperuricemia, a condition characterized by an excess of uric acid in the blood. The sensor detected more than four times as much uric acid in the patient’s saliva than in the healthy volunteers.

The patient also took Allopurinol, which had been prescribed by a physician to treat their condition. Researchers were able to document a drop in the levels of uric acid over four or five days as the medication took effect. In the past, the patient would have needed blood draws to monitor levels and relied instead on symptoms to start and stop his medication.

Fabrication and design

Wang’s team created a screen-printed sensor using silver, Prussian blue ink and uricase, an enzyme that reacts with uric acid. Because saliva is extremely complex and contains many different biomarkers, researchers needed to make sure that the sensors only reacted with the uric acid. Nanoengineers set up the chemical equivalent of a two-step authentication system. The first step is a series of chemical keyholes, which ensures that only the smallest biochemicals get inside the sensor. The second step is a layer of uricase trapped in polymers, which reacts selectively with uric acid. The reaction between acid and enzyme generates hydrogen peroxide, which is detected by the Prussian blue ink.  That information is then transmitted to an electronic board as electrical signals via metallic strips that are part of the sensor.

The electronic board, developed by Mercier’s team, uses small chips that sense the output of the sensors, digitizes this output and then wirelessly transmits data to a smart phone, tablet or laptop. The entire electronic board occupies an area slightly larger than a U.S. penny.

Next steps

The next step is to embed all the electronics inside the mouth guard so that it can actually be worn. Researchers also will have to test the materials used for the sensors and electronics to make sure that they are indeed completely biocompatible. The next iteration of the mouth guard is about a year out, Mercier estimates.

“All the components are there,” he said. “It’s just a matter of refining the device and working on its stability.”

Wang and Mercier lead the Center for Wearable Sensors at UC San Diego, which has made a series of breakthroughs in the field, including temporary tattoos that monitor glucose, ultra-miniaturized energy-processing chips and pens filled with high-tech inks for Do It Yourself chemical sensors.

Here’s a link to and a citation for the paper,

Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics by Jayoung Kim, Somayeh Imani, William R. de Araujo, Julian Warchall, Gabriela Valdés-Ramírez, Thiago R.L.C. Paixão, Patrick P. Mercier, & Joseph Wang. Biosensors and Bioelectronics Volume 74, 15 December 2015, Pages 1061–1068 doi:10.1016/j.bios.2015.07.039

This paper is behind a paywall.

Here’s an image of UCSD’s proposed mouth guard,

The mouth guard sensor offers an easy and reliable way to monitor uric acid levels in human saliva. Credit: Jacobs School of Engineering, UC San Diego

The mouth guard sensor offers an easy and reliable way to monitor uric acid levels in human saliva. Credit: Jacobs School of Engineering, UC San Diego

Eco conscious gin distillery

EnduroShield, an ultrathin film for making glass easier to clean, has helped to make a thing of beauty that is designed with eco consciousness in mind.

From the EnduroShield Sapphire Bombay Gin Project page,

Courtesy: EnduroShield

Courtesy: EnduroShield

Courtesy: EnduroShield

Courtesy: EnduroShield

Here’s the description of the project (from the EnduroShield website),

Prominent gin-makers Bombay Sapphire commissioned the creation of the company’s first in-house production facility at an old Victorian paper mill in Laverstoke, Hampshire, on a 20,000sqm rural property along the southern coast of England. The abandoned 18th century paper mill’s original brick buildings were converted into the distillery, while a pair of phenomenal curved glass greenhouses were added to house the 10 tropical and Mediterranean botanicals used to create the world famous gin.

Throughout the renovation process, Bombay Sapphire and architects Heatherwick Studio were dedicated to creating a sustainable and efficient distillery which upheld the heritage of the site. In recognition of this, the gin distillery was awarded the highly prestigious BREEAM (Building Research Establishment’s Environmental Assessment Method) Award for Industrial Design.

The state-of-the-art facility has been recognised as the first distillery and first refurbishment to achieve an ‘Outstanding’ design-stage BREEAM accreditation.  The centrepiece of the award winning distillery is the amazing greenhouse designed by Thomas Hetherwick. It is made up of two glasshouses which extend from the distillery, using recycled air from the distillation process to maintain a warm climate within. The glasshouses also take full advantage of advances in glass technology, one of which is EnduroShield’s easy clean nanotechnology.  The EnduroShield coated glass utilised in this remarkable structure is synonymous with the development’s eco strategy; not only does EnduroShield protect the glass form staining and etching but also helps to reduce environmental and monetary costs from ongoing maintenance.

Here’s more about the glass (from the EnduroShield website),

EnduroShield easy clean surface treatment for glass was applied onto the swooping glasshouse structures so that water and contaminants bead right off, reducing cleaning time and frequency. EnduroShield chemically bonds to the glass substrate, transforming it into a high performance hydrophobic surface which will protect against staining, and reduce the effort and regularity of maintenance.

The spectacular Bombay Sapphire Distillery project, with its strong environmental focus, is at the forefront of eco-conscious architecture. Bombay Sapphire have also commented that the sustainability measures taken during the design and construction process have fundamental financial sense,  increasing efficiency with ongoing savings in operational energy and water costs well into the future.

Nanotechnology is mentioned, although not in any detail,

EnduroShield is the smart choice for exterior glass surfaces, providing a permanent*, ultra-thin, transparent coating that completely adheres to the glass surface. The coating provides a reduction of both the frequency and the time spent cleaning.

Developed with cutting edge nanotechnology, the coating is applied by many of the world’s leading glass companies and is an official partner to Lisec Corporation, the world’s largest manufacturer of high-tech production lines for the glass industry. [emphasis mine]

*Independently tested and certified by TÜV Rheinland, Germany for durability to simulate a lifetime of 10 years on interior and exterior use.

H/t Aug. 13, 2015 news item.

You can find out more about LiSEC here.

Finally, a gin and tonic is sounding pretty good to me right now. Have a nice weekend!

Lightning strikes to create glass (reshaping rock at the atomic level)

This features glass (more specifically glass tubes), one of my interests, and it’s a fascinating story. From an Aug. 6, 2015 news item on Azonano,

At a rock outcropping in southern France, a jagged fracture runs along the granite. The surface in and around the crevice is discolored black, as if wet or covered in algae.

But, according to a new paper coauthored by the University of Pennsylvania’s Reto Gieré, the real explanation for the rock’s unusual features is more dramatic: a powerful bolt of lightning.

Here’s what the rock looks like afterwards,

A rock fulgurite revealed that lightning strikes alter quartz's crystal structure on the atomic level. Courtesy: Penn State

A rock fulgurite revealed that lightning strikes alter quartz’s crystal structure on the atomic level. Courtesy: University of Pennsylvania

The researchers have also provided an image taken under an transmission electron microscope,

Gieré and colleagues observed the parallel lines of shock lamellae under a transmission electron microscope Courtesy: Penn State

Gieré and colleagues observed the parallel lines of shock lamellae under a transmission electron microscope Courtesy: University of Pennsylvania

An Aug. 5, 2015 University of Pennsylvania news release, which originated the news item, provides more technical details about the research,

Using extremely high-resolution microscopy, Gieré, professor and chair of the Department of Earth and Environmental Science in Penn’s School of Arts & Sciences, and his coauthors found that not only had the lightning melted the rock’s surface, resulting in a distinctive black “glaze,” but had transferred enough pressure to deform a thin layer of quartz crystals beneath the surface, resulting in distinct atomic-level structures called shock lamellae.

Prior to this study, the only natural events known to create this type of lamellae were meteorite impacts.

“I think the most exciting thing about this study is just to see what lightning can do,” Gieré said. “To see that lightning literally melts the surface of a rock and changes crystal structures, to me, is fascinating.”

Gieré said the finding serves as a reminder to geologists not to rush to interpret shock lamellae as indicators of a meteorite strike.

“Most geologists are careful; they don’t just use one observation,” he said, “But this is a good reminder to always use multiple observations to draw big conclusions, that there are multiple mechanisms that can result in a similar effect.”

Gieré collaborated on the study with Wolfhard Wimmenauer and Hiltrud Müller-Sigmund of Albert-Ludwigs-Universität, Richard Wirth of GeoForschungsZentrum Potsdam and Gregory R. Lumpkin and Katherine L. Smith of the Australian Nuclear Science and Technology Organization.

The paper was published in the journal American Mineralogist.

Geologists have long known that lightning, through rapid increases in temperature as well as physical and chemical effects, can alter sediments. When it strikes sand, for example, lightning melts the grains, which fuse and form glass tubes known as fulgurites.

Fulgurites can also form when lightning strikes other materials, including rock and soil. The current study examined a rock fulgurite found near Les Pradals, France. Gieré and colleagues took samples from the rock, then cut thin sections and polished them.

Under an optical microscope, they found that the outer black layer — the fulgurite itself — appeared shiny, “almost like a ceramic glaze,” Gieré said.

The layer was also porous, almost like a foam, due to the lightning’s heat vaporizing the rock’s surface. A chemical analysis of the fulgurite layer turned up elevated levels of sulfur dioxide and phosphorous pentoxide, which the researchers believe may have derived from lichen living on the rock’s surface at the time of the lightning strike.

The team further studied the samples using a transmission electron microscope, which allows users to examine specimens at the atomic level. This revealed that the fulgurite lacked any crystalline structure, consistent with it representing a melt formed through the high heat from the lightning strike.

But, in a layer of the sample immediately adjacent to the fulgurite, slightly deeper in the rock, the researchers spotted an unusual feature: a set of straight, parallel lines known as shock lamellae. This feature occurs when the crystal structure of quartz or other minerals deform in response to a vast wave of pressure.

“It’s like if someone pushes you, you rearrange your body to be comfortable,” Gieré said. “The mineral does the same thing.”

The lamellae were present in a layer of the rock only about three micrometers wide, indicating that the energy of the lightning bolt’s impact dissipated over that distance.

This characteristic deformation of crystals had previously only been seen in minerals from sites where meteorites struck. Shock lamellae are believed to form at pressures up to more than 10 gigapascals, or with 20 million times greater force than a boxer’s punch.

Gieré and colleagues hope to study rock fulgurites from other sites to understand the physical and chemical effects of lightning bolts on rocks in greater detail.

Another takeaway for geologists, rock climbers and hikers who spend time on rocks in high, exposed places is to beware when they see the tell-tale shiny black glaze of a rock fulgurite, as it might indicate a site prone to lightning strikes.

“Once it was pointed out to me, I started seeing it again and again,” he said. “I’ve had some close calls with thunderstorms in the field, where I’ve had to throw down my metal instruments and run.”

Here’s a link to and a citation for the paper,

Lightning-induced shock lamellae in quartz by Reto Gieré, Wolfhard Wimmenauer, Hiltrud Müller-Sigmund, Richard Wirth, Gregory R. Lumpkin, and Katherine L. Smith. American Mineralogist, July 2015 v. 100 no. 7 p. 1645-1648 doi: 10.2138/am-2015-5218

This paper is behind a paywall.

Nanoscale imaging of a mouse brain

Researchers have developed a new brain imaging tool they would like to use as a founding element for a national brain observatory. From a July 30, 2015 news item on Azonano,

A new imaging tool developed by Boston scientists could do for the brain what the telescope did for space exploration.

In the first demonstration of how the technology works, published July 30 in the journal Cell, the researchers look inside the brain of an adult mouse at a scale previously unachievable, generating images at a nanoscale resolution. The inventors’ long-term goal is to make the resource available to the scientific community in the form of a national brain observatory.

A July 30, 2015 Cell Press news release on EurekAlert, which originated the news item, expands on the theme,

“I’m a strong believer in bottom up-science, which is a way of saying that I would prefer to generate a hypothesis from the data and test it,” says senior study author Jeff Lichtman, of Harvard University. “For people who are imagers, being able to see all of these details is wonderful and we’re getting an opportunity to peer into something that has remained somewhat intractable for so long. It’s about time we did this, and it is what people should be doing about things we don’t understand.”

The researchers have begun the process of mining their imaging data by looking first at an area of the brain that receives sensory information from mouse whiskers, which help the animals orient themselves and are even more sensitive than human fingertips. The scientists used a program called VAST, developed by co-author Daniel Berger of Harvard and the Massachusetts Institute of Technology, to assign different colors and piece apart each individual “object” (e.g., neuron, glial cell, blood vessel cell, etc.).

“The complexity of the brain is much more than what we had ever imagined,” says study first author Narayanan “Bobby” Kasthuri, of the Boston University School of Medicine. “We had this clean idea of how there’s a really nice order to how neurons connect with each other, but if you actually look at the material it’s not like that. The connections are so messy that it’s hard to imagine a plan to it, but we checked and there’s clearly a pattern that cannot be explained by randomness.”

The researchers see great potential in the tool’s ability to answer questions about what a neurological disorder actually looks like in the brain, as well as what makes the human brain different from other animals and different between individuals. Who we become is very much a product of the connections our neurons make in response to various life experiences. To be able to compare the physical neuron-to-neuron connections in an infant, a mathematical genius, and someone with schizophrenia would be a leap in our understanding of how our brains shape who we are (or vice versa).

The cost and data storage demands for this type of research are still high, but the researchers expect expenses to drop over time (as has been the case with genome sequencing). To facilitate data sharing, the scientists are now partnering with Argonne National Laboratory with the hopes of creating a national brain laboratory that neuroscientists around the world can access within the next few years.

“It’s bittersweet that there are many scientists who think this is a total waste of time as well as a big investment in money and effort that could be better spent answering questions that are more proximal,” Lichtman says. “As long as data is showing you things that are unexpected, then you’re definitely doing the right thing. And we are certainly far from being out of the surprise element. There’s never a time when we look at this data that we don’t see something that we’ve never seen before.”

Here’s a link to and a citation for the paper,

Saturated Reconstruction of a Volume of Neocortex by Narayanan Kasthuri, Kenneth Jeffrey Hayworth, Daniel Raimund Berger, Richard Lee Schalek, José Angel Conchello, Seymour Knowles-Barley, Dongil Lee, Amelio Vázquez-Reina, Verena Kaynig, Thouis Raymond Jones, Mike Roberts, Josh Lyskowski Morgan, Juan Carlos Tapia, H. Sebastian Seung, William Gray Roncal, Joshua Tzvi Vogelstein, Randal Burns, Daniel Lewis Sussman, Carey Eldin Priebe, Hanspeter Pfister, Jeff William Lichtman. Cell Volume 162, Issue 3, p648–661, 30 July 2015 DOI:

This appears to be an open access paper.