Category Archives: risk

An app for nanomaterial risks (NanoRisk)

It seems past time for someone to have developed an app for nanomaterial risks. A Nov. 12, 2015 news item on Nanowerk makes the announcement (Note: A link has been removed),

The NanoRisk App is a guide to help the researcher in the risk assessment of nanomaterials. This evaluation is determined based on the physicochemical characteristics and the activities to be carried out by staff in research laboratories.

The NanoRisk App was developed at the University of Los Andes or Universidad de los Andes in Colombia (there also seems to be one in Chile). From the Nano Risk App homepage,

The NanoRisk App application was developed at the University of Los Andes by the Department of Chemical Engineering and the Department of Electrical and Electronic Engineering, Faculty of Engineering and implemented in cooperation with the Department of Occupational Health at the University of Los Andes. This application focuses on the use of manufactured nanomaterials.


Homero Fernando Pastrana Rendón MD, MsC, PhD Candidate. Alba Graciela Ávila, Associate Professor, Department of Electrical and Electronic Engineering. Felipe Muñoz Giraldo, Professor Associate Professor, Department of Chemical Engineering, University of Los Andes.

Acknowledgements to Diego Angulo and Diana Fernandez, from the Imagine group, for all the support in the development of this application.

About the App

The app is a guide to help the researcher in the risk assessment of nanomaterials. This evaluation is determined based on the physicochemical characteristics and the activities to be carried out by staff in research laboratories. This is based on nano risk management strategies from various institutions such as the National Institute for Occupational Safety and Health, U.S. (NIOSH), the New Development Organization of Japan Energy and Industrial Technology (NEDO), the European Commission (Nanosafe Program) and the work developed by the Lawrence Livermore National Laboratory (California, USA) in conjunction with the Safety Science Group at the University of Delft in the Netherlands.


The app will estimates the risk at four levels (low, medium, high and very high) for the hazard of the nanomaterial and the probability to be exposed to the material. Then it will recommend measures to contain the risk by applying engineering measures (controlled ventilation system, biosafety cabinet and glovebox).

They have a copyright notice on the page, as well as, instructions on how to access the App and the information.

A couple of lawyers talk wrote about managing nanotechnology risks

Because they are lawyers, I was intrigued by a Nov. 4, 2015 article on managing nanotechnology risks by Michael Lisak and James Mizgala of Sidley Austin LLP for Industry Week. I was also intrigued by the language (Note: A link has been removed),

The inclusion of nanotechnologies within manufacturing processes and products has increased exponentially over the past decade. Fortune recently noted that nanotechnology touches almost all Fortune 500 companies and that the industry’s $20 billion worldwide size is expected to double over the next decade. [emphasis mine]

Yet, potential safety issues have been raised and regulatory uncertainties persist. As such, proactive manufacturers seeking to protect their employees, consumers, the environment and their businesses – while continuing to develop, manufacture and market their products – may face difficult choices in how to best navigate this challenging and fluid landscape, while avoiding potential “nanotort,”  [emphasis mine] whistleblower, consumer fraud and regulatory enforcement lawsuits. Doing so requires forward-thinking advice based upon detailed analyses of each manufacturer’s products and conduct in the context of rapidly evolving scientific, regulatory and legal developments.

I wonder how many terms lawyers are going to coin in addition to “nanotort”?

The lawyers focus largely on two types of nanoparticles, carbon nanotubes, with a special emphasis on multi-walled carbon nantubes (MWCNT) and nano titanium dioxide,

Despite this scientific uncertainty, international organizations, such as the International Agency for Research on Cancer [a World Health Organization agency], have already concluded that nano titanium dioxide in its powder form and multi-walled carbon nanotube-7 (“MWCNT-7”) [emphasis mine] are “possibly carcinogenic to humans.” As such, California’s Department of Public Health lists titanium dioxide and MWCNT-7 as “ingredients known or suspected to cause cancer, birth defects, or other reproductive toxicity as determined by the authoritative scientific bodies.”  Considering that processed (i.e., non-powdered) titanium dioxide is found in products like toothpaste, shampoo, chewing gum and candies, it is not surprising that some have focused upon such statements.

There’s a lot of poison in the world, for example, apples contain seeds which have arsenic in them and, for another, peanuts can be carcinogenic and they can also kill you, as they are poison to people who are allergic to them.

On the occasion of Dunkin’ Donuts removing nano titanium dioxide as an ingredient in the powdered sugar used to coat donuts, I wrote a March 13, 2015 posting, where I quote extensively from Dr. Andrew Maynard’s (then director of the University of Michigan Risk Science Center now director of the Risk Innovation Lab at Arizona State University) 2020 science blog posting about nano titanium dioxide and Dunkin’ Donuts,

He describes some of the research on nano titanium dioxide (Note: Links have been removed),

… In 2004 the European Food Safety Agency carried out a comprehensive safety review of the material. After considering the available evidence on the same materials that are currently being used in products like Dunkin’ Donuts, the review panel concluded that there no evidence for safety concerns.

Most research on titanium dioxide nanoparticles has been carried out on ones that are inhaled, not ones we eat. Yet nanoparticles in the gut are a very different proposition to those that are breathed in.

Studies into the impacts of ingested nanoparticles are still in their infancy, and more research is definitely needed. Early indications are that the gastrointestinal tract is pretty good at handling small quantities of these fine particles. This stands to reason given the naturally occurring nanoparticles we inadvertently eat every day, from charred foods and soil residue on veggies and salad, to more esoteric products such as clay-baked potatoes. There’s even evidence that nanoparticles occur naturally inside the gastrointestinal tract.

You can find Andrew’s entire discussion in his March 12, 2015 post on the 2020 Science blog. Andrew had written earlier in a July 12, 2014 posting about something he terms ‘nano donut math’ as reported by As You Sow, the activist group that made a Dunkin’ Donuts shareholder proposal which resulted in the company’s decision to stop using nano titanium dioxide in the powdered sugar found on their donuts. In any event, Andrew made this point,

In other words, if a Dunkin’ Donut Powdered Cake Donut contained 8.9 mg of TiO2 particles smaller than 10 nm, it would have to have been doused with over 1 million tons of sugar coating! (Note update at the end of this piece)

Clearly something’s wrong here – either Dunkin’ Donuts are not using food grade TiO2 but a nanopowder with particle so small they would be no use whatsoever in the sugar coating (as well as being incredibly expensive, and not FDA approved).  Or there’s something rather wrong with the analysis!

If it’s the latter – and it’s hard to imagine any other plausible reason for the data – it looks like As You Sow ended up using rather dubious figures to back up their stakeholder resolution.  I’d certainly be interested in more information on the procedures Analytical Sciences used and the checks and balances they had in place, especially as there are a number of things that can mess up a particle analysis like this.

Update July 14: My bad, I made a slight error in the size distribution calculation first time round.  This has been corrected in the article above.  Originally, I cited the estimated Mass Median Diameter (MMD) of the TiO2 particles as 167 nm, and the Geometric Standard Deviation (GSD) as 1.6.  Correcting an error in the Excel spreadsheet used to calculate the distribution (these things happen!) led to a revised estimate of MMD = 168 nm and a GSD of 1.44.  These may look like subtle differences, but when calculating the estimated particle mass below 10 nm, they make a massive difference.  With the revised figures, you’d expect less than one trillionth of  a percent of the mass of the TiO2 powder to be below 10 nm!! (the original estimate was a tenth of a millionth of a percent).  In other words – pretty much nothing!  The full analysis can be found here.

Update November 16 2014.  Based on this post, As You Sow checked the data from Analytical Sciences LLC and revised the report accordingly.  This is noted above.

It would seem that if there are concerns over nano titanium dioxide in food, the biggest would not be the amounts ingested by consumers but inhalation by workers should they breathe in large quantities when they are handling the material.

As for the MWCNTs, they have long raised alarms but most especially the long MWCNTs and for people handling them during the course of their work day. Any MWCNTs found in sports equipment and other consumer products are bound in the material and don’t pose any danger of being inhaled into the lungs, unless they should be released from their bound state (e.g. fire might release them).

After some searching for MWCNT-7, I found something which seems also to be known as Mitsui MWCNT-7 or Mitsui 7-MWCNT (here’s one of my sources). As best I understand it, Mitsui is a company that produces an MWCNT which they have coined an MWCNT-7 and which has been used in nanotoxicity testing. As best I can tell, MWCNT is MWCNT-7.

The lawyers (Lisak and Mizgala) note things have changed for manufacturers since the early days and they make some suggestions,

One thing is certain – gone are the days when “sophisticated” manufacturers incorporating nanotechnologies within their products can reasonably expect to shield themselves by pointing to scientific and regulatory uncertainties, especially given the amount of money they are spending on research and development, as well as sales and marketing efforts.

Accordingly, manufacturers should consider undertaking meaningful risk management analyses specific to their applicable products. …

First, manufacturers should fully understand the life-cycle of nanomaterials within their organization. For some, nanomaterials may be an explicit focus of innovation and production, making it easier to pinpoint where nanotechnology fits into their processes and products. For others, nanomaterials may exist either higher-up or in the back-end of their products’ supply chain. …

Second, manufacturers should understand and stay current with the scientific state-of-the-art as well as regulatory requirements and developments potentially applicable to their employees, consumers and the environment. An important consideration related to efforts to understand the state-of-the-art is whether or not manufacturers should themselves expend resources to advance “the science” in seeking to help find answers to some of the aforementioned uncertainties. …

The lawyers go on to suggest that manufacturers should consider proactively researching nanotoxicity so as to better defend themselves against any future legal suits.

Encouraging companies to proactive with toxicity issues is in line with what seems to be an international (Europe & US) regulatory movement putting more onus on producers and manufacturers to take responsibility for safety testing. (This was communicated to me in a conversation I had with an official at the European Union Joint Research Centre where he mentioned REACH regulations and the new emphasis in response to my mention of similar FDA (US Food and Drug Administration) regulations. (We were at the 2014 9th World Congress on Alternatives to Animal Testing in Prague, Czech republic.)

For anyone interested in the International Agency for Research on Cancer you can find it here.

‘Nano to go’, a practical guide to safe handling of nanomaterials and other innovative materials in the workplace

If you’ve been looking for a practical guide to handling nanomaterials you may find that nanoToGo fills the bill. From an Oct. 23, 2015 posting by Lynn Bergeson for Nanotechnology Now,

In September 2015, “Nano to go!” was published. See “Nano to go!” is “a practically oriented guidance on safe handling of nanomaterials and other innovative materials at the workplace.” The German Federal Institute for Occupational Health (BAuA) developed it within the NanoValid project.

From the nanoToGo webpage on the NanoValid project website (Note: Links have been removed),

Nano to go! contains a brochure, field studies, presentations and general documents to comprehensively support risk assessment and risk management. …

Brochure →

The brochure Safe handling of nanomaterials and other advanced materials at workplacessupports risk assessment and risk management when working with nanomaterials. It provides safety strategies and protection measures for handling nanomaterials bound in solid matrices, dissolved in liquids, insoluble or insoluble powder form, and for handling nanofibres. Additional recommendations are given for storage and disposal of nanomaterials, for protection from fire and explosion, for training and instruction courses, and for occupational health.

Field Studies→

The field studies comprise practical examples of expert assessment of safety and health at different workplaces. They contain detailed descriptions of several exposure measurements at pilot plants and laboratories. The reports describe methods, sampling strategies and devices, summarise and discuss results, and combine measurements and non-measurement methods.

General →

Useful information, templates and examples, such as operating instructions, a sampling protocol, a dialogue guide and a short introduction to safety management and nanomaterials.

Presentations →

Ready to use presentations for university lecturers, supervisors and instruction courses, complemented with explanatory notes.

The ‘brochure’ is 56 pages; I would have called it a manual.

As for the NanoValid project, there’s this from the project’s homepage,

The EU FP7 [Framework Programme 7] large-scale integrating project NanoValid (contract: 263147) has been launched on the 1st of November 2011, as one of the “flagship” nanosafety projects. The project consists of 24 European partners from 14 different countries and 6 partners from Brazil, Canada, India and the US and will run from 2011 to 2015, with a total budget of more than 13 mio EUR (EC contribution 9.6 mio EUR). Main objective of NanoValid is to develop a set of reliable reference methods and materials for the fabrication, physicochemical (pc) characterization, hazard identification and exposure assessment of engineered nanomaterials (EN), including methods for dispersion control and labelling of ENs. Based on newly established reference methods, current approaches and strategies for risk and life cycle assessment will be improved, modified and further developed, and their feasibility assessed by means of practical case studies.

I was not expecting to see Canada in there.

Is safety all it’s cracked up to be? (three items about risk)

I have three items for this piece, two about human risk assessment and nanotechnology and one questioning the drive towards safety.

Proposal for a nanotechnology and human risk assessment scheme

A couple of academics, one from the Université de Montréal (Canada) and the other from the Université de Rennes (France) have proposed what they declare is a “well-developed human risk assessment (HRA) that applies to NPs (nanoparticles).” It’s a bold statement to be found in this paper (Note: There are some oddities about this paper’s citation),

Human Risk Assessment and Its Application to
Nanotechnology: A Challenge for Assessors (PDF) by Claude Emond and Luc Multigner.  2015 J. Phys.: Conf. Ser. 617 012039

The first oddity is that the second author on the PDF version of the paper, Luc Multigner, is not listed on the paper’s page on the Journal of Physics website. where T N Britos is listed as the second author. Next, there’s the DOI (digital object identifier) which isn’t specified anywhere I can find it. There is something that looks like a DOI in the links to both the paper’s webpage and its PDF: 10.1088/1742-6596/617/1/012039.

Now on to the paper.

The authors are proposing that a methodology designed in 1983 (found in a document known as the Red Book) by the US National Research Council be adapted for use in nanotechnology human risk assessment,

… The approach divided the HRA into four different characterization steps: Source Identification Characterization (SIC), Exposure Assessment Characterization (EAC), Hazard Assessment Characterization (HAC) and Risk Assessment Characterization (RAC) [8, 9] (Figure 1).

Interspecies Variability Factors in Human Health Risk Assessment

This item comes from Lynn Bergeson’s Oct. 2, 2015 posting on Nanotechnology Now,

The Organization for Economic Cooperation and Development (OECD) posted a new publication in its Series on the Safety of Manufactured Nanomaterials, Preliminary Guidance Notes on Nanomaterials: Interspecies Variability Factors in Human Health Risk Assessment. See The report includes the following recommendations for further work:

– The Expert Opinion prepared in support of the project noted a general lack of availability of data from repeated-dose toxicity studies in different species. In particular, studies of extended duration such as 90-day subchronic or chronic toxicity studies were only available for a minor part of the analyzed nanomaterials and routes of exposures. …

– Physiologically-based models are receiving increased attention in human health risk assessment. With the available data on lung burden following inhalation exposure to nanomaterials, a useful comparison of measured vs. predicted data has been possible in this project for rats, suggesting that further refinement of the multiple path particle dosimetry (MPPD) model is required before it can be applied to (sub)chronic scenarios. Unfortunately, corresponding information has not been available for humans, preventing comparisons between rats and humans.

This document is no. 58 in the OECD (Organization for Economic Cooperation and Development) Series on the Safety of Manufactured Nanomaterials. All of these documents are freely available.

Why Safety Can Be Dangerous

The third and final item in this post is an announcement for an event at the Woodrow Wilson International Center for Scholars. From an Oct. 14, 2015 email,

Why Safety Can Be Dangerous: A Conversation with Gregory Ip

The Science & Technology Innovation Program is proud to welcome journalist Gregory Ip to discuss his latest book, Foolproof: Why Safety Can Be Dangerous and How Danger Makes Us Safe (Little, Brown). In Foolproof, Ip looks at how we often force new, unexpected risks to develop in unexpected places as we seek to minimize risk from crises like financial downturns and natural disasters.

More information about the Science & Technology Innovation Program’s Public Engagement in an Age of Complexity can be found here:

Tuesday, October 20th, 2015
10:00am – 11:00am

6th Floor Auditorium


Wilson Center
Ronald Reagan Building and
International Trade Center
One Woodrow Wilson Plaza
1300 Pennsylvania, Ave., NW
Washington, D.C. 20004

Phone: 202.691.4000

The Foolproof event page provides more information,

In Foolproof, Ip looks at how we often force new, unexpected risks to develop in unexpected places as we seek to minimize risk from crises like financial downturns and natural disasters. This is a phenomena only likely to increase as our financial systems and cities become more complex and interconnected, but Ip concludes that these crises actually benefit society.

Final comments

We’re always engaged in a balancing act between risk and safety. How we resolve that conundrum can have huge and unexpected impacts on our future.

As an example of unintended consequences, I live in a region with many forests and a very successful fire suppression programme. Risk from forest fires has been reduced at the cost of building up  so much debris on the forest floor that forest fires which do occur are more devastating than if theyhad regularly diminished the debris.

Smaller (20nm vs 110nm) silver nanoparticles are more likely to absorbed by fish

An Oct. 8, 2015 news item on Nanowerk offers some context for why researchers at the University of California at Los Angeles (UCLA) are studying silver nanoparticles and their entry into the water system,

More than 2,000 consumer products today contain nanoparticles — particles so small that they are measured in billionths of a meter.

Manufacturers use nanoparticles to help sunscreen work better against the sun’s rays and to make athletic apparel better at wicking moisture away from the body, among many other purposes.

Of those products, 462 — ranging from toothpaste to yoga mats — contain nanoparticles made from silver, which are used for their ability to kill bacteria. But that benefit might be coming at a cost to the environment. In many cases, simply using the products as intended causes silver nanoparticles to wind up in rivers and other bodies of water, where they can be ingested by fish and interact with other marine life.

For scientists, a key question has been to what extent organisms retain those particles and what effects they might have.

I’d like to know where they got those numbers “… 2,000 consumer products …” and “… 462 — ranging from toothpaste to yoga mats — contain nanoparticles made from silver… .”

Getting back to the research, an Oct. 7, 2015 UCLA news release, which originated the news item, describes the work in more detail,

A new study by the University of California Center for Environmental Implications of Nanotechnology has found that smaller silver nanoparticles were more likely to enter fish’s bodies, and that they persisted longer than larger silver nanoparticles or fluid silver nitrate. The study, published online in the journal ACS Nano, was led by UCLA postdoctoral scholars Olivia Osborne and Sijie Lin, and Andre Nel, director of UCLA’s Center for Environmental Implications of Nanotechnology and associate director of the California NanoSystems Institute at UCLA.

Nel said that although it is not yet known whether silver nanoparticles are harmful, the research team wanted to first identify whether they were even being absorbed by fish. CEIN, which is funded by the National Science Foundation, is focused on studying the effects of nanotechnology on the environment.

In the study, researchers placed zebrafish in water that contained fluid silver nitrate and two sizes of silver nanoparticles — some measuring 20 nanometers in diameter and others 110 nanometers. Although the difference in size between these two particles is so minute that it can only be seen using high-powered transmission electron microscopes, the researchers found that the two sizes of particles affected the fish very differently.

The researchers used zebrafish in the study because they have some genetic similarities to humans, their embryos and larvae are transparent (which makes them easier to observe). In addition, they tend to absorb chemicals and other substances from water.

Osborne said the team focused its research on the fish’s gills and intestines because they are the organs most susceptible to silver exposure.

“The gills showed a significantly higher silver content for the 20-nanometer than the 110-nanometer particles, while the values were more similar in the intestines,” she said, adding that both sizes of the silver particles were retained in the intestines even after the fish spent seven days in clean water. “The most interesting revelation was that the difference in size of only 90 nanometers made such a striking difference in the particles’ demeanor in the gills and intestines.”

The experiment was one of the most comprehensive in vivo studies to date on silver nanoparticles, as well as the first to compare silver nanoparticle toxicity by extent of organ penetration and duration with different-sized particles, and the first to demonstrate a mechanism for the differences.

Osborne said the results seem to indicate that smaller particles penetrated deeper into the fishes’ organs and stayed there longer because they dissolve faster than the larger particles and are more readily absorbed by the fish.

Lin said the results indicate that companies using silver nanoparticles have to strike a balance that recognizes their benefits and their potential as a pollutant. Using slightly larger nanoparticles might help make them somewhat safer, for example, but it also might make the products in which they’re used less effective.

He added that data from the study could be translated to understand how other nanoparticles could be used in more environmentally sustainable ways.

Nel said the team’s next step is to determine whether silver particles are potentially harmful. “Our research will continue in earnest to determine what the long-term effects of this exposure can be,” he said.

Here’s an image illustrating the findings,

Courtesy ACS Nano

Courtesy ACS Nano

Here’s a link to and a citation for the paper,

Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish by Olivia J. Osborne, Sijie Lin, Chong Hyun Chang, Zhaoxia Ji, Xuechen Yu, Xiang Wang, Shuo Lin, Tian Xia, and André E. Nel. ACS Nano, Article ASAP DOI: 10.1021/acsnano.5b04583 Publication Date (Web): September 1, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Brown University (US) gets big bucks to study effect on nanomaterials on human health

In over seven years of blogging about nanotechnology, this is the most active funding period for health and environmental effects impacts I’ve seen yet. A Sept. 26, 2015 news item on Azonano features another such grant,

With a new federal grant of nearly $10.8 million over the next five years, Brown University researchers and students in the Superfund Research Program (SRP) will be able to advance their work studying how toxicant exposures affect health, how such exposures occur, how nanotechnologies could contain contamination, and how to make sure those technologies are safe.

A Sept. 24, 2015 Brown University news release, which originated the news item, describes of Brown’s SRP work already underway and how this new grant will support it,

“There is more research to be performed,” said Kim Boekelheide, program director, professor of pathology and laboratory medicine, and fellow of the Institute at Brown for Environment and Society (IBES). “Our scientific theme is integrated biomedical and engineering solutions to regulatory uncertainty, using interdisciplinary approaches to attack the really difficult contamination problems that matter.”

The program is pursuing four integrated projects. In one led by Boekelheide, a team is looking at the physiological effects of exposure to toxicants like trichloroethylene on the male reproductive system. In particular he hopes to find the subtle differences in biomolecular markers in sperm that could allow for very early detection of exposure. Meanwhile in another line of research, Eric Suuberg, professor of engineering, is studying how vapors from toxic material releases can re-emerge from the soil entering into buildings built at or near the polluted sites — and why it is hard to predict the level of exposure that inhabitants of these buildings may suffer.

In another project, Robert Hurt, an IBES fellow, SRP co-primary investigator and professor of engineering, is studying how graphene, an atomically thin carbon material, can be used to block the release and transport of toxicants to prevent human exposures. Hurt is also collaborating with Agnes Kane, an IBES fellow and chair and professor of pathology and laboratory medicine, who is leading a study of nanomaterial effects on human health, so they can be designed and used safely in environmental and other applications.

The program will also continue the program’s community outreach efforts in which they work and share information with communities near the state’s Superfund-designated and Brownfield contaminated sites. Scott Frickel, an IBES fellow and associate professor of sociology, is the new leader of community engagement. The program also includes a research translation core in which researchers share their findings and expertise with the U.S. Environmental Protection Agency, state agencies, and professionals involved in contamination management and cleanup. A training core provides opportunities for interdisciplinary research, field work, and industry “externships” for graduate students in engineering, pathobiology, and social sciences at Brown.

It’s good to see they are integrating social sciences into this project although I hope they aren’t attempting this move as a means to coopt and/or stifle genuine dissent and disagreement by giving a superficial nod to the social sciences and public engagement  while wending on their merry way.

Funding trends for US synthetic biology efforts

Less than 1% of total US federal funding for synthetic biology is dedicated to risk research according to a Sept. 16, 2015 Woodrow Wilson International Center for Scholars news release on EurekAlert,

A new analysis by the Synthetic Biology Project at the Wilson Center finds the Defense Department and its Defense Advanced Research Projects Agency (DARPA) fund much of the U.S. government’s research in synthetic biology, with less than 1 percent of total federal funding going to risk research.

The report, U.S. Trends in Synthetic Biology Research, finds that between 2008 and 2014, the United States invested approximately $820 million dollars in synthetic biology research. In that time period, the Defense Department became a key funder of synthetic biology research. DARPA’s investments, for example, increased from near zero in 2010 to more than $100 million in 2014 – more than three times the amount spent by the National Science Foundation (NSF).

The Wilson Center news release can also be found here on the Center’s report publication page where it goes on to provide more detail and where you can download the report,

The report, U.S. Trends in Synthetic Biology Research, finds that between 2008 and 2014, the United States invested approximately $820 million dollars in synthetic biology research. In that time period, the Defense Department became a key funder of synthetic biology research. DARPA’s investments, for example, increased from near zero in 2010 to more than $100 million in 2014 – more than three times the amount spent by the National Science Foundation (NSF).

“The increase in DARPA research spending comes as NSF is winding down its initial investment in the Synthetic Biology Engineering Research Center, or SynBERC,” says Dr. Todd Kuiken, senior program associate with the project. “After the SynBERC funding ends next year, it is unclear if there will be a dedicated synthetic biology research program outside of the Pentagon. There is also little investment addressing potential risks and ethical issues, which can affect public acceptance and market growth as the field advances.”

The new study found that less than one percent of the total U.S. funding is focused on synthetic biology risk research and approximately one percent addresses ethical, legal, and social issues.

Internationally, research funding is increasing. Last year, research investments by the European Commission and research agencies in the United Kingdom exceeded non-defense spending in the United States, the report finds.

The research spending comes at a time of growing interest in synthetic biology, particularly surrounding the potential presented by new gene-editing techniques. Recent research by the industry group SynBioBeta indicated that, so far in 2015, synthetic biology companies raised half a billion dollars – more than the total investments in 2013 and 2014 combined.

In a separate Woodrow Wilson International Center for Scholars Sept. 16, 2015 announcement about the report, an upcoming event notice was included,

Save the date: On Oct. 7, 2015, the Synthetic Biology Project will be releasing a new report on synthetic biology and federal regulations. More details will be forthcoming, but the report release will include a noon event [EST] at the Wilson Center in Washington, DC.

I haven’t been able to find any more information about this proposed report launch but you may want to check the Synthetic Biology Project website for details as they become available. ETA Oct. 1, 2015: The new report titled: Leveraging Synthetic Biology’s Promise and Managing Potential Risk: Are We Getting It Right? will be launched on Oct. 15, 2015 according to an Oct. 1, 2015 notice,

As more applications based on synthetic biology come to market, are the existing federal regulations adequate to address the risks posed by this emerging technology?

Please join us for the release of our new report, Leveraging Synthetic Biology’s Promise and Managing Potential Risk: Are We Getting It Right? Panelists will discuss how synthetic biology applications would be regulated by the U.S. Coordinated Framework for Regulation of Biotechnology, how this would affect the market pathway of these applications and whether the existing framework will protect human health and the environment.

A light lunch will be served.


Lynn Bergeson, report author; Managing Partner, Bergeson & Campbell

David Rejeski, Director, Science and Technology Innovation Program

Thursday,October 15th, 2015
12:00pm – 2:00pm

6th Floor Board Room


Wilson Center
Ronald Reagan Building and
International Trade Center
One Woodrow Wilson Plaza
1300 Pennsylvania, Ave., NW
Washington, D.C. 20004

Phone: 202.691.4000


Safety mechanisms needed before synthetic biology moves from the labs into the real world

A Sept. 17, 2015 news item on Nanotechnology Now makes note of an article where experts review the state of the synthetic biology field and discuss the need for safety as synthetic biology is poised to move from the laboratory into the real world,

Targeted cancer treatments, toxicity sensors and living factories: synthetic biology has the potential to revolutionize science and medicine. But before the technology is ready for real-world applications, more attention needs to be paid to its safety and stability, say experts in a review article published in Current Opinion in Chemical Biology.

Synthetic biology involves engineering microbes like bacteria to program them to behave in certain ways. For example, bacteria can be engineered to glow when they detect certain molecules, and can be turned into tiny factories to produce chemicals.

Synthetic biology has now reached a stage where it’s ready to move out of the lab and into the real world, to be used in patients and in the field. According to Professor Pamela Silver, one of the authors of the article from Harvard Medical School in the US, this move means researchers should increase focus on the safety of engineered microbes in biological systems like the human body.

A Sept. 16, 2015 Elsevier press release, which originated the news item, expands on the theme,

“Historically, molecular biologists engineered microbes as industrial organisms to produce different molecules,” said Professor Silver. “The more we discovered about microbes, the easier it was to program them. We’ve now reached a very exciting phase in synthetic biology where we’re ready to apply what we’ve developed in the real world, and this is where safety is vital.”

Microbes have an impact on health; the way they interact with animals is being ever more revealed by microbiome research – studies on all the microbes that live in the body – and this is making them easier and faster to engineer. Scientists are now able to synthesize whole genomes, making it technically possible to build a microbe from scratch.

“Ultimately, this is the future – this will be the way we program microbes and other cell types,” said Dr. Silver. “Microbes have small genomes, so they’re not too complex to build from scratch. That gives us huge opportunities to design them to do specific jobs, and we can also program in safety mechanisms.”

One of the big safety issues associated with engineering microbial genomes is the transfer of their genes to wild microbes. Microbes are able to transfer segments of their DNA during reproduction, which leads to genetic evolution. One key challenge associated with synthetic biology is preventing this transfer between the engineered genome and wild microbial genomes.

There are already several levels of safety infrastructure in place to ensure no unethical research is done, and the kinds of organisms that are allowed in laboratories. The focus now, according to Dr. Silver, is on technology to ensure safety. When scientists build synthetic microbes, they can program in mechanisms called kill switches that cause the microbes to self-destruct if their environment changes in certain ways.

Microbial sensors and drug delivery systems can be shown to work in the lab, but researchers are not yet sure how they will function in a human body or a large-scale bioreactor. Engineered organisms have huge potential, but they will only be useful if proven to be reliable, predictable, and cost effective. Today, engineered bacteria are already in clinical trials for cancer, and this is just the beginning, says Dr. Silver.

“The rate at which this field is moving forward is incredible. I don’t know what happened – maybe it’s the media coverage, maybe the charisma – but we’re on the verge of something very exciting. Once we’ve figured out how to make genomes more quickly and easily, synthetic biology will change the way we work as researchers, and even the way we treat diseases.”

Lucy Goodchild van Hilten has written a Sept. 16, 2015 article for Elsevier abut this paper,

In January, the UK government announced a funding injection of £40 million to boost synthetic biology research, adding three new Synthetic Biology Research Centres (SBRCs) in Manchester, Edinburgh and Warwick. The additional funding takes the UK’s total public spending on synthetic biology to £200 million – an investment that hints at the commercial potential of synthetic biology.

In fact, according to the authors of a new review published in Current Opinion in Chemical Biology, synthetic biology has the potential to revolutionize science and medicine. …

Here’s a link to and a citation for the paper,

Synthetic biology expands chemical control of microorganisms by Tyler J Ford, Pamela A Silver. Current Opinion in Chemical Biology Volume 28, October 2015, Pages 20–28  doi:10.1016/j.cbpa.2015.05.012

I believe this paper is open access until January 16, 2016.

As the paper has a nice introductory description of synthetic biology, I thought I’d include it here, as well as, the conclusion which is not as safety-oriented as I expected,

Synthetic biology allows scientists to re-program interactions between genes, proteins, and small molecules. One of the goals of synthetic biology is to produce organisms that predictably carry out desired functions and thereby perform as well-controlled so-called biological devices. Together, synthetic and chemical biology can provide increased control over biological systems by changing the ways these systems respond to and produce chemical stimuli. Sensors, which detect small molecules and direct later cellular function, provide the basis for chemical control over biological systems. The techniques of synthetic biology and metabolic engineering can link sensors to metabolic processes and proteins with many different activities. In this review we stratify the activities affected by sensors to three different levels: sensor-reporters that provide a simple read-out of small molecule levels, sensor-effectors that alter the behavior of single organisms in response to small molecules, and sensor effectors that coordinate the activities of multiple organisms in response to small molecules …


We have come to the point in synthetic biology where there are many lab-scale or proof-of-concept examples of chemically controlled systems useful to sense small molecules, treat disease, and produce commercially useful compounds. These systems have great potential, but more attention needs to be paid to their stability, efficacy, and safety. Being that the sensor-effectors discussed above function in living, evolving organisms, it is unclear how well they will retain function when distributed in a patient or in a large-scale bioreactor. Future efforts should focus on developing these sensor-effectors for real-world application. Engineered organisms will only be useful if we can prove that their functions are reliable, predictable, and cost effective.

Center for Sustainable Nanotechnology or how not to poison and make the planet uninhabitable

I received notice of the Center for Sustainable Nanotechnology’s newest deal with the US National Science Foundation in an August 31, 2015 email University of Wisconsin-Madison (UWM) news release,

The Center for Sustainable Nanotechnology, a multi-institutional research center based at the University of Wisconsin-Madison, has inked a new contract with the National Science Foundation (NSF) that will provide nearly $20 million in support over the next five years.

Directed by UW-Madison chemistry Professor Robert Hamers, the center focuses on the molecular mechanisms by which nanoparticles interact with biological systems.

Nanotechnology involves the use of materials at the smallest scale, including the manipulation of individual atoms and molecules. Products that use nanoscale materials range from beer bottles and car wax to solar cells and electric and hybrid car batteries. If you read your books on a Kindle, a semiconducting material manufactured at the nanoscale underpins the high-resolution screen.

While there are already hundreds of products that use nanomaterials in various ways, much remains unknown about how these modern materials and the tiny particles they are composed of interact with the environment and living things.

“The purpose of the center is to explore how we can make sure these nanotechnologies come to fruition with little or no environmental impact,” explains Hamers. “We’re looking at nanoparticles in emerging technologies.”

In addition to UW-Madison, scientists from UW-Milwaukee, the University of Minnesota, the University of Illinois, Northwestern University and the Pacific Northwest National Laboratory have been involved in the center’s first phase of research. Joining the center for the next five-year phase are Tuskegee University, Johns Hopkins University, the University of Iowa, Augsburg College, Georgia Tech and the University of Maryland, Baltimore County.

At UW-Madison, Hamers leads efforts in synthesis and molecular characterization of nanomaterials. soil science Professor Joel Pedersen and chemistry Professor Qiang Cui lead groups exploring the biological and computational aspects of how nanomaterials affect life.

Much remains to be learned about how nanoparticles affect the environment and the multitude of organisms – from bacteria to plants, animals and people – that may be exposed to them.

“Some of the big questions we’re asking are: How is this going to impact bacteria and other organisms in the environment? What do these particles do? How do they interact with organisms?” says Hamers.

For instance, bacteria, the vast majority of which are beneficial or benign organisms, tend to be “sticky” and nanoparticles might cling to the microorganisms and have unintended biological effects.

“There are many different mechanisms by which these particles can do things,” Hamers adds. “The challenge is we don’t know what these nanoparticles do if they’re released into the environment.”

To get at the challenge, Hamers and his UW-Madison colleagues are drilling down to investigate the molecular-level chemical and physical principles that dictate how nanoparticles interact with living things.
Pedersen’s group, for example, is studying the complexities of how nanoparticles interact with cells and, in particular, their surface membranes.

“To enter a cell, a nanoparticle has to interact with a membrane,” notes Pedersen. “The simplest thing that can happen is the particle sticks to the cell. But it might cause toxicity or make a hole in the membrane.”

Pedersen’s group can make model cell membranes in the lab using the same lipids and proteins that are the building blocks of nature’s cells. By exposing the lab-made membranes to nanomaterials now used commercially, Pedersen and his colleagues can see how the membrane-particle interaction unfolds at the molecular level – the scale necessary to begin to understand the biological effects of the particles.

Such studies, Hamers argues, promise a science-based understanding that can help ensure the technology leaves a minimal environmental footprint by identifying issues before they manifest themselves in the manufacturing, use or recycling of products that contain nanotechnology-inspired materials.

To help fulfill that part of the mission, the center has established working relationships with several companies to conduct research on materials in the very early stages of development.

“We’re taking a look-ahead view. We’re trying to get into the technological design cycle,” Hamers says. “The idea is to use scientific understanding to develop a predictive ability to guide technology and guide people who are designing and using these materials.”

What with this initiative and the LCnano Network at Arizona State University (my April 8, 2014 posting; scroll down about 50% of the way), it seems that environmental and health and safety studies of nanomaterials are kicking into a higher gear as commercialization efforts intensify.