Category Archives: risk

Québec’s second edition of its Best Practices Guidance for Nanomaterial Risk Management in the Workplace

Lynn Bergeson’s Dec. 16, 2015 posting on Nanotechnology Now highlights Québec’s second edition of its guide to best practices for handling nanomaterials in the workplace,

On December 11, 2015, the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), a leading occupational health and safety research center in Canada, published the second edition of its Best Practices Guidance for Nanomaterial Risk Management in the Workplace.

… IRSST intends the Guidance to support the safe development of nanotechnologies in Québec by bringing together current scientific knowledge on hazard identification, strategies for determining nanomaterial levels in different work environments, risk assessment, and the application of various risk management approaches. IRSST states that the Guidance provides practical information and prevention tools for the safe handling of nanomaterials in laboratories and pilot plants, as well as industrial facilities that produce or incorporate them. The Guidance recommends a preventive approach designed to minimize occupational exposure to nanomaterials. According to IRSST, given the different exposure pathways, the many factors that can affect nanomaterial toxicity and the health risks, its approach “is essentially based on hazard identification, different risk assessment strategies and a hierarchy of control measures, incorporating knowledge specific to nanomaterials when available.” The second edition of the Guidance incorporates new information in the scientific literature. In addition, IRSST has included appendices describing initiatives in Québec workplaces; examples of at-risk situations described in the literature; preventive measures and data on their relative efficacy; and the implementation of measures to control exposure. ,,,

The Best Practices Guidance for Nanomaterial Risk Management in the Workplace can be found here on the IRSST website where you’ll also find this description,

Today’s nanotechnologies can substantially improve the properties of a wide range of products in all sectors of activity, from the manufacture of materials with ground-breaking performance to medical diagnostics and treatment—yet they raise major technological, economic, ethical, social and environmental questions. Some of the spinoffs we can expect include the emergence of new markets, job creation, improvements in quality of life and contributions to protection of the environment. The impact of nanotechnologies is already being felt in sectors as diverse as agroprocessing, cosmetics, construction, healthcare and the aerospace industry. Most universities in Québec and many research centres are working to design new applications. Many companies have projects in the start-up phase, while others are already producing nanomaterials or have incorporated them in their processes to improve product performance, a trend expected to accelerate over the coming years. These new developments, which could mean exposure of a growing number of workers to these infinitesimally small particles, are of particular concern to workers in industry and staff in research laboratories. It is estimated that in 2015 about 10% of manufacturing jobs worldwide will be associated with nanotechnologies, [emphasis mine] and more than 2,000 commercial products will contain nanomaterials.

Given our fragmentary knowledge of the health and safety risks for workers and the environment, the handling of these new materials with their unique properties raises many questions and concerns. In fact, many studies have already demonstrated that the toxicity of certain nanomaterials differs from that of their bulk counterparts of the same chemical composition. Nanomaterials enter the body mainly through inhalation but also through the skin and the GI tract. Animal studies have demonstrated that certain nanomaterials can enter the blood stream through translocation and accumulate in different organs. Animal studies also show that certain nanomaterials cause more inflammation and more lung tumours on a mass-for-mass basis than the same substances in bulk form, among many other specific effects documented. In addition, research has shown that the physicochemical characteristics of nanomaterials (size, shape, specific surface area, charge, solubility and surface properties) play a major role in their impact on biological systems, including their ability to generate oxidative stress. It is thus crucial that risks be assessed and controlled to ensure the safe handling of nanomaterials. As with many other chemicals, a risk assessment and management approach must be developed on a case-by-case basis.

There is still no consensus, however, on a measurement method for characterizing occupational exposure to nanomaterials, making quantitative risk assessment difficult if not impossible in many situations. As a result, a precautionary approach is recommended to minimize worker exposure. In Québec, the employer is responsible for providing a safe work environment, and preventive measures must be applied by employees. Accordingly, preventive programs that take into account the specific characteristics of nanomaterials must be developed in all work environments where nanomaterials are handled, so that good work practices can be established and preventive procedures tailored to the risks of the particular work situation can be introduced.

Fortunately, current scientific knowledge, though partial, makes it possible to identify, assess and effectively manage these risks. This best practices guide is meant to support the safe development of nanotechnologies in Québec by bringing together current scientific knowledge on hazard identification, strategies for determining nanomaterial levels in different work environments, risk assessment and the application of various risk management approaches. Some knowledge of occupational hygiene is required to use this guide effectively. Designed for all work environments that manufacture or use nanomaterials, this guide provides practical information and prevention tools for the safe handling of nanomaterials in laboratories and pilot plants as well as industrial facilities that produce or incorporate them. To be effective, risk management must be an integral part of an organization’s culture, and health and safety issues must be considered when designing the workplace or as far upstream as possible. This is crucial for good organizational governance. In practice, risk management is an iterative process implemented as part of a structured approach that fosters continuous improvement in decision-making and can even promote better performance. The purpose of this guide is to contribute to the implementation of such an approach to the prevention of nanomaterial-related risks only. Depending on the process, other risks (associated with exposure to solvents, gas, heat stress, ergonomic stress, etc.) may be present, but they are not addressed in this guide.

I wonder where they got these numbers, “It is estimated that in 2015 about 10% of manufacturing jobs worldwide will be associated with nanotechnologies, and more than 2,000 commercial products will contain nanomaterials.” Given that many companies don’t like to disclose whether or not they’re using nanomaterials and most countries don’t insist on an inventory (there are voluntary inventories, which generally speaking have not been successful), bringing me back to the question: where did these numbers come from?

As for the guide itself, Canadians have been very involved with the OECD (Organization for Economic Cooperation and Development) and its ‘nanomaterial safety’ working group and, I understand, have provided leadership on occasion. The guide, which is available in both French and English, is definitely worth checking out.

Titanium dioxide nanoparticles and the brain

This research into titanium dioxide nanoparticles and possible effects on your brain should they pass the blood-brain barrier comes from the University of Nebraska-Lincoln (US) according to a Dec. 15, 2015 news item on Nanowerk (Note: A link has been removed),

Even moderate concentrations of a nanoparticle used to whiten certain foods, milk and toothpaste could potentially compromise the brain’s most numerous cells, according to a new study from the University of Nebraska-Lincoln (Nanoscale, “Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles”).

A Dec. 14, 2015 University of Nebraska-Lincoln news release, which originated the news item, provides more detail (Note: Links have been removed),

The researchers examined how three types of titanium dioxide nanoparticles [rutile, anatase, and commercially available P25 TiO2 nanoparticles], the world’s second-most abundant nanomaterial, affected the functioning of astrocyte cells. Astrocytes help regulate the exchange of signal-carrying neurotransmitters in the brain while also supplying energy to the neurons that process those signals, among many other functions.

The team exposed rat-derived astrocyte cells to nanoparticle concentrations well below the extreme levels that have been shown to kill brain cells but are rarely encountered by humans. At the study’s highest concentration of 100 parts per million, or PPM, two of the nanoparticle types still killed nearly two-thirds of the astrocytes within a day. That mortality rate fell to between half and one-third of cells at 50 PPM, settling to about one-quarter at 25 PPM.

Yet the researchers found evidence that even surviving cells are severely impaired by exposure to titanium dioxide nanoparticles. Astrocytes normally take in and process a neurotransmitter called glutamate that plays wide-ranging roles in cognition, memory and learning, along with the formation, migration and maintenance of other cells.

When allowed to accumulate outside cells, however, glutamate becomes a potent toxin that kills neurons and may increase the risk of neurodegenerative diseases such as Alzheimer’s and Parkinson’s. The study reported that one of the nanoparticle types reduced the astrocytes’ uptake of glutamate by 31 percent at concentrations of just 25 PPM. Another type decreased that uptake by 45 percent at 50 PPM.

The team further discovered that the nanoparticles upset the intricate balance of protein dynamics occurring within astrocytes’ mitochondria, the cellular organelles that help regulate energy production and contribute to signaling among cells. Titanium dioxide exposure also led to other signs of mitochondrial distress, breaking apart a significant proportion of the mitochondrial network at 100 PPM.

“These events are oftentimes predecessors of cell death,” said Oleh Khalimonchuk, a UNL assistant professor of biochemistry who co-authored the study. “Usually, people are looking at those ultimate consequences, but what happens before matters just as much. Those little damages add up over time. Ultimately, they’re going to cause a major problem.”

Khalimonchuk and fellow author Srivatsan Kidambi, assistant professor of chemical and biomolecular engineering, cautioned that more research is needed to determine whether titanium dioxide nanoparticles can avoid digestion and cross the blood-brain barrier that blocks the passage of many substances. [emphasis mine]

However, the researchers cited previous studies that have discovered these nanoparticles in the brain tissue of animals with similar blood-brain barriers. [emphasis mine] The concentrations of nanoparticles found in those specimens served as a reference point for the levels examined in the new study.

“There’s evidence building up now that some of these particles can actually cross the (blood-brain) barrier,” Khalimonchuk said. “Few molecules seem to be able to do so, but it turns out that there are certain sites in the brain where you can get this exposure.”

Kidambi said the team hopes the study will help facilitate further research on the presence of nanoparticles in consumer and industrial products.

“We’re hoping that this study will get some discussion going, because these nanoparticles have not been regulated,” said Kidambi, who also holds a courtesy appointment with the University of Nebraska Medical Center. “If you think about anything white – milk, chewing gum, toothpaste, powdered sugar – all these have nanoparticles in them.

“We’ve found that some nanoparticles are safe and some are not, so we are not saying that all of them are bad. Our reasoning is that … we need to have a classification of ‘safe’ versus ‘not safe,’ along with concentration thresholds (for each type). It’s about figuring out how the different forms affect the biology of cells.

I notice the researchers are being careful about alarming anyone unduly while emphasizing the importance of this research. For anyone curious enough to read the paper, here’s a link to and a citation for it,

Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles by Christina L. Wilson, Vaishaali Natarajan, Stephen L. Hayward, Oleh Khalimonchuk and   Srivatsan Kidambi. Nanoscale, 2015,7, 18477-18488 DOI: 10.1039/C5NR03646A First published online 31 Jul 2015

This is paper is open access although you may need to register on the site.

Final comment, I note this was published online way back in July 2015. Either the paper version of the journal was just published and that’s what’s being promoted or the media people thought they’d try to get some attention for this work by reissuing the publicity. Good on them! It’s hard work getting people to notice things when there is so much information floating around.

Managing risks in a world of converging technology (the fourth industrial revolution)

Finally there’s an answer to the question: What (!!!) is the fourth industrial revolution? (I took a guess [wrongish] in my Nov. 20, 2015 post about a special presentation at the 2016 World Economic Forum’s IdeasLab.)

Andrew Maynard in a Dec. 3, 2015 think piece (also called a ‘thesis’) for Nature Nanotechnology answers the question,

… an approach that focuses on combining technologies such as additive manufacturing, automation, digital services and the Internet of Things, and … is part of a growing movement towards exploiting the convergence between emerging technologies. This technological convergence is increasingly being referred to as the ‘fourth industrial revolution’, and like its predecessors, it promises to transform the ways we live and the environments we live in. (While there is no universal agreement on what constitutes an ‘industrial revolution’, proponents of the fourth industrial revolution suggest that the first involved harnessing steam power to mechanize production; the second, the use of electricity in mass production; and the third, the use of electronics and information technology to automate production.)

In anticipation of the the 2016 World Economic Forum (WEF), which has the fourth industrial revolution as its theme, Andrew  explains how he sees the situation we are sliding into (from Andrew Maynard’s think piece),

As more people get closer to gaining access to increasingly powerful converging technologies, a complex risk landscape is emerging that lies dangerously far beyond the ken of current regulations and governance frameworks. As a result, we are in danger of creating a global ‘wild west’ of technology innovation, where our good intentions may be among the first casualties.

There are many other examples where converging technologies are increasing the gap between what we can do and our understanding of how to do it responsibly. The convergence between robotics, nanotechnology and cognitive augmentation, for instance, and that between artificial intelligence, gene editing and maker communities both push us into uncertain territory. Yet despite the vulnerabilities inherent with fast-evolving technological capabilities that are tightly coupled, complex and poorly regulated, we lack even the beginnings of national or international conceptual frameworks to think about responsible decision-making and responsive governance.

He also lists some recommendations,

Fostering effective multi-stakeholder dialogues.

Encouraging actionable empathy.

Providing educational opportunities for current and future stakeholders.

Developing next-generation foresight capabilities.

Transforming approaches to risk.

Investing in public–private partnerships.

Andrew concludes with this,

… The good news is that, in fields such as nanotechnology and synthetic biology, we have already begun to develop the skills to do this — albeit in a small way. We now need to learn how to scale up our efforts, so that our convergence in working together to build a better future mirrors the convergence of the technologies that will help achieve this.

It’s always a pleasure to read Andrew’s work as it’s thoughtful. I was surprised (since Andrew is a physicist by training) and happy to see the recommendation for “actionable empathy.”

Although, I don’t always agree with him on this occasion I don’t have any particular disagreements but I think that including a recommendation or two to cover the certainty we will get something wrong and have to work quickly to right things would be a good idea.  I’m thinking primarily of governments which are notoriously slow to respond with legislation for new developments and equally slow to change that legislation when the situation changes.

The technological environment Andrew is describing is dynamic, that is fast-moving and changing at a pace we have yet to properly conceptualize. Governments will need to change so they can respond in an agile fashion. My suggestion is:

Develop policy task forces that can be convened in hours and given the authority to respond to an immediate situation with oversight after the fact

Getting back to Andrew Maynard, you can find his think piece in its entirety via this link and citation,

Navigating the fourth industrial revolution by Andrew D. Maynard. Nature Nanotechnology 10, 1005–1006 (2015) doi:10.1038/nnano.2015.286 Published online 03 December 2015

This paper is behind a paywall.

What is the effect of nanoscale plastic on marine life?

A Nov.27, 2015 news item on Nanowerk announces a new UK (United Kingdom) research project designed to answer the question: what impact could nanoscale plastic particles  have on the marine environment?,

As England brings in pricing on plastic carrier bags, and Scotland reveals that similar changes a little over a year ago have reduced the use of such bags by 80%, new research led by Heriot-Watt University in conjunction with Plymouth University will look at the effect which even the most microscopic plastic particles can have on the marine environment.

While images of large ‘islands’ of plastic rubbish or of large marine animals killed or injured by the effects of such discards have brought home some of the obvious negative effects of plastics in the marine environment, it is known that there is more discarded plastic out there than we can account for, and much of it will have degraded into small or even microscopic particles.

It is the effect of these latter, known as nano-plastics, which will be studied under a £1.1m research project, largely funded by NERC [UK Natural Environment Research Council] and run by Heriot-Watt and Plymouth Universities.

A Nov. 25, 2015 Herriot-Watt University press release, which originated the news item, provides more details,

The project, RealRiskNano, will look at the risks these tiny plastic particles pose to the food web including filter-feeding organisms like mussels, clams and sediment dwelling organisms. It will focus on providing information to improve environmental risk assessment for nanoplastics, based on real-world exposure scenarios replicated in the laboratory.

Team leader Dr Theodore Henry, Associate Professor of Toxicology at Heriot-Watt’s School of Life Sciences, said that the study will build on previous research on nano-material toxicology, but will provide information which the earlier studies did not include.

“Pieces of plastic of all sizes have been found in even the most remote marine environments. It’s relatively easy to see some of the results: turtles killed by easting plastic bags which they take for jelly fish, or large marine mammals drowned when caught in discarded ropes and netting.

“But when plastics fragment into microscopic particles, what then? It’s easy to imagine that they simply disappear, but we know that nano-particles pose their own distinct threats purely because of their size. They’re small enough to be transported throughout the environment with unknown effects on organisms including toxicity and interference with processes of the digestive system.

An important component of the project, to be investigated by Dr Tony Gutierrez at Heriot-Watt, will be the study of interactions between microorganisms and the nanoplastics to reveal how these interactions affect their fate and toxicology.

The aim, said Dr Henry, is to provide the information which is needed to effect real change.“We simply don’t know what effects these nano-plastic particles may pose to the marine environment, to filter-feeders and on to fish, and through the RealRiskNano project we aim to provide this urgently needed information to the people whose job it is to assess risk to the marine ecosystem and decide what steps need to be taken to mitigate it.”

You can find the RealRiskNano website here.

An app for nanomaterial risks (NanoRisk)

It seems past time for someone to have developed an app for nanomaterial risks. A Nov. 12, 2015 news item on Nanowerk makes the announcement (Note: A link has been removed),

The NanoRisk App is a guide to help the researcher in the risk assessment of nanomaterials. This evaluation is determined based on the physicochemical characteristics and the activities to be carried out by staff in research laboratories.

The NanoRisk App was developed at the University of Los Andes or Universidad de los Andes in Colombia (there also seems to be one in Chile). From the Nano Risk App homepage,

The NanoRisk App application was developed at the University of Los Andes by the Department of Chemical Engineering and the Department of Electrical and Electronic Engineering, Faculty of Engineering and implemented in cooperation with the Department of Occupational Health at the University of Los Andes. This application focuses on the use of manufactured nanomaterials.

Authors

Homero Fernando Pastrana Rendón MD, MsC, PhD Candidate. Alba Graciela Ávila, Associate Professor, Department of Electrical and Electronic Engineering. Felipe Muñoz Giraldo, Professor Associate Professor, Department of Chemical Engineering, University of Los Andes.

Acknowledgements to Diego Angulo and Diana Fernandez, from the Imagine group, for all the support in the development of this application.

About the App

The app is a guide to help the researcher in the risk assessment of nanomaterials. This evaluation is determined based on the physicochemical characteristics and the activities to be carried out by staff in research laboratories. This is based on nano risk management strategies from various institutions such as the National Institute for Occupational Safety and Health, U.S. (NIOSH), the New Development Organization of Japan Energy and Industrial Technology (NEDO), the European Commission (Nanosafe Program) and the work developed by the Lawrence Livermore National Laboratory (California, USA) in conjunction with the Safety Science Group at the University of Delft in the Netherlands.

RESULT:

The app will estimates the risk at four levels (low, medium, high and very high) for the hazard of the nanomaterial and the probability to be exposed to the material. Then it will recommend measures to contain the risk by applying engineering measures (controlled ventilation system, biosafety cabinet and glovebox).

They have a copyright notice on the page, as well as, instructions on how to access the App and the information.

A couple of lawyers talk wrote about managing nanotechnology risks

Because they are lawyers, I was intrigued by a Nov. 4, 2015 article on managing nanotechnology risks by Michael Lisak and James Mizgala of Sidley Austin LLP for Industry Week. I was also intrigued by the language (Note: A link has been removed),

The inclusion of nanotechnologies within manufacturing processes and products has increased exponentially over the past decade. Fortune recently noted that nanotechnology touches almost all Fortune 500 companies and that the industry’s $20 billion worldwide size is expected to double over the next decade. [emphasis mine]

Yet, potential safety issues have been raised and regulatory uncertainties persist. As such, proactive manufacturers seeking to protect their employees, consumers, the environment and their businesses – while continuing to develop, manufacture and market their products – may face difficult choices in how to best navigate this challenging and fluid landscape, while avoiding potential “nanotort,”  [emphasis mine] whistleblower, consumer fraud and regulatory enforcement lawsuits. Doing so requires forward-thinking advice based upon detailed analyses of each manufacturer’s products and conduct in the context of rapidly evolving scientific, regulatory and legal developments.

I wonder how many terms lawyers are going to coin in addition to “nanotort”?

The lawyers focus largely on two types of nanoparticles, carbon nanotubes, with a special emphasis on multi-walled carbon nantubes (MWCNT) and nano titanium dioxide,

Despite this scientific uncertainty, international organizations, such as the International Agency for Research on Cancer [a World Health Organization agency], have already concluded that nano titanium dioxide in its powder form and multi-walled carbon nanotube-7 (“MWCNT-7”) [emphasis mine] are “possibly carcinogenic to humans.” As such, California’s Department of Public Health lists titanium dioxide and MWCNT-7 as “ingredients known or suspected to cause cancer, birth defects, or other reproductive toxicity as determined by the authoritative scientific bodies.”  Considering that processed (i.e., non-powdered) titanium dioxide is found in products like toothpaste, shampoo, chewing gum and candies, it is not surprising that some have focused upon such statements.

There’s a lot of poison in the world, for example, apples contain seeds which have arsenic in them and, for another, peanuts can be carcinogenic and they can also kill you, as they are poison to people who are allergic to them.

On the occasion of Dunkin’ Donuts removing nano titanium dioxide as an ingredient in the powdered sugar used to coat donuts, I wrote a March 13, 2015 posting, where I quote extensively from Dr. Andrew Maynard’s (then director of the University of Michigan Risk Science Center now director of the Risk Innovation Lab at Arizona State University) 2020 science blog posting about nano titanium dioxide and Dunkin’ Donuts,

He describes some of the research on nano titanium dioxide (Note: Links have been removed),

… In 2004 the European Food Safety Agency carried out a comprehensive safety review of the material. After considering the available evidence on the same materials that are currently being used in products like Dunkin’ Donuts, the review panel concluded that there no evidence for safety concerns.

Most research on titanium dioxide nanoparticles has been carried out on ones that are inhaled, not ones we eat. Yet nanoparticles in the gut are a very different proposition to those that are breathed in.

Studies into the impacts of ingested nanoparticles are still in their infancy, and more research is definitely needed. Early indications are that the gastrointestinal tract is pretty good at handling small quantities of these fine particles. This stands to reason given the naturally occurring nanoparticles we inadvertently eat every day, from charred foods and soil residue on veggies and salad, to more esoteric products such as clay-baked potatoes. There’s even evidence that nanoparticles occur naturally inside the gastrointestinal tract.

You can find Andrew’s entire discussion in his March 12, 2015 post on the 2020 Science blog. Andrew had written earlier in a July 12, 2014 posting about something he terms ‘nano donut math’ as reported by As You Sow, the activist group that made a Dunkin’ Donuts shareholder proposal which resulted in the company’s decision to stop using nano titanium dioxide in the powdered sugar found on their donuts. In any event, Andrew made this point,

In other words, if a Dunkin’ Donut Powdered Cake Donut contained 8.9 mg of TiO2 particles smaller than 10 nm, it would have to have been doused with over 1 million tons of sugar coating! (Note update at the end of this piece)

Clearly something’s wrong here – either Dunkin’ Donuts are not using food grade TiO2 but a nanopowder with particle so small they would be no use whatsoever in the sugar coating (as well as being incredibly expensive, and not FDA approved).  Or there’s something rather wrong with the analysis!

If it’s the latter – and it’s hard to imagine any other plausible reason for the data – it looks like As You Sow ended up using rather dubious figures to back up their stakeholder resolution.  I’d certainly be interested in more information on the procedures Analytical Sciences used and the checks and balances they had in place, especially as there are a number of things that can mess up a particle analysis like this.

Update July 14: My bad, I made a slight error in the size distribution calculation first time round.  This has been corrected in the article above.  Originally, I cited the estimated Mass Median Diameter (MMD) of the TiO2 particles as 167 nm, and the Geometric Standard Deviation (GSD) as 1.6.  Correcting an error in the Excel spreadsheet used to calculate the distribution (these things happen!) led to a revised estimate of MMD = 168 nm and a GSD of 1.44.  These may look like subtle differences, but when calculating the estimated particle mass below 10 nm, they make a massive difference.  With the revised figures, you’d expect less than one trillionth of  a percent of the mass of the TiO2 powder to be below 10 nm!! (the original estimate was a tenth of a millionth of a percent).  In other words – pretty much nothing!  The full analysis can be found here.

Update November 16 2014.  Based on this post, As You Sow checked the data from Analytical Sciences LLC and revised the report accordingly.  This is noted above.

It would seem that if there are concerns over nano titanium dioxide in food, the biggest would not be the amounts ingested by consumers but inhalation by workers should they breathe in large quantities when they are handling the material.

As for the MWCNTs, they have long raised alarms but most especially the long MWCNTs and for people handling them during the course of their work day. Any MWCNTs found in sports equipment and other consumer products are bound in the material and don’t pose any danger of being inhaled into the lungs, unless they should be released from their bound state (e.g. fire might release them).

After some searching for MWCNT-7, I found something which seems also to be known as Mitsui MWCNT-7 or Mitsui 7-MWCNT (here’s one of my sources). As best I understand it, Mitsui is a company that produces an MWCNT which they have coined an MWCNT-7 and which has been used in nanotoxicity testing. As best I can tell, MWCNT is MWCNT-7.

The lawyers (Lisak and Mizgala) note things have changed for manufacturers since the early days and they make some suggestions,

One thing is certain – gone are the days when “sophisticated” manufacturers incorporating nanotechnologies within their products can reasonably expect to shield themselves by pointing to scientific and regulatory uncertainties, especially given the amount of money they are spending on research and development, as well as sales and marketing efforts.

Accordingly, manufacturers should consider undertaking meaningful risk management analyses specific to their applicable products. …

First, manufacturers should fully understand the life-cycle of nanomaterials within their organization. For some, nanomaterials may be an explicit focus of innovation and production, making it easier to pinpoint where nanotechnology fits into their processes and products. For others, nanomaterials may exist either higher-up or in the back-end of their products’ supply chain. …

Second, manufacturers should understand and stay current with the scientific state-of-the-art as well as regulatory requirements and developments potentially applicable to their employees, consumers and the environment. An important consideration related to efforts to understand the state-of-the-art is whether or not manufacturers should themselves expend resources to advance “the science” in seeking to help find answers to some of the aforementioned uncertainties. …

The lawyers go on to suggest that manufacturers should consider proactively researching nanotoxicity so as to better defend themselves against any future legal suits.

Encouraging companies to proactive with toxicity issues is in line with what seems to be an international (Europe & US) regulatory movement putting more onus on producers and manufacturers to take responsibility for safety testing. (This was communicated to me in a conversation I had with an official at the European Union Joint Research Centre where he mentioned REACH regulations and the new emphasis in response to my mention of similar FDA (US Food and Drug Administration) regulations. (We were at the 2014 9th World Congress on Alternatives to Animal Testing in Prague, Czech republic.)

For anyone interested in the International Agency for Research on Cancer you can find it here.

‘Nano to go’, a practical guide to safe handling of nanomaterials and other innovative materials in the workplace

If you’ve been looking for a practical guide to handling nanomaterials you may find that nanoToGo fills the bill. From an Oct. 23, 2015 posting by Lynn Bergeson for Nanotechnology Now,

In September 2015, “Nano to go!” was published. See http://nanovalid.eu/index.php/nanovalid-publications/306-nanotogo “Nano to go!” is “a practically oriented guidance on safe handling of nanomaterials and other innovative materials at the workplace.” The German Federal Institute for Occupational Health (BAuA) developed it within the NanoValid project.

From the nanoToGo webpage on the NanoValid project website (Note: Links have been removed),

Nano to go! contains a brochure, field studies, presentations and general documents to comprehensively support risk assessment and risk management. …

Brochure →

The brochure Safe handling of nanomaterials and other advanced materials at workplacessupports risk assessment and risk management when working with nanomaterials. It provides safety strategies and protection measures for handling nanomaterials bound in solid matrices, dissolved in liquids, insoluble or insoluble powder form, and for handling nanofibres. Additional recommendations are given for storage and disposal of nanomaterials, for protection from fire and explosion, for training and instruction courses, and for occupational health.

Field Studies→

The field studies comprise practical examples of expert assessment of safety and health at different workplaces. They contain detailed descriptions of several exposure measurements at pilot plants and laboratories. The reports describe methods, sampling strategies and devices, summarise and discuss results, and combine measurements and non-measurement methods.

General →

Useful information, templates and examples, such as operating instructions, a sampling protocol, a dialogue guide and a short introduction to safety management and nanomaterials.

Presentations →

Ready to use presentations for university lecturers, supervisors and instruction courses, complemented with explanatory notes.

The ‘brochure’ is 56 pages; I would have called it a manual.

As for the NanoValid project, there’s this from the project’s homepage,

The EU FP7 [Framework Programme 7] large-scale integrating project NanoValid (contract: 263147) has been launched on the 1st of November 2011, as one of the “flagship” nanosafety projects. The project consists of 24 European partners from 14 different countries and 6 partners from Brazil, Canada, India and the US and will run from 2011 to 2015, with a total budget of more than 13 mio EUR (EC contribution 9.6 mio EUR). Main objective of NanoValid is to develop a set of reliable reference methods and materials for the fabrication, physicochemical (pc) characterization, hazard identification and exposure assessment of engineered nanomaterials (EN), including methods for dispersion control and labelling of ENs. Based on newly established reference methods, current approaches and strategies for risk and life cycle assessment will be improved, modified and further developed, and their feasibility assessed by means of practical case studies.

I was not expecting to see Canada in there.

Is safety all it’s cracked up to be? (three items about risk)

I have three items for this piece, two about human risk assessment and nanotechnology and one questioning the drive towards safety.

Proposal for a nanotechnology and human risk assessment scheme

A couple of academics, one from the Université de Montréal (Canada) and the other from the Université de Rennes (France) have proposed what they declare is a “well-developed human risk assessment (HRA) that applies to NPs (nanoparticles).” It’s a bold statement to be found in this paper (Note: There are some oddities about this paper’s citation),

Human Risk Assessment and Its Application to
Nanotechnology: A Challenge for Assessors (PDF) by Claude Emond and Luc Multigner.  2015 J. Phys.: Conf. Ser. 617 012039 http://iopscience.iop.org/1742-6596/617/1/01203

The first oddity is that the second author on the PDF version of the paper, Luc Multigner, is not listed on the paper’s page on the Journal of Physics website. where T N Britos is listed as the second author. Next, there’s the DOI (digital object identifier) which isn’t specified anywhere I can find it. There is something that looks like a DOI in the links to both the paper’s webpage and its PDF: 10.1088/1742-6596/617/1/012039.

Now on to the paper.

The authors are proposing that a methodology designed in 1983 (found in a document known as the Red Book) by the US National Research Council be adapted for use in nanotechnology human risk assessment,

… The approach divided the HRA into four different characterization steps: Source Identification Characterization (SIC), Exposure Assessment Characterization (EAC), Hazard Assessment Characterization (HAC) and Risk Assessment Characterization (RAC) [8, 9] (Figure 1).

Interspecies Variability Factors in Human Health Risk Assessment

This item comes from Lynn Bergeson’s Oct. 2, 2015 posting on Nanotechnology Now,

The Organization for Economic Cooperation and Development (OECD) posted a new publication in its Series on the Safety of Manufactured Nanomaterials, Preliminary Guidance Notes on Nanomaterials: Interspecies Variability Factors in Human Health Risk Assessment. See http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2015)31&doclanguage=en The report includes the following recommendations for further work:

– The Expert Opinion prepared in support of the project noted a general lack of availability of data from repeated-dose toxicity studies in different species. In particular, studies of extended duration such as 90-day subchronic or chronic toxicity studies were only available for a minor part of the analyzed nanomaterials and routes of exposures. …

– Physiologically-based models are receiving increased attention in human health risk assessment. With the available data on lung burden following inhalation exposure to nanomaterials, a useful comparison of measured vs. predicted data has been possible in this project for rats, suggesting that further refinement of the multiple path particle dosimetry (MPPD) model is required before it can be applied to (sub)chronic scenarios. Unfortunately, corresponding information has not been available for humans, preventing comparisons between rats and humans.

This document is no. 58 in the OECD (Organization for Economic Cooperation and Development) Series on the Safety of Manufactured Nanomaterials. All of these documents are freely available.

Why Safety Can Be Dangerous

The third and final item in this post is an announcement for an event at the Woodrow Wilson International Center for Scholars. From an Oct. 14, 2015 email,

Why Safety Can Be Dangerous: A Conversation with Gregory Ip

The Science & Technology Innovation Program is proud to welcome journalist Gregory Ip to discuss his latest book, Foolproof: Why Safety Can Be Dangerous and How Danger Makes Us Safe (Little, Brown). In Foolproof, Ip looks at how we often force new, unexpected risks to develop in unexpected places as we seek to minimize risk from crises like financial downturns and natural disasters.

More information about the Science & Technology Innovation Program’s Public Engagement in an Age of Complexity can be found here: http://www.wilsoncenter.org/article/public-engagement-age-complexity

Tuesday, October 20th, 2015
10:00am – 11:00am

6th Floor Auditorium

Directions

Wilson Center
Ronald Reagan Building and
International Trade Center
One Woodrow Wilson Plaza
1300 Pennsylvania, Ave., NW
Washington, D.C. 20004

Phone: 202.691.4000

The Foolproof event page provides more information,

In Foolproof, Ip looks at how we often force new, unexpected risks to develop in unexpected places as we seek to minimize risk from crises like financial downturns and natural disasters. This is a phenomena only likely to increase as our financial systems and cities become more complex and interconnected, but Ip concludes that these crises actually benefit society.

Final comments

We’re always engaged in a balancing act between risk and safety. How we resolve that conundrum can have huge and unexpected impacts on our future.

As an example of unintended consequences, I live in a region with many forests and a very successful fire suppression programme. Risk from forest fires has been reduced at the cost of building up  so much debris on the forest floor that forest fires which do occur are more devastating than if theyhad regularly diminished the debris.

Smaller (20nm vs 110nm) silver nanoparticles are more likely to absorbed by fish

An Oct. 8, 2015 news item on Nanowerk offers some context for why researchers at the University of California at Los Angeles (UCLA) are studying silver nanoparticles and their entry into the water system,

More than 2,000 consumer products today contain nanoparticles — particles so small that they are measured in billionths of a meter.

Manufacturers use nanoparticles to help sunscreen work better against the sun’s rays and to make athletic apparel better at wicking moisture away from the body, among many other purposes.

Of those products, 462 — ranging from toothpaste to yoga mats — contain nanoparticles made from silver, which are used for their ability to kill bacteria. But that benefit might be coming at a cost to the environment. In many cases, simply using the products as intended causes silver nanoparticles to wind up in rivers and other bodies of water, where they can be ingested by fish and interact with other marine life.

For scientists, a key question has been to what extent organisms retain those particles and what effects they might have.

I’d like to know where they got those numbers “… 2,000 consumer products …” and “… 462 — ranging from toothpaste to yoga mats — contain nanoparticles made from silver… .”

Getting back to the research, an Oct. 7, 2015 UCLA news release, which originated the news item, describes the work in more detail,

A new study by the University of California Center for Environmental Implications of Nanotechnology has found that smaller silver nanoparticles were more likely to enter fish’s bodies, and that they persisted longer than larger silver nanoparticles or fluid silver nitrate. The study, published online in the journal ACS Nano, was led by UCLA postdoctoral scholars Olivia Osborne and Sijie Lin, and Andre Nel, director of UCLA’s Center for Environmental Implications of Nanotechnology and associate director of the California NanoSystems Institute at UCLA.

Nel said that although it is not yet known whether silver nanoparticles are harmful, the research team wanted to first identify whether they were even being absorbed by fish. CEIN, which is funded by the National Science Foundation, is focused on studying the effects of nanotechnology on the environment.

In the study, researchers placed zebrafish in water that contained fluid silver nitrate and two sizes of silver nanoparticles — some measuring 20 nanometers in diameter and others 110 nanometers. Although the difference in size between these two particles is so minute that it can only be seen using high-powered transmission electron microscopes, the researchers found that the two sizes of particles affected the fish very differently.

The researchers used zebrafish in the study because they have some genetic similarities to humans, their embryos and larvae are transparent (which makes them easier to observe). In addition, they tend to absorb chemicals and other substances from water.

Osborne said the team focused its research on the fish’s gills and intestines because they are the organs most susceptible to silver exposure.

“The gills showed a significantly higher silver content for the 20-nanometer than the 110-nanometer particles, while the values were more similar in the intestines,” she said, adding that both sizes of the silver particles were retained in the intestines even after the fish spent seven days in clean water. “The most interesting revelation was that the difference in size of only 90 nanometers made such a striking difference in the particles’ demeanor in the gills and intestines.”

The experiment was one of the most comprehensive in vivo studies to date on silver nanoparticles, as well as the first to compare silver nanoparticle toxicity by extent of organ penetration and duration with different-sized particles, and the first to demonstrate a mechanism for the differences.

Osborne said the results seem to indicate that smaller particles penetrated deeper into the fishes’ organs and stayed there longer because they dissolve faster than the larger particles and are more readily absorbed by the fish.

Lin said the results indicate that companies using silver nanoparticles have to strike a balance that recognizes their benefits and their potential as a pollutant. Using slightly larger nanoparticles might help make them somewhat safer, for example, but it also might make the products in which they’re used less effective.

He added that data from the study could be translated to understand how other nanoparticles could be used in more environmentally sustainable ways.

Nel said the team’s next step is to determine whether silver particles are potentially harmful. “Our research will continue in earnest to determine what the long-term effects of this exposure can be,” he said.

Here’s an image illustrating the findings,

Courtesy ACS Nano

Courtesy ACS Nano

Here’s a link to and a citation for the paper,

Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish by Olivia J. Osborne, Sijie Lin, Chong Hyun Chang, Zhaoxia Ji, Xuechen Yu, Xiang Wang, Shuo Lin, Tian Xia, and André E. Nel. ACS Nano, Article ASAP DOI: 10.1021/acsnano.5b04583 Publication Date (Web): September 1, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Brown University (US) gets big bucks to study effect on nanomaterials on human health

In over seven years of blogging about nanotechnology, this is the most active funding period for health and environmental effects impacts I’ve seen yet. A Sept. 26, 2015 news item on Azonano features another such grant,

With a new federal grant of nearly $10.8 million over the next five years, Brown University researchers and students in the Superfund Research Program (SRP) will be able to advance their work studying how toxicant exposures affect health, how such exposures occur, how nanotechnologies could contain contamination, and how to make sure those technologies are safe.

A Sept. 24, 2015 Brown University news release, which originated the news item, describes of Brown’s SRP work already underway and how this new grant will support it,

“There is more research to be performed,” said Kim Boekelheide, program director, professor of pathology and laboratory medicine, and fellow of the Institute at Brown for Environment and Society (IBES). “Our scientific theme is integrated biomedical and engineering solutions to regulatory uncertainty, using interdisciplinary approaches to attack the really difficult contamination problems that matter.”

The program is pursuing four integrated projects. In one led by Boekelheide, a team is looking at the physiological effects of exposure to toxicants like trichloroethylene on the male reproductive system. In particular he hopes to find the subtle differences in biomolecular markers in sperm that could allow for very early detection of exposure. Meanwhile in another line of research, Eric Suuberg, professor of engineering, is studying how vapors from toxic material releases can re-emerge from the soil entering into buildings built at or near the polluted sites — and why it is hard to predict the level of exposure that inhabitants of these buildings may suffer.

In another project, Robert Hurt, an IBES fellow, SRP co-primary investigator and professor of engineering, is studying how graphene, an atomically thin carbon material, can be used to block the release and transport of toxicants to prevent human exposures. Hurt is also collaborating with Agnes Kane, an IBES fellow and chair and professor of pathology and laboratory medicine, who is leading a study of nanomaterial effects on human health, so they can be designed and used safely in environmental and other applications.

The program will also continue the program’s community outreach efforts in which they work and share information with communities near the state’s Superfund-designated and Brownfield contaminated sites. Scott Frickel, an IBES fellow and associate professor of sociology, is the new leader of community engagement. The program also includes a research translation core in which researchers share their findings and expertise with the U.S. Environmental Protection Agency, state agencies, and professionals involved in contamination management and cleanup. A training core provides opportunities for interdisciplinary research, field work, and industry “externships” for graduate students in engineering, pathobiology, and social sciences at Brown.

It’s good to see they are integrating social sciences into this project although I hope they aren’t attempting this move as a means to coopt and/or stifle genuine dissent and disagreement by giving a superficial nod to the social sciences and public engagement  while wending on their merry way.