Category Archives: writing

ArtSci Salon visits the Society for Literature, Science & the Arts 2018 Meeting in Toronto (Canada) while Vancouver’s Curiosity Collider provides a November 2018 update

I have two art/sci (or sciart) announcements, one concerns an event and the other is a news update.

Toronto’s ArtSci Salon and the Society of Literature, Science & the Arts (SLSA) 2018 Meeting

How could I not have stumbled across SLSA until now? Better late than never but the 2018 meeting/conference in Toronto, Canada is the 32nd of this annual event. (sigh)

Getting on to the important points, the ArtSci Salon is hosting a special roundtable as part of the conference (from a November 14, 2018 announcement received via email),

ArtSci Salon has organized a special roundtable at the annual SLSA
(Society for Science Literature and the Arts) which will take place in
Toronto this week.

The roundtable is public and will be held at OCADU [Ontario College of Art and Design University] in the gallery on 49 McCaul Street.

Re-locating the rational: on the re-making of categories through art and science (or: the artist is out of mind!)

A roundtable and a mobile/pop-up exhibition organized by ArtSci Salon

The world always exceeds our conception of it (Shotwell, 2016)

Coinciding with this year’s SLSA “Out of Mind” conference in Toronto, ArtSci Salon is proposing a panel/roundtable on “out-of-mindedness” as a way to re-think categories, and to disrupt the disciplinary and methodological status quo through which we normally see science and the humanities unfolding in academic contexts. We plan to do it through a pop-up exhibition featuring the works of local artists and members of SLSA.

What to do when the sciences and the humanities loose [sic] their ability to fully grasp, and sometimes even speak of, phenomena that have inevitably become too complex, too diffuse to be simplified through a model or a formula, or to be seized and summarized by one discipline?

This initiative is not designed to propose a set of new categories, but to pose a series of open questions, highlighting the necessity to conduct collaborative research between artistic practices and scientific research. We interpret the idea of “out of mind” as a strategy. In fact, using the arts as our preferred mode of expression, we believe that we ought to step out of the traditional mind configurations and fixed wiring in order to seize new ways to come to term with the multiplicities characterizing current environmental transformations. These occurrences have proved to be connected with nature, culture, and society in too many intricate ways, to the extent that neither science, nor technological methods are able to fully comprehend them.

Roundtable Participants:

Roberta Buiani (Chair)

Erika Biddles

Jenifer Wightman

Stephanie Rothenberg

Adam Zaretsky

Kathy High

Dolores Steinman

Here’s the poster:

One more logistical detail,

[T]he roundtable will be at 10:30-12:00 noon [Friday, November 16, 2018] followed by a small tour of the mobile pop-up exhibition[.]

For the curious, here’s the SLSA website and the SLSA 2018 [Meeting]—Out of Your Mind website. Unexpectedly, the University of Toronto is not one of the conference hosts, instead we have the University of Waterloo [Waterloo, Ontario] and York University [Toronto, Ontario] as joint hosts with OCAD University—Canada’s oldest art and design institution—partnering with the Rochester Institute of Technology (New York state, US).

Vancouver’s Curiosity Collider

Coincidentally on the same day I received the ArtSci Salon event information, I received a November 14, 2018 update for Vancouver’s art/sci (or sciart) organization, Curiosity Collider. From the update received via email,

Collider Update

Next events (save-the-date), call for submissions, and other art+science in town

Collisions Festival:
Meet Up & Hang Out

Are you an artist working in the sci/art genre? A scientist interested in collaborating with artists? Or one who wears both hats?

In the fall of 2019, the Curiosity Collider will be hosting our inaugural Sci-Art festival The Collisions Festival; the first theme will be Invasive Systems. The call for submission will be open in spring, 2019. The theme is meant to be broad in scope and not limited to any specific scientific subject/discipline; participants are encouraged to suggest various interpretation of the theme.

We would like to invite all artists and scientists who are interested in participating or potentially submitting a proposal to join us at this meet up event, chat about possible collaborations, and learn more about projects and details on “collaborative work” proposals we are looking for.

RSVP now so we know how many to expect.. This is a casual drop in event; feel free to stay, or just stop by and say hi!

Notice that RSVP? Taken with the next announcement, something becomes evident,

Join the Collider Team!

Are you passionate about art and science? Want to be part of the awesome Curiosity Collider team to help create new ways to experience science? 

We are now inviting applications for the following positions:

Read more on our volunteer page. Feel free to contact us if you have any questions!

In the old days a ‘development director’ was a ‘fundraiser’. That RSVP? Likely, they’re trying to establish the size of their potential audience so they can get government grants. Audience size is important to corporate or ‘other’ funders but if you want a government grant you need numbers.

Getting back to the update, this is a grouping of Curiosity Collider’s latest hits,

#ColliderCafe: Art. Science. Cadence.

Did you miss our most recent Collider Cafe event? You can now chek out the talks by Singer-songwriter Devon More, Biologists Wayne Maddison and David Maddison, as well as Integrated Media Artist Victoria Gibson on our YouTube Channel.

Check out the talks now.

Et al 3: Collaboration Process for Quantum Futures

Nerd Nite, Science Slam, and Curiosity Collider joined forces for the 3rd edition of Et al: the ultimate bar science night event. During the event, Quantum Physicist James Day and our Creative Managing Director Char Hoyt gave attendees an overview of the collaboration process that made Night shift: Quantum Futures, an event curated by CC and hosted at the Museum of Anthropology, possible.

Missed the show? Watch the presentation on our YouTube channel now.

While they don’t seem to have any details, there is a date for the next Collider Cafe,

Save the Date:
Next Collider Cafe

Our next Collider Cafe will be on Wednesday, January 23 at Cafe Deux Soleils. #ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science. Meet. Discover. Connect. Create.

Are you curious? Join us to explore how art and science intersect in the exploration of curiosity.

Finally, a miscellaneous listing of related events being held in Vancouver, mostly, this November,

Looking for more art+science in town?

  • November 17 (Victoria) Science Writers and Communicators of Canada is hosting a workshop on science writing in an age of reconciliation: What science writers can learn from indigenous community members about better representation and relationships. Only a few spots left! Register now.
  • November 15-18 CC friend Dzee Louise will open her studio during the East Side Cultural Crawl! Drop by at studio #5 just at the top of the stairs of the William Clark Building at 1310 William Street (on the corner of Clark).
  • November 21 Natural History (Paleoart) Illustrator Julius Csotonyi will present a public lecture at the Vancouver Public Library (Kits branch) on the mutually beneficial affair between science and art.
  • November 21 Our friends at Nerd Nite Vancouver is hosting another awesome event next week, including a presentation by artist Michael Markowsky who will talk about how he ends up “Painting on the Moon”. Get your tickets now!
  • Until December 15 Vancouver Biennale’s CURIOUS IMAGININGS continues…check out the exhibition that will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

For more Vancouver art+science events, visit the Curiosity Collider events calendar. Let us know about your art+science events by emailing info@curiositycollider.org.

I did write a preview (June 18, 2018) for the last event on the list, Curious Imaginings, which included some of the latest science on xenotransplantation and chimeras (i.e., examples of  emerging biotechnology). That’s all folks!

AI fairytale and April 25, 2018 AI event at Canada Science and Technology Museum*** in Ottawa

These days it’s all about artificial intelligence (AI) or robots and often, it’s both. They’re everywhere and they will take everyone’s jobs, or not, depending on how you view them. Today, I’ve got two artificial intelligence items, the first of which may provoke writers’ anxieties.

Fairytales

The Princess and the Fox is a new fairytale by the Brothers Grimm or rather, their artificially intelligent surrogate according to an April 18, 2018 article on the British Broadcasting Corporation’s online news website,

It was recently reported that the meditation app Calm had published a “new” fairytale by the Brothers Grimm.

However, The Princess and the Fox was written not by the brothers, who died over 150 years ago, but by humans using an artificial intelligence (AI) tool.

It’s the first fairy tale written by an AI, claims Calm, and is the result of a collaboration with Botnik Studios – a community of writers, artists and developers. Calm says the technique could be referred to as “literary cloning”.

Botnik employees used a predictive-text program to generate words and phrases that might be found in the original Grimm fairytales. Human writers then pieced together sentences to form “the rough shape of a story”, according to Jamie Brew, chief executive of Botnik.

The full version is available to paying customers of Calm, but here’s a short extract:

“Once upon a time, there was a golden horse with a golden saddle and a beautiful purple flower in its hair. The horse would carry the flower to the village where the princess danced for joy at the thought of looking so beautiful and good.

Advertising for a meditation app?

Of course, it’s advertising and it’s ‘smart’ advertising (wordplay intended). Here’s a preview/trailer,

Blair Marnell’s April 18, 2018 article for SyFy Wire provides a bit more detail,

“You might call it a form of literary cloning,” said Calm co-founder Michael Acton Smith. Calm commissioned Botnik to use its predictive text program, Voicebox, to create a new Brothers Grimm story. But first, Voicebox was given the entire collected works of the Brothers Grimm to analyze, before it suggested phrases and sentences based upon those stories. Of course, human writers gave the program an assist when it came to laying out the plot. …

“The Brothers Grimm definitely have a reputation for darkness and many of their best-known tales are undoubtedly scary,” Peter Freedman told SYFY WIRE. Freedman is a spokesperson for Calm who was a part of the team behind the creation of this story. “In the process of machine-human collaboration that generated The Princess and The Fox, we did gently steer the story towards something with a more soothing, calm plot and vibe, that would make it work both as a new Grimm fairy tale and simultaneously as a Sleep Story on Calm.” [emphasis mine]

….

If Marnell’s article is to be believed, Peter Freedman doesn’t hold much hope for writers in the long-term future although we don’t need to start ‘battening down the hatches’ yet.

You can find Calm here.

You can find Botnik  here and Botnik Studios here.

 

AI at Ingenium [Canada Science and Technology Museum] on April 25, 2018

Formerly known (I believe) [*Read the comments for the clarification] as the Canada Science and Technology Museum, Ingenium is hosting a ‘sold out but there will be a livestream’ Google event. From Ingenium’s ‘Curiosity on Stage Evening Edition with Google – The AI Revolution‘ event page,

Join Google, Inc. and the Canada Science and Technology Museum for an evening of thought-provoking discussions about artificial intelligence.

[April 25, 2018
7:00 p.m. – 10:00 p.m. {ET}
Fees: Free]

Invited speakers from industry leaders Google, Facebook, Element AI and Deepmind will explore the intersection of artificial intelligence with robotics, arts, social impact and healthcare. The session will end with a panel discussion and question-and-answer period. Following the event, there will be a reception along with light refreshments and networking opportunities.

The event will be simultaneously translated into both official languages as well as available via livestream from the Museum’s YouTube channel.

Seating is limited

THIS EVENT IS NOW SOLD OUT. Please join us for the livestream from the Museum’s YouTube channel. https://www.youtube.com/cstmweb *** April 25, 2018: I received corrective information about the link for the livestream: https://youtu.be/jG84BIno5J4 from someone at Ingenium.***

Speakers

David Usher (Moderator)

David Usher is an artist, best-selling author, entrepreneur and keynote speaker. As a musician he has sold more than 1.4 million albums, won 4 Junos and has had #1 singles singing in English, French and Thai. When David is not making music, he is equally passionate about his other life, as a Geek. He is the founder of Reimagine AI, an artificial intelligence creative studio working at the intersection of art and artificial intelligence. David is also the founder and creative director of the non-profit, the Human Impact Lab at Concordia University [located in Montréal, Québec]. The Lab uses interactive storytelling to revisualize the story of climate change. David is the co-creator, with Dr. Damon Matthews, of the Climate Clock. Climate Clock has been presented all over the world including the United Nations COP 23 Climate Conference and is presently on a three-year tour with the Canada Museum of Science and Innovation’s Climate Change Exhibit.

Joelle Pineau (Facebook)

The AI Revolution:  From Ideas and Models to Building Smart Robots
Joelle Pineau is head of the Facebook AI Research Lab Montreal, and an Associate Professor and William Dawson Scholar at McGill University. Dr. Pineau’s research focuses on developing new models and algorithms for automatic planning and learning in partially-observable domains. She also applies these algorithms to complex problems in robotics, health-care, games and conversational agents. She serves on the editorial board of the Journal of Artificial Intelligence Research and the Journal of Machine Learning Research and is currently President of the International Machine Learning Society. She is a AAAI Fellow, a Senior Fellow of the Canadian Institute for Advanced Research (CIFAR) and in 2016 was named a member of the College of New Scholars, Artists and Scientists by the Royal Society of Canada.

Pablo Samuel Castro (Google)

Building an Intelligent Assistant for Music Creators
Pablo was born and raised in Quito, Ecuador, and moved to Montreal after high school to study at McGill. He stayed in Montreal for the next 10 years, finished his bachelors, worked at a flight simulator company, and then eventually obtained his masters and PhD at McGill, focusing on Reinforcement Learning. After his PhD Pablo did a 10-month postdoc in Paris before moving to Pittsburgh to join Google. He has worked at Google for almost 6 years, and is currently a research Software Engineer in Google Brain in Montreal, focusing on fundamental Reinforcement Learning research, as well as Machine Learning and Music. Aside from his interest in coding/AI/math, Pablo is an active musician (https://www.psctrio.com), loves running (5 marathons so far, including Boston!), and discussing politics and activism.

Philippe Beaudoin (Element AI)

Concrete AI-for-Good initiatives at Element AI
Philippe cofounded Element AI in 2016 and currently leads its applied lab and AI-for-Good initiatives. His team has helped tackle some of the biggest and most interesting business challenges using machine learning. Philippe holds a Ph.D in Computer Science and taught virtual bipeds to walk by themselves during his postdoc at UBC. He spent five years at Google as a Senior Developer and Technical Lead Manager, partly with the Chrome Machine Learning team. Philippe also founded ArcBees, specializing in cloud-based development. Prior to that he worked in the videogame and graphics hardware industries. When he has some free time, Philippe likes to invent new boardgames — the kind of games where he can still beat the AI!

Doina Precup (Deepmind)

Challenges and opportunities for the AI revolution in health care
Doina Precup splits her time between McGill University, where she co-directs the Reasoning and Learning Lab in the School of Computer Science, and DeepMind Montreal, where she leads the newly formed research team since October 2017.  She got her BSc degree in computer science form the Technical University Cluj-Napoca, Romania, and her MSc and PhD degrees from the University of Massachusetts-Amherst, where she was a Fulbright fellow. Her research interests are in the areas of reinforcement learning, deep learning, time series analysis, and diverse applications of machine learning in health care, automated control and other fields. She became a senior member of AAAI in 2015, a Canada Research Chair in Machine Learning in 2016 and a Senior Fellow of CIFAR in 2017.

Interesting, oui? Not a single expert from Ottawa or Toronto. Well, Element AI has an office in Toronto. Still, I wonder why this singular focus on AI in Montréal. After all, one of the current darlings of AI, machine learning, was developed at the University of Toronto which houses the Canadian Institute for Advanced Research (CIFAR),  the institution in charge of the Pan-Canadian Artificial Intelligence Strategy and the Vector Institutes (more about that in my March 31,2017 posting).

Enough with my musing: For those of us on the West Coast, there’s an opportunity to attend via livestream from 4 pm to 7 pm on April 25, 2018 on xxxxxxxxx. *** April 25, 2018: I received corrective information about the link for the livestream: https://youtu.be/jG84BIno5J4 and clarification as the relationship between Ingenium and the Canada Science and Technology Museum from someone at Ingenium.***

For more about Element AI, go here; for more about DeepMind, go here for information about parent company in the UK and the most I dug up about their Montréal office was this job posting; and, finally , Reimagine.AI is here.

Putting science back into pop culture and selling books

Clifford V. Johnson is very good at promoting books. I tip my hat to him; that’s an excellent talent to have, especially when you’ve written a book, in his case, it’s a graphic novel titled ‘The Dialogues: Conversations about the Nature of the Universe‘.

I first stumbled across professor (University of Southern California) and physicist Johnson and his work in this January 18, 2018 news item on phys.org,

How often do you, outside the requirements of an assignment, ponder things like the workings of a distant star, the innards of your phone camera, or the number and layout of petals on a flower? Maybe a little bit, maybe never. Too often, people regard science as sitting outside the general culture: A specialized, difficult topic carried out by somewhat strange people with arcane talents. It’s somehow not for them.

But really science is part of the wonderful tapestry of human culture, intertwined with things like art, music, theater, film and even religion. These elements of our culture help us understand and celebrate our place in the universe, navigate it and be in dialogue with it and each other. Everyone should be able to engage freely in whichever parts of the general culture they choose, from going to a show or humming a tune to talking about a new movie over dinner.

Science, though, gets portrayed as opposite to art, intuition and mystery, as though knowing in detail how that flower works somehow undermines its beauty. As a practicing physicist, I disagree. Science can enhance our appreciation of the world around us. It should be part of our general culture, accessible to all. Those “special talents” required in order to engage with and even contribute to science are present in all of us.

Here’s more his January 18, 2018 essay on The Conversation (which was the origin for the news item), Note: Links have been removed,

… in addition to being a professor, I work as a science advisor for various forms of entertainment, from blockbuster movies like the recent “Thor: Ragnarok,” or last spring’s 10-hour TV dramatization of the life and work of Albert Einstein (“Genius,” on National Geographic), to the bestselling novel “Dark Matter,” by Blake Crouch. People spend a lot of time consuming entertainment simply because they love stories like these, so it makes sense to put some science in there.

Science can actually help make storytelling more entertaining, engaging and fun – as I explain to entertainment professionals every chance I get. From their perspective, they get potentially bigger audiences. But good stories, enhanced by science, also spark valuable conversations about the subject that continue beyond the movie theater.
Science can be one of the topics woven into the entertainment we consume – via stories, settings and characters. ABC Television

Nonprofit organizations have been working hard on this mission. The Alfred P. Sloan Foundation helps fund and develop films with science content – “The Man Who Knew Infinity” (2015) and “Robot & Frank” (2012) are two examples. (The Sloan Foundation is also a funding partner of The Conversation US.)

The National Academy of Sciences set up the Science & Entertainment Exchange to help connect people from the entertainment industry to scientists. The idea is that such experts can provide Hollywood with engaging details and help with more accurate portrayals of scientists that can enhance the narratives they tell. Many of the popular Marvel movies – including “Thor” (2011), “Ant-Man” (2015) and the upcoming “Avengers: Infinity War” – have had their content strengthened in this way.

Encouragingly, a recent Pew Research Center survey in the U.S. showed that entertainment with science or related content is watched by people across “all demographic, educational and political groups,” and that overall they report positive impressions of the science ideas and scenarios contained in them.

Many years ago I realized it is hard to find books on the nonfiction science shelf that let readers see themselves as part of the conversation about science. So I envisioned an entire book of conversations about science taking place between ordinary people. While “eavesdropping” on those conversations, readers learn some science ideas, and are implicitly invited to have conversations of their own. It’s a resurrection of the dialogue form, known to the ancient Greeks, and to Galileo, as a device for exchanging ideas, but with contemporary settings: cafes, restaurants, trains and so on.

Clifford Johnson at his drafting table. Clifford V. Johnson, CC BY-ND

So over six years I taught myself the requisite artistic and other production techniques, and studied the language and craft of graphic narratives. I wrote and drew “The Dialogues: Conversations About the Nature of the Universe” as proof of concept: A new kind of nonfiction science book that can inspire more people to engage in their own conversations about science, and celebrate a spirit of plurality in everyday science participation.

I so enjoyed Johnson’s writing and appreciated how he introduced his book into the piece that I searched for more and found a three-part interview with Henry Jenkins on his Confessions of an Aca-Fan (Academic-Fan) blog. Before moving onto the interview, here’s some information about the interviewer, Henry Jenkins, (Note: Links have been removed),

Henry Jenkins is the Provost Professor of Communication, Journalism, Cinematic Arts and Education at the University of Southern California. He arrived at USC in Fall 2009 after spending more than a decade as the Director of the MIT Comparative Media Studies Program and the Peter de Florez Professor of Humanities. He is the author and/or editor of seventeen books on various aspects of media and popular culture, including Textual Poachers: Television Fans and Participatory Culture, Hop on Pop: The Politics and Pleasures of Popular Culture,  From Barbie to Mortal Kombat: Gender and Computer Games, Convergence Culture: Where Old and New Media Collide, Spreadable Media: Creating Meaning and Value in a Networked Culture, and By Any Media Necessary: The New Youth Activism. He is currently editing a handbook on the civic imagination and writing a book on “comics and stuff”. He has written for Technology Review, Computer Games, Salon, and The Huffington Post.

Jenkins is the principal investigator for The Civic Imagination Project, funded by the MacArthur Foundation, to explore ways to inspire creative collaborations within communities as they work together to identify shared values and visions for the future. This project grew out of the Media, Activism, and Participatory Politics research group, also funded by MacArthur, which did case studies of innovative organizations that have been effective at getting young people involved in the political process. He is also the Chief Advisor to the Annenberg Innovation Lab. Jenkins also serves on the jury that selects the Peabody Awards, which recognizes “stories that matter” from radio, television, and the web.

He has previously worked as the principal investigator for  Project New Media Literacies (NML), a group which originated as part of the MacArthur Digital Media and Learning Initiative. Jenkins wrote a white paper on learning in a participatory culture that has become the springboard for the group’s efforts to develop and test educational materials focused on preparing students for engagement with the new media landscape. He also was the founder for the Convergence Culture Consortium, a faculty network which seeks to build bridges between academic researchers and the media industry in order to help inform the rethinking of consumer relations in an age of participatory culture.  The Consortium lives on today via the Transforming Hollywood conference, run jointly between USC and UCLA, which recently hosted its 8th event.  

While at MIT, he was one of the principal investigators for The Education Arcade, a consortium of educators and business leaders working to promote the educational use of computer and video games. Jenkins also plays a significant role as a public advocate for fans, gamers and bloggers: testifying before the U.S. Senate Commerce Committee investigation into “Marketing Violence to Youth” following the Columbine shootings; advocating for media literacy education before the Federal Communications Commission; calling for a more consumer-oriented approach to intellectual property at a closed door meeting of the governing body of the World Economic Forum; signing amicus briefs in opposition to games censorship;  regularly speaking to the press and other media about aspects of media change and popular culture; and most recently, serving as an expert witness in the legal struggle over the fan-made film, Prelude to Axanar.  He also has served as a consultant on the Amazon children’s series Lost in Oz, where he provided insights on world-building and transmedia strategies as well as new media literacy issues.

Jenkins has a B.A. in Political Science and Journalism from Georgia State University, a M.A. in Communication Studies from the University of Iowa and a PhD in Communication Arts from the University of Wisconsin-Madison.

Well, that didn’t seem so simple after all. For a somewhat more personal account of who I am, read on.

About Me

The first thing you are going to discover about me, oh reader of this blog, is that I am prolific as hell. The second is that I am also long-winded as all get out. As someone famous once said, “I would have written it shorter, but I didn’t have enough time.”

My earliest work centered on television fans – particularly science fiction fans. Part of what drew me into graduate school in media studies was a fascination with popular culture. I grew up reading Mad magazine and Famous Monsters of Filmland – and, much as my parents feared, it warped me for life. Early on, I discovered the joys of comic books and science fiction, spent time playing around with monster makeup, started writing scripts for my own Super 8 movies (The big problem was that I didn’t have access to a camera until much later), and collecting television-themed toys. By the time I went to college, I was regularly attending science fiction conventions. Through the woman who would become my wife, I discovered fan fiction. And we spent a great deal of time debating our very different ways of reading our favorite television series.

When I got to graduate school, I was struck by how impoverished the academic framework for thinking about media spectatorship was – basically, though everyone framed it differently, consumers were assumed to be passive, brainless, inarticulate, and brainwashed. None of this jelled well with my own robust experience of being a fan of popular culture. I was lucky enough to get to study under John Fiske, first at Iowa and then at the University of Wisconsin-Madison, who introduced me to the cultural studies perspective. Fiske was a key advocate of ethnographic audience research, arguing that media consumers had more tricks up their sleeves than most academic theory acknowledged.

Out of this tension between academic theory and fan experience emerged first an essay, “Star Trek Reread, Rerun, Rewritten” and then a book, Textual Poachers: Television Fans and Participatory Culture. Textual Poachers emerged at a moment when fans were still largely marginal to the way mass media was produced and consumed, and still hidden from the view of most “average consumers.” As such, the book represented a radically different way of thinking about how one might live in relation to media texts. In the book, I describe fans as “rogue readers.” What most people took from that book was my concept of “poaching,” the idea that fans construct their own culture – fan fiction, artwork, costumes, music and videos – from content appropriated from mass media, reshaping it to serve their own needs and interests. There are two other key concepts in this early work which takes on greater significance in my work today – the idea of participatory culture (which runs throughout Convergence Culture) and the idea of a moral economy (that is, the presumed ethical norms which govern the relations between media producers and consumers).

As for the interview, here’s Jenkins’ introduction to the series and a portion of part one (from Comics and Popular Science: An Interview with Clifford V. Johnson (Part One) posted on November 15, 2017),

unnamed.jpg

Clifford V. Johnson is the first theoretical physicist who I have ever interviewed for my blog. Given the sharp divide that our society constructs between the sciences and the humanities, he may well be the last, but he would be the first to see this gap as tragic, a consequence of the current configuration of disciplines. Johnson, as I have discovered, is deeply committed to helping us recognize the role that science plays in everyday life, a project he pursues actively through his involvement as one of the leaders of the Los Angeles Institute for the Humanities (of which I am also a member), as a consultant on various film and television projects, and now, as the author of a graphic novel, The Dialogues, which is being released this week. We were both on a panel about contemporary graphic storytelling Tara McPherson organized for the USC Sydney Harmon Institute for Polymathic Study and we’ve continued to bat around ideas about the pedagogical potential of comics ever since.

Here’s what I wrote when I was asked to provide a blurb for his new book:

“Two superheroes walk into a natural history museum — what happens after that will have you thinking and talking for a long time to come. Clifford V. Johnson’s The Dialogues joins a select few examples of recent texts, such as Scott McCloud’s Understanding Comics, Larry Gonick’s Cartoon History of the Universe, Nick Sousanis’s Unflattening, Bryan Talbot’s Alice in Sunderland, or Joe Sacco’s Palestine, which use the affordances of graphic storytelling as pedagogical tools for changing the ways we think about the world around us. Johnson displays a solid grasp of the craft of comics, demonstrating how this medium can be used to represent different understandings of the relationship between time and space, questions central to his native field of physics. He takes advantage of the observational qualities of contemporary graphic novels to explore the place of scientific thinking in our everyday lives.”

To my many readers who care about sequential art, this is a book which should be added to your collection — Johnson makes good comics, smart comics, beautiful comics, and comics which are doing important work, all at the same time. What more do you want!

In the interviews that follows, we explore more fully what motivated this particular comics and how approaching comics as a theoretical physicist has helped him to discover some interesting formal aspects of this medium.

What do you want your readers to learn about science over the course of these exchanges? I am struck by the ways you seek to demystify aspects of the scientific process, including the role of theory, equations, and experimentation.

unnamed-2.jpg

 

That participatory aspect is core, for sure. Conversations about science by random people out there in the world really do happen – I hear them a lot on the subway, or in cafes, and so I wanted to highlight those and celebrate them. So the book becomes a bit of an invitation to everyone to join in. But then I can show so many other things that typically just get left out of books about science: The ordinariness of the settings in which such conversations can take place, the variety of types of people involved, and indeed the main tools, like equations and technical diagrams, that editors usually tell you to leave out for fear of scaring away the audience. …

I looked for book reviews and found two. This first one is from Starburst Magazine, which strangely does not have the date or author listed (from the review),

The Dialogues is a series of nine conversations about science told in graphic novel format; the conversationalists are men, women, children, and amateur science buffs who all have something to say about the nature of the universe. Their discussions range from multiverse and string theory to immortality, black holes, and how it’s possible to put just a cup of rice in the pan but end up with a ton more after Mom cooks it. Johnson (who also illustrated the book) believes the graphic form is especially suited for physics because “one drawing can show what it would take many words to explain” and it’s hard to argue with his noble intentions, but despite some undoubtedly thoughtful content The Dialogues doesn’t really work. Why not? Because, even with its plethora of brightly-coloured pictures, it’s still 200+ pages of talking heads. The individual conversations might give us plenty to think about, but the absence of any genuine action (or even a sense of humour) still makes The Dialogues read like very pretty homework.

Adelmar Bultheel’s December 8, 2017 review for the European Mathematical Society acknowledges issues with the book while noting its strong points,

So what is the point of producing such a graphic novel if the reader is not properly instructed about anything? In my opinion, the true message can be found in the one or two pages of notes that follow each of the eleven conversations. If you are not into the subject that you were eavesdropping, you probably have heard words, concepts, theories, etc. that you did not understand, or you might just be curious about what exactly the two were discussing. Then you should look that up on the web, or if you want to do it properly, you should consult some literature. This is what these notes are providing: they are pointing to the proper books to consult. …

This is a most unusual book for this subject and the way this is approached is most surprising. Not only the contents is heavy stuff, it is also physically heavy to read. Some 250 pages on thick glossy paper makes it a quite heavy book to hold. You probably do not want to read this in bed or take it on a train, unless you have a table in front of you to put it on. Many subjects are mentioned, but not all are explained in detail. The reader should definitely be prepared to do some extra reading to understand things better. Since most references concern other popularising books on the subject, it may require quite a lot of extra reading. But all this hard science is happening in conversations by young enthusiastic people in casual locations and it is all wrapped up in beautiful graphics showing marvellous realistic decors.

I am fascinated by this book which I have yet to read but I did find a trailer for it (from thedialoguesbook.com),

Enjoy!

A SciArt Gallery @ Science Rendezvous call for artists and a SciFi and Fantasy screenplay contest and

I’ve got two ‘creativity’ opportunities, one for people working on an art/sci (sciart) project and another for people with scripts,

SciArt Gallery @ Science Rendezvous

This notice arrived in a January 31, 2018 email from the ArtSci Salon people in Toronto (Ontario, Canada),

Science Rendezvous is a free Canada‐wide outreach festival that spurs interest in scientific research among the general public and last year at U of T, we attracted over 30,000 guests! This year we are hosting our first science-inspired art gallery called the SciArt Gallery! We are actively recruiting artists for the gallery to display their science-inspired works! Painting, design, music, dance, theatre, textiles, ceramics: We welcome all artists to apply!

To apply and for more information, please visit: http://bit.ly/SciArtGallery2018

The open call deadline is Friday, February 23rd, 2018 at 11:59pm!

To learn more about Science Rendezvous and this year’s festival on Saturday, May 12th, please visit www.ScienceRendezvousUofT.ca.

So you know what you might be getting into, the About Science Rendezvous webpage has this to say about what the organization does and about its origins,

We work with Canada’s top research institutes to present a coast-to-coast open house and festival that is FREE for everyone. With over 300 events across 30 cities and 1000’s of mind-blowing activities, Science Rendezvous is Canada’s largest celebration of the amazing feats of science and engineering happening right here at home.

In 2017, more than 210,000 attendees participated in our unique brand of hands-on science, a new landmark for such events in Canada. Science Rendezvous is the only organization that generates this level of public engagement with science, and direct face-to-face involvement with those at the very frontiers of innovation.

This SATURDAY, MAY 12th 2018 [emphasis mine] over 6,000 of Canada’s greatest innovators, researchers, engineers, and scientists from 125 partner organizations will open their doors and close city streets to present exciting demonstrations, hands-on activities, and explosive experiments. From the physics of rock and roll to the chemistry of ice-cream, Science Rendezvous has something for everyone!

History

Science Rendezvous began as a joint program between the University of Toronto, Ryerson University, York University and the University of Ontario Institute of Technology (UOIT) in 2008. These founding partners saw the need to work together in order to launch an event of great enough scale and exciting content to engage the public in the vast wonders of science and engineering. Since that time, Science Rendezvous has grown to include 40 of Canada’s top research institutions and over 85 community partnerships across 30 cities in 10 provinces and 2 territories. Today, it is a marquee event and signature partner of Science Odyssey [Note: This is a government of Canada annual national “celebration of science, technology, engineering and mathematics, featuring fun and inspiring experiences in museums, research centres, laboratories and classrooms from coast to coast” which will run from May 11 – 20, 2018 this year], and is the single largest science festival in Canada.

Science Rendezvous is a science outreach pioneer in Canada. Offering direct engagement with 6,000 of Canada’s top researchers and scientists at 300 simultaneous events and 1000’s of hands-on experiments for the public to try themselves.

The Science Rendezvous head office acts as an umbrella organization that coordinates the efforts of all participating institutions, reinvents public engagement with science through festival programming, and offers direction for event organizers all while promoting both the festival and Canadian science on a national level.

To be clear, the call for sciart projects is from the physics department at the University of Toronto (U of T) and the deadline is February 23, 2018. I went to the U of T Science Rendezvous SciArt Gallery artist application page and found more details about the call,

The theme for SR 2018 is “Full S.T.E.A.M. Ahead!” – We’re placing an emphasis on the Art in S.T.E.M. [science, technology, engineering, and mathematics] this year and hosting our first and hopefully annual SciArt Gallery! We want to create a gallery full of science-inspired art and showcase the talent of our local Toronto artists! We hope that artists will be able to share their enthusiasm and teach visitors about how science inspired you to create and the science behind the art!

Artists will be permitted to sell their wares and will be provided with tents, chairs, volunteers, t-shirts, and lunch if accepted to the gallery. SR2018 is currently accepting applications for its SciArt Gallery taking place on Saturday, May 12, 2018 from 11am to 5pm.

There will be a $20 table deposit fee that will be refunded upon your attendance at SR. SR hopes to showcase science-inspired works of art and host workshops to allow artists to inspire kids and adults about their art medium.

*** Applications will close on Friday, February 23rd, 2018 at 11:59pm! ***

If you have any questions or concerns, please do not hesitate to contact us at uoftsr.sciartgallery@gmail.com

For more information and to keep up-to-date about the SciArt Gallery, please visit our:

Website: http://www.sciencerendezvousuoft.ca/
Facebook: https://www.facebook.com/UofTSR/

The name and photo associated with your Google account will be recorded when you upload files and submit this form.

I don’t know if you noticed but the application page specifies Toronto artists while the email did not. You may want to contact the organizers for more details. At a guess, they don’t want to fund any trips or accommodation for out-of-town artists but if you’re willing to self-fund they’ll consider your application.

One final thing worth mentioning, there may be opportunities in your home community. So, it may be worthwhile to check out the Science Rendezvous website.

SciFi and fantasy screenplay contest

I got this January 31, 2018 withoutabox.com announcement via email,

… the 4th Annual ScreenCraft Sci-Fi & Fantasy Screenplay Contest, an out of this world screenplay competition set to discover talented writers. The 2018 contest judges are Steven Douglas-Craig, Development at Sony Pictures, the studio behind Passengers, Ghostbusters, Men In Black, Resident Evil, and Spider-Man; Jonathan Wu, Development Executive at 20th Century Fox, the studio behind Avatar, X-Men, Another Earth, Rise Of The Planet Of The Apes, and Prometheus ; and Michael Doven, CEO of United Pictures, producer of such celebrated movies as Mission: Impossible, Vanilla Sky, Minority Report, and The Last Samurai.

The Grand Prize winner will receive a $1,000 USD cash award and personal introductions to producers, managers, agents and studio executives. Additionally, the top finalists will be circulated to ScreenCraft’s vetted network of over 60 producers, studio executives, managers and agents. Whether you’re writing a contained science fiction drama or an epic fantasy saga, ScreenCraft wants to read your sci-fi or fantasy feature film screenplay. Great science fiction explores the human condition against the backdrop of a heightened imagined world, impacted by technology and human creativity and imagination.

Past ScreenCraft winners have optioned their projects and signed with top representatives at top Hollywood companies including WME, CAA, 3Arts Entertainment, Anonymous Content, Paradigm Talent Agency, ICM, Bellevue Productions Zero Gravity Management, Kaplan/Perrone and many more.

UPCOMING DEADLINE
February 9, 2018 – Earlybird Deadline [March 30,2018 final deadline]

View submission details

MISSION AND OBJECTIVE
ScreenCraft’s screenwriting contests are dedicated to discovering talented screenwriters and connecting them with producers, agents and managers.

MORE ABOUT THE FESTIVAL
ScreenCraft runs a suite of screenwriting competitions that have a long history of getting writers represented and working. The secret is that ScreenCraft actually determines the winners with judges who work in the particular genre or space – real industry executives (not just readers). The winners get actual meetings with actual executives, so that a relationship forms beyond just a great script.

I checked for more details and found this (from the withoutabox.com 4th Annual ScreenCraft Sci-Fi & Fantasy Screenplay Contest Submission webpage),

RULES:
Submissions are accepted via electronic submission only, between January 10, 2018 and March 30, 2018.
Entry fee for each feature film screenplay is $49 until the early deadline on February 9, 2018, then $69 until the final deadline on March 30, 2018.
Optional feedback from a professional reader may be requested at the time of entry. Requests for feedback after an entry is submitted will not be accepted.
Screenplays must be a minimum of 75 pages and a maximum of 150 pages.
There is no limit to the number of projects you may submit.
Entries must be received on or before the deadline dates by 11:59PM Pacific Time, and submission fee payment must be made in full at time of the submission. All entry fees are non-refundable.
All submitted material must be original, and all rights must be wholly owned by the writer(s).
Material must be submitted by the writer. Material written by writing teams must be submitted by one of the writers, with consent of the other(s). All writers must be credited on title page.
If a writing team is chosen as a winner, prizes will be given to the person who submits the project. Each team is responsible for dividing or sharing the prize money.
Substitutions of either corrected pages or new drafts of the entered material will be allowed for a limited time with a $5 reentry fee through Coverfly. Please proofread your script carefully before submitting.
It is recommended that original material be registered with the WGA or The Library of Congress before submitting to any competition, however we do not require registration.
Contact info may be included on the cover page of the screenplay, however it is not required.
All ownership and rights to the scripts submitted to this contest remains with the original rights holders.

ELIGIBILITY:
All writers at least 18 years of age are eligible. However, a writer who has earned more than $50,000 (or equivalent currency) from professional writing services for film or TV in the preceding year is not. (Contest winnings not included.)
All persons from anywhere in the world are eligible; however the material submitted must be in English (occasional dialogue in other languages is acceptable, if subtitle translation is provided).
All material submitted to other competitions or contests are eligible for this contest.
There are no requirements as to when the material was written.
Screenplay and intellectual property must be wholly owned and submitted by the writer(s).
Material should be submitted in standard screenplay format, font, spacing and margin.
We have no preferences regarding title page content. Title and name of writer would suffice.
Entries for this competition are managed on the submission platform Coverfly.
Adaptations are ineligible unless the underlying rights are owned by the writer or the work is in the public domain.
Feature screenplays longer than 150 pages will not be eligible.
All material must be submitted electronically as a PDF or it will not be eligible.

You can find out more about ScreenCraft here.

To everyone: good luck!

“Innovation and its enemies” and “Science in Wonderland”: a commentary on two books and a few thoughts about fish (1 of 2)

There’s more than one way to approach the introduction of emerging technologies and sciences to ‘the public’. Calestous Juma in his 2016 book, ”Innovation and Its Enemies; Why People Resist New Technologies” takes a direct approach, as can be seen from the title while Melanie Keene’s 2015 book, “Science in Wonderland; The Scientific Fairy Tales of Victorian Britain” presents a more fantastical one. The fish in the headline tie together, thematically and tenuously, both books with a real life situation.

Innovation and Its Enemies

Calestous Juma, the author of “Innovation and Its Enemies” has impressive credentials,

  • Professor of the Practice of International Development,
  • Director of the Science, Technology, and Globalization Project at Harvard Kennedy School’s Better Science and International Affairs,
  • Founding Director of the African Centre for Technology Studies in Nairobi (Kenya),
  • Fellow of the Royal Society of London, and
  • Foreign Associate of the US National Academy of Sciences.

Even better, Juma is an excellent storyteller perhaps too much so for a book which presents a series of science and technology adoption case histories. (Given the range of historical time periods, geography, and the innovations themselves, he always has to stop short.)  The breadth is breathtaking and Juma manages with aplomb. For example, the innovations covered include: coffee, electricity, mechanical refrigeration, margarine, recorded sound, farm mechanization, and the printing press. He also covers two recently emerging technologies/innovations: transgenic crops and AquAdvantage salmon (more about the salmon later).

Juma provides an analysis of the various ways in which the public and institutions panic over innovation and goes on to offer solutions. He also injects a subtle note of humour from time to time. Here’s how Juma describes various countries’ response to risks and benefits,

In the United States products are safe until proven risky.

In France products are risky until proven safe.

In the United Kingdom products are risky even when proven safe.

In India products are safe when proven risky.

In Canada products are neither safe nor risky.

In Japan products are either safe or risky.

In Brazil products are both safe and risky.

In sub-Saharan Africa products are risky even if they do not exist. (pp. 4-5)

To Calestous Juma, thank you for mentioning Canada and for so aptly describing the quintessentially Canadian approach to not just products and innovation but to life itself, ‘we just don’t know; it could be this or it could be that or it could be something entirely different; we just don’t know and probably will never know.’.

One of the aspects that I most appreciated in this book was the broadening of the geographical perspective on innovation and emerging technologies to include the Middle East, China, and other regions/countries. As I’ve  noted in past postings, much of the discussion here in Canada is Eurocentric and/or UScentric. For example, the Council of Canadian Academies which conducts assessments of various science questions at the request of Canadian and regional governments routinely fills the ‘international’ slot(s) for their expert panels with academics from Europe (mostly Great Britain) and/or the US (or sometimes from Australia and/or New Zealand).

A good example of Juma’s expanded perspective on emerging technology is offered in Art Carden’s July 7, 2017 book review for Forbes.com (Note: A link has been removed),

In the chapter on coffee, Juma discusses how Middle Eastern and European societies resisted the beverage and, in particular, worked to shut down coffeehouses. Islamic jurists debated whether the kick from coffee is the same as intoxication and therefore something to be prohibited. Appealing to “the principle of original permissibility — al-ibaha, al-asliya — under which products were considered acceptable until expressly outlawed,” the fifteenth-century jurist Muhamad al-Dhabani issued several fatwas in support of keeping coffee legal.

This wasn’t the last word on coffee, which was banned and permitted and banned and permitted and banned and permitted in various places over time. Some rulers were skeptical of coffee because it was brewed and consumed in public coffeehouses — places where people could indulge in vices like gambling and tobacco use or perhaps exchange unorthodox ideas that were a threat to their power. It seems absurd in retrospect, but political control of all things coffee is no laughing matter.

The bans extended to Europe, where coffee threatened beverages like tea, wine, and beer. Predictably, and all in the name of public safety (of course!), European governments with the counsel of experts like brewers, vintners, and the British East India Tea Company regulated coffee importation and consumption. The list of affected interest groups is long, as is the list of meddlesome governments. Charles II of England would issue A Proclamation for the Suppression of Coffee Houses in 1675. Sweden prohibited coffee imports on five separate occasions between 1756 and 1817. In the late seventeenth century, France required that all coffee be imported through Marseilles so that it could be more easily monopolized and taxed.

Carden who teaches economics at Stanford University (California, US) focuses on issues of individual liberty and the rule of law with regards to innovation. I can appreciate the need to focus tightly when you have a limited word count but Carden could have a spared a few words to do more justice to Juma’s comprehensive and focused work.

At the risk of being accused of the fault I’ve attributed to Carden, I must mention the printing press chapter. While it was good to see a history of the printing press and attendant social upheavals noting its impact and discovery in regions other than Europe; it was shocking to someone educated in Canada to find Marshall McLuhan entirely ignored. Even now, I believe it’s virtually impossible to discuss the printing press as a technology, in Canada anyway, without mentioning our ‘communications god’ Marshall McLuhan and his 1962 book, The Gutenberg Galaxy.

Getting back to Juma’s book, his breadth and depth of knowledge, history, and geography is packaged in a relatively succinct 316 pp. As a writer, I admire his ability to distill the salient points and to devote chapters on two emerging technologies. It’s notoriously difficult to write about a currently emerging technology and Juma even managed to include a reference published only months (in early 2016) before “Innovation and its enemires” was published in July 2016.

Irrespective of Marshall McLuhan, I feel there are a few flaws. The book is intended for policy makers and industry (lobbyists, anyone?), he reaffirms (in academia, industry, government) a tendency toward a top-down approach to eliminating resistance. From Juma’s perspective, there needs to be better science education because no one who is properly informed should have any objections to an emerging/new technology. Juma never considers the possibility that resistance to a new technology might be a reasonable response. As well, while there was some mention of corporate resistance to new technologies which might threaten profits and revenue, Juma didn’t spare any comments about how corporate sovereignty and/or intellectual property issues are used to stifle innovation and quite successfully, by the way.

My concerns aside, testimony to the book’s worth is Carden’s review almost a year after publication. As well, Sir Peter Gluckman, Chief Science Advisor to the federal government of New Zealand, mentions Juma’s book in his January 16, 2017 talk, Science Advice in a Troubled World, for the Canadian Science Policy Centre.

Science in Wonderland

Melanie Keene’s 2015 book, “Science in Wonderland; The scientific fairy tales of Victorian Britain” provides an overview of the fashion for writing and reading scientific and mathematical fairy tales and, inadvertently, provides an overview of a public education programme,

A fairy queen (Victoria) sat on the throne of Victoria’s Britain, and she presided over a fairy tale age. The nineteenth century witnessed an unprecedented interest in fairies and in their tales, as they were used as an enchanted mirror in which to reflection question, and distort contemporary society.30  …  Fairies could be found disporting themselves thought the century on stage and page, in picture and print, from local haunts to global transports. There were myriad ways in which authors, painters, illustrators, advertisers, pantomime performers, singers, and more, capture this contemporary enthusiasm and engaged with fairyland and folklore; books, exhibitions, and images for children were one of the most significant. (p. 13)

… Anthropologists even made fairies the subject of scientific analysis, as ‘fairyology’ determined whether fairies should be part of natural history or part of supernatural lore; just on aspect of the revival of interest in folklore. Was there a tribe of fairy creatures somewhere out thee waiting to be discovered, across the globe of in the fossil record? Were fairies some kind of folks memory of any extinct race? (p. 14)

Scientific engagements with fairyland was widespread, and not just as an attractive means of packaging new facts for Victorian children.42 … The fairy tales of science had an important role to play in conceiving of new scientific disciplines; in celebrating new discoveries; in criticizing lofty ambitions; in inculcating habits of mind and body; in inspiring wonder; in positing future directions; and in the consideration of what the sciences were, and should be. A close reading of these tales provides a more sophisticated understanding of the content and status of the Victorian sciences; they give insights into what these new scientific disciplines were trying to do; how they were trying to cement a certain place in the world; and how they hoped to recruit and train new participants. (p. 18)

Segue: Should you be inclined to believe that society has moved on from fairies; it is possible to become a certified fairyologist (check out the fairyologist.com website).

“Science in Wonderland,” the title being a reference to Lewis Carroll’s Alice, was marketed quite differently than “innovation and its enemies”. There is no description of the author, as is the protocol in academic tomes, so here’s more from her webpage on the University of Cambridge (Homerton College) website,

Role:
Fellow, Graduate Tutor, Director of Studies for History and Philosophy of Science

Getting back to Keene’s book, she makes the point that the fairy tales were based on science and integrated scientific terminology in imaginative ways although some books with more success than other others. Topics ranged from paleontology, botany, and astronomy to microscopy and more.

This book provides a contrast to Juma’s direct focus on policy makers with its overview of the fairy narratives. Keene is primarily interested in children but her book casts a wider net  “… they give insights into what these new scientific disciplines were trying to do; how they were trying to cement a certain place in the world; and how they hoped to recruit and train new participants.”

In a sense both authors are describing how technologies are introduced and integrated into society. Keene provides a view that must seem almost halcyon for many contemporary innovation enthusiasts. As her topic area is children’s literature any resistance she notes is primarily literary invoking a debate about whether or not science was killing imagination and whimsy.

It would probably help if you’d taken a course in children’s literature of the 19th century before reading Keene’s book is written . Even if you haven’t taken a course, it’s still quite accessible, although I was left wondering about ‘Alice in Wonderland’ and its relationship to mathematics (see Melanie Bayley’s December 16, 2009 story for the New Scientist for a detailed rundown).

As an added bonus, fairy tale illustrations are included throughout the book along with a section of higher quality reproductions.

One of the unexpected delights of Keene’s book was the section on L. Frank Baum and his electricity fairy tale, “The Master Key.” She stretches to include “The Wizard of Oz,” which doesn’t really fit but I can’t see how she could avoid mentioning Baum’s most famous creation. There’s also a surprising (to me) focus on water, which when it’s paired with the interest in microscopy makes sense. Keene isn’t the only one who has to stretch to make things fit into her narrative and so from water I move onto fish bringing me back to one of Juma’s emerging technologies

Part 2: Fish and final comments

Artificial intelligence and metaphors

This is a different approach to artificial intelligence. From a June 27, 2017 news item on ScienceDaily,

Ask Siri to find a math tutor to help you “grasp” calculus and she’s likely to respond that your request is beyond her abilities. That’s because metaphors like “grasp” are difficult for Apple’s voice-controlled personal assistant to, well, grasp.

But new UC Berkeley research suggests that Siri and other digital helpers could someday learn the algorithms that humans have used for centuries to create and understand metaphorical language.

Mapping 1,100 years of metaphoric English language, researchers at UC Berkeley and Lehigh University in Pennsylvania have detected patterns in how English speakers have added figurative word meanings to their vocabulary.

The results, published in the journal Cognitive Psychology, demonstrate how throughout history humans have used language that originally described palpable experiences such as “grasping an object” to describe more intangible concepts such as “grasping an idea.”

Unfortunately, this image is not the best quality,

Scientists have created historical maps showing the evolution of metaphoric language. (Image courtesy of Mahesh Srinivasan)

A June 27, 2017 University of California at Berkeley (or UC Berkeley) news release by Yasmin Anwar, which originated the news item,

“The use of concrete language to talk about abstract ideas may unlock mysteries about how we are able to communicate and conceptualize things we can never see or touch,” said study senior author Mahesh Srinivasan, an assistant professor of psychology at UC Berkeley. “Our results may also pave the way for future advances in artificial intelligence.”

The findings provide the first large-scale evidence that the creation of new metaphorical word meanings is systematic, researchers said. They can also inform efforts to design natural language processing systems like Siri to help them understand creativity in human language.

“Although such systems are capable of understanding many words, they are often tripped up by creative uses of words that go beyond their existing, pre-programmed vocabularies,” said study lead author Yang Xu, a postdoctoral researcher in linguistics and cognitive science at UC Berkeley.

“This work brings opportunities toward modeling metaphorical words at a broad scale, ultimately allowing the construction of artificial intelligence systems that are capable of creating and comprehending metaphorical language,” he added.

Srinivasan and Xu conducted the study with Lehigh University psychology professor Barbara Malt.

Using the Metaphor Map of English database, researchers examined more than 5,000 examples from the past millennium in which word meanings from one semantic domain, such as “water,” were extended to another semantic domain, such as “mind.”

Researchers called the original semantic domain the “source domain” and the domain that the metaphorical meaning was extended to, the “target domain.”

More than 1,400 online participants were recruited to rate semantic domains such as “water” or “mind” according to the degree to which they were related to the external world (light, plants), animate things (humans, animals), or intense emotions (excitement, fear).

These ratings were fed into computational models that the researchers had developed to predict which semantic domains had been the sources or targets of metaphorical extension.

In comparing their computational predictions against the actual historical record provided by the Metaphor Map of English, researchers found that their models correctly forecast about 75 percent of recorded metaphorical language mappings over the past millennium.

Furthermore, they found that the degree to which a domain is tied to experience in the external world, such as “grasping a rope,” was the primary predictor of how a word would take on a new metaphorical meaning such as “grasping an idea.”

For example, time and again, researchers found that words associated with textiles, digestive organs, wetness, solidity and plants were more likely to provide sources for metaphorical extension, while mental and emotional states, such as excitement, pride and fear were more likely to be the targets of metaphorical extension.

Scientists have created historical maps showing the evolution of metaphoric language. (Image courtesy of Mahesh Srinivasan)

Here’s a link to and a citation for the paper,

Evolution of word meanings through metaphorical mapping: Systematicity over the past millennium by Yang Xu, Barbara C. Malt, Mahesh Srinivasan. Cognitive Psychology Volume 96, August 2017, Pages 41–53 DOI: https://doi.org/10.1016/j.cogpsych.2017.05.005

The early web version of this paper is behind a paywall.

For anyone interested in the ‘Metaphor Map of English’ database mentioned in the news release, you find it here on the University of Glasgow website. By the way, it also seems to be known as ‘Mapping Metaphor with the Historical Thesaurus‘.

Robot artists—should they get copyright protection

Clearly a lawyer wrote this June 26, 2017 essay on theconversation.com (Note: A link has been removed),

When a group of museums and researchers in the Netherlands unveiled a portrait entitled The Next Rembrandt, it was something of a tease to the art world. It wasn’t a long lost painting but a new artwork generated by a computer that had analysed thousands of works by the 17th-century Dutch artist Rembrandt Harmenszoon van Rijn.

The computer used something called machine learning [emphasis mine] to analyse and reproduce technical and aesthetic elements in Rembrandt’s works, including lighting, colour, brush-strokes and geometric patterns. The result is a portrait produced based on the styles and motifs found in Rembrandt’s art but produced by algorithms.

But who owns creative works generated by artificial intelligence? This isn’t just an academic question. AI is already being used to generate works in music, journalism and gaming, and these works could in theory be deemed free of copyright because they are not created by a human author.

This would mean they could be freely used and reused by anyone and that would be bad news for the companies selling them. Imagine you invest millions in a system that generates music for video games, only to find that music isn’t protected by law and can be used without payment by anyone in the world.

Unlike with earlier computer-generated works of art, machine learning software generates truly creative works without human input or intervention. AI is not just a tool. While humans program the algorithms, the decision making – the creative spark – comes almost entirely from the machine.

It could have been someone involved in the technology but nobody with that background would write “… something called machine learning … .”  Andres Guadamuz, lecturer in Intellectual Property Law at the University of Sussex, goes on to say (Note: Links have been removed),

Unlike with earlier computer-generated works of art, machine learning software generates truly creative works without human input or intervention. AI is not just a tool. While humans program the algorithms, the decision making – the creative spark – comes almost entirely from the machine.

That doesn’t mean that copyright should be awarded to the computer, however. Machines don’t (yet) have the rights and status of people under the law. But that doesn’t necessarily mean there shouldn’t be any copyright either. Not all copyright is owned by individuals, after all.

Companies are recognised as legal people and are often awarded copyright for works they don’t directly create. This occurs, for example, when a film studio hires a team to make a movie, or a website commissions a journalist to write an article. So it’s possible copyright could be awarded to the person (company or human) that has effectively commissioned the AI to produce work for it.

 

Things are likely to become yet more complex as AI tools are more commonly used by artists and as the machines get better at reproducing creativity, making it harder to discern if an artwork is made by a human or a computer. Monumental advances in computing and the sheer amount of computational power becoming available may well make the distinction moot. At that point, we will have to decide what type of protection, if any, we should give to emergent works created by intelligent algorithms with little or no human intervention.

The most sensible move seems to follow those countries that grant copyright to the person who made the AI’s operation possible, with the UK’s model looking like the most efficient. This will ensure companies keep investing in the technology, safe in the knowledge they will reap the benefits. What happens when we start seriously debating whether computers should be given the status and rights of people is a whole other story.

The team that developed a ‘new’ Rembrandt produced a video about the process,

Mark Brown’s April 5, 2016 article abut this project (which was unveiled on April 5, 2017 in Amsterdam, Netherlands) for the Guardian newspaper provides more detail such as this,

It [Next Rembrandt project] is the result of an 18-month project which asks whether new technology and data can bring back to life one of the greatest, most innovative painters of all time.

Advertising executive [Bas] Korsten, whose brainchild the project was, admitted that there were many doubters. “The idea was greeted with a lot of disbelief and scepticism,” he said. “Also coming up with the idea is one thing, bringing it to life is another.”

The project has involved data scientists, developers, engineers and art historians from organisations including Microsoft, Delft University of Technology, the Mauritshuis in The Hague and the Rembrandt House Museum in Amsterdam.

The final 3D printed painting consists of more than 148 million pixels and is based on 168,263 Rembrandt painting fragments.

Some of the challenges have been in designing a software system that could understand Rembrandt based on his use of geometry, composition and painting materials. A facial recognition algorithm was then used to identify and classify the most typical geometric patterns used to paint human features.

It sounds like it was a fascinating project but I don’t believe ‘The Next Rembrandt’ is an example of AI creativity or an example of the ‘creative spark’ Guadamuz discusses. This seems more like the kind of work  that could be done by a talented forger or fraudster. As I understand it, even when a human creates this type of artwork (a newly discovered and unknown xxx masterpiece), the piece is not considered a creative work in its own right. Some pieces are outright fraudulent and others which are described as “in the manner of xxx.”

Taking a somewhat different approach to mine, Timothy Geigner at Techdirt has also commented on the question of copyright and AI in relation to Guadamuz’s essay in a July 7, 2017 posting,

Unlike with earlier computer-generated works of art, machine learning software generates truly creative works without human input or intervention. AI is not just a tool. While humans program the algorithms, the decision making – the creative spark – comes almost entirely from the machine.

Let’s get the easy part out of the way: the culminating sentence in the quote above is not true. The creative spark is not the artistic output. Rather, the creative spark has always been known as the need to create in the first place. This isn’t a trivial quibble, either, as it factors into the simple but important reasoning for why AI and machines should certainly not receive copyright rights on their output.

That reasoning is the purpose of copyright law itself. Far too many see copyright as a reward system for those that create art rather than what it actually was meant to be: a boon to an artist to compensate for that artist to create more art for the benefit of the public as a whole. Artificial intelligence, however far progressed, desires only what it is programmed to desire. In whatever hierarchy of needs an AI might have, profit via copyright would factor either laughably low or not at all into its future actions. Future actions of the artist, conversely, are the only item on the agenda for copyright’s purpose. If receiving a copyright wouldn’t spur AI to create more art beneficial to the public, then copyright ought not to be granted.

Geigner goes on (July 7, 2017 posting) to elucidate other issues with the ideas expressed in the general debates of AI and ‘rights’ and the EU’s solution.

Evolution of literature as seen by a classicist, a biologist and a computer scientist

Studying intertextuality shows how books are related in various ways and are reorganized and recombined over time. Image courtesy of Elena Poiata.

I find the image more instructive when I read it from the bottom up. For those who prefer to prefer to read from the top down, there’s this April 5, 2017 University of Texas at Austin news release (also on EurekAlert),

A classicist, biologist and computer scientist all walk into a room — what comes next isn’t the punchline but a new method to analyze relationships among ancient Latin and Greek texts, developed in part by researchers from The University of Texas at Austin.

Their work, referred to as quantitative criticism, is highlighted in a study published in the Proceedings of the National Academy of Sciences. The paper identifies subtle literary patterns in order to map relationships between texts and more broadly to trace the cultural evolution of literature.

“As scholars of the humanities well know, literature is a system within which texts bear a multitude of relationships to one another. Understanding what is distinctive about one text entails knowing how it fits within that system,” said Pramit Chaudhuri, associate professor in the Department of Classics at UT Austin. “Our work seeks to harness the power of quantification and computation to describe those relationships at macro and micro levels not easily achieved by conventional reading alone.”

In the study, the researchers create literary profiles based on stylometric features, such as word usage, punctuation and sentence structure, and use techniques from machine learning to understand these complex datasets. Taking a computational approach enables the discovery of small but important characteristics that distinguish one work from another — a process that could require years using manual counting methods.

“One aspect of the technical novelty of our work lies in the unusual types of literary features studied,” Chaudhuri said. “Much computational text analysis focuses on words, but there are many other important hallmarks of style, such as sound, rhythm and syntax.”

Another component of their work builds on Matthew Jockers’ literary “macroanalysis,” which uses machine learning to identify stylistic signatures of particular genres within a large body of English literature. Implementing related approaches, Chaudhuri and his colleagues have begun to trace the evolution of Latin prose style, providing new, quantitative evidence for the sweeping impact of writers such as Caesar and Livy on the subsequent development of Roman prose literature.

“There is a growing appreciation that culture evolves and that language can be studied as a cultural artifact, but there has been less research focused specifically on the cultural evolution of literature,” said the study’s lead author Joseph Dexter, a Ph.D. candidate in systems biology at Harvard University. “Working in the area of classics offers two advantages: the literary tradition is a long and influential one well served by digital resources, and classical scholarship maintains a strong interest in close linguistic study of literature.”

Unusually for a publication in a science journal, the paper contains several examples of the types of more speculative literary reading enabled by the quantitative methods introduced. The authors discuss the poetic use of rhyming sounds for emphasis and of particular vocabulary to evoke mood, among other literary features.

“Computation has long been employed for attribution and dating of literary works, problems that are unambiguous in scope and invite binary or numerical answers,” Dexter said. “The recent explosion of interest in the digital humanities, however, has led to the key insight that similar computational methods can be repurposed to address questions of literary significance and style, which are often more ambiguous and open ended. For our group, this humanist work of criticism is just as important as quantitative methods and data.”

The paper is the work of the Quantitative Criticism Lab (www.qcrit.org), co-directed by Chaudhuri and Dexter in collaboration with researchers from several other institutions. It is funded in part by a 2016 National Endowment for the Humanities grant and the Andrew W. Mellon Foundation New Directions Fellowship, awarded in 2016 to Chaudhuri to further his education in statistics and biology. Chaudhuri was one of 12 scholars selected for the award, which provides humanities researchers the opportunity to train outside of their own area of special interest with a larger goal of bridging the humanities and social sciences.

Here’s another link to the paper along with a citation,

Quantitative criticism of literary relationships by Joseph P. Dexter, Theodore Katz, Nilesh Tripuraneni, Tathagata Dasgupta, Ajay Kannan, James A. Brofos, Jorge A. Bonilla Lopez, Lea A. Schroeder, Adriana Casarez, Maxim Rabinovich, Ayelet Haimson Lushkov, and Pramit Chaudhuri. PNAS Published online before print April 3, 2017, doi: 10.1073/pnas.1611910114

This paper appears to be open access.

Essays on Frankenstein

Slate.com is dedicating a month (January 2017) to Frankenstein. This means there were will be one or more essays each week on one aspect or another of Frankenstein and science. These essays are one of a series of initiatives jointly supported by Slate, Arizona State University, and an organization known as New America. It gets confusing since these essays are listed as part of two initiatives:  Futurography and Future Tense.

The really odd part, as far as I’m concerned, is that there is no mention of Arizona State University’s (ASU) The Frankenstein Bicentennial Project (mentioned in my Oct. 26, 2016 posting). Perhaps they’re concerned that people will think ASU is advertising the project?

Introductions

Getting back to the essays, a Jan. 3, 2017 article by Jacob Brogan explains, by means of a ‘Question and Answer’ format article, why the book and the monster maintain popular interest after two centuries (Note: We never do find out who or how many people are supplying the answers),

OK, fine. I get that this book is important, but why are we talking about it in a series about emerging technology?

Though people still tend to weaponize it as a simple anti-scientific screed, Frankenstein, which was first published in 1818, is much richer when we read it as a complex dialogue about our relationship to innovation—both our desire for it and our fear of the changes it brings. Mary Shelley was just a teenager when she began to compose Frankenstein, but she was already grappling with our complex relationship to new forces. Almost two centuries on, the book is just as propulsive and compelling as it was when it was first published. That’s partly because it’s so thick with ambiguity—and so resistant to easy interpretation.

Is it really ambiguous? I mean, when someone calls something frankenfood, they aren’t calling it “ethically ambiguous food.”

It’s a fair point. For decades, Frankenstein has been central to discussions in and about bioethics. Perhaps most notably, it frequently crops up as a reference point in discussions of genetically modified organisms, where the prefix Franken- functions as a sort of convenient shorthand for human attempts to meddle with the natural order. Today, the most prominent flashpoint for those anxieties is probably the clustered regularly interspaced short palindromic repeats, or CRISPR, gene-editing technique [emphasis mine]. But it’s really oversimplifying to suggest Frankenstein is a cautionary tale about monkeying with life.

As we’ll see throughout this month on Futurography, it’s become a lens for looking at the unintended consequences of things like synthetic biology, animal experimentation, artificial intelligence, and maybe even social networking. Facebook, for example, has arguably taken on a life of its own, as its algorithms seem to influence the course of elections. Mark Zuckerberg, who’s sometimes been known to disavow the power of his own platform, might well be understood as a Frankensteinian figure, amplifying his creation’s monstrosity by neglecting its practical needs.

But this book is almost 200 years old! Surely the actual science in it is bad.

Shelley herself would probably be the first to admit that the science in the novel isn’t all that accurate. Early in the novel, Victor Frankenstein meets with a professor who castigates him for having read the wrong works of “natural philosophy.” Shelley’s protagonist has mostly been studying alchemical tomes and otherwise fantastical works, the sort of things that were recognized as pseudoscience, even by the standards of the day. Near the start of the novel, Frankenstein attends a lecture in which the professor declaims on the promise of modern science. He observes that where the old masters “promised impossibilities and performed nothing,” the new scientists achieve far more in part because they “promise very little; they know that metals cannot be transmuted and that the elixir of life is a chimera.”

Is it actually about bad science, though?

Not exactly, but it has been read as a story about bad scientists.

Ultimately, Frankenstein outstrips his own teachers, of course, and pulls off the very feats they derided as mere fantasy. But Shelley never seems to confuse fact and fiction, and, in fact, she largely elides any explanation of how Frankenstein pulls off the miraculous feat of animating dead tissue. We never actually get a scene of the doctor awakening his creature. The novel spends far more dwelling on the broader reverberations of that act, showing how his attempt to create one life destroys countless others. Read in this light, Frankenstein isn’t telling us that we shouldn’t try to accomplish new things, just that we should take care when we do.

This speaks to why the novel has stuck around for so long. It’s not about particular scientific accomplishments but the vagaries of scientific progress in general.

Does that make it into a warning against playing God?

It’s probably a mistake to suggest that the novel is just a critique of those who would usurp the divine mantle. Instead, you can read it as a warning about the ways that technologists fall short of their ambitions, even in their greatest moments of triumph.

Look at what happens in the novel: After bringing his creature to life, Frankenstein effectively abandons it. Later, when it entreats him to grant it the rights it thinks it deserves, he refuses. Only then—after he reneges on his responsibilities—does his creation really go bad. We all know that Frankenstein is the doctor and his creation is the monster, but to some extent it’s the doctor himself who’s made monstrous by his inability to take responsibility for what he’s wrought.

I encourage you to read Brogan’s piece in its entirety and perhaps supplement the reading. Mary Shelley has a pretty interesting history. She ran off with Percy Bysshe Shelley who was married to another woman, in 1814  at the age of seventeen years. Her parents were both well known and respected intellectuals and philosophers, William Godwin and Mary Wollstonecraft. By the time Mary Shelley wrote her book, her first baby had died and she had given birth to a second child, a boy.  Percy Shelley was to die a few years later as was her son and a third child she’d given birth to. (Her fourth child born in 1819 did survive.) I mention the births because one analysis I read suggests the novel is also a commentary on childbirth. In fact, the Frankenstein narrative has been examined from many perspectives (other than science) including feminism and LGBTQ studies.

Getting back to the science fiction end of things, the next part of the Futurography series is titled “A Cheat-Sheet Guide to Frankenstein” and that too is written by Jacob Brogan with a publication date of Jan. 3, 2017,

Key Players

Marilyn Butler: Butler, a literary critic and English professor at the University of Cambridge, authored the seminal essay “Frankenstein and Radical Science.”

Jennifer Doudna: A professor of chemistry and biology at the University of California, Berkeley, Doudna helped develop the CRISPR gene-editing technique [emphasis mine].

Stephen Jay Gould: Gould is an evolutionary biologist and has written in defense of Frankenstein’s scientific ambitions, arguing that hubris wasn’t the doctor’s true fault.

Seán Ó hÉigeartaigh: As executive director of the Center for Existential Risk at the University of Cambridge, hÉigeartaigh leads research into technologies that threaten the existience of our species.

Jim Hightower: This columnist and activist helped popularize the term frankenfood to describe genetically modified crops.

Mary Shelley: Shelley, the author of Frankenstein, helped create science fiction as we now know it.

J. Craig Venter: A leading genomic researcher, Venter has pursued a variety of human biotechnology projects.

Lingo

….

Debates

Popular Culture

Further Reading

….

‘Franken’ and CRISPR

The first essay is in a Jan. 6, 2016 article by Kay Waldman focusing on the ‘franken’ prefix (Note: links have been removed),

In a letter to the New York Times on June 2, 1992, an English professor named Paul Lewis lopped off the top of Victor Frankenstein’s surname and sewed it onto a tomato. Railing against genetically modified crops, Lewis put a new generation of natural philosophers on notice: “If they want to sell us Frankenfood, perhaps it’s time to gather the villagers, light some torches and head to the castle,” he wrote.

William Safire, in a 2000 New York Times column, tracked the creation of the franken- prefix to this moment: an academic channeling popular distrust of science by invoking the man who tried to improve upon creation and ended up disfiguring it. “There’s no telling where or how it will end,” he wrote wryly, referring to the spread of the construction. “It has enhanced the sales of the metaphysical novel that Ms. Shelley’s husband, the poet Percy Bysshe Shelley, encouraged her to write, and has not harmed sales at ‘Frank’n’Stein,’ the fast-food chain whose hot dogs and beer I find delectably inorganic.” Safire went on to quote the American Dialect Society’s Laurence Horn, who lamented that despite the ’90s flowering of frankenfruits and frankenpigs, people hadn’t used Frankensense to describe “the opposite of common sense,” as in “politicians’ motivations for a creatively stupid piece of legislation.”

A year later, however, Safire returned to franken- in dead earnest. In an op-ed for the Times avowing the ethical value of embryonic stem cell research, the columnist suggested that a White House conference on bioethics would salve the fears of Americans concerned about “the real dangers of the slippery slope to Frankenscience.”

All of this is to say that franken-, the prefix we use to talk about human efforts to interfere with nature, flips between “funny” and “scary” with ease. Like Shelley’s monster himself, an ungainly patchwork of salvaged parts, it can seem goofy until it doesn’t—until it taps into an abiding anxiety that technology raises in us, a fear of overstepping.

Waldman’s piece hints at how language can shape discussions while retaining a rather playful quality.

This series looks to be a good introduction while being a bit problematic in spots, which roughly sums up my conclusion about their ‘nano’ series in my Oct. 7, 2016 posting titled: Futurography’s nanotechnology series: a digest.

By the way, I noted the mention of CRISPR as it brought up an issue that they don’t appear to be addressing in this series (perhaps they will do this elsewhere?): intellectual property.

There’s a patent dispute over CRISPR as noted in this American Chemical Society’s Chemistry and Engineering News Jan. 9, 2017 video,

Playing God

This series on Frankenstein is taking on other contentious issues. A perennial favourite is ‘playing God’ as noted in Bina Venkataraman’s Jan. 11, 2017 essay on the topic,

Since its publication nearly 200 years ago, Shelley’s gothic novel has been read as a cautionary tale of the dangers of creation and experimentation. James Whale’s 1931 film took the message further, assigning explicitly the hubris of playing God to the mad scientist. As his monster comes to life, Dr. Frankenstein, played by Colin Clive, triumphantly exclaims: “Now I know what it feels like to be God!”

The admonition against playing God has since been ceaselessly invoked as a rhetorical bogeyman. Secular and religious, critic and journalist alike have summoned the term to deride and outright dismiss entire areas of research and technology, including stem cells, genetically modified crops, recombinant DNA, geoengineering, and gene editing. As we near the two-century commemoration of Shelley’s captivating story, we would be wise to shed this shorthand lesson—and to put this part of the Frankenstein legacy to rest in its proverbial grave.

The trouble with the term arises first from its murkiness. What exactly does it mean to play God, and why should we find it objectionable on its face? All but zealots would likely agree that it’s fine to create new forms of life through selective breeding and grafting of fruit trees, or to use in-vitro fertilization to conceive life outside the womb to aid infertile couples. No one objects when people intervene in what some deem “acts of God,” such as earthquakes, to rescue victims and provide relief. People get fully behind treating patients dying of cancer with “unnatural” solutions like chemotherapy. Most people even find it morally justified for humans to mete out decisions as to who lives or dies in the form of organ transplant lists that prize certain people’s survival over others.

So what is it—if not the imitation of a deity or the creation of life—that inspires people to invoke the idea of “playing God” to warn against, or even stop, particular technologies? A presidential commission charged in the early 1980s with studying the ethics of genetic engineering of humans, in the wake of the recombinant DNA revolution, sheds some light on underlying motivations. The commission sought to understand the concerns expressed by leaders of three major religious groups in the United States—representing Protestants, Jews, and Catholics—who had used the phrase “playing God” in a 1980 letter to President Jimmy Carter urging government oversight. Scholars from the three faiths, the commission concluded, did not see a theological reason to flat-out prohibit genetic engineering. Their concerns, it turned out, weren’t exactly moral objections to scientists acting as God. Instead, they echoed those of the secular public; namely, they feared possible negative effects from creating new human traits or new species. In other words, the religious leaders who called recombinant DNA tools “playing God” wanted precautions taken against bad consequences but did not inherently oppose the use of the technology as an act of human hubris.

She presents an interesting argument and offers this as a solution,

The lesson for contemporary science, then, is not that we should cease creating and discovering at the boundaries of current human knowledge. It’s that scientists and technologists ought to steward their inventions into society, and to more rigorously participate in public debate about their work’s social and ethical consequences. Frankenstein’s proper legacy today would be to encourage researchers to address the unsavory implications of their technologies, whether it’s the cognitive and social effects of ubiquitous smartphone use or the long-term consequences of genetically engineered organisms on ecosystems and biodiversity.

Some will undoubtedly argue that this places an undue burden on innovators. Here, again, Shelley’s novel offers a lesson. Scientists who cloister themselves as Dr. Frankenstein did—those who do not fully contemplate the consequences of their work—risk later encounters with the horror of their own inventions.

At a guess, Venkataraman seems to be assuming that if scientists communicate and make their case that the public will cease to panic with reference moralistic and other concerns. My understanding is that social scientists have found this is not the case. Someone may understand the technology quite well and still oppose it.

Frankenstein and anti-vaxxers

The Jan. 16, 2017 essay by Charles Kenny is the weakest of the lot, so far (Note: Links have been removed),

In 1780, University of Bologna physician Luigi Galvani found something peculiar: When he applied an electric current to the legs of a dead frog, they twitched. Thirty-seven years later, Mary Shelley had Galvani’s experiments in mind as she wrote her fable of Faustian overreach, wherein Dr. Victor Frankenstein plays God by reanimating flesh.

And a little less than halfway between those two dates, English physician Edward Jenner demonstrated the efficacy of a vaccine against smallpox—one of the greatest killers of the age. Given the suspicion with which Romantic thinkers like Shelley regarded scientific progress, it is no surprise that many at the time damned the procedure as against the natural order. But what is surprising is how that suspicion continues to endure, even after two centuries of spectacular successes for vaccination. This anti-vaccination stance—which now infects even the White House—demonstrates the immense harm that can be done by excessive distrust of technological advance.

Kenny employs history as a framing device. Crudely, Galvani’s experiments led to Mary Shelley’s Frankenstein which is a fable about ‘playing God’. (Kenny seems unaware there are many other readings of and perspectives on the book.) As for his statement ” … the suspicion with which Romantic thinkers like Shelley regarded scientific progress … ,” I’m not sure how he arrived at his conclusion about Romantic thinkers. According to Richard Holmes (in his book, The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science), their relationship to science was more complex. Percy Bysshe Shelley ran ballooning experiments and wrote poetry about science, which included footnotes for the literature and concepts he was referencing; John Keats was a medical student prior to his establishment as a poet; and Samuel Taylor Coleridge (The Rime of the Ancient Mariner, etc.) maintained a healthy correspondence with scientists of the day sometimes influencing their research. In fact, when you analyze the matter, you realize even scientists are, on occasion, suspicious of science.

As for the anti-vaccination wars, I wish this essay had been more thoughtful. Yes, Andrew Wakefield’s research showing a link between MMR (measles, mumps, and rubella) vaccinations and autism is a sham. However, having concerns and suspicions about technology does not render you a fool who hasn’t progressed from 18th/19th Century concerns and suspicions about science and technology. For example, vaccines are being touted for all kinds of things, the latest being a possible antidote to opiate addiction (see Susan Gados’ June 28, 2016 article for ScienceNews). Are we going to be vaccinated for everything? What happens when you keep piling vaccination on top of vaccination? Instead of a debate, the discussion has devolved to: “I’m right and you’re wrong.”

For the record, I’m grateful for the vaccinations I’ve had and the diminishment of diseases that were devastating and seem to be making a comeback with this current anti-vaccination fever. That said, I think there are some important questions about vaccines.

Kenny’s essay could have been a nuanced discussion of vaccines that have clearly raised the bar for public health and some of the concerns regarding the current pursuit of yet more vaccines. Instead, he’s been quite dismissive of anyone who questions vaccination orthodoxy.

The end of this piece

There will be more essays in Slate’s Frankenstein series but I don’t have time to digest and write commentary for all of them.

Please use this piece as a critical counterpoint to some of the series and, if I’ve done my job, you’ll critique this critique. Please do let me know if you find any errors or want to add an opinion or add your own critique in the Comments of this blog.

ETA Jan. 25, 2017: Here’s the Frankenstein webspace on Slate’s Futurography which lists all the essays in this series. It’s well worth looking at the list. There are several that were not covered here.

“Science Fiction by Real Scientists” campaign success

This news bit concerns a science fiction short  story anthology and novel series from scientists and experts and a now completed fundraising campaign. From a Nov. 14, 2016 Springer Books press release on EurekAlert,

Springer Nature and Humble Bundle have raised a charitable contribution of $22,000 through the science fiction book campaign “Science Fiction by Real Scientists.” One half of the proceeds, $11,000, goes to the Science Fiction & Fantasy Writers of America’s Givers Fund. The same amount goes to the U.S. Fund for UNICEF as part of the global children’s charity’s annual Halloween fundraising drive. Humble Bundle supports a number of charities by offering media packages to its customers on a pay-what-you-want basis.

During the campaign, Springer offered a specially priced eBook bundle from its Science and Fiction series, consisting of nine full novels, two books of short stories and five nonfiction books. Readers were able to choose how their purchase dollars were allocated between the publisher and charity. Starting at just one dollar, customers could name their price, increasing their contribution to upgrade their bundles or contribute more to charity.

The Science and Fiction series, launched in 2012 by Springer, is a unique publishing program for fiction written by actual scientists and experts in scientific fields. Each novel or anthology of short stories is accompanied by an extensive afterword that explains, in lay terms, the current scientific theory or findings that serve as the basis for the fictional work.

Mia Kravitz, Director Global eRetail at Springer Nature, said, “Springer was so pleased to work with Humble Bundle on this worthwhile effort to aid children globally as well as support writers and artists in the science fiction genre. Pushing the envelope for scientific inquiry is part of our mission, and this is a fun way to bring current research to a wider audience.”

Here’s a bit more information about the “Science and Fiction” series from a Sept. 20, 2016 Springer Books press release,

The Springer series Science and Fiction was launched in 2012 and comprises entertaining and thought-provoking books which appeal equally to science buffs, scientists and science fiction fans. The idea was born out of the recognition that scientific discovery and the creation of plausible fictional scenarios are often two sides of the same coin. Each science fiction book, with an afterword on the science underlying the tale, relies on an understanding of the way the world works, coupled with the imaginative ability to invent new or alternative explanations and even other worlds.

Christian Caron, Executive Editor Physics at Springer, said the concept developed when a Springer author, astrobiologist Dirk Schulze-Makuch, published his first hard science fiction novel on Amazon. “Our very first thought was, why couldn’t we do this?” he said. “Our authors, all of them scientists and experts at some forefront of research, would of course have an interface with speculative science in their fields.”

The books in Springer’s Science and Fiction series explore and exploit the borderlands between accepted science and its fictional counterpart. Uncovering mutual influences, promoting fruitful interaction, and narrating and analyzing fictional scenarios, they serve as a reaction vessel for inspired new ideas in science, technology and beyond.

You can find a list of books in the series here. Note: I found forthcoming titles in 2017 and titles dating back to 2014. Springer made the announcement in 2012 but didn’t publish any books in the series until 2014.