Category Archives: water

Understanding nanotechnology with Timbits; a peculiarly Canadian explanation

For the uninitiated, Timbits are also known as donut holes. Tim Hortons, founded by ex-National Hockey League player Tim Horton who has since deceased, has taken hold in the Canada’s language and culture such that one of our scientists trying to to explain nanotechnology thought it would be best understood in terms of Timbits. From a Jan. 14, 2017 article (How nanotechnology could change our lives) by Vanessa Lu for,

The future is all in the tiny.

Known as nanoparticles, these are the tiniest particles, so small that we can’t see them or even imagine how small they are.

University of Waterloo’s Frank Gu paints a picture of their scale.

“Take a Timbit and start slicing it into smaller and smaller pieces, so small that every Canadian — about 35 million of us — can hold a piece of the treat,” he said. “And those tiny pieces are still a little bigger than a nanoparticle.”

For years, consumers have seen the benefits of nanotechnology in everything from shrinking cellphones to ultrathin televisions. Apple’s iPhones have become more powerful as they have become smaller — where a chip now holds billions of transistors.

“As you go smaller, it creates less footprint and more power,” said Gu, who holds the Canada research chair in advanced targeted delivery systems. “FaceTime, Skype — they are all powered by nanotechnology, with their retina display.”

Lu wrote a second January 14, 2017 article (Researchers developing nanoparticles to purify water) for,

When scientists go with their gut or act on a hunch, it can pay off.

For Tim Leshuk, a PhD student in nanotechnology at the University of Waterloo, he knew it was a long shot.

Leshuk had been working with Frank Gu, who leads a nanotechnology research group, on using tiny nanoparticles that have been tweaked with certain properties to purify contaminated water.

Leshuk was working on the process, treating dirty water such as that found in Alberta’s oilsands, with the nanoparticles combined with ultraviolet light. He wondered what might happen if exposed to actual sunlight.

“I didn’t have high hopes,” he said. “For the heck of it, I took some beakers out and put them on the roof. And when I came back, it was far more effective that we had seen with regular UV light.

“It was high-fives all around,” Leshuk said. “It’s not like a Brita filter or a sponge that just soaks up pollutants. It completely breaks them down.”

Things are accelerating quickly, with a spinoff company now formally created called H2nanO, with more ongoing tests scheduled. The research has drawn attention from oilsands companies, and [a] large pre-pilot project to be funded by the Canadian Oil Sands Innovation Alliance is due to get under way soon.

The excitement comes because it’s an entirely green process, converting solar energy for cleanup, and the nanoparticle material is reuseable, over and over.

It’s good to see a couple of articles about nanotechnology. The work by Tim Leshuk was highlighted here in a Dec. 1, 2015 posting titled:  New photocatalytic approach to cleaning wastewater from oil sands. I see the company wasn’t mentioned in the posting so, it must be new; you can find H2nanO here.

Discussion of a divisive topic: the Oilsands

As for the oilsands, it’s been an interesting few days with the Prime Minister’s (Justin Trudeau) suggestion that dependence would be phased out causing a furor of sorts. From a Jan. 13, 2017 article by James Wood for the Calgary Herald,

Prime Minister Justin Trudeau’s musings about phasing out the oilsands Friday [Jan. 13, 2017] were met with a barrage of criticism from Alberta’s conservative politicians and a pledge from Premier Rachel Notley that the province’s energy industry was “not going anywhere, any time soon.”

Asked at a town hall event in Peterborough [Ontario] about the federal government’s recent approval of Kinder Morgan’s Trans Mountain pipeline expansion, Trudeau reiterated his longstanding remarks that he is attempting to balance economic and environmental concerns.

“We can’t shut down the oilsands tomorrow. We need to phase them out. We need to manage the transition off of our dependence on fossil fuels but it’s going to take time and in the meantime we have to manage that transition,” he added.

Northern Alberta’s oilsands are a prime target for environmentalists because of their significant output of greenhouse gas emissions linked to global climate change.

Trudeau, who will be in Calgary for a cabinet retreat on Jan. 23 and 24 [2017], also said again that it is the responsibility of the national government to get Canadian resources to market.

Meanwhile, Jane Fonda, Hollywood actress, weighed in on the issue of the Alberta oilsands with this (from a Jan. 11, 2017 article by Tristan Hopper for the National Post),

Fort McMurrayites might have assumed the celebrity visits would stop after the city was swept first by recession, and then by wildfire.

Or when the provincial government introduced a carbon tax and started phasing out coal.

And surely, with Donald Trump in the White House, even the oiliest corner of Canada would shift to the activist back burner.

But no; here comes Jane Fonda.

“We don’t need new pipelines,” she told a Wednesday [Jan. 11, 2017] press conference at the University of Alberta where she also dismissed Prime Minister Justin Trudeau as a “good-looking Liberal” who couldn’t be trusted.

Saying that her voice was joined with the “Indigenous people of Canada,” Fonda explained her trip to Alberta by saying “when you’re famous you can help amplify the voices of people that can’t necessarily get a lot of press people to come out.”

Fonda is in Alberta at the invitation of Greenpeace, which has brought her here in support of the Treaty Alliance Against Tar Sands Expansion — a group of Canadian First Nations and U.S. tribes opposed to new pipelines to the Athabasca oilsands.

Appearing alongside Fonda, at a table with a sign reading “Respect Indigenous Decisions,” was Grand Chief Stewart Phillip, who, as leader of the Union of B.C. Indian Chiefs, has led anti-pipeline protests and litigation in British Columbia.

“The future is going to be incredibly litigious,” he said in reference to the approved expansion of the Trans-Mountain pipeline.

The event also included Grand Chief Derek Nepinak of the Assembly of Manitoba Chiefs, which is leading a legal challenge to federal approval of the Line 3 pipeline.

Although much of Athabasca’s oil production now comes from “steam-assisted gravity drainage” projects that requires minimal surface disturbance, on Tuesday Fonda took the requisite helicopter tour of a Fort McMurray-area open pit mine.

As you can see, there are not going to be any easy answers.

International news bits: Israel and Germany and Cuba and Iran

I have three news bits today.


From a Nov. 14, 2016 posting by Lynn L. Bergeson and Carla N. Hutton for The National Law Review (Note: A link has been removed),

The German Federal Ministry of Education and Research (BMBF) recently published an English version of its Action Plan Nanotechnology 2020. Based on the success of the Action Plan Nanotechnology over the previous ten years, the federal government will continue the Action Plan Nanotechnology for the next five years.  Action Plan Nanotechnology 2020 is geared towards the priorities of the federal government’s new “High-Tech Strategy” (HTS), which has as its objective the solution of societal challenges by promoting research.  According to Action Plan Nanotechnology 2020, the results of a number of research projects “have shown that nanomaterials are not per se linked with a risk for people and the environment due to their nanoscale properties.”  Instead, this is influenced more by structure, chemical composition, and other factors, and is thus dependent on the respective material and its application.

A Nov. 16, 2016 posting on provides mores detail about the plan (Note: A link has been removed),

Eight ministries have been responsible for producing a joint plan on nanotechnology every five years since 2006, the Ministry said. The ministries develop a common approach that pools strategies for action and fields of application for nanotechnology, it [Germany’s Federal Ministry of Education and Research] said.

The German public sector currently spends more than €600 million a year on nanotechnology related developments, and 2,200 organisations from industry, services, research and associations are registered in the Ministry’s nanotechnology competence map, the report said.

“There are currently also some 1,100 companies in Germany engaged [in] the use of nanotechnology in the fields of research and development as well as the marketing of commercial products and services. The proportion of SMEs [small to medium enterprises?] is around 75%,” it said.

Nanotechnology-based product innovations play “an increasingly important role in many areas of life, such as health and nutrition, the workplace, mobility and energy production”, and the plan “thus pursues the objective of continuing to exploit the opportunities and potential of nanotechnology in Germany, without disregarding any potential risks to humans and the environment.”, the Ministry said.

Technology law expert Florian von Baum of Pinsent Masons, the law firm behind said: “The action plan aims to achieve and secure Germany’s critical lead in the still new nanotechnology field and to recognise and use the full potential of nanotechnology while taking into account possible risks and dangers of this new technology.”


“With the rapid pace of development and the new applications that emerge every day, the government needs to ensure that the dangers and risks are sufficiently recognised and considered. Nanotechnology will provide great and long-awaited breakthroughs in health and ecological areas, but ethical, legal and socio-economic issues must be assessed and evaluated at all stages of the innovation chain,” von Baum said.

You can find Germany’s Action Plan Nanotechnology 2020 here, all 64 pp.of it.

Israel and Germany

A Nov. 16, 2016 article by Shoshanna Solomon for The Times of Israel announces a new joint (Israel-Germany) nanotechnology fund,

Tsrael and Germany have set up a new three-year, €30 million plan to promote joint nanotechnology initiatives and are calling on companies and entities in both countries to submit proposals for funding for projects in this field.

“Nanotech is the industry of the future in global hi-tech and Israel has set a goal of becoming a leader of this field, while cooperating with leading European countries,” Ilan Peled, manager of Technological Infrastructure Arena at the Israel Innovation Authority, said in a statement announcing the plan.

In the past decade nanotechnology, seen by many as the tech field of the future, has focused mainly on research. Now, however, Israel’s Innovation Authority, which has set up the joint program with Germany, believes the next decade will focus on the application of this research into products — and countries are keen to set up the right ecosystem that will draw companies operating in this field to them.

Over the last decade, the country has focused on creating a “robust research foundation that can support a large industry,” the authority said, with six academic research institutes that are among the world’s most advanced.

In addition, the authority said, there are about 200 new startups that were established over the last decade in the field, many in the development stage.

I know it’s been over 70 years since the events of World War II but this does seem like an unexpected coupling. It is heartening to see that people can resolve the unimaginable within the space of a few generations.

Iran and Cuba

A Nov. 16, 2016 Mehr News Agency press release announces a new laboratory in Cuba,

Iran is ready to build a laboratory center equipped with nanotechnology in one of nano institutes in Cuba, Iran’s VP for Science and Technology Sorena Sattari said Tuesday [Nov. 15, 2016].

Sorena Sattari, Vice-President for Science and Technology, made the remark in a meeting with Fidel Castro Diaz-Balart, scientific adviser to the Cuban president, in Tehran on Tuesday [November 15, 2016], adding that Iran is also ready to present Cuba with a gifted package including educational services related to how to operate the equipment at the lab.

During the meeting, Sattari noted Iran’s various technological achievements including exports of biotechnological medicine to Russia, the extensive nanotechnology plans for high school and university students as well as companies, the presence of about 160 companies active in the field of nanotechnology and the country’s achievements in the field of water treatment.

“We have sealed good nano agreements with Cuba, and are ready to develop our technological cooperation with this country in the field of vaccines and recombinant drugs,” he said.

Sattari maintained that the biggest e-commerce company in the Middle East is situated in Iran, adding “the company which was only established six years ago now sales over $3.5 million in a day, and is even bigger than similar companies in Russia.”

The Cuban official, for his part, welcomed any kind of cooperation with Iran, and thanked the Islamic Republic for its generous proposal on establishing a nanotechnology laboratory in his country.

This coupling is not quite so unexpected as Iran has been cozying up to all kinds of countries in its drive to establish itself as a nanotechnology leader.

The character of water: both types

This is to use an old term, ‘mindblowing’. Apparently, there are two types of the liquid we call water according to a Nov. 10, 2016 news item on,

There are two types of liquid water, according to research carried out by an international scientific collaboration. This new peculiarity adds to the growing list of strange phenomena in what we imagine is a simple substance. The discovery could have implications for making and using nanoparticles as well as in understanding how proteins fold into their working shape in the body or misfold to cause diseases such as Alzheimer’s or CJD [Creutzfeldt-Jakob Disease].

A Nov. 10, 2016 Inderscience Publishers news release, which originated the news item, expands on the theme,

Writing in the International Journal of Nanotechnology, Oxford University’s Laura Maestro and her colleagues in Italy, Mexico, Spain and the USA, explain how the physical and chemical properties of water have been studied for more than a century and revealed some odd behavior not seen in other substances. For instance, when water freezes it expands. By contrast, almost every other known substance contracts when it is cooled. Water also exists as solid, liquid and gas within a very small temperature range (100 degrees Celsius) whereas the melting and boiling points of most other compounds span a much greater range.

Many of water’s bizarre properties are due to the molecule’s ability to form short-lived connections with each other known as hydrogen bonds. There is a residual positive charge on the hydrogen atoms in the V-shaped water molecule either or both of which can form such bonds with the negative electrons on the oxygen atom at the point of the V. This makes fleeting networks in water possible that are frozen in place when the liquid solidifies. They bonds are so short-lived that they do not endow the liquid with any structure or memory, of course.

The team has looked closely at several physical properties of water like its dielectric constant (how well an electric field can permeate a substance) or the proton-spin lattice relaxation (the process by which the magnetic moments of the hydrogen atoms in water can lose energy having been excited to a higher level). They have found that these phenomena seem to flip between two particular characters at around 50 degrees Celsius, give or take 10 degrees, i.e. from 40 to 60 degrees Celsius. The effect is that thermal expansion, speed of sound and other phenomena switch between two different states at this crossover temperature.

These two states could have important implications for studying and using nanoparticles where the character of water at the molecule level becomes important for the thermal and optical properties of such particles. Gold and silver nanoparticles are used in nanomedicine for diagnostics and as antibacterial agents, for instance. Moreover, the preliminary findings suggest that the structure of liquid water can strongly influence the stability of proteins and how they are denatured at the crossover temperature, which may well have implications for understanding protein processing in the food industry but also in understanding how disease arises when proteins misfold.

Here’s a link to and a citation for the paper,

On the existence of two states in liquid water: impact on biological and nanoscopic systems
by L.M. Maestro, M.I. Marqués, E. Camarillo, D. Jaque, J. García Solé, J.A. Gonzalo, F. Jaque, Juan C. Del Valle, F. Mallamace, H.E. Stanley.
International Journal of Nanotechnology (IJNT), Vol. 13, No. 8/9, 2016 DOI: 10.1504/IJNT.2016.079670

This paper is behind a paywall.

Theoretical tool for understanding the fate of nano- and microplastic in rivers

An Oct. 17, 2016 news item on Nanowerk announced work being accomplished at Wageningen University (Netherlands),

Very tiny plastic particles of micro and nano size are difficult to measure in the environment to assess exposure risks. Researchers of Wageningen University & Research now provide the first mechanistic modelling study on the behaviour and fate of nano- and microplastic in surface waters.

Plastic debris has been detected in the oceans, in soils, sediments and surface waters worldwide. Emissions are expected to increase by an order of magnitude in the coming years. Fragmentation leads to smaller and smaller particles, eventually reaching the submicron scale. At these very small sizes, plastic particles may pose unforeseen risks. Yet they are hard to measure in the environment so that exposure assessments have to rely on modelling.

Wageningen researcher Ellen Besseling: “We already knew that microplastics are transported in rivers and can reach the sediment, potentially affecting aquatic life. Now we have a theoretical tool that helps us to understand why/how this happens and that helps us to explain what we see. This is important in order to design mitigation strategies for plastic debris of all sizes, and to predict emissions of plastics to our oceans.”

An Oct. 17, 2016 Wageningen University & Research press release, which originated the news item, provides more detail,

In their recent pioneering study published in the journal Environmental Pollution, Ellen Besseling and co-workers simulate the concentrations of plastic particles between 100 nm up to 10 mm for the hydrological flow regime of a real river. The model accounted for direct transport of the particles, but also for aggregation of the particles with natural suspended solids, and the transport and settling of the resulting so-called heteroaggregates. The model also accounted for the presence of biofilm on the plastics, and model scenarios were calculated for plastics of different density. “This provides very insightful results on where in the river bed the ‘hot spot’ locations for presence of nano- and microplastic can be expected,” says project leader Prof Bart Koelmans. No earlier models accounted for all of these processes, and some counterintuitive results were obtained. Settling to the sediment for instance, was important for nano- and microplastics smaller than one micrometer due to settling of aggregates, and for plastic particles bigger than fifty micrometer due to direct settling, but much less for sizes in between. This means that these particles are expected to be exported to sea to a larger extent.

Attachment efficiency
A key parameter in the model is the attachment efficiency, which is the chance that a colliding plastic and natural solid particle actually stick together. Because this parameter was not known, literature values were used taking non-polymer nanoparticles as a proxy for microplastic. These values, however, were used in combination with – also for the first time – new measured values for actual nano- and microplastics. These experimental data for aggregation of nano- and microplastic with suspended particles in natural freshwater appeared to fairly agree to the literature data. Whereas these first results are promising, the research team emphasizes that more research is needed to study the aggregation behaviour of nano- an microplastic in fresh and marine waters.

Risk assessment of plastic debris
The problem of plastic debris is high on the agenda of policymakers and the public, and society calls for an assessment of the risks of plastic debris to man and the environment. A risk assessment for nano- and microplastic requires an assessment of exposure, and of the effects caused by plastics, which then can be compared in a characterisation of actual risks for man and the environment. As long as analytical methods to detect plastic particles are still under construction, models provide invaluable tools to assess exposure to plastic of all sizes. Models can also be used to design monitoring networks and optimize sampling strategies by indicating ‘hot spot’ locations based on first principles. At Wageningen University & Research, several projects aim to develop tools for the risk assessment of plastic debris in marine as well as freshwaters, for instance the new STW-project TRAMP.

Here’s a link to and a citation for the paper,

Fate of nano- and microplastic in freshwater systems: A modeling study by Ellen Besseling, Joris T.K. Quik, Muzhi Sun, Albert A. Koelmans. Environmental Pollution Available online 13 October 2016

This paper is behind a paywall.

Oil spill cleanup nanotechnology-enabled solution from A*STAR

A*STAR (Singapore’s Agency for Science Technology and Research) has developed a new technology for cleaning up oil spills according to an Oct. 11, 2016 news item on Nanowerk,

Oceanic oil spills are tough to clean up. They dye feathers a syrupy sepia and tan fish eggs a toxic tint. The more turbulent the waters, the farther the slick spreads, with inky droplets descending into the briny deep.

Now technology may be able to succeed where hard-working volunteers have failed in the past. Researchers at the A*STAR Institute of Bioengineering and Nanotechnology (IBN) are using nanotechnology to turn an oil spill into a floating mass of brown jelly that can be scooped up before it can make its way into the food chain.

“Nanoscience makes it possible to tailor the essential structures of materials at the nanometer scale to achieve specific properties,” says chemist Yugen Zhang at IBN, who is developing some of the technologies. “Structures and materials in the nanometer size range often take on distinctive properties that are not seen in other size ranges,” adds Huaqiang Zeng, another chemist at IBN.

An Oct. 11, 2016 A*STAR press release, which originated the news item, describes some of problematic solutions before describing the new technology,

There are many approaches to cleaning an oil spill, and none are completely effective. Fresh, thick grease can be set ablaze or contained by floating barriers for skimmers to scoop out. The slick can also be inefficiently hardened, messily absorbed, hazardously dispersed, or slowly consumed by oil-grazing bacteria. All of these are deficient on a large scale, especially in rough waters.

Organic molecules with special gelling abilities offer a cheap, simple and environmentally friendly alternative for cleaning up the mess. Zeng has developed several such molecules that turn crude oil into jelly within minutes.

To create his ‘supergelators’, Zeng designed the molecules to associate with each other without forming physical bonds. When sprayed on contaminated seawater, the molecules immediately bundle into long fibers between 40 and 800 nanometers wide. These threads create a web that traps the interspersed oil in a giant blob that floats on the water’s surface. The gunk can then be swiftly sieved out of the ocean. Valuable crude oil can later be reclaimed using a common technique employed by petroleum refineries called fractional distillation.

Zeng tested the supergelators on four types of crude oil with different densities, viscosities and sulfur levels in a small round dish. The results were impressive. “The supergelators solidified both freshly spilled crude oil and highly weathered crude oil 37 to 60 times their own weight,” says Zeng. The materials used to produce these organic molecules are cheap and non toxic, which make them a commercially viable solution for managing accidents out at sea. Zeng hopes to work with industrial partners to test the nanomolecules on a much larger scale.

Zeng and his colleagues have developed other other ‘water’ applications as well,

Unsalty water

Scientists at IBN are also using nanoscience to remove salt from seawater and heavy metals from contaminated water.

With dwindling global fresh and ground water reserves, many countries are looking to desalination as a viable source of drinking water. Desalination is expected to meet 30 per cent of the water demand of Singapore by 2060, which will mean tripling the country’s current desalination capacity. But desalination demands huge energy consumption and reverse osmosis, the mainstream technology it depends on, has a relatively high cost. Reverse osmosis works by using extreme pressures to squeeze water molecules through tightly knit membranes.

An emerging alternative solution mimics the way proteins embedded in cell membranes, known as aquaporins, channel water in and out. Some research groups have even created membranes made of fatty lipid molecules that can accommodate natural aquaporins. Zeng has developed a cheaper and more resilient replacement.

His building blocks consist of helical noodles with sticky ends that connect to form long spirals. Water molecules can flow through the 0.3 nanometer openings at the center of the spirals, but all the other positively and negatively charged ions that make up saltwater are too bulky to pass. These include sodium, potassium, calcium, magnesium, chlorine and sulfur oxide. “In water, all of these ions are highly hydrated, attached to lots of water molecules, which makes them too large to go through the channels,” says Zeng.

The technology could lead to global savings of up to US$5 billion a year, says Zeng, but only after several more years of testing and tweaking the lipid membrane’s compatibility and stability with the nanospirals. “This is a major focus in my group right now,” he says. “We want to get this done, so that we can reduce the cost of water desalination to an acceptable level.”

Stick and non-stick

Nanomaterials also offer a low-cost, effective and sustainable way to filter out toxic metals from drinking water.

Heavy metal levels in drinking water are stringently regulated due to the severe damage the substances can cause to health, even at very low concentrations. The World Health Organization requires that levels of lead, for example, remain below ten parts per billion (ppb). Treating water to these standards is expensive and extremely difficult.

Zhang has developed an organic substance filled with pores that can trap and remove toxic metals from water to less than one ppb. Each pore is ten to twenty nanometers wide and packed with compounds, known as amines that stick to the metals.

Exploiting the fact that amines lose their grip over the metals in acidic conditions, the valuable and limited resource can be recovered by industry, and the polymers reused.

The secret behind the success of Zhang’s polymers is the large surface area covered by the pores, which translates into more opportunities to interact with and trap the metals. “Other materials have a surface area of about 100 square meters per gram, but ours is 1,000 square meters per gram,” says Zhang. “It is 10 times higher.”

Zhang tested his nanoporous polymers on water contaminated with lead. He sprinkled a powdered version of the polymer into a slightly alkaline liquid containing close to 100 ppb of lead. Within seconds, lead levels reduced to below 0.2 ppb. Similar results were observed for cadmium, copper and palladium. Washing the polymers in acid released up to 93 per cent of the lead.

With many companies keen to scale these technologies for real-world applications, it won’t be long before nanoscience treats the Earth for its many maladies.

I wonder if the researchers have found industrial partners (who could be named) to bring these solutions for oil spill cleanups, desalination, and water purification to the market.

Powering up your graphene implants so you don’t get fried in the process

A Sept. 23, 2016 news item on describes a way of making graphene-based medical implants safer,

In the future, our health may be monitored and maintained by tiny sensors and drug dispensers, deployed within the body and made from graphene—one of the strongest, lightest materials in the world. Graphene is composed of a single sheet of carbon atoms, linked together like razor-thin chicken wire, and its properties may be tuned in countless ways, making it a versatile material for tiny, next-generation implants.

But graphene is incredibly stiff, whereas biological tissue is soft. Because of this, any power applied to operate a graphene implant could precipitously heat up and fry surrounding cells.

Now, engineers from MIT [Massachusetts Institute of Technology] and Tsinghua University in Beijing have precisely simulated how electrical power may generate heat between a single layer of graphene and a simple cell membrane. While direct contact between the two layers inevitably overheats and kills the cell, the researchers found they could prevent this effect with a very thin, in-between layer of water.

A Sept. 23, 2016 MIT news release by Emily Chu, which originated the news item, provides more technical details,

By tuning the thickness of this intermediate water layer, the researchers could carefully control the amount of heat transferred between graphene and biological tissue. They also identified the critical power to apply to the graphene layer, without frying the cell membrane. …

Co-author Zhao Qin, a research scientist in MIT’s Department of Civil and Environmental Engineering (CEE), says the team’s simulations may help guide the development of graphene implants and their optimal power requirements.

“We’ve provided a lot of insight, like what’s the critical power we can accept that will not fry the cell,” Qin says. “But sometimes we might want to intentionally increase the temperature, because for some biomedical applications, we want to kill cells like cancer cells. This work can also be used as guidance [for those efforts.]”

Sandwich model

Typically, heat travels between two materials via vibrations in each material’s atoms. These atoms are always vibrating, at frequencies that depend on the properties of their materials. As a surface heats up, its atoms vibrate even more, causing collisions with other atoms and transferring heat in the process.

The researchers sought to accurately characterize the way heat travels, at the level of individual atoms, between graphene and biological tissue. To do this, they considered the simplest interface, comprising a small, 500-nanometer-square sheet of graphene and a simple cell membrane, separated by a thin layer of water.

“In the body, water is everywhere, and the outer surface of membranes will always like to interact with water, so you cannot totally remove it,” Qin says. “So we came up with a sandwich model for graphene, water, and membrane, that is a crystal clear system for seeing the thermal conductance between these two materials.”

Qin’s colleagues at Tsinghua University had previously developed a model to precisely simulate the interactions between atoms in graphene and water, using density functional theory — a computational modeling technique that considers the structure of an atom’s electrons in determining how that atom will interact with other atoms.

However, to apply this modeling technique to the group’s sandwich model, which comprised about half a million atoms, would have required an incredible amount of computational power. Instead, Qin and his colleagues used classical molecular dynamics — a mathematical technique based on a “force field” potential function, or a simplified version of the interactions between atoms — that enabled them to efficiently calculate interactions within larger atomic systems.

The researchers then built an atom-level sandwich model of graphene, water, and a cell membrane, based on the group’s simplified force field. They carried out molecular dynamics simulations in which they changed the amount of power applied to the graphene, as well as the thickness of the intermediate water layer, and observed the amount of heat that carried over from the graphene to the cell membrane.

Watery crystals

Because the stiffness of graphene and biological tissue is so different, Qin and his colleagues expected that heat would conduct rather poorly between the two materials, building up steeply in the graphene before flooding and overheating the cell membrane. However, the intermediate water layer helped dissipate this heat, easing its conduction and preventing a temperature spike in the cell membrane.

Looking more closely at the interactions within this interface, the researchers made a surprising discovery: Within the sandwich model, the water, pressed against graphene’s chicken-wire pattern, morphed into a similar crystal-like structure.

“Graphene’s lattice acts like a template to guide the water to form network structures,” Qin explains. “The water acts more like a solid material and makes the stiffness transition from graphene and membrane less abrupt. We think this helps heat to conduct from graphene to the membrane side.”

The group varied the thickness of the intermediate water layer in simulations, and found that a 1-nanometer-wide layer of water helped to dissipate heat very effectively. In terms of the power applied to the system, they calculated that about a megawatt of power per meter squared, applied in tiny, microsecond bursts, was the most power that could be applied to the interface without overheating the cell membrane.

Qin says going forward, implant designers can use the group’s model and simulations to determine the critical power requirements for graphene devices of different dimensions. As for how they might practically control the thickness of the intermediate water layer, he says graphene’s surface may be modified to attract a particular number of water molecules.

“I think graphene provides a very promising candidate for implantable devices,” Qin says. “Our calculations can provide knowledge for designing these devices in the future, for specific applications, like sensors, monitors, and other biomedical applications.”

This research was supported in part by the MIT International Science and Technology Initiative (MISTI): MIT-China Seed Fund, the National Natural Science Foundation of China, DARPA [US Defense Advanced Research Projects Agency], the Department of Defense (DoD) Office of Naval Research, the DoD Multidisciplinary Research Initiatives program, the MIT Energy Initiative, and the National Science Foundation.

Here’s a link to and a citation for the paper,

Intercalated water layers promote thermal dissipation at bio–nano interfaces by Yanlei Wang, Zhao Qin, Markus J. Buehler, & Zhiping Xu. Nature Communications 7, Article number: 12854 doi:10.1038/ncomms12854 Published 23 September 2016

This paper is open access.

Nanosunscreen in swimming pools

Thanks to Lynn L. Bergeson’s Sept. 21, 2016 posting for information about the US Environmental Protection Agency’s (EPA) research into what happens to the nanoparticles when your nanosunscreen washes off into a swimming pool. Bergeson’s post points to an Aug. 15, 2016 EPA blog posting by Susanna Blair,

… It’s not surprising that sunscreens are detected in pool water (after all, some is bound to wash off when we take a dip), but certain sunscreens have also been widely detected in our ecosystems and in our wastewater. So how is our sunscreen ending up in our environment and what are the impacts?

Well, EPA researchers are working to better understand this issue, specifically investigating sunscreens that contain engineered nanomaterials and how they might change when exposed to the chemicals in pool water [open access paper but you need to register for free] … But before I delve into that, let’s talk a bit about sunscreen chemistry and nanomaterials….

Blair goes on to provide a good brief description of  nanosunscreens before moving onto her main topic,

Many sunscreens contain titanium dioxide (TiO2) because it absorbs UV radiation, preventing it from damaging our skin. But titanium dioxide decomposes into other molecules when in the presence of water and UV radiation. This is important because one of the new molecules produced is called a singlet oxygen reactive oxygen species. These reactive oxygen species have been shown to cause extensive cell damage and even cell death in plants and animals. To shield skin from reactive oxygen species, titanium dioxide engineered nanomaterials are often coated with other materials such as aluminum hydroxide (Al(OH)3).

EPA researchers are testing to see whether swimming pool water degrades the aluminum hydroxide coating, and if the extent of this degradation is enough to allow the production of potentially harmful reactive oxygen species. In this study, the coated titanium dioxide engineered nanomaterials were exposed to pool water for time intervals ranging from 45 minutes to 14 days, followed by imaging using an electron microscope.  Results show that after 3 days, pool water caused the aluminum hydroxide coating to degrade, which can reduce the coating’s protective properties and increase the potential toxicity.  To be clear, even with degraded coating, the toxicity measured from the coated titanium dioxide, was significantly less [emphasis mine] than the uncoated material. So in the short-term – in the amount of time one might wear sunscreen before bathing and washing it off — these sunscreens still provide life-saving protection against UV radiation. However, the sunscreen chemicals will remain in the environment considerably longer, and continue to degrade as they are exposed to other things.

Blair finishes by explaining that research is continuing as the EPA researches the whole life cycle of engineered nanomaterials.

Reliable findings on the presence of synthetic (engineered) nanoparticles in bodies of water

An Aug. 29, 2016 news item on Nanowerk announces research into determining the presence of engineered (synthetic) nanoparticles in bodies of water,

For a number of years now, an increasing number of synthetic nanoparticles have been manufactured and incorporated into various products, such as cosmetics. For the first time, a research project at the Technical University of Munich and the Bavarian Ministry of the Environment provides reliable findings on their presence in water bodies.

An Aug. 29, 2016 Technical University of Munich (TUM) press release, which originated the news item, provides more information,

Nanoparticles can improve the properties of materials and products. That is the reason why an increasing number of nanoparticles have been manufactured over the past several years. The worldwide consumption of silver nanoparticles is currently estimated at over 300 metric tons. These nanoparticles have the positive effect of killing bacteria and viruses. Products that are coated with these particles include refrigerators and surgical instruments. Silver nanoparticles can even be found in sportswear. This is because the silver particles can prevent the smell of sweat by killing the bacteria that cause it.

Previously, it was unknown whether and in what concentration these nanoparticles enter the environment and e.g. enter bodies of water. If they do, this poses a problem. That is because the silver nanoparticles are toxic to numerous aquatic organisms, and can upset sensitive ecological balances.

Analytical challenge

In the past, however, nanoparticles have not been easy to detect. That is because they measure only 1 to 100 nanometers across [nanoparticles may be larger than 100nm or smaller than 1nm but the official definitions usually specify up to 100nm although some definitions go up to 1000nm] – a nanometer is a millionth of a millimeter. “In order to know if a toxicological hazard exists, we need to know how many of these particles enter the environment, and in particular bodies of water”, explains Michael Schuster, Professor for Analytical Chemistry at the TU Munich.

This was an analytical challenge for the researchers charged with solving the problem on behalf of the Bavarian Ministry of the Environment. In order to overcome this issue, they used a well-known principle that utilizes the effect of surfactants to separate and concentrate the particles. “Surfactants are also found in washing and cleaning detergents”, explains Schuster. “Basically, what they do is envelop grease and dirt particles in what are called micelles, making it possible for them to float in water.” One side of the surfactant is water-soluble, the other fat-soluble. The fat-soluble ends collect around non-polar, non-water soluble compounds such as grease or around particles, and “trap” them in a micelle. The water-soluble, polar ends of the surfactants, on the other hand, point towards the water molecules, allowing the microscopically small micelle to float in water.

A box of sugar cubes in the Walchensee lake

The researchers applied this principle to the nanoparticles. “When the micelles surrounding the particles are warmed slightly, they start to clump”, explains Schuster. This turns the water cloudy. Using a centrifuge, the surfactants and the nanoparticles trapped in them can then be separated from the water. This procedure is called cloud point extraction. The researchers then use the surfactants that have been separated out in this manner – which contain the particles in an unmodified, but highly concentrated form – to measure how many silver nanoparticles are present. To do this, they use a highly sensitive atomic spectrometer configured to only detect silver. In this manner, concentrations in a range of less than one nanogram per liter can be detected. To put this in perspective, this would be like detecting a box of sugar cubes that had dissolved in the Walchensee lake.

With the help of this analysis procedure, it is possible to gain new insight into the concentration of nanoparticles in drinking and waste water, sewage sludge, rivers, and lakes. In Bavaria, the measurements yielded good news: The concentrations measured in the water bodies were extremely low. In was only in four of the 13 Upper Bavarian lakes examined that the concentration even exceeded the minimum detection limit of 0.2 nanograms per liter. No measured value exceeded 1.3 nanograms per liter. So far, no permissible values have been established for silver nanoparticles.

Representative for watercourses, the Isar river was examined from its source to its mouth at around 30 locations. The concentration of silver nanoparticles was also measured in the inflow and outflow of sewage treatment plants. The findings showed that at least 94 percent of silver nanoparticles are filtered out by the sewage treatment plants.

Unfortunately, the researchers have not published their results.

Removing viruses from water with a ‘mille-feuille’ filter

Mille-feuille is a pastry and it’s name translates to ‘a thousand leaves’, which hints at how a ‘mille-feuille’ nanofilter is constructed. From a May 18, 2016 news item on Nanowerk,

A simple paper sheet made by scientists at Uppsala University can improve the quality of life for millions of people by removing resistant viruses from water. The sheet, made of cellulose nanofibers, is called the mille-feuille filter as it has a unique layered internal architecture resembling that of the French puff pastry mille-feuille (Eng. thousand leaves).

Caption: The sheet made of cellulose nanofibers in the mille-feuille filter which can remove resistant viruses from water. Research led by Albert Mihranyan, Professor of Nanotechnology at Uppsala University, Image by Simon Gustafsson. Credit: Simon Gustafsson

Caption: The sheet made of cellulose nanofibers in the mille-feuille filter which can remove resistant viruses from water. Research led by Albert Mihranyan, Professor of Nanotechnology at Uppsala University, Image by Simon Gustafsson. Credit: Simon Gustafsson

A May 18, 2016 Uppsala University (Sweden) press release on EurekAlert, which originated the news item, expands on the theme,

With a filter material directly from nature, and by using simple production methods, we believe that our filter paper can become the affordable global water filtration solution and help save lives. Our goal is to develop a filter paper that can remove even the toughest viruses from water as easily as brewing coffee’, says Albert Mihranyan, Professor of Nanotechnology at Uppsala University, who heads the study.

Access to safe drinking water is among the UN’s Sustainable Development Goals. More than 748 million people lack access to safe drinking water and basic sanitation. Water-borne infections are among the global causes for mortality, especially in children under age of five, and viruses are among the most notorious water-borne infectious microorganisms. They can be both extremely resistant to disinfection and difficult to remove by filtration due to their small size.

Today we heavily rely on chemical disinfectants, such as chlorine, which may produce toxic by-products depending on water quality. Filtration is a very effective, robust, energy-efficient, and inert method of producing drinking water as it physically removes the microorganisms from water rather than inactivates them. But the high price of efficient filters is limiting their use today.

‘Safe drinking water is a problem not only in the low-income countries. Massive viral outbreaks have also occurred in Europe in the past, including Sweden, continues Mihranyan referring to the massive viral outbreak in Lilla Edet municipality in Sweden in 2008, when more than 2400 people or almost 20% of the local population got infected with Norovirus due to poor water. ‘ Cellulose is one of the most common filtering media used in daily life from tea-bags to vacuum cleaners. However, the general-purpose filter paper has too large pores to remove viruses. In 2014, the group has described for the first time a paper filter that can remove large size viruses, such as influenza virus.

Small size viruses have been much harder to get rid of, as they are extremely resistant to physical and chemical inactivation. A successful filter should not only remove viruses but also feature high flow, low fouling, and long life-time, which makes advanced filters very expensive to develop. Now, with the breakthrough achieved using the mille-feuille filter the long awaited shift to affordable advanced filtration solutions may at last become a reality. Another application of the filter includes production of therapeutic proteins and vaccines.

Here’s a link to and a citation for the paper,

Mille-feuille paper: a novel type of filter architecture for advanced virus separation applications by Simon Gustafsson, Pascal Lordat, Tobias Hanrieder, Marcel Asper,  Oliver Schaeferb, and Albert Mihranyan, Mater. Horiz., 2016, Advance Article DOI: 10.1039/C6MH00090H First published online 18 May 2016

This paper is behind a paywall.

Nature-inspired nanotubes from the Lawrence Berkeley National* Laboratory

A March 29, 2016 news item on Nanotechnology Now  announces a new technique for nature-inspired self-assembling polymer nanotubes,

When it comes to the various nanowidgets scientists are developing, nanotubes are especially intriguing. That’s because hollow tubes that have diameters of only a few billionths of a meter have the potential to be incredibly useful, from delivering cancer-fighting drugs inside cells to desalinating seawater.

But building nanostructures is difficult. And creating a large quantity of nanostructures with the same trait, such as millions of nanotubes with identical diameters, is even more difficult. This kind of precision manufacturing is needed to create the nanotechnologies of tomorrow.

Help could be on the way. As reported online the week of March 28 [2016] in the journal Proceedings of the National Academy of Sciences [PNAS], researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a family of nature-inspired polymers that, when placed in water, spontaneously assemble into hollow crystalline nanotubes. What’s more, the nanotubes can be tuned to all have the same diameter of between five and ten nanometers, depending on the length of the polymer chain.

A March 28, 2016 Berkeley Lab news release (also on EurekAlert), which originated the news item, provides more detail,

The polymers have two chemically distinct blocks that are the same size and shape. The scientists learned these blocks act like molecular tiles that form rings, which stack together to form nanotubes up to 100 nanometers long, all with the same diameter.

“This points to a new way we can use synthetic polymers to create complex nanostructures in a very precise way,” says Ron Zuckermann, who directs the Biological Nanostructures Facility in Berkeley Lab’s Molecular Foundry, where much of this research was conducted.

Several other Berkeley Lab scientists contributed to this research, including Nitash Balsara of the Materials Sciences Division and Ken Downing of the Molecular Biophysics and Integrated Bioimaging Division.

“Creating uniform structures in high yield is a goal in nanotechnology,” adds Zuckermann. “For example, if you can control the diameter of nanotubes, and the chemical groups exposed in their interior, then you can control what goes through—which could lead to new filtration and desalination technologies, to name a few examples.”

The research is the latest in the effort to build nanostructures that approach the complexity and function of nature’s proteins, but are made of durable materials. In this work, the Berkeley Lab scientists studied a polymer that is a member of the peptoid family. Peptoids are rugged synthetic polymers that mimic peptides, which nature uses to form proteins. They can be tuned at the atomic scale to carry out specific functions.

For the past several years, the scientists have studied a particular type of peptoid, called a diblock copolypeptoid, because it binds with lithium ions and could be used as a battery electrolyte. Along the way, they serendipitously found the compounds form nanotubes in water. How exactly these nanotubes form has yet to be determined, but this latest research sheds light on their structure, and hints at a new design principle that could be used to build nanotubes and other complex nanostructures.

Diblock copolypeptoids are composed of two peptoid blocks, one that’s hydrophobic one that’s hydrophilic. The scientists discovered both blocks crystallize when they meet in water, and form rings consisting of two to three individual peptoids. The rings then form hollow nanotubes.

Cryo-electron microscopy imaging of 50 of the nanotubes showed the diameter of each tube is highly uniform along its length, as well as from tube to tube. This analysis also revealed a striped pattern across the width of the nanotubes, which indicates the rings stack together to form tubes, and rules out other packing arrangements. In addition, the peptoids are thought to arrange themselves in a brick-like pattern, with hydrophobic blocks lining up with other hydrophobic blocks, and the same for hydrophilic blocks.

“Images of the tubes captured by electron microscopy were essential for establishing the presence of this unusual structure,” says Balsara. “The formation of tubular structures with a hydrophobic core is common for synthetic polymers dispersed in water, so we were quite surprised to see the formation of hollow tubes without a hydrophobic core.”

X-ray scattering analyses conducted at beamline 7.3.3 of the Advanced Light Source revealed even more about the nanotubes’ structure. For example, it showed that one of the peptoid blocks, which is usually amorphous, is actually crystalline.

Remarkably, the nanotubes assemble themselves without the usual nano-construction aids, such as electrostatic interactions or hydrogen bond networks.

“You wouldn’t expect something as intricate as this could be created without these crutches,” says Zuckermann. “But it turns out the chemical interactions that hold the nanotubes together are very simple. What’s special here is that the two peptoid blocks are chemically distinct, yet almost exactly the same size, which allows the chains to pack together in a very regular way. These insights could help us design useful nanotubes and other structures that are rugged and tunable—and which have uniform structures.”

This cryo-electron microscopy image shows the self-assembling nanotubes have the same diameter. The circles are head-on views of nanotubes. The dark-striped features likely result from crystallized peptoid blocks. (Credit: Berkeley Lab)

This cryo-electron microscopy image shows the self-assembling nanotubes have the same diameter. The circles are head-on views of nanotubes. The dark-striped features likely result from crystallized peptoid blocks. (Credit: Berkeley Lab)

Here’s a link to and a citation for the paper,

Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles by Jing Sun, Xi Jiang, Reidar Lund, Kenneth H. Downing, Nitash P. Balsara, and Ronald N. Zuckermann. PNAS 2016 ; published ahead of print March 28, 2016, doi: 10.1073/pnas.1517169113

This paper is behind a paywall.

*’Lawrence Berkeley Laboratory’ changed to ‘Lawrence Berkeley National Laboratory’ on April 3, 2016.