Category Archives: agriculture

CRISPR/Cas9 as a tool for artists (Art/sci Salon January 2018 events in Toronto, Canada) and an event in Winnipeg, Canada

The Art/Sci Salon in Toronto, Canada is offering a workshop and a panel discussion (I think) on the topic of CRISPR( (clustered regularly interspaced short palindromic repeats)/Cas9.

CRISPR Cas9 Workshop with Marta De Menezes

From its Art/Sci Salon event page (on Eventbrite),

This is a two day intensive workshop on

Jan. 24 5:00-9:00 pm
and
Jan. 25 5:00-9:00 pm

This workshop will address issues pertaining to the uses, ethics, and representations of CRISPR-cas9 genome editing system; and the evolution of bioart as a cultural phenomenon . The workshop will focus on:

1. Scientific strategies and ethical issues related to the modification of organisms through the most advanced technology;

2. Techniques and biological materials to develop and express complex concepts into art objects.

This workshop will introduce knowledge, methods and living material from the life sciences to the participants. The class will apply that novel information to the creation of art. Finally, the key concepts, processes and knowledge from the arts will be discussed and related to scientific research. The studio-­‐lab portion of the course will focus on the mastering and understanding of the CRISPR – Cas9 technology and its revolutionary applications. The unparalleled potential of CRISPR ‐ Cas9 for genome editing will be directly assessed as the participants will use the method to make artworks and generate meaning through such a technique. The participants will be expected to complete one small project by the end of the course. In developing and completing these projects, participants will be asked to present their ideas/work to the instructors and fellow participants. As part of the course, participants are expected to document their work/methodology/process by keeping a record of processes, outcomes, and explorations.

This is a free event. Go here to register.

Do CRISPR monsters dream of synthetic futures?

This second event in Toronto seems to be a panel discussion; here’s more from its Art/Sci Salon event page (on Eventbrite),

The term CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) refers to a range of novel gene editing systems which can be programmed to edit DNA at precise locations. It allows the permanent modification of the genes in cells of living organisms. CRISPR enables novel basic research and promises a wide range of possible applications from biomedicine and agriculture to environmental challenges.

The surprising simplicity of CRISPR and its potentials have led to a wide range of reactions. While some welcome it as a gene editing revolution able to cure diseases that are currently fatal, others urge for a worldwide moratorium, especially when it comes to human germline modifications. The possibility that CRISPR may allow us to intervene in the evolution of organisms has generated particularly divisive thoughts: is gene editing going to cure us all? Or is it opening up a new era of designer babies and new types of privileges measured at the level of genes? Could the relative easiness of the technique allow individuals to modify bodies, identities, sexuality, to create new species and races? will it create new monsters? [emphasis mine] These are all topics that need to be discussed. With this panel/discussion, we wish to address technical, ethical, and creative issues arising from the futuristic scenarios promised by CRISPR.

Our Guests:

Marta De Menezes, Director, Cultivamos Cultura

Dalila Honorato, Assistant Professor, Ionian University

Mark Lipton, Professor, University of Guelph

Date: January 26, 2018

Time: 6:00-8:00 pm

Location: The Fields Institute for Research in Mathematical Sciences
222 College Street, Toronto, ON

Events Facilitators: Roberta Buiani and Stephen Morris (ArtSci Salon) and Nina Czegledy (Leonardo Network)

Bios:

Marta de Menezes is a Portuguese artist (b. Lisbon, 1975) with a degree in Fine Arts by the University in Lisbon, a MSt in History of Art and Visual Culture by the University of Oxford, and a PhD candidate at the University of Leiden. She has been exploring the intersection between Art and Biology, working in research laboratories demonstrating that new biological technologies can be used as new art medium. Her work has been presented internationally in exhibitions, articles and lectures. She is currently the artistic director of Ectopia, an experimental art laboratory in Lisbon, and Director of Cultivamos Cultura in the South of Portugal. http://martademenezes.com

Dalila Honorato, Ph.D., is currently Assistant Professor in Media Aesthetics and Semiotics at the Ionian University in Greece where she is one of the founding members of the Interactive Arts Lab. She is the head of the organizing committee of the conference “Taboo-Transgression-Transcendence in Art & Science” and developer of the studies program concept of the Summer School in Hybrid Arts. She is a guest faculty at the PhD studies program of the Institutum Studiorum Humanitatis in Alma Mater Europaea, Slovenia, and a guest member of the Science Art Philosophy Lab integrated in the Center of Philosophy of Sciences of the University of Lisbon, Portugal. Her research focus is on embodiment in the intersection of performing arts and new media.

Mark Lipton works in the College of Arts; in the School of English and Theatre Studies, and Guelph’s Program in Media Studies. Currently, his work focuses on queering media ecological perspectives of technology’s role in education, with emerging questions about haptics and the body in performance contexts, and political outcomes of neo-liberal economics within Higher Education.

ArtSci Salon thanks the Fields Institute and the Bonham Center for Sexual Diversity Studies (U of T), and the McLuhan Centre for Culture and Technology for their support. We are grateful to the members of DIYBio Toronto and Hacklab for hosting Marta’s workshop.

This series of event is promoted and facilitated as part of FACTT Toronto

LASER – Leonardo Art Science Evening Rendezvous is a project of Leonardo® /ISAST (International Society for the Arts Sciences and Technology)

Go here to click on the Register button.

For anyone who didn’t recognize (or, like me, barely remembers what it means) the title’s reference is to a famous science fiction story by Philip K. Dick. Here’s more from the Do Androids Dream of Electric Sheep? Wikipedia entry (Note: Links have been removed),

Do Androids Dream of Electric Sheep? (retitled Blade Runner: Do Androids Dream of Electric Sheep? in some later printings) is a science fiction novel by American writer Philip K. Dick, first published in 1968. The novel is set in a post-apocalyptic San Francisco, where Earth’s life has been greatly damaged by nuclear global war. Most animal species are endangered or extinct from extreme radiation poisoning, so that owning an animal is now a sign of status and empathy, an attitude encouraged towards animals. The book served as the primary basis for the 1982 film Blade Runner, and many elements and themes from it were used in its 2017 sequel Blade Runner 2049.

The main plot follows Rick Deckard, a bounty hunter who is tasked with “retiring” (i.e. killing) six escaped Nexus-6 model androids, while a secondary plot follows John Isidore, a man of sub-par IQ who aids the fugitive androids. In connection with Deckard’s mission, the novel explores the issue of what it is to be human. Unlike humans, the androids are said to possess no sense of empathy.

I wonder why they didn’t try to reference Orphan Black (its Wikipedia entry)? That television series was all about biotechnology. If not Orphan Black, what about a Frankenstein reference? It’s the 200th anniversary this year (2018) of the publication of the book which is the forerunner to all the cautionary tales that have come after.

NanoFARM: food, agriculture, and nanoparticles

The research focus for the NanoFARM consortium is on pesticides according to an October 19, 2017 news item on Nanowerk,

The answer to the growing, worldwide food production problem may have a tiny solution—nanoparticles, which are being explored as both fertilizers and fungicides for crops.

NanoFARM – research consortium formed between Carnegie Mellon University [US], the University of Kentucky [US], the University of Vienna [Austria], and Aveiro University in Prague [Czech Republic] – is studying the effects of nanoparticles on agriculture. The four universities received grants from their countries’ respective National Science Foundations to discover how these tiny particles – some just 4 nanometers in diameter – can revolutionize how farmers grow their food.

An October ??, 2017 Carnegie Mellon University news release by Adam Dove, which originated the news item, fills in a few more details,

“What we’re doing is getting a fundamental understanding of nanoparticle-to-plant interactions to enable future applications,” says Civil and Environmental Engineering (CEE) Professor Greg Lowry, the principal investigator for the nanoFARM project. “With pesticides, less than 5% goes into the crop—the rest just goes into the environment and does harmful things. What we’re trying to do is minimize that waste and corresponding environmental damage by doing a better job of targeting the delivery.”

The teams are looking at related questions: How much nanomaterial is needed to help crops when it comes to driving away pests and delivering nutrients, and how much could potentially hurt plants or surrounding ecosystems?

Applied pesticides and fertilizers are vulnerable to washing away—especially if there’s a rainstorm soon after application. But nanoparticles are not so easily washed off, making them extremely efficient for delivering micronutrients like zinc or copper to crops.

“If you put in zinc oxide nanoparticles instead, it might take days or weeks to dissolve, providing a slow, long-term delivery system.”

Gao researches the rate at which nanoparticles dissolve. His most recent finding is that nanoparticles of copper oxide take up to 20-30 days to dissolve in soil, meaning that they can deliver nutrients to plants at a steady rate over that time period.

“In many developing countries, a huge number of people are starving,” says Gao. “This kind of technology can help provide food and save energy.”

But Gao’s research is only one piece of the NanoFARM puzzle. Lowry recently traveled to Australia with Ph.D. student Eleanor Spielman-Sun to explore how differently charged nanoparticles were absorbed into wheat plants.

They learned that negatively charged particles were able to move into the veins of a plant—making them a good fit for a farmer who wanted to apply a fungicide. Neutrally charged particles went into the tissue of the leaves, which would be beneficial for growers who wanted to fortify a food with nutritional value.

Lowry said they are still a long way from signing off on a finished product for all crops—right now they are concentrating on tomato and wheat plants. But with the help of their university partners, they are slowly creating new nano-enabled agrochemicals for more efficient and environmentally friendly agriculture.

For more information, you can find the NanoFARM website here.

Cellulose- and chitin-based biomaterial to replace plastics?

Although the term is not actually used in the news release, one of the materials used to create a new biomaterial could safely be described as nanocellulose. From a Sept. 20, 2017 Pennsylvania State University (Penn State) news release (also on EurekAlert) by Jeff Mulhollem,

An inexpensive biomaterial that can be used to sustainably replace plastic barrier coatings in packaging and many other applications has been developed by Penn State researchers, who predict its adoption would greatly reduce pollution.

Completely compostable, the material — a polysaccharide polyelectrolyte complex — is comprised of nearly equal parts of treated cellulose pulp from wood or cotton, and chitosan, which is derived from chitin — the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is the mountains of leftover shells from lobsters, crabs and shrimp consumed by humans.

These environmentally friendly barrier coatings have numerous applications ranging from water-resistant paper, to coatings for ceiling tiles and wallboard, to food coatings to seal in freshness, according to lead researcher Jeffrey Catchmark, professor of agricultural and biological engineering, College of Agricultural Sciences.

“The material’s unexpected strong, insoluble adhesive properties are useful for packaging as well as other applications, such as better performing, fully natural wood-fiber composites for construction and even flooring,” he said. “And the technology has the potential to be incorporated into foods to reduce fat uptake during frying and maintain crispness. Since the coating is essentially fiber-based, it is a means of adding fiber to diets.”

The amazingly sturdy and durable bond between carboxymethyl cellulose and chitosan is the key, he explained. The two very inexpensive polysaccharides — already used in the food industry and in other industrial sectors — have different molecular charges and lock together in a complex that provides the foundation for impervious films, coatings, adhesives and more.

The potential reduction of pollution is immense if these barrier coatings replace millions of tons of petroleum-based plastic associated with food packaging used every year in the United States — and much more globally, Catchmark noted.

He pointed out that the global production of plastic is approaching 300 million tons per year. In a recent year, more than 29 million tons of plastic became municipal solid waste in the U.S. and almost half was plastic packaging. It is anticipated that 10 percent of all plastic produced globally will become ocean debris, representing a significant ecological and human health threat.

crab shells

The material is comprised of cellulose pulp from wood or cotton, and chitosan, derived from chitin, the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is shells from lobsters, crabs and shrimp. Image: © iStock Photo OKRAD

The polysaccharide polyelectrolyte complex coatings performed well in research, the findings of which were published recently in Green Chemistry. Paperboard coated with the biomaterial, comprised of nanostructured fibrous particles of carboxymethyl cellulose and chitosan, exhibited strong oil and water barrier properties. The coating also resisted toluene, heptane and salt solutions and exhibited improved wet and dry mechanical and water vapor barrier properties.

“These results show that polysaccharide polyelectrolyte complex-based materials may be competitive barrier alternatives to synthetic polymers for many commercial applications,” said Catchmark, who, in concert with Penn State, has applied for a patent on the coatings.

“In addition, this work demonstrates that new, unexpected properties emerge from multi-polysaccharide systems engaged in electrostatic complexation, enabling new high-performance applications.”

Catchmark began experimenting with biomaterials that might be used instead of plastics a decade or so ago out of concerns for sustainability. He became interested in cellulose, the main component in wood, because it is the largest volume sustainable, renewable material on earth. Catchmark studied its nanostructure — how it is assembled at the nanoscale.

He believed he could develop natural materials that are more robust and improve their properties, so that they could compete with synthetic materials that are not sustainable and generate pollution — such as the low-density polyethylene laminate applied to paper board, Styrofoam and solid plastic used in cups and bottles.

“The challenge is, to do that you’ve got to be able to do it in a way that is manufacturable, and it has to be less expensive than plastic,” Catchmark explained. “Because when you make a change to something that is greener or sustainable, you really have to pay for the switch. So it has to be less expensive in order for companies to actually gain something from it. This creates a problem for sustainable materials — an inertia that has to be overcome with a lower cost.”

lab vials

The amazingly sturdy and durable bond between carboxymethyl cellulose and chitosan is the key. The two very inexpensive polysaccharides, already used in the food industry and in other industrial sectors, have different molecular charges and lock together in a complex that provides the foundation for impervious films, coatings, adhesives and more. Image: Penn State

Funded by a Research Applications for Innovation grant from the College of Agricultural Sciences, Catchmark currently is working to develop commercialization partners in different industry sectors for a wide variety of products.

“We are trying to take the last step now and make a real impact on the world, and get industry people to stop using plastics and instead use these natural materials,” he said. “So they (consumers) have a choice — after the biomaterials are used, they can be recycled, buried in the ground or composted, and they will decompose. Or they can continue to use plastics that will end up in the oceans, where they will persist for thousands of years.”

Also involved in the research were Snehasish Basu, post-doctoral scholar, and Adam Plucinski, master’s degree student, now instructor of engineering at Penn State Altoona. Staff in Penn State’s Material Research Institute provided assistance with the project.

The U.S. Department of Agriculture supported this work. Southern Champion Tray, of Chattanooga, Tennessee, provided paperboard and information on its production for experiments.

Here’s a link to and a citation for the paper,

Sustainable barrier materials based on polysaccharide polyelectrolyte complexes by
Snehasish Basu, Adam Plucinski, and Jeffrey M. Catchmark. Green Chemistry 2017, 19, 4080-4092 DOI: 10.1039/C7GC00991G

This paper is behind a paywall. One comment, I found an anomaly on the page when I visited. At the top of the citation page, it states that this is issue 17 of Green Chemistry but the citation in the column on the right is “2017, 19 … “, which would be issue 19.

Cotton that glows ‘naturally’

Interesting, non? This is causing a bit of excitement but before first, here’s more from the Sept. 14, 2017 American Association for the Advancement of Science (AAAS) news release on EurekAlert,

Cotton that’s grown with molecules that endow appealing properties – like fluorescence or magnetism – may one day eliminate the need for applying chemical treatments to fabrics to achieve such qualities, a new study suggests. Applying synthetic polymers to fabrics can result in a range of appealing properties, but anything added to a fabric can get washed or worn away. Furthermore, while many fibers used in fabrics are synthetic (e.g., polyester), some consumers prefer natural fibers to avoid issues related to sensation, skin irritation, smoothness, and weight. Here, Filipe Natalio and colleagues created cotton fibers that incorporate composites with fluorescent and magnetic properties. They synthesized glucose derivatives that deliver the desirable molecules into the growing ovules of the cotton plant, Gossypium hirsutum. Thus, the molecules are embedded into the cotton fibers themselves, rather than added in the form of a chemical treatment. The resulting fibers exhibited fluorescent or magnetic properties, respectively, although they were weaker than raw fibers lacking the embedded composites, the authors report. They propose that similar techniques could be expanded to other biological systems such as bacteria, bamboo, silk, and flax – essentially opening a new era of “material farming.”

Robert Service’s Sept. 14, 2017 article for Science explores the potential of growing cotton with new properties (Note: A link has been removed),

You may have heard about smartphones and smart homes. But scientists are also designing smart clothes, textiles that can harvest energy, light up, detect pollution, and even communicate with the internet. The problem? Even when they work, these often chemically treated fabrics wear out rapidly over time. Now, researchers have figured out a way to “grow” some of these functions directly into cotton fibers. If the work holds, it could lead to stronger, lighter, and brighter textiles that don’t wear out.

Yet, as the new paper went to press today in Science, editors at the journal were made aware of mistakes in a figure in the supplemental material that prompted them to issue an Editorial Expression of Concern, at least until they receive clarification from the authors. Filipe Natalio, lead author and chemist at the Weizmann Institute of Science in Rehovot, Israel, says the mistakes were errors in the names of pigments used in control experiments, which he is working with the editors to fix.

That hasn’t dampened enthusiasm for the work. “I like this paper a lot,” says Michael Strano, a chemical engineer at the Massachusetts Institute of Technology in Cambridge. The study, he says, lays out a new way to add new functions into plants without changing their genes through genetic engineering. Those approaches face steep regulatory hurdles for widespread use. “Assuming the methods claimed are correct, that’s a big advantage,” Strano says.

Sam Lemonick’s Sept. 14, 2017 article for forbes.com describes how the researchers introduced new properties (in this case, glowing colours) into the cotton plants,

His [Filipe Natalio] team of researchers in Israel, Germany, and Austria used sugar molecules to sneak new properties into cotton. Like a Trojan horse, Natalio says. They tested the method by tagging glucose with a fluorescent dye molecule that glows green when hit with the right kind of light.

They bathed cotton ovules—the part of the plant that makes the fibers—in the glucose. And just like flowers suck up dyed water in grade school experiments, the ovules absorbed the sugar solution and piped the tagged glucose molecules to their cells. As the fibers grew, they took on a yellowish tinge—and glowed bright green under ultraviolet light.

Glowing cotton wasn’t enough for Natalio. It took his group about six months to be sure they were actually delivering the fluorescent protein into the cotton cells and not just coating the fibers in it. Once they were certain, they decided to push the envelope with something very unnatural: magnets.

This time, Natalio’s team modified glucose with the rare earth metal dysprosium, making a molecule that acts like a magnet. And just like they did with the dye, the researchers fed it to cotton ovules and ended up with fibers with magnetic properties.

Both Service and Lemonwick note that the editor of the journal Science (where the research paper was published) Jeremy Berg has written an expression of editorial concern as of Sept. 14, 2017,

In the 15 September [2017] issue, Science published the Report “Biological fabrication of cellulose fibers with tailored properties” by F. Natalio et al. (1). After the issue went to press, we became aware of errors in the labeling and/or identification of the pigments used for the control experiments detailed in figs. S1 and S2 of the supplementary materials. Science is publishing this Editorial Expression of Concern to alert our readers to this information as we await full explanation and clarification from the authors.

The problem seems to be one of terminology (from the Lemonwick article),

… Filipe Natalio, lead author and chemist at the Weizmann Institute of Science in Rehovot, Israel, says the mistakes were errors in the names of pigments used in control experiments, which he is working with the editors to fix.

These things happen. Terminology and spelling aren’t always the same from one country to the next and it can result in confusion. I’m glad to see the discussion is being held openly.

Here’s a link to and a citation for the paper,

Biological fabrication of cellulose fibers with tailored properties by Filipe Natalio, Regina Fuchs, Sidney R. Cohen, Gregory Leitus, Gerhard Fritz-Popovski, Oskar Paris, Michael Kappl, Hans-Jürgen Butt. Science 15 Sep 2017: Vol. 357, Issue 6356, pp. 1118-1122 DOI: 10.1126/science.aan5830

This paper is behind a paywall.

A flexible, organic battery from Northern Ireland

A team from Northern Ireland seems to have made a splash in the race to develop a flexible, environmentally friendly battery. From a Sept. 13, 2017 news item on phys.org,

Experts at Queen’s University Belfast have designed a flexible and organic alternative to the rigid batteries that power up medical implants.

Currently, devices such as pacemakers and defibrillators are fitted with rigid and metal based batteries, which can cause patient discomfort.

Dr Geetha Srinivasan and a team of young researchers from Queen’s University Ionic Liquid Laboratories (QUILL) Research Centre, have now developed a flexible supercapacitor with a longer cycle life, which could power body sensors.

Courtesy: Queen’s University Belfast

A Sept. 13, 2017 Queen’s University Belfast press release (also on EurekAlert), which originated the news item, delves further,

The flexible device is made up of non-flammable electrolytes and organic composites, which are safe to the human body. It can also be easily decomposed without incurring the major costs associated with recycling or disposing off metal based batteries.

The findings, which have been published in Energy Technology and Green Chemistry, show that the device could be manufactured using readily available natural feedstock, rather than sophisticated and expensive metals or semiconductors.

Dr Srinivasan explains: “In modern society, we all increasingly depend on portable electronics such as smartphones and laptops in our everyday lives and this trend has spread to other important areas such as healthcare devices.

“In medical devices such as pacemakers and defibrillators there are two implants, one which is fitted in the heart and another which holds the metal based, rigid batteries – this is implanted under the skin.

“The implant under the skin is wired to the device and can cause patients discomfort as it is rubs against the skin. For this reason batteries need to be compatible to the human body and ideally we would like them to be flexible so that they can adapt to body shapes.”

Dr Srinivasan adds: “At Queen’s University Belfast we have designed a flexible energy storage device, which consists of conducting polymer – biopolymer composites as durable electrodes and ionic liquids as safer electrolytes.

“The device we have created has a longer life-cycle, is non-flammable, has no leakage issues and above all, it is more flexible for placing within the body.”

Environmentally friendly

While the findings show that there are many advantages in the medical world, the organic storage device could also provide solutions in wearable electronics and portable electronic devices, making these more flexible.

Ms Marta Lorenzo, PhD researcher on the project at Queen’s University Belfast, commented: “Although this research could be a potential solution to a global problem, the actual supercapacitor assembly is a straightforward process.”

Dr Srinivasan says: “There is also opportunity to fabricate task-specific supercapacitors. This means that their properties can be tuned and also manufactured using environmentally friendly methods, which is important if they are to be produced on a large scale, for example in powering portable personal electronic devices.”

Here are links and citations to the two papers mentioned in the press release,

Durable Flexible Supercapacitors Utilizing the Multifunctional Role of Ionic Liquids by Marta Lorenzo and Dr Geetha Srinivasan. Energy Technology. DOI: 10.1002/ente.201700407 First published: 23 August 2017

Intrinsically flexible electronic materials for smart device applications by Marta Lorenzo, Biyun Zhu, and Geetha Srinivasan. Green Chem., 2016,18, 3513-3517 DOI: 10.1039/C6GC00826G First published on 20 May 2016

The first paper is open access and the second paper is behind a paywall.

Alan Copperman and Amanda Marcotte have a very US-centric discussion about CRISPR and germline editing (designer babies?)

For anyone who needs more information, I ran a three part series on CRISPR germline editing on August 15, 2017:

Part 1 opens the series with a basic description of CRISPR and the germline research that occasioned the series along with some of the ethical issues and patent disputes that are arising from this new technology. CRISPR and editing the germline in the US (part 1 of 3): In the beginning

Part 2 covers three critical responses to the reporting and between them describe the technology in more detail and the possibility of ‘designer babies’.  CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?

Part 3 is all about public discussion or, rather, the lack of and need for according to a couple of social scientists. Informally, there is some discussion via pop culture and Joelle Renstrom notes although she is focused on the larger issues touched on by the television series, Orphan Black and as I touch on in my final comments. CRISPR and editing the germline in the US (part 3 of 3): public discussions and pop culture

The news about CRISPR and germline editing by a US team made a bit of a splash even being mentioned on Salon.com, which hardly ever covers any science news (except for some occasional climate change pieces). In a Sept. 4, 2017 salon.com item (an excerpt from the full interview) Amanda Marcotte talks with Dr. Alan Copperman director of the division of reproductive endocrinology and infertility at Mount Sinai Medical Center about the technology and its implications.  As noted in the headline, it’s a US-centric discussion where assumptions are made about who will be leading discussions about the future of the technology.

It’s been a while since I’ve watched it but I believe they do mention in passing that Chinese scientists published two studies about using CRISPR to edit the germline (i think there’s a third Chinese paper in the pipeline) before the American team announced its accomplishment in August 2017. By the way, the first paper by the Chinese caused quite the quandary in April 2015. (My May 14, 2015 posting covers some of the ethical issues; scroll down about 50% of the way for more about the impact of the published Chinese research.)

Also, you might want notice just how smooth Copperman’s responses are almost always emphasizing the benefits of the technology before usually answering the question. He’s had media training and he’s good at this.

They also talk about corn and CRISPR just about the time that agricultural research was announced. Interesting timing, non? (See my Oct. 11, 2017 posting about CRISPR edited corn coming to market in 2020.)

For anyone who wants to skip to the full Marcotte/Cooperman interview, go here on Facebook.

CRISPR corn to come to market in 2020

It seems most of the recent excitement around CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats) has focused on germline editing, specifically human embryos. Most people don’t realize that the first ‘CRISPR’ product is slated to enter the US market in 2020. A June 14, 2017 American Chemical Society news release (also on EurekAlert) provides a preview,

The gene-editing technique known as CRISPR/Cas9 made a huge splash in the news when it was initially announced. But the first commercial product, expected around 2020, could make it to the market without much fanfare: It’s a waxy corn destined to contribute to paper glue and food thickeners. The cover story of Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society, explores what else is in the works.

Melody M. Bomgardner, a senior editor at C&EN [Chemical & Engineering News], notes that compared to traditional biotechnology, CRISPR allows scientists to add and remove specific genes from organisms with greater speed, precision and oftentimes, at a lower cost. Among other things, it could potentially lead to higher quality cotton, non-browning mushrooms, drought-resistant corn and — finally — tasty, grocery store tomatoes.

Some hurdles remain, however, before more CRISPR products become available. Regulators are assessing how they should approach crops modified with the technique, which often (though not always) splices genes into a plant from within the species rather than introducing a foreign gene. And scientists still don’t understand all the genes in any given crop, much less know which ones might be good candidates for editing. Luckily, researchers can use CRISPR to find out.

Melody M. Bomgardner’s June 12, 2017 article for C&EN describes in detail how CRISPR could significantly change agriculture (Note: Links have been removed),

When the seed firm DuPont Pioneer first announced the new corn in early 2016, few people paid attention. Pharmaceutical companies using CRISPR for new drugs got the headlines instead.

But people should notice DuPont’s waxy corn because using CRISPR—an acronym for clustered regularly interspaced short palindromic repeats—to delete or alter traits in plants is changing the world of plant breeding, scientists say. Moreover, the technique’s application in agriculture is likely to reach the public years before CRISPR-aided drugs hit the market.

Until CRISPR tools were developed, the process of finding useful traits and getting them into reliable, productive plants took many years. It involved a lot of steps and was plagued by randomness.

“Now, because of basic research in the lab and in the field, we can go straight after the traits we want,” says Zachary Lippman, professor of biological sciences at Cold Spring Harbor Laboratory. CRISPR has been transformative, Lippman says. “It’s basically a freight train that’s not going to stop.”

Proponents hope consumers will embrace gene-edited crops in a way that they did not accept genetically engineered ones, especially because they needn’t involve the introduction of genes from other species—a process that gave rise to the specter of Frankenfood.

But it’s not clear how consumers will react or if gene editing will result in traits that consumers value. And the potential commercial uses of CRISPR may narrow if agriculture agencies in the U.S. and Europe decide to regulate gene-edited crops in the same way they do genetically engineered crops.

DuPont Pioneer expects the U.S. to treat its gene-edited waxy corn like a conventional crop because it does not contain any foreign genes, according to Neal Gutterson, the company’s vice president of R&D. In fact, the waxy trait already exists in some corn varieties. It gives the kernels a starch content of more than 97% amylopectin, compared with 75% amylopectin in regular feed corn. The rest of the kernel is amylose. Amylopectin is more soluble than amylose, making starch from waxy corn a better choice for paper adhesives and food thickeners.

Like most of today’s crops, DuPont’s current waxy corn varieties are the result of decades of effort by plant breeders using conventional breeding techniques.

Breeders identify new traits by examining unusual, or mutant, plants. Over many generations of breeding, they work to get a desired trait into high-performing (elite) varieties that lack the trait. They begin with a first-generation cross, or hybrid, of a mutant and an elite plant and then breed several generations of hybrids with the elite parent in a process called backcrossing. They aim to achieve a plant that best approximates the elite version with the new trait.

But it’s tough to grab only the desired trait from a mutant and make a clean getaway. DuPont’s plant scientists found that the waxy trait came with some genetic baggage; even after backcrossing, the waxy corn plant did not offer the same yield as elite versions without the trait. The disappointing outcome is common enough that it has its own term: yield drag.

Because the waxy trait is native to certain corn plants, DuPont did not have to rely on the genetic engineering techniques that breeders have used to make herbicide-tolerant and insect-resistant corn plants. Those commonly planted crops contain DNA from other species.

In addition to giving some consumers pause, that process does not precisely place the DNA into the host plant. So researchers must raise hundreds or thousands of modified plants to find the best ones with the desired trait and work to get that trait into each elite variety. Finally, plants modified with traditional genetic engineering need regulatory approval in the U.S. and other countries before they can be marketed.

Instead, DuPont plant scientists used CRISPR to zero in on, and partially knock out, a gene for an enzyme that produces amylose. By editing the gene directly, they created a waxy version of the elite corn without yield drag or foreign DNA.

Plant scientists who adopt gene editing may still need to breed, measure, and observe because traits might not work well together or bring a meaningful benefit. “It’s not a panacea,” Lippman says, “but it is one of the most powerful tools to come around, ever.”

It’s an interesting piece which answers the question of why tomatoes from the grocery store don’t taste good.

Korean researchers extend food shelf *life* with nanomicrobial coating

These Korean scientists have applied their new coating to food and to shoe insoles as they test various uses for their technology. From an Aug. 11, 2017 news item on Nanowerk,

The edible coating on produce has drawn a great deal of attention in the food and agricultural industry. It could not only prolong postharvest shelf life of produce against external changes in the environment but also provide additional nutrients to be useful for human health. However, most versions of the coating have had intrinsic limitations in their practical application.

First, highly specific interactions between coating materials and target surfaces are required for a stable and durable coating. Even further, the coating of bulk substrates, such as fruits, is time consuming or is not achievable in the conventional solution-based coating. In this respect, material-independent and rapid coating strategies are highly demanded.

The research team led by Professor Insung Choi of the Department of Chemistry developed a sprayable nanocoating technique using plant-derived polyphenol that can be applied to any surface.

An Aug. 10, 2017 KAIST (Korea Advanced Institute of Science and Technology) press release, which originated the news item, expands on the theme,

Polyphenols, a metabolite of photosynthesis, possess several hydroxyl groups and are found in a large number of plants showing excellent antioxidant properties. They have been widely used as a nontoxic food additive and are known to exhibit antibacterial, as well as potential anti-carcinogenic capabilities. Polyphenols can also be used with iron ions, which are naturally found in the body, to form an adhesive complex, which has been used in leather tanning, ink, etc.

The research team combined these chemical properties of polyphenol-iron complexes with spray techniques to develop their nanocoating technology. Compared to conventional immersion coating methods, which dip substrates in specialized coating solutions, this spray technique can coat the select areas more quickly. The spray also prevents cross contamination, which is a big concern for immersion methods. The research team has showcased the spray’s ability to coat a variety of different materials, including metals, plastics, glass, as well as textile fabrics. The polyphenol complex has been used to form antifogging films on corrective lenses, as well as antifungal treatments for shoe soles, demonstrating the versatility of their technique.

Furthermore, the spray has been used to coat produce with a naturally antibacterial, edible film. The coatings significantly improved the shelf life of tangerines and strawberries, preserving freshness beyond 28 days and 58 hours, respectively. (Uncoated fruit decomposed and became moldy under the same conditions). See the image below.

 

a –I, II: Uncoated and coated tangerines incubated for 14 and 28 days in daily-life settings

b –I: Uncoated and coated strawberries incubated for 58 hours in daily-life settings

b –II: Statistical investigation of the resulting edibility.

Professor Choi said, “Nanocoating technologies are still in their infancy, but they have untapped potential for exciting applications. As we have shown, nanocoatings can be easily adapted for several different uses, and the creative combination of existing nanomaterials and coating methods can synergize to unlock this potential.”

Here’s a link to and a citation for the paper,

Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits by Ji Park, Sohee Choi, Hee Moon, Hyelin Seo, Ji Kim, Seok-Pyo Hong, Bong Lee, Eunhye Kang, Jinho Lee, Dong Ryu, & Insung S. Choi. Scientific Reports 7, Article number: 6980 (2017) doi:10.1038/s41598-017-07257-x Published online: 01 August 2017

This paper is open access.

*’life’ added to correct headline on Sept. 4, 2017.

US Dept. of Agriculture announces its nanotechnology research grants

I don’t always stumble across the US Department of Agriculture’s nanotechnology research grant announcements but I’m always grateful when I do as it’s good to find out about  nanotechnology research taking place in the agricultural sector. From a July 21, 2017 news item on Nanowerk,,

The U.S. Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA) today announced 13 grants totaling $4.6 million for research on the next generation of agricultural technologies and systems to meet the growing demand for food, fuel, and fiber. The grants are funded through NIFA’s Agriculture and Food Research Initiative (AFRI), authorized by the 2014 Farm Bill.

“Nanotechnology is being rapidly implemented in medicine, electronics, energy, and biotechnology, and it has huge potential to enhance the agricultural sector,” said NIFA Director Sonny Ramaswamy. “NIFA research investments can help spur nanotechnology-based improvements to ensure global nutritional security and prosperity in rural communities.”

A July 20, 2017 USDA news release, which originated the news item, lists this year’s grants and provides a brief description of a few of the newly and previously funded projects,

Fiscal year 2016 grants being announced include:

Nanotechnology for Agricultural and Food Systems

  • Kansas State University, Manhattan, Kansas, $450,200
  • Wichita State University, Wichita, Kansas, $340,000
  • University of Massachusetts, Amherst, Massachusetts, $444,550
  • University of Nevada, Las Vegas, Nevada,$150,000
  • North Dakota State University, Fargo, North Dakota, $149,000
  • Cornell University, Ithaca, New York, $455,000
  • Cornell University, Ithaca, New York, $450,200
  • Oregon State University, Corvallis, Oregon, $402,550
  • University of Pennsylvania, Philadelphia, Pennsylvania, $405,055
  • Gordon Research Conferences, West Kingston, Rhode Island, $45,000
  • The University of Tennessee,  Knoxville, Tennessee, $450,200
  • Utah State University, Logan, Utah, $450,200
  • The George Washington University, Washington, D.C., $450,200

Project details can be found at the NIFA website (link is external).

Among the grants, a University of Pennsylvania project will engineer cellulose nanomaterials [emphasis mine] with high toughness for potential use in building materials, automotive components, and consumer products. A University of Nevada-Las Vegas project will develop a rapid, sensitive test to detect Salmonella typhimurium to enhance food supply safety.

Previously funded grants include an Iowa State University project in which a low-cost and disposable biosensor made out of nanoparticle graphene that can detect pesticides in soil was developed. The biosensor also has the potential for use in the biomedical, environmental, and food safety fields. University of Minnesota (link is external) researchers created a sponge that uses nanotechnology to quickly absorb mercury, as well as bacterial and fungal microbes from polluted water. The sponge can be used on tap water, industrial wastewater, and in lakes. It converts contaminants into nontoxic waste that can be disposed in a landfill.

NIFA invests in and advances agricultural research, education, and extension and promotes transformative discoveries that solve societal challenges. NIFA support for the best and brightest scientists and extension personnel has resulted in user-inspired, groundbreaking discoveries that combat childhood obesity, improve and sustain rural economic growth, address water availability issues, increase food production, find new sources of energy, mitigate climate variability and ensure food safety. To learn more about NIFA’s impact on agricultural science, visit www.nifa.usda.gov/impacts, sign up for email updates (link is external) or follow us on Twitter @USDA_NIFA (link is external), #NIFAImpacts (link is external).

Given my interest in nanocellulose materials (Canada was/is a leader in the production of cellulose nanocrystals [CNC] but there has been little news about Canadian research into CNC applications), I used the NIFA link to access the table listing the grants and clicked on ‘brief’ in the View column in the University of Pennsylania row to find this description of the project,

ENGINEERING CELLULOSE NANOMATERIALS WITH HIGH TOUGHNESS

NON-TECHNICAL SUMMARY: Cellulose nanofibrils (CNFs) are natural materials with exceptional mechanical properties that can be obtained from renewable plant-based resources. CNFs are stiff, strong, and lightweight, thus they are ideal for use in structural materials. In particular, there is a significant opportunity to use CNFs to realize polymer composites with improved toughness and resistance to fracture. The overall goal of this project is to establish an understanding of fracture toughness enhancement in polymer composites reinforced with CNFs. A key outcome of this work will be process – structure – fracture property relationships for CNF-reinforced composites. The knowledge developed in this project will enable a new class of tough CNF-reinforced composite materials with applications in areas such as building materials, automotive components, and consumer products.The composite materials that will be investigated are at the convergence of nanotechnology and bio-sourced material trends. Emerging nanocellulose technologies have the potential to move biomass materials into high value-added applications and entirely new markets.

It’s not the only nanocellulose material project being funded in this round, there’s this at North Dakota State University, from the NIFA ‘brief’ project description page,

NOVEL NANOCELLULOSE BASED FIRE RETARDANT FOR POLYMER COMPOSITES

NON-TECHNICAL SUMMARY: Synthetic polymers are quite vulnerable to fire.There are 2.4 million reported fires, resulting in 7.8 billion dollars of direct property loss, an estimated 30 billion dollars of indirect loss, 29,000 civilian injuries, 101,000 firefighter injuries and 6000 civilian fatalities annually in the U.S. There is an urgent need for a safe, potent, and reliable fire retardant (FR) system that can be used in commodity polymers to reduce their flammability and protect lives and properties. The goal of this project is to develop a novel, safe and biobased FR system using agricultural and woody biomass. The project is divided into three major tasks. The first is to manufacture zinc oxide (ZnO) coated cellulose nanoparticles and evaluate their morphological, chemical, structural and thermal characteristics. The second task will be to design and manufacture polymer composites containing nano sized zinc oxide and cellulose crystals. Finally the third task will be to test the fire retardancy and mechanical properties of the composites. Wbelieve that presence of zinc oxide and cellulose nanocrystals in polymers will limit the oxygen supply by charring, shielding the surface and cellulose nanocrystals will make composites strong. The outcome of this project will help in developing a safe, reliable and biobased fire retardant for consumer goods, automotive, building products and will help in saving human lives and property damage due to fire.

One day, I hope to hear about Canadian research into applications for nanocellulose materials. (fingers crossed for good luck)

Are plants and brains alike?

The answer to the question about whether brains and plants are alike is the standard ‘yes and no’. That said, there are some startling similarities from a statistical perspective (from a July 6, 2017 Salk Institute news release (also received via email; Note: Links have been removed),

Plants and brains are more alike than you might think: Salk scientists discovered that the mathematical rules governing how plants grow are similar to how brain cells sprout connections. The new work, published in Current Biology on July 6, 2017, and based on data from 3D laser scanning of plants, suggests there may be universal rules of logic governing branching growth across many biological systems.

“Our project was motivated by the question of whether, despite all the diversity we see in plant forms, there is some form or structure they all share,” says Saket Navlakha, assistant professor in Salk’s Center for Integrative Biology and senior author of the paper. “We discovered that there is—and, surprisingly, the variation in how branches are distributed in space can be described mathematically by something called a Gaussian function, which is also known as a bell curve.”

Being immobile, plants have to find creative strategies for adjusting their architecture to address environmental challenges, like being shaded by a neighbor. The diversity in plant forms, from towering redwoods to creeping thyme, is a visible sign of these strategies, but Navlakha wondered if there was some unseen organizing principle at work. To find out, his team used high-precision 3D scanning technology to measure the architecture of young plants over time and quantify their growth in ways that could be analyzed mathematically.

“This collaboration arose from a conversation that Saket and I had shortly after his arrival at Salk,” says Professor and Director of the Plant Molecular and Cellular Biology Laboratory Joanne Chory, who, along with being the Howard H. and Maryam R. Newman Chair in Plant Biology, is also a Howard Hughes Medical Investigator and one of the paper’s coauthors. “We were able to fund our studies thanks to Salk’s innovation grant program and the Howard Hughes Medical Institute.”

The team began with three agriculturally valuable crops: sorghum, tomato and tobacco. The researchers grew the plants from seeds under conditions the plants might experience naturally (shade, ambient light, high light, high heat and drought). Every few days for a month, first author Adam Conn scanned each plant to digitally capture its growth. In all, Conn scanned almost 600 plants.

“We basically scanned the plants like you would scan a piece of paper,” says Conn, a Salk research assistant. “But in this case the technology is 3D and allows us to capture a complete form—the full architecture of how the plant grows and distributes branches in space.”

From left: Adam Conn and Saket Navlakha
From left: Adam Conn and Saket Navlakha Credit: Salk Institute

Each plant’s digital representation is called a point cloud, a set of 3D coordinates in space that can be analyzed computationally. With the new data, the team built a statistical description of theoretically possible plant shapes by studying the plant’s branch density function. The branch density function depicts the likelihood of finding a branch at any point in the space surrounding a plant.

This model revealed three properties of growth: separability, self-similarity and a Gaussian branch density function. Separability means that growth in one spatial direction is independent of growth in other directions. According to Navlakha, this property means that growth is very simple and modular, which may let plants be more resilient to changes in their environment. Self-similarity means that all the plants have the same underlying shape, even though some plants may be stretched a little more in one direction, or squeezed in another direction. In other words, plants don’t use different statistical rules to grow in shade than they do to grow in bright light. Lastly, the team found that, regardless of plant species or growth conditions, branch density data followed a Gaussian distribution that is truncated at the boundary of the plant. Basically, this says that branch growth is densest near the plant’s center and gets less dense farther out following a bell curve.

The high level of evolutionary efficiency suggested by these properties is surprising. Even though it would be inefficient for plants to evolve different growth rules for every type of environmental condition, the researchers did not expect to find that plants would be so efficient as to develop only a single functional form. The properties they identified in this work may help researchers evaluate new strategies for genetically engineering crops.

Previous work by one of the paper’s authors, Charles Stevens, a professor in Salk’s Molecular Neurobiology Laboratory, found the same three mathematical properties at work in brain neurons. “The similarity between neuronal arbors and plant shoots is quite striking, and it seems like there must be an underlying reason,” says Stevens. “Probably, they both need to cover a territory as completely as possible but in a very sparse way so they don’t interfere with each other.”

The next challenge for the team is to identify what might be some of the mechanisms at the molecular level driving these changes. Navlakha adds, “We could see whether these principles deviate in other agricultural species and maybe use that knowledge in selecting plants to improve crop yields.”

Should you not be able to access the news release, you can find the information in a July 6, 2017 news item on ScienceDaily.

For the paper, here’s a link and a citation,

A Statistical Description of Plant Shoot Architecture by Adam Conn, Ullas V. Pedmale4, Joanne Chory, Charles F. Stevens, Saket Navlakha. Current Biology DOI: http://dx.doi.org/10.1016/j.cub.2017.06.009 Publication stage: In Press Corrected Proof July 2017

This paper is behind a paywall.

Here’s an image that illustrates the principles the researchers are attempting to establish,

This illustration represents how plants use the same rules to grow under widely different conditions (for example, cloudy versus sunny), and that the density of branches in space follows a Gaussian (“bell curve”) distribution, which is also true of neuronal branches in the brain. Credit: Salk Institute