Category Archives: forestry

Preparing nanocellulose for eventual use in* dressings for wounds

Michael Berger writes about a medical application for wood-based nanocellulose in an April 10, 2014 Nanowerk Spotlight article by featuring some recent research from Norway (Note: Links have been removed),

Cellulose is a biopolymer consisting of long chains of glucose with unique structural properties whose supply is practically inexhaustible. It is found in the cell walls of plants where it serves to provide a supporting framework – a sort of skeleton. Nanocellulose from wood – i.e. wood fibers broken down to the nanoscale – is a promising nanomaterial with potential applications as a substrate for printing electronics, filtration, or biomedicine.

Researchers have now reported on a method to control the surface chemistry of nanocellulose. The paper appeared in the April 8, 2014 online edition of the Journal of Biomaterials Applications (“Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels”).

Using a specific chemical pretreatment as example (carboxymethylation and periodate oxidation), a team from the Paper and Fibre Research Institute (PFI) in Norway demonstrated that they could manufacture nanofibrils with a considerable amount of carboxyl groups and aldehyde groups, which could be applied for functionalizing the material.

The Norwegian researchers are working within the auspices of PFI‘s NanoHeal project featured in my Aug. 23, 2012 posting. It’s good to see that progress is being made. From the Berger’s article,

A specific activity that the PFI researchers and collaborators are working with in the NanoHeal project is the production of an ultrapure nanocellulose which is important for biomedical applications. Considering that the nanocellulose hydrogel material can be cross-linked and have a reactive surface chemistry there are various potential applications.

“A concrete application that we are working with in this specific case is as dressing for wound healing, another is scaffolds,” adds senior research scientist and co-author Kristin Syverud.

“Production of an ultrapure nanocellulose quality is an activity that we are intensifying together with our research partners at the Institute of Cancer Research and Molecular Medicine in Trondheim,” notes Chinga-Carrasco [Gary Chinga-Carrasco, a senior research scientist at PFI]. “The results look good and we expect to have a concrete protocol for production of ultrapure nanocellulose soon, for an adequate assessment of its biocompatibility.”

“We have various groups working with assessment of the suitability of nanocellulose as a barrier against wound bacteria and also with the assessment of the cytotoxicity and biocompatibility,” he says. “However, as a first step we have intensified our work on the production of nanocellulose that we expect will be adequate for wound dressings, part of these activities are described in this paper.”

I suggest reading Berger’s article in its totality for a more detailed description of the many hurdles researchers still have to overcome. For the curious, here’s a link to and a citation for the paper,

Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels by Gary Chinga-Carrasco & Kristin Syverud. Published online before print April 8, 2014, doi: 10.1177/0885328214531511 J Biomater Appl April 8, 2014 0885328214531511

This paper is behind a paywall.

I was hoping to find someone from this group in the list of speakers for 2014 TAPPI Nanotechnology conference website here (officially known as 2014 TAPPI [Technical Association of the Pulp and Paper Industry] International Conference on Nanotechnology for Renewable Materials) being held in Vancouver, Canada (June 23-26, 2014) but had no luck.

* ‘as’ changed to ‘in’ Apr.14.14 10:50 am PDT in headline

Is there a supercapacitor hiding in your tree?

I gather the answer is: Yes, there is a supercapacitor in your tree as researchers at Oregon State University (OSU) have found a way to use tree cellulose as a building component for supercapacitors. From an April 7, 2014 news item on ScienceDaily,

Based on a fundamental chemical discovery by scientists at Oregon State University, it appears that trees may soon play a major role in making high-tech energy storage devices.

OSU chemists have found that cellulose — the most abundant organic polymer on Earth and a key component of trees — can be heated in a furnace in the presence of ammonia, and turned into the building blocks for supercapacitors.

An April 7, 2014 OSU news release (also on EurekAlert), which originated the news item portrays great excitement (Note: Links have been removed),

These supercapacitors are extraordinary, high-power energy devices with a wide range of industrial applications, in everything from electronics to automobiles and aviation. But widespread use of them has been held back primarily by cost and the difficulty of producing high-quality carbon electrodes.

The new approach just discovered at Oregon State can produce nitrogen-doped, nanoporous carbon membranes – the electrodes of a supercapacitor – at low cost, quickly, in an environmentally benign process. The only byproduct is methane, which could be used immediately as a fuel or for other purposes.

“The ease, speed and potential of this process is really exciting,” said Xiulei (David) Ji, an assistant professor of chemistry in the OSU College of Science, and lead author on a study announcing the discovery in Nano Letters, a journal of the American Chemical Society. The research was funded by OSU.

“For the first time we’ve proven that you can react cellulose with ammonia and create these N-doped nanoporous carbon membranes,” Ji said. “It’s surprising that such a basic reaction was not reported before. Not only are there industrial applications, but this opens a whole new scientific area, studying reducing gas agents for carbon activation.

“We’re going to take cheap wood and turn it into a valuable high-tech product,” he said.

The news release includes some technical information about the carbon membranes and information about the uses to which supercapacitors are put,

These carbon membranes at the nano-scale are extraordinarily thin – a single gram of them can have a surface area of nearly 2,000 square meters. That’s part of what makes them useful in supercapacitors. And the new process used to do this is a single-step reaction that’s fast and inexpensive. It starts with something about as simple as a cellulose filter paper – conceptually similar to the disposable paper filter in a coffee maker.

The exposure to high heat and ammonia converts the cellulose to a nanoporous carbon material needed for supercapacitors, and should enable them to be produced, in mass, more cheaply than before.

A supercapacitor is a type of energy storage device, but it can be recharged much faster than a battery and has a great deal more power. They are mostly used in any type of device where rapid power storage and short, but powerful energy release is needed.

Supercapacitors can be used in computers and consumer electronics, such as the flash in a digital camera. They have applications in heavy industry, and are able to power anything from a crane to a forklift. A supercapacitor can capture energy that might otherwise be wasted, such as in braking operations. And their energy storage abilities may help “smooth out” the power flow from alternative energy systems, such as wind energy.

They can power a defibrillator, open the emergency slides on an aircraft and greatly improve the efficiency of hybrid electric automobiles.

Besides supercapacitors, nanoporous carbon materials also have applications in adsorbing gas pollutants, environmental filters, water treatment and other uses.

“There are many applications of supercapacitors around the world, but right now the field is constrained by cost,” Ji said. “If we use this very fast, simple process to make these devices much less expensive, there could be huge benefits.”

Here’s a link to and a citation for the paper,

Pyrolysis of Cellulose under Ammonia Leads to Nitrogen-Doped Nanoporous Carbon Generated through Methane Formation by Wei Luo, Bao Wang, Christopher G. Heron, Marshall J. Allen, Jeff Morre, Claudia S. Maier, William F. Stickle, and Xiulei Ji. Nano Lett., Article ASAP DOI: 10.1021/nl500859p Publication Date (Web): March 28, 2014
Copyright © 2014 American Chemical Society

The article is behind a paywall.

One final observation, one of the researchers, William F. Stickle is affiliated with HewLett Packard and not Oregon State University as are the others.

Good lignin, bad lignin: Florida researchers use plant waste to create lignin nanotubes while researchers in British Columbia develop trees with less lignin

An April 4, 2014 news item on Azonano describes some nanotube research at the University of Florida that reaches past carbon to a new kind of nanotube,

Researchers with the University of Florida’s [UF] Institute of Food and Agricultural Sciences took what some would consider garbage and made a remarkable scientific tool, one that could someday help to correct genetic disorders or treat cancer without chemotherapy’s nasty side effects.

Wilfred Vermerris, an associate professor in UF’s department of microbiology and cell science, and Elena Ten, a postdoctoral research associate, created from plant waste a novel nanotube, one that is much more flexible than rigid carbon nanotubes currently used. The researchers say the lignin nanotubes – about 500 times smaller than a human eyelash – can deliver DNA directly into the nucleus of human cells in tissue culture, where this DNA could then correct genetic conditions. Experiments with DNA injection are currently being done with carbon nanotubes, as well.

“That was a surprising result,” Vermerris said. “If you can do this in actual human beings you could fix defective genes that cause disease symptoms and replace them with functional DNA delivered with these nanotubes.”

An April 3, 2014 University of Florida’s Institute of Food and Agricultural Sciences news release, which originated the news item, describes the lignin nanotubes (LNTs) and future applications in more detail,

The nanotube is made up of lignin from plant material obtained from a UF biofuel pilot facility in Perry, Fla. Lignin is an integral part of the secondary cell walls of plants and enables water movement from the roots to the leaves, but it is not used to make biofuels and would otherwise be burned to generate heat or electricity at the biofuel plant. The lignin nanotubes can be made from a variety of plant residues, including sorghum, poplar, loblolly pine and sugar cane. [emphasis mine]

The researchers first tested to see if the nanotubes were toxic to human cells and were surprised to find that they were less so than carbon nanotubes. Thus, they could deliver a higher dose of medicine to the human cell tissue.  Then they researched if the nanotubes could deliver plasmid DNA to the same cells and that was successful, too. A plasmid is a small DNA molecule that is physically separate from, and can replicate independently of, chromosomal DNA within a cell.

“It’s not a very smooth road because we had to try different experiments to confirm the results,” Ten said. “But it was very fruitful.”

In cases of genetic disorders, the nanotube would be loaded with a functioning copy of a gene, and injected into the body, where it would target the affected tissue, which then makes the missing protein and corrects the genetic disorder.

Although Vermerris cautioned that treatment in humans is many years away, among the conditions that these gene-carrying nanotubes could correct include cystic fibrosis and muscular dystrophy. But, he added, that patients would have to take the corrective DNA via nanotubes on a continuing basis.

Another application under consideration is to use the lignin nanotubes for the delivery of chemotherapy drugs in cancer patients. The nanotubes would ensure the drugs only get to the tumor without affecting healthy tissues.

Vermerris said they created different types of nanotubes, depending on the experiment. They could also adapt nanotubes to a patient’s specific needs, a process called customization.

“You can think about it as a chest of drawers and, depending on the application, you open one drawer or use materials from a different drawer to get things just right for your specific application,” he said.  “It’s not very difficult to do the customization.”

The next step in the research process is for Vermerris and Ten to begin experiments on mice. They are in the application process for those experiments, which would take several years to complete.  If those are successful, permits would need to be obtained for their medical school colleagues to conduct research on human patients, with Vermerris and Ten providing the nanotubes for that research.

“We are a long way from that point,” Vermerris said. “That’s the optimistic long-term trajectory.”

I hope they have good luck with this work. I have emphasized the plant waste the University of Florida scientists studied due to the inclusion of poplar, which is featured in the University of British Columbia research work also being mentioned in this post.

Getting back to Florida for a moment, here’s a link to and a citation for the paper,

Lignin Nanotubes As Vehicles for Gene Delivery into Human Cells by Elena Ten, Chen Ling, Yuan Wang, Arun Srivastava, Luisa Amelia Dempere, and Wilfred Vermerris. Biomacromolecules, 2014, 15 (1), pp 327–338 DOI: 10.1021/bm401555p Publication Date (Web): December 5, 2013
Copyright © 2013 American Chemical Society

This is an open access paper.

Meanwhile, researchers at the University of British Columbia (UBC) are trying to limit the amount of lignin in trees (specifically poplars, which are not mentioned in this excerpt but in the next). From an April 3, 2014 UBC news release,

Researchers have genetically engineered trees that will be easier to break down to produce paper and biofuel, a breakthrough that will mean using fewer chemicals, less energy and creating fewer environmental pollutants.

“One of the largest impediments for the pulp and paper industry as well as the emerging biofuel industry is a polymer found in wood known as lignin,” says Shawn Mansfield, a professor of Wood Science at the University of British Columbia.

Lignin makes up a substantial portion of the cell wall of most plants and is a processing impediment for pulp, paper and biofuel. Currently the lignin must be removed, a process that requires significant chemicals and energy and causes undesirable waste.

Researchers used genetic engineering to modify the lignin to make it easier to break down without adversely affecting the tree’s strength.

“We’re designing trees to be processed with less energy and fewer chemicals, and ultimately recovering more wood carbohydrate than is currently possible,” says Mansfield.

Researchers had previously tried to tackle this problem by reducing the quantity of lignin in trees by suppressing genes, which often resulted in trees that are stunted in growth or were susceptible to wind, snow, pests and pathogens.

“It is truly a unique achievement to design trees for deconstruction while maintaining their growth potential and strength.”

The study, a collaboration between researchers at the University of British Columbia, the University of Wisconsin-Madison, Michigan State University, is a collaboration funded by Great Lakes Bioenergy Research Center, was published today in Science.

Here’s more about lignin and how a decrease would free up more material for biofuels in a more environmentally sustainable fashion, from the news release,

The structure of lignin naturally contains ether bonds that are difficult to degrade. Researchers used genetic engineering to introduce ester bonds into the lignin backbone that are easier to break down chemically.

The new technique means that the lignin may be recovered more effectively and used in other applications, such as adhesives, insolation, carbon fibres and paint additives.

Genetic modification

The genetic modification strategy employed in this study could also be used on other plants like grasses to be used as a new kind of fuel to replace petroleum.

Genetic modification can be a contentious issue, but there are ways to ensure that the genes do not spread to the forest. These techniques include growing crops away from native stands so cross-pollination isn’t possible; introducing genes to make both the male and female trees or plants sterile; and harvesting trees before they reach reproductive maturity.

In the future, genetically modified trees could be planted like an agricultural crop, not in our native forests. Poplar is a potential energy crop for the biofuel industry because the tree grows quickly and on marginal farmland. [emphasis mine] Lignin makes up 20 to 25 per cent of the tree.

“We’re a petroleum reliant society,” says Mansfield. “We rely on the same resource for everything from smartphones to gasoline. We need to diversify and take the pressure off of fossil fuels. Trees and plants have enormous potential to contribute carbon to our society.”

As noted earlier, the researchers in Florida mention poplars in their paper (Note: Links have been removed),

Gymnosperms such as loblolly pine (Pinus taeda L.) contain lignin that is composed almost exclusively of G-residues, whereas lignin from angiosperm dicots, including poplar (Populus spp.) contains a mixture of G- and S-residues. [emphasis mine] Due to the radical-mediated addition of monolignols to the growing lignin polymer, lignin contains a variety of interunit bonds, including aryl–aryl, aryl–alkyl, and alkyl–alkyl bonds.(3) This feature, combined with the association between lignin and cell-wall polysaccharides, which involves both physical and chemical interactions, make the isolation of lignin from plant cell walls challenging. Various isolation methods exist, each relying on breaking certain types of chemical bonds within the lignin, and derivatizations to solubilize the resulting fragments.(5) Several of these methods are used on a large scale in pulp and paper mills and biorefineries, where lignin needs to be removed from woody biomass and crop residues(6) in order to use the cellulose for the production of paper, biofuels, and biobased polymers. The lignin is present in the waste stream and has limited intrinsic economic value.(7)

Since hydroxyl and carboxyl groups in lignin facilitate functionalization, its compatibility with natural and synthetic polymers for different commercial applications have been extensively studied.(8-12) One of the promising directions toward the cost reduction associated with biofuel production is the use of lignin for low-cost carbon fibers.(13) Other recent studies reported development and characterization of lignin nanocomposites for multiple value-added applications. For example, cellulose nanocrystals/lignin nanocomposites were developed for improved optical, antireflective properties(14, 15) and thermal stability of the nanocomposites.(16) [emphasis mine] Model ultrathin bicomponent films prepared from cellulose and lignin derivatives were used to monitor enzyme binding and cellulolytic reactions for sensing platform applications.(17) Enzymes/“synthetic lignin” (dehydrogenation polymer (DHP)) interactions were also investigated to understand how lignin impairs enzymatic hydrolysis during the biomass conversion processes.(18)

The synthesis of lignin nanotubes and nanowires was based on cross-linking a lignin base layer to an alumina membrane, followed by peroxidase-mediated addition of DHP and subsequent dissolution of the membrane in phosphoric acid.(1) Depending upon monomers used for the deposition of DHP, solid nanowires, or hollow nanotubes could be manufactured and easily functionalized due to the presence of many reactive groups. Due to their autofluorescence, lignin nanotubes permit label-free detection under UV radiation.(1) These features make lignin nanotubes suitable candidates for numerous biomedical applications, such as the delivery of therapeutic agents and DNA to specific cells.

The synthesis of LNTs in a sacrificial template membrane is not limited to a single source of lignin or a single lignin isolation procedure. Dimensions of the LNTs and their cytotoxicity to HeLa cells appear to be determined primarily by the lignin isolation procedure, whereas the transfection efficiency is also influenced by the source of the lignin (plant species and genotype). This means that LNTs can be tailored to the application for which they are intended. [emphasis mine] The ability to design LNTs for specific purposes will benefit from a more thorough understanding of the relationship between the structure and the MW of the lignin used to prepare the LNTs, the nanomechanical properties, and the surface characteristics.

We have shown that DNA is physically associated with the LNTs and that the LNTs enter the cytosol, and in some case the nucleus. The LNTs made from NaOH-extracted lignin are of special interest, as they were the shortest in length, substantially reduced HeLa cell viability at levels above approximately 50 mg/mL, and, in the case of pine and poplar, were the most effective in the transfection [penetrating the cell with a bacterial plasmid to leave genetic material in this case] experiments. [emphasis mine]

As I see the issues presented with these two research efforts, there are environmental and energy issues with extracting the lignin while there seem to be some very promising medical applications possible with lignin ‘waste’. These two research efforts aren’t necessarily antithetical but they do raise some very interesting issues as to how we approach our use of resources and future policies.

NanoCelluComp (nanocellulose composites, a European Union project) waves goodbye

As I noted in my Feb. 6, 2014 posting about NanoCelluComp and its appearance at the JEC 2014 Composites Show and Conferences in Paris (France), 11-13th March, 2014, the project is experiencing its sunset days.

The project’s (European Commission-funded project under the European Union’s 7th Framework Programme) final (6th) newsletter (which can be found here) has just been published and there are a few interesting items to be found.

They list each of their ‘work packages’ and then describe the progress,

Work Package 1
Extraction of nanocellulose from carrot.
Work Packages 2 & 3
Stabilization and modification of nanocellulose suspensions.
Work Package 4
Nanocellulose based materials.
Work Package 5
Integrated technology for making new materials.
Work Package 6
Assessment of new technology.

NanoCelluComp Work Programme Activities.
Work packages 1, 2 and 3 are complete; nonetheless, these methods have been further improved as we have learned more about the properties of the extracted nanocellulose and better ways of removing unwanted components of the vegetable waste.

Activities in work package 4 have provided larger-scale production (100’s of g) of fibres that have been incorporated into resins (work package 5). Production and processing aspects were further fine-tuned over the autumn and early winter to achieve the best performance characteristics in the final composites. Different methods have been used to produce composite materials and full mechanical testing of each has been performed. Finally, demonstrator products have been produced for the JEC Europe 2014 show in Paris (March 11-13).

In work package 6, full life-cycle assessment has been performed on the different production technologies and final demonstrator products.

I’m particularly intrigued by Work Package 1 and its reference to carrots, the first time I’ve heard of carrot-derived nanocellulose. I hope to hear more about these carrots some day. In the meantime, there is more information about vegetable waste and nanocellulose at the JEC conference where NanoCelluComp can be found at Exhibition Stand D83 or in my Feb. 6, 2014 posting.

The 6th newsletter also offers a list of recent papers and publications, their own and others related to nanocellulose. Included here is the list of publications from other agencies,

From cellulose to textile fibre and a ready product

Aalto University has developed a new process with global significance for working cellulose into a textile fibre.

The world’s first textile product made from Ioncell cellulose fibre as well as other results yielded by research programs were introduced at a seminar held by the Finnish Bioeconomy Cluster FIBIC Oy on November 20, 2013.

www.nanocellucomp.eu/from-cellulose-to-textile-fibre-and-a-ready-product

This Self-Cleaning Plate May Mean You’ll Never Have To Do The Dishes

Researchers at the KTH Royal Institute of Technology (Stockholm) in collaboration with Innventia, have designed a prototype dinner plate made from nanocellulose and coated with a super-hydrophobic material.

www.nanocellucomp.eu/latest-news/this-sel-cleaning-plate-may-mean-youll-never-have-to-do-the-dishes

New report – Biocomposites 350,000t production of wood and natural fibre composites in the European Union in 2012

This market report gives the first comprehensive and detailed picture of the use and amount of wood and natural fibre reinforced composites in the European bio-based economy.

www.nanocellucomp.eu/latest-news/new-report-biocomposites-350000t-production-of-wood-and-natural-fibre-composites-in-the-european-union-in-2012

It looks like some good work has been done and I applaud the group for reaching out to communicate. I wish the Canadian proponents would adopt the practice.

All the best to the NanoCelluComp team and may the efforts be ‘fruitful’.

 

 

Cleaning up oils spills with cellulose nanofibril aerogels

Given the ever-expanding scope of oil and gas production as previously impossible to reach sources are breached and previously unusable contaminated sources are purified for use while major pipelines and mega tankers are being built to transport all this product, it’s good to see that research into cleaning up oil spills is taking place. A Feb. 26, 2014 news item on Azonano features a project at the University of Wisconsin–Madison,

Cleaning up oil spills and metal contaminates in a low-impact, sustainable and inexpensive manner remains a challenge for companies and governments globally.

But a group of researchers at the University of Wisconsin–Madison is examining alternative materials that can be modified to absorb oil and chemicals without absorbing water. If further developed, the technology may offer a cheaper and “greener” method to absorb oil and heavy metals from water and other surfaces.

Shaoqin “Sarah” Gong, a researcher at the Wisconsin Institute for Discovery (WID) and associate professor of biomedical engineering, graduate student Qifeng Zheng, and Zhiyong Cai, a project leader at the USDA Forest Products Laboratory in Madison, have recently created and patented the new aerogel technology.

The Feb. 25, 2014 University of Wisconsin–Madison news release, which originated the news item, explains a little bit about aergels and about what makes these cellulose nanofibril-based aerogels special,

Aerogels, which are highly porous materials and the lightest solids in existence, are already used in a variety of applications, ranging from insulation and aerospace materials to thickening agents in paints. The aerogel prepared in Gong’s lab is made of cellulose nanofibrils (sustainable wood-based materials) and an environmentally friendly polymer. Furthermore, these cellulose-based aerogels are made using an environmentally friendly freeze-drying process without the use of organic solvents.

It’s the combination of this “greener” material and its high performance that got Gong’s attention.

“For this material, one unique property is that it has superior absorbing ability for organic solvents — up to nearly 100 times its own weight,” she says. “It also has strong absorbing ability for metal ions.”

Treating the cellulose-based aerogel with specific types of silane after it is made through the freeze-drying process is a key step that gives the aerogel its water-repelling and oil-absorbing properties.

The researchers have produced a video showing their aerogel in operation,

For those who don’t have the time for a video, the news release describes some of the action taking place,

“So if you had an oil spill, for example, the idea is you could throw this aerogel sheet in the water and it would start to absorb the oil very quickly and efficiently,” she says. “Once it’s fully saturated, you can take it out and squeeze out all the oil. Although its absorbing capacity reduces after each use, it can be reused for a couple of cycles.”

In addition, this cellulose-based aerogel exhibits excellent flexibility as demonstrated by compression mechanical testing.

Though much work needs to be done before the aerogel can be mass-produced, Gong says she’s eager to share the technology’s potential benefits beyond the scientific community.

“We are living in a time where pollution is a serious problem — especially for human health and for animals in the ocean,” she says. “We are passionate to develop technology to make a positive societal impact.”

Here’s a link to and a citation for the research paper,

Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents by Qifeng Zheng, Zhiyong Cai, and Shaoqin Gong.  J. Mater. Chem. A, 2014,2, 3110-3118 DOI: 10.1039/C3TA14642A First published online 16 Dec 2013

This paper is behind a paywall. I last wrote about oil-absorbing nanosponges in an April 17, 2012 posting. Those sponges were based on carbon nanotubes (CNTs).

Fundamental mechanical behaviour of cellulose nanocrystals (aka nanocrystalline cellulose)

Emil Venere at Purdue University offers an excellent explanation of why there’s so much international interest in cellulose nanocrystals (CNC aka, nanocrystalline cellulose [NCC]) in his Dec. 16, 2013 Purdue University (Indiana, US) news release (also on EurekAlert), Note: A link has been removed,

The same tiny cellulose crystals that give trees and plants their high strength, light weight and resilience, have now been shown to have the stiffness of steel.

The nanocrystals might be used to create a new class of biomaterials with wide-ranging applications, such as strengthening construction materials and automotive components.

Calculations using precise models based on the atomic structure of cellulose show the crystals have a stiffness of 206 gigapascals, which is comparable to steel, said Pablo D. Zavattieri, a Purdue University assistant professor of civil engineering.

Here’s an image of the cellulose crystals being examined,

This transmission electron microscope image shows cellulose nanocrystals, tiny structures that give trees and plants their high strength, light weight and resilience. The nanocrystals might be used to create a new class of biomaterials that would have a wide range of applications. (Purdue Life Sciences Microscopy Center)

This transmission electron microscope image shows cellulose nanocrystals, tiny structures that give trees and plants their high strength, light weight and resilience. The nanocrystals might be used to create a new class of biomaterials that would have a wide range of applications. (Purdue Life Sciences Microscopy Center)

You’ll notice this image is not enhanced and made pretty as compared to the images in my Dec. 16, 2013 posting about Bristol University’s Art of Science competition. It takes a lot of work to turn the types of images scientists use into ‘art’.

Getting back to the CNC, this news release was probably written by someone who’s not familiar with the other work being done in the field (university press officers typically write about a wide range of topics and cannot hope to have in depth knowledge on each topic) and so it’s being presented as if it is brand new information. In fact, there has been several years work done in five other national jurisdictions that I know of (Sweden, Finland, Canada, Brazil, and Israel) and there are likely more. That’s not including other US states pursuing research in this area, notably Wisconsin.

What I (taking into account  my limitations) find particularly exciting in this work is the detail they’ve been able to determine and the reference to quantum mechanics. Here’s more from the news release (Note: Links have been removed),

“It is very difficult to measure the properties of these crystals experimentally because they are really tiny,” Zavattieri said. “For the first time, we predicted their properties using quantum mechanics.”

The nanocrystals are about 3 nanometers wide by 500 nanometers long – or about 1/1,000th the width of a grain of sand – making them too small to study with light microscopes and difficult to measure with laboratory instruments.

The findings represent a milestone in understanding the fundamental mechanical behavior of the cellulose nanocrystals.

“It is also the first step towards a multiscale modeling approach to understand and predict the behavior of individual crystals, the interaction between them, and their interaction with other materials,” Zavattieri said. “This is important for the design of novel cellulose-based materials as other research groups are considering them for a huge variety of applications, ranging from electronics and medical devices to structural components for the automotive, civil and aerospace industries.”

From an applications perspective (which is what excites so much international interest),

The cellulose nanocrystals represent a potential green alternative to carbon nanotubes for reinforcing materials such as polymers and concrete. Applications for biomaterials made from the cellulose nanocrystals might include biodegradable plastic bags, textiles and wound dressings; flexible batteries made from electrically conductive paper; new drug-delivery technologies; transparent flexible displays for electronic devices; special filters for water purification; new types of sensors; and computer memory.

Cellulose could come from a variety of biological sources including trees, plants, algae, ocean-dwelling organisms called tunicates, and bacteria that create a protective web of cellulose.

“With this in mind, cellulose nanomaterials are inherently renewable, sustainable, biodegradable and carbon-neutral like the sources from which they were extracted,” Moon said. “They have the potential to be processed at industrial-scale quantities and at low cost compared to other materials.”

Biomaterials manufacturing could be a natural extension of the paper and biofuels industries, using technology that is already well-established for cellulose-based materials.

“Some of the byproducts of the paper industry now go to making biofuels, so we could just add another process to use the leftover cellulose to make a composite material,” Moon said. “The cellulose crystals are more difficult to break down into sugars to make liquid fuel. So let’s make a product out of it, building on the existing infrastructure of the pulp and paper industry.”

Their surface can be chemically modified to achieve different surface properties.

“For example, you might want to modify the surface so that it binds strongly with a reinforcing polymer to make a new type of tough composite material, or you might want to change the chemical characteristics so that it behaves differently with its environment,” Moon said.

Zavattieri plans to extend his research to study the properties of alpha-chitin, a material from the shells of organisms including lobsters, crabs, mollusks and insects. Alpha-chitin appears to have similar mechanical properties as cellulose.

“This material is also abundant, renewable and waste of the food industry,” he said.

Here’s a link to and a citation for the paper,

Anisotropy of the Elastic Properties of Crystalline Cellulose Iβ from First Principles Density Functional Theory with Van der Waals Interactions by Fernando L. Dri, Louis G. Hector Jr., Robert J. Moon, Pablo D. Zavattieri.  Cellulose December 2013, Volume 20, Issue 6, pp 2703-2718. 10.1007/s10570-013-0071-8

This paper is behind a paywall although you can preview the first few pages.

Development of US plant to produce cellulosic nanomaterials announced again or is this a new one?

There’s a new announcement from the Secretary of the US Department of Agriculture (USDA) about building a commercial production plant in Wisconsin for producing cellulosic nanomaterials that greatly resembles an earlier announcement in 2012. Let’s start with the new announcement, from the Dec. 11, 2013 USDA press release (h/t AgriPulse Dec. 11, 2013 news item),

U.S. Department of Agriculture (USDA) Secretary Tom Vilsack today announced a public-private partnership to rapidly advance the development of the first U.S. commercial facility producing cellulosic nanomaterial, a wood fiber broken down to the nanoscale. The partnership is between the U.S. Endowment for Forestry and Communities (Endowment) and the U.S. Forest Service.

“We believe in the potential of wood- based nanotechnology to strengthen rural America by creating sustainable jobs and adding timber value while also creating conservation opportunities in working forests,” said Vilsack. “This public- private partnership will develop high-tech outputs from the forest products sector, and promote the invention of renewable products that have substantial environmental benefits.”

The three-year partnership will promote cellulosic nanomaterial as a commercially viable enterprise by building on work done by the Forest Products Laboratory in Madison, Wis. The partnership seeks to overcome technical barriers to large- scale wood-based nanotechnology processing, while filling gaps in the science and technology that are needed for commercialization. Initial funding comes from the Endowment and the Forest Service. The partnership is currently seeking additional public and private sector funding.

Together with partners, this new venture will:

  • Emphasize the potential of wood- based nanotechnology for the economy and the environment.
  • Overcome technical barriers to commercialization of wood- based nanotechnology.
  • Demonstrate commitment to creating high paying jobs in rural America through value- added manufacturing and high value products.
  • Showcase the commitment of USDA and the Forest Service to innovation.

The previous announcement which I covered in my July 27, 2012 posting has some similarities, although they were announcing the expected construction of a pilot plant for a specific forest-derived cellulosic nanomaterial,,

According to the July 25, 2012 article by Rick Barrett originally published by Milwaukee Journal Sentinel McClatchy-Tribune Information Services) on the equities.com website,

The U.S. Forest Products Laboratory, in Madison, says it’s opening a $1.7 million pilot plant that will support an emerging market for wood products derived from nanotechnology.

…The pilot plant will supply nanocrystals to companies and universities that want to make materials from them or conduct their own experiments. For now, at least, it will employ just one person.

But while the Forest Products Laboratory wants to foster the technology, it doesn’t want to compete with businesses interested in producing the materials.

“We are part of the federal government, so we cannot compete against commercial companies. So if someone comes in and starts making these materials on a commercial level, we will have to get out of it,” Rudie said. That’s why, he added, the program has bought only equipment it can use for other purposes.

At a guess I’d say plans were changed (to my knowledge there’ve been no announcements about the opening of a pilot plant) and they decided that a commercial plant in a private/public partnership would be the way to go. I notice they’re very careful to use the term cellulosic nanomaterials, which suggests they will be producing not just the crystals mentioned in the 2012 story but fibrils and more.

On the Canadian side of things,, Alberta gave its pilot cellulose nanocrystal (CNC, aka, nanocrystalline cellulose [NCC]) plant a soft launch in Sept. 2013, as per my Nov. 19, 2013 posting,  and Quebec’s CelluForce plant (a  Domtar/FPInnovations partnership [private/public]) has a stockpile of the crystals and is, to my knowledge (my Oct. 3, 2013 posting), is not producing any additional material.

 

Future biomedical applications for CNC (cellulose nanocrystals, aka NCC [nanocrystalline cellulose]) from Polytechnic Institute of New York University (NYU-Poly)

It’s good to see a project that might result in applications for CNC (aka, NCC). I commented briefly about the CNC situation earlier today in my Nov. 25, 2013 posting about Lomiko Metals (based in Surrey, BC, Canada) and its focus on developing markets for its product (graphite flakes/graphene). By contrast, Canada’s CelluForce plant (in Québec) has stopped production to avoid adding to its stockpile (as per my Oct. 3, 2013 posting), Alberta has launched a pilot CNC plant (my Nov. 19, 2013 posting), Blue Goose Biorefineries in Saskatchewan was ramping up production according to my May 7, 2013 posting and someone, in a blog posting comment, claimed that Pure Liganin in BC produces CNC (which I cannot confirm since the company mentions neither CNC nor NCC).,

Back to happier matters, a research team from Polytechnic Institute of New York University (NYU-Poly) has discovered information that could be helpful for scientists working with protein polymers (from the Nov. 22, 2013 news item on Azonano,,

A team of researchers has uncovered critical information that could help scientists understand how protein polymers interact with other self-assembling biopolymers. The research helps explain naturally occurring nano-material within cells and could one day lead to engineered bio-composites for drug delivery, artificial tissue, bio-sensing, or cancer diagnosis.

The Nov. 21, 2013 NYU-Poly press release, which originated the news item, goes on to explain the CNC connection to this work,

Bionanocomposites provide a singular area of research that incorporates biology, chemistry, materials science, engineering, and nanotechnology. Medical researchers believe they hold particular promise because—unlike the materials that build today’s medical implants, for example—they are biodegradable and biocompatible, not subject to rejection by the body’s immune defenses. As biocomposites rarely exist isolated from other substances in nature, scientists do not yet understand how they interact with other materials such as lipids, nucleic acids, or other organic materials and on a molecular level. This study, which explored the ways in which protein polymers interact with another biopolymer, cellulose, provides the key to better understanding how biocomposite materials would interact with the human body for medical applications.

The materials analyzed were composed of bioengineered protein polymers and cellulose nanocrystals and hold promise for medical applications including non-toxic, targeted drug delivery systems. [emphasis mine] Such bionanocomposites could also be used as scaffolding for tissue growth, synthetic biomaterials, or an environmentally friendly replacement for petroleum-derived polymers currently in use.

I wonder if the researchers obtained their CNC from the production plant in Wisconsin (US), assuming it has opened since my July 27, 2012 posting featuring an announcement of future plans. Getting back to this latest work, here’s a link to and a citation for the paper,

Bionanocomposites: Differential Effects of Cellulose Nanocrystals on Protein Diblock Copolymers by Jennifer S. Haghpanah, Raymond Tu, Sandra Da Silva, Deng Yan, Silvana Mueller, Christoph Weder, E. Johan Foster, Iulia Sacui, Jeffery W. Gilman, and Jin Kim Montclare. Biomacromolecules, Article ASAP DOI: 10.1021/bm401304w Publication Date (Web): October 18, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall.

Offhand I can think of only one Canadian laboratory (although I’m certain there are others), which is working on applications for CNC and that’s Mark MacLaclan’s lab at the University of British Columbia (UBC). For example, there is this ‘in press’ paper,

Shopsowitz, K.E.; Kelly, J.A.; Hamad, W.Y.; MacLachlan, M.J. “Biopolymer Templated Glass with a Twist: Controlling the Chirality, Porosity, and Photonic Properties of Silica with Cellulose Nanocrystals” Adv. Funct. Mater. 2013, in press. DOI: 10.1002/adfm.201301737

You can find more about MacLachlan’s work here.

Alberta gave its cellulose nanocrystal (or nanocrystalline cellolose) production plant a soft launch in September 2013

It’s been a little over two years since Alberta’s proposed cellulose nanocrystal (CNC), then called nanocrystalline cellulose (NCC), pilot plant was first announced (my July 5, 2011 posting). I gather that the plant was quietly opened in Sept. 2013. Finding a news release about the event has proved to be a challenge. The Alberta Innovates website does not list it in its Newsroom while the Alberta Innovates Technology Futures website does list a news release (September 12, 2013Alberta’s one-of-a-kind CNC pilot plant commissioned: Cellulose-based ‘wonder material’ now available to researchers, industry partnersf), despite numerous efforts on my part (try it yourself), I’m unable to access it. Happily, I was able to track down some information elsewhere.

First (in the order in which I found the information), there’s an Oct. 2, 2013 news item on the WorkingForest.com website submitted by Pulp and Paper Canada),

Alberta’s cellulose nanocrystals (CNC) pilot plant, which produces up to 100 kilograms of CNC per week, was commissioned in early September at Alberta Innovates-Technology Futures’ (AITF) Mill Woods facility before a crowd of researchers, industry leaders and government representatives.

The $5.5-million pilot plant, created through a collaboration of the governments of Canada and Alberta in partnership with industry under the Western Economic Partnership Agreement (WEPA), uses wood and straw pulp from plants such as flax and hemp to create CNC for testing in commercial applications that will lead to production.

“Alberta Innovates-Technology Futures is proud to host and operate Western Canada’s only CNC pilot plant,” said Stephen Lougheed, AITF’s president and CEO. “We’re able to provide researchers with more CNC than ever before, thereby accelerating the development of commercial applications.”

The grand opening of the CNC pilot plant’s is planned for 2014.

Then, there was more information about the plant and the event in Catherine Griwkowsky’s Sept. 12, 2013 article for the Edmonton Sun,

A new cellulose nanocrystals (CNCs) pilot plant will take wood and agricultural fires and turn it into a form that can make products stronger, give them sunlight-absorbing properties, add a negative electromagnetic charge and more.

The $5.5-million project in Mill Woods will churn out up to 100 kilograms of the crystals each week.

Technical Lead Frank Tosto said researchers will study various properties of the crystals, and work with an internal team as well as external industry and other researchers to transform knowledge of the properties into ideas for applications. Later, the team may experiment with unconventional sources of cellulose.

The CNCs can be used for drilling fluids, paints, industrial coatings, automotive components, building materials, plastics and packaging.

The process [of refining hemp, etc.] breaks down cellulose into smaller building blocks using a chemical process of acid hydrolysis, that separates crystal formations in cellulose from other structures. The width is between five to 10 nanometres with a length of 150 to 200 nanometers. To scale, cellulose fibre would be the size of a hockey rink and the nano crystal would be like a pen or pencil, he explained.

Ultimately, Tosto hopes they will find commercial applications for the CNCs. The pilot should last five to seven years. He said it’s hard to think outside the box when they don’t know where all the boxes are.

I’d love to know if any of the entrepreneurs who contacted me privately about accessing CNC so they could develop new applications are now able to purchase product from the Alberta plant or from the one in Quebec (CelluForce), which had a stockpile last I heard (my Oct. 3, 2013 posting). It seems odd to be building another plant when the country’s first such plant has stopped production. Meanwhile, there’s some action on the international scene. An Israeli startup company, Melodea has developed its own CNC/NCC extraction process and has received money to develop applications, from my Oct. 31, 2013 posting),

Melodea Ltd. is developing an economic ally viable industrial process for the extraction of NCC from the sludge of the paper industry, a waste stream produced at millions of tons around the world. The core of the novel technology was developed by the lab of Professor Oded Shoseyov from the Hebrew University of Jerusalem and was licensed exclusively to Melodea.

Moreover, the company develops unique technologies to self-assemble the NCC into ecologically friendly foams for industrial applications.

Melodea Ltd. announced today that it has been awarded above 1,000,000 Euro in 3 projects of the European Union Seventh Framework Program (FP7).

You’ll note Melodea’s process extracts CNC from the paper industry’s sludge which leads me to this question: will there be any discussion of this extracting CNC from sludge technique at the 2014 TAPPI (Technical Association for the Pulp, Paper, Packaging and Converting Industries) nanotechnology conference being held in Vancouver (Canada), June 23-26, 2014 (mentioned in my Nov. 14, 2013 posting about the conference’s submission deadline, Nov. 22, 2013)?

Deadline for submissions to 2014 TAPPI International Conference on Nanotechnology of Renewable Materials in Vancouver, Canada extended

A November 12, 2013 news item on TextileWorld.com announced the new deadline, Nov. 22, 2014, (original deadline was Nov. 5, 2013) for the 2014 TAPPI (Technical Association for the Pulp, Paper, Packaging and Converting Industries) nanotechnology conference submissions,

The Norcross, Ga.-based Technical Association for the Pulp, Paper, Packaging and Converting Industries (TAPPI) has issued a call for 300-word abstracts for presentations to be given at the 2014 TAPPI International Conference on Nanotechnology for Renewable Materials, to be held June 23-26 at the Fairmont Hotel Vancouver in Vancouver, Canada.

… Abstracts focused on additive manufacturing, 3-D printing and other industrial manufacturing applications are preferred.

…. Deadline for submissions is November 22, 2013. …

You can find the 2014 TAPPI Nanotechnology conference website here and the PDF of the Call for Submissions here. Here’s a list of suggested topics from the Call for Submissions,

Preparation & Characterization
Renewable Nanomaterial Isolation & Separation
Cellulose nanocrystals and nanofibrils
Plant, algal, bacterial and other sources
Lignin, heteropolysaccharides, chitosan, etc.
Lab & Pilot-Scale Production
Process Optimization
New isolation & extraction methods
Drying processes
Separation processes forr enewable nanomaterials
Metrology
Sizing, mechanical,chemical, optical and surfaceproperties
Purity, molecular weight, crystallinity, etc.
Thermal, electrical and other properties
Toxicity, biocompatibility & Biodegradability
Self- and Direct-Assembly & Functionalities Nanostructured Materials by Self-assembly
Nano manufacture & self-assembly
Photonic bandgap pigments for special optical effects
Controlled delivery, immobilization, etc.
Novel Nano-enabled Functionalities
Surface modification and responsive materials
Optical effects for novel photonic applications
Inorganic materials template by cellulose nanocrystals
Novel electric, magnetic and piezoelectric effects
Sustainable polymer electronics
Carbon Fibers from Biomass
Production, characterization & uses
Membranes & Filters
New Membrane technologies
Air, water and bio filtration
Biomedical Applications
Ligament replacements, scaffolds, advanced woundtechnology
Bioactive materials
Immunoassays
Rheology and Dispersion Phenomena
Rheology behavior in aqueous and non-aqueous systems
Viscoelastic properties, etc.
Composites, Hydrogels, and Aerogels
Nanocomposites and Renewable Nanomaterials
Nano-reinforced films and fibers
Biomimetic nanocomposites
Porous materials, gels and aerogels, foams and multiphase dispersed system
Bio-derived matrix polymers
Processing
Organic/Inorganic Hybrids
Catalysts
Flexible electronics, etc.
Metal functionalization, ALD, etc,
Manufacturing Applications
Rheology and Rheological Modifiers
Industrial processing applications, e.g., food, pharma, painting, coating, oil, gas, etc.
Dispersion and flocculation
Additive Manufacturing
Raw nanomaterials
Medical applications
3D printing
Paper, Board & Packaging
Coatings & Fillers
High modulus paper coatings
Wear and scratch resistant coatings
Flexible Packaging
Barriers
Printing Technologies
Printing inks
Smart materials
Sensing technologies
Computer Modeling and Simulation
Multiscale Modeling
Solvation structure and hydrodynamics
Environmental, Health and Safety Issues
Workplace Safety & Standards
Current understanding andcritical gaps
Consumer perception and regulations
Management of risks and perceptions
Sustainability assessment, LCA

In digging about for information about the TAPPI nanotechnology conference,, I came across a reference to a meeting hosted by PAPTAC (Pulp and Paper Technical Association of Canada) regarding nanocrystalline cellulose (NCC) or, as it’s also known, cellulose nanocrystals (CNC)  held in June 2013 in Victoria, BC (preparatory to the 17th [2013] International Symposium
on Wood, Fibre and Pulping Chemistry [ISWFPC] conference in Vancouver) I thought the CNC programme interesting enough to reproduce here,

8:05
Keynote lecture by Professor Arthur Carty, Executive Director of the Waterloo Institute for Nanotechnology
Small World, Large Impact: Driving a Materials Revolution Through Nanotechnology
9:00
Dr Clive Willis, Former Vice President of National Research Council of Canada (NRC)
Standardization of CNC: Needs and Challenges
9:45 Coffee Break
10:15
Dr Richard Berry, VP and CTO, CelluForce Inc.
CelluForce—The Journey So Far
11:00
Dr Alan Rudie, USDA Forest Products Lab
Pilot Scale Production of Cellulose Nanocrystals and Cellulose Nanofibrils:
The US Need, FPL Process and Status
11:45
Professor Derek Gray, McGill University
Preparation and Optical Properties of Films Containing Cellulose Nanocrystals
12:30 Lunch
13:30
Professor Akira Isogai, Tokyo University
Applications of TEMPO-oxidized Cellulose Nanofibres to Gas Barrier Films and Nanocomposites
14:15
Dr Laurent Heux, CERMAV
Physico-chemical and Self-assembling Properties of CNC in Water and Organic Solvents
15:00
Professor Emily Cranston, McMaster University
Surface-modified Cellulose Nanocrystals: Characterization, Purification and Applications
15:45 Coffee Break
16:15
Dr Carole Fraschini, FPInnovations
Particle Issues in the Determination of Nanocellulose Particle Size
17:00
Dr Andriy Kovalenko, National Institute of Nanotechnology (NINT-NRC)
Multi-scale Modelling of the Structure, Thermodynamics,
and Effective Interactions of CNC in Different Solutions
19:00 Dinner and Award—Host: Dr J Bouchard

Monday, June 10

8:30
Dr Wadood Hamad, FPInnovations
Cellulose Nanocrystals for Advanced Functional Nanocomposites
9:15
Professor Michael Tam, University of Waterloo [emphasis mine]
Cellulose Nanocrystals—Functionalization, Characterization and Applications in Personal Care Systems
10:00
Professor Mark MacLachlan, University of British Columbia
Cellulose Nanocrystal-derived Porous Materials… With a Twist
10:45 Coffee Break
11:15
Professor Yaman Boluk, University of Alberta
Cellulose Nanocrystals in Soft Matter and Smart Applications
12:00
Professor Orlando Rojas, North Carolina State University
Self- and Direct-assembly of Cellulose Nanocrystals at Solid, Liquid and Air Interfaces: Fundamentals and Applications
12:45 Lunch
13:45
Professor John Simonsen, Oregon State University
Atomic Layer Deposition on Cellulose Nanocrystal Aerogels
14:30
Professor Alain Dufresne, Grenoble INP—Pagora
Processing of Nanocellulose Based Polymer Nanocomposites
15:15
Professor Monique Lacroix, INRS-Institut Armand-Frappier
The Use of Cellulose Nanocrystals in Food Packaging
16:00 Coffee Break
16:30
Professor Mark Andrews, McGill University
Cellulose NanocrystalsMake Light Work
17:15
Dr David Plackett, University of British Columbia
Cellulose Nanocrystals as a Vehicle for Delivery of Antibiotics

I don’t think it’s a coincidence that Michael Tam bears the same last name as Janelle Tam whose father is named Michael and both of whom lived in Waterloo when the then 16 year old Janelle Tam placed first in the 2013 Sanofi BioGENEius Challenge Competition (my May 11, 2012 posting).

There you have it, Good luck with your 2014 TAPPI nanotechnology conference submission.