Category Archives: water

Theoretical tool for understanding the fate of nano- and microplastic in rivers

An Oct. 17, 2016 news item on Nanowerk announced work being accomplished at Wageningen University (Netherlands),

Very tiny plastic particles of micro and nano size are difficult to measure in the environment to assess exposure risks. Researchers of Wageningen University & Research now provide the first mechanistic modelling study on the behaviour and fate of nano- and microplastic in surface waters.

Plastic debris has been detected in the oceans, in soils, sediments and surface waters worldwide. Emissions are expected to increase by an order of magnitude in the coming years. Fragmentation leads to smaller and smaller particles, eventually reaching the submicron scale. At these very small sizes, plastic particles may pose unforeseen risks. Yet they are hard to measure in the environment so that exposure assessments have to rely on modelling.

Wageningen researcher Ellen Besseling: “We already knew that microplastics are transported in rivers and can reach the sediment, potentially affecting aquatic life. Now we have a theoretical tool that helps us to understand why/how this happens and that helps us to explain what we see. This is important in order to design mitigation strategies for plastic debris of all sizes, and to predict emissions of plastics to our oceans.”

An Oct. 17, 2016 Wageningen University & Research press release, which originated the news item, provides more detail,

In their recent pioneering study published in the journal Environmental Pollution, Ellen Besseling and co-workers simulate the concentrations of plastic particles between 100 nm up to 10 mm for the hydrological flow regime of a real river. The model accounted for direct transport of the particles, but also for aggregation of the particles with natural suspended solids, and the transport and settling of the resulting so-called heteroaggregates. The model also accounted for the presence of biofilm on the plastics, and model scenarios were calculated for plastics of different density. “This provides very insightful results on where in the river bed the ‘hot spot’ locations for presence of nano- and microplastic can be expected,” says project leader Prof Bart Koelmans. No earlier models accounted for all of these processes, and some counterintuitive results were obtained. Settling to the sediment for instance, was important for nano- and microplastics smaller than one micrometer due to settling of aggregates, and for plastic particles bigger than fifty micrometer due to direct settling, but much less for sizes in between. This means that these particles are expected to be exported to sea to a larger extent.

Attachment efficiency
A key parameter in the model is the attachment efficiency, which is the chance that a colliding plastic and natural solid particle actually stick together. Because this parameter was not known, literature values were used taking non-polymer nanoparticles as a proxy for microplastic. These values, however, were used in combination with – also for the first time – new measured values for actual nano- and microplastics. These experimental data for aggregation of nano- and microplastic with suspended particles in natural freshwater appeared to fairly agree to the literature data. Whereas these first results are promising, the research team emphasizes that more research is needed to study the aggregation behaviour of nano- an microplastic in fresh and marine waters.

Risk assessment of plastic debris
The problem of plastic debris is high on the agenda of policymakers and the public, and society calls for an assessment of the risks of plastic debris to man and the environment. A risk assessment for nano- and microplastic requires an assessment of exposure, and of the effects caused by plastics, which then can be compared in a characterisation of actual risks for man and the environment. As long as analytical methods to detect plastic particles are still under construction, models provide invaluable tools to assess exposure to plastic of all sizes. Models can also be used to design monitoring networks and optimize sampling strategies by indicating ‘hot spot’ locations based on first principles. At Wageningen University & Research, several projects aim to develop tools for the risk assessment of plastic debris in marine as well as freshwaters, for instance the new STW-project TRAMP.

Here’s a link to and a citation for the paper,

Fate of nano- and microplastic in freshwater systems: A modeling study by Ellen Besseling, Joris T.K. Quik, Muzhi Sun, Albert A. Koelmans. Environmental Pollution http://dx.doi.org/10.1016/j.envpol.2016.10.001 Available online 13 October 2016

This paper is behind a paywall.

Oil spill cleanup nanotechnology-enabled solution from A*STAR

A*STAR (Singapore’s Agency for Science Technology and Research) has developed a new technology for cleaning up oil spills according to an Oct. 11, 2016 news item on Nanowerk,

Oceanic oil spills are tough to clean up. They dye feathers a syrupy sepia and tan fish eggs a toxic tint. The more turbulent the waters, the farther the slick spreads, with inky droplets descending into the briny deep.

Now technology may be able to succeed where hard-working volunteers have failed in the past. Researchers at the A*STAR Institute of Bioengineering and Nanotechnology (IBN) are using nanotechnology to turn an oil spill into a floating mass of brown jelly that can be scooped up before it can make its way into the food chain.

“Nanoscience makes it possible to tailor the essential structures of materials at the nanometer scale to achieve specific properties,” says chemist Yugen Zhang at IBN, who is developing some of the technologies. “Structures and materials in the nanometer size range often take on distinctive properties that are not seen in other size ranges,” adds Huaqiang Zeng, another chemist at IBN.

An Oct. 11, 2016 A*STAR press release, which originated the news item, describes some of problematic solutions before describing the new technology,

There are many approaches to cleaning an oil spill, and none are completely effective. Fresh, thick grease can be set ablaze or contained by floating barriers for skimmers to scoop out. The slick can also be inefficiently hardened, messily absorbed, hazardously dispersed, or slowly consumed by oil-grazing bacteria. All of these are deficient on a large scale, especially in rough waters.

Organic molecules with special gelling abilities offer a cheap, simple and environmentally friendly alternative for cleaning up the mess. Zeng has developed several such molecules that turn crude oil into jelly within minutes.

To create his ‘supergelators’, Zeng designed the molecules to associate with each other without forming physical bonds. When sprayed on contaminated seawater, the molecules immediately bundle into long fibers between 40 and 800 nanometers wide. These threads create a web that traps the interspersed oil in a giant blob that floats on the water’s surface. The gunk can then be swiftly sieved out of the ocean. Valuable crude oil can later be reclaimed using a common technique employed by petroleum refineries called fractional distillation.

Zeng tested the supergelators on four types of crude oil with different densities, viscosities and sulfur levels in a small round dish. The results were impressive. “The supergelators solidified both freshly spilled crude oil and highly weathered crude oil 37 to 60 times their own weight,” says Zeng. The materials used to produce these organic molecules are cheap and non toxic, which make them a commercially viable solution for managing accidents out at sea. Zeng hopes to work with industrial partners to test the nanomolecules on a much larger scale.

Zeng and his colleagues have developed other other ‘water’ applications as well,

Unsalty water

Scientists at IBN are also using nanoscience to remove salt from seawater and heavy metals from contaminated water.

With dwindling global fresh and ground water reserves, many countries are looking to desalination as a viable source of drinking water. Desalination is expected to meet 30 per cent of the water demand of Singapore by 2060, which will mean tripling the country’s current desalination capacity. But desalination demands huge energy consumption and reverse osmosis, the mainstream technology it depends on, has a relatively high cost. Reverse osmosis works by using extreme pressures to squeeze water molecules through tightly knit membranes.

An emerging alternative solution mimics the way proteins embedded in cell membranes, known as aquaporins, channel water in and out. Some research groups have even created membranes made of fatty lipid molecules that can accommodate natural aquaporins. Zeng has developed a cheaper and more resilient replacement.

His building blocks consist of helical noodles with sticky ends that connect to form long spirals. Water molecules can flow through the 0.3 nanometer openings at the center of the spirals, but all the other positively and negatively charged ions that make up saltwater are too bulky to pass. These include sodium, potassium, calcium, magnesium, chlorine and sulfur oxide. “In water, all of these ions are highly hydrated, attached to lots of water molecules, which makes them too large to go through the channels,” says Zeng.

The technology could lead to global savings of up to US$5 billion a year, says Zeng, but only after several more years of testing and tweaking the lipid membrane’s compatibility and stability with the nanospirals. “This is a major focus in my group right now,” he says. “We want to get this done, so that we can reduce the cost of water desalination to an acceptable level.”

Stick and non-stick

Nanomaterials also offer a low-cost, effective and sustainable way to filter out toxic metals from drinking water.

Heavy metal levels in drinking water are stringently regulated due to the severe damage the substances can cause to health, even at very low concentrations. The World Health Organization requires that levels of lead, for example, remain below ten parts per billion (ppb). Treating water to these standards is expensive and extremely difficult.

Zhang has developed an organic substance filled with pores that can trap and remove toxic metals from water to less than one ppb. Each pore is ten to twenty nanometers wide and packed with compounds, known as amines that stick to the metals.

Exploiting the fact that amines lose their grip over the metals in acidic conditions, the valuable and limited resource can be recovered by industry, and the polymers reused.

The secret behind the success of Zhang’s polymers is the large surface area covered by the pores, which translates into more opportunities to interact with and trap the metals. “Other materials have a surface area of about 100 square meters per gram, but ours is 1,000 square meters per gram,” says Zhang. “It is 10 times higher.”

Zhang tested his nanoporous polymers on water contaminated with lead. He sprinkled a powdered version of the polymer into a slightly alkaline liquid containing close to 100 ppb of lead. Within seconds, lead levels reduced to below 0.2 ppb. Similar results were observed for cadmium, copper and palladium. Washing the polymers in acid released up to 93 per cent of the lead.

With many companies keen to scale these technologies for real-world applications, it won’t be long before nanoscience treats the Earth for its many maladies.

I wonder if the researchers have found industrial partners (who could be named) to bring these solutions for oil spill cleanups, desalination, and water purification to the market.

Powering up your graphene implants so you don’t get fried in the process

A Sept. 23, 2016 news item on phys.org describes a way of making graphene-based medical implants safer,

In the future, our health may be monitored and maintained by tiny sensors and drug dispensers, deployed within the body and made from graphene—one of the strongest, lightest materials in the world. Graphene is composed of a single sheet of carbon atoms, linked together like razor-thin chicken wire, and its properties may be tuned in countless ways, making it a versatile material for tiny, next-generation implants.

But graphene is incredibly stiff, whereas biological tissue is soft. Because of this, any power applied to operate a graphene implant could precipitously heat up and fry surrounding cells.

Now, engineers from MIT [Massachusetts Institute of Technology] and Tsinghua University in Beijing have precisely simulated how electrical power may generate heat between a single layer of graphene and a simple cell membrane. While direct contact between the two layers inevitably overheats and kills the cell, the researchers found they could prevent this effect with a very thin, in-between layer of water.

A Sept. 23, 2016 MIT news release by Emily Chu, which originated the news item, provides more technical details,

By tuning the thickness of this intermediate water layer, the researchers could carefully control the amount of heat transferred between graphene and biological tissue. They also identified the critical power to apply to the graphene layer, without frying the cell membrane. …

Co-author Zhao Qin, a research scientist in MIT’s Department of Civil and Environmental Engineering (CEE), says the team’s simulations may help guide the development of graphene implants and their optimal power requirements.

“We’ve provided a lot of insight, like what’s the critical power we can accept that will not fry the cell,” Qin says. “But sometimes we might want to intentionally increase the temperature, because for some biomedical applications, we want to kill cells like cancer cells. This work can also be used as guidance [for those efforts.]”

Sandwich model

Typically, heat travels between two materials via vibrations in each material’s atoms. These atoms are always vibrating, at frequencies that depend on the properties of their materials. As a surface heats up, its atoms vibrate even more, causing collisions with other atoms and transferring heat in the process.

The researchers sought to accurately characterize the way heat travels, at the level of individual atoms, between graphene and biological tissue. To do this, they considered the simplest interface, comprising a small, 500-nanometer-square sheet of graphene and a simple cell membrane, separated by a thin layer of water.

“In the body, water is everywhere, and the outer surface of membranes will always like to interact with water, so you cannot totally remove it,” Qin says. “So we came up with a sandwich model for graphene, water, and membrane, that is a crystal clear system for seeing the thermal conductance between these two materials.”

Qin’s colleagues at Tsinghua University had previously developed a model to precisely simulate the interactions between atoms in graphene and water, using density functional theory — a computational modeling technique that considers the structure of an atom’s electrons in determining how that atom will interact with other atoms.

However, to apply this modeling technique to the group’s sandwich model, which comprised about half a million atoms, would have required an incredible amount of computational power. Instead, Qin and his colleagues used classical molecular dynamics — a mathematical technique based on a “force field” potential function, or a simplified version of the interactions between atoms — that enabled them to efficiently calculate interactions within larger atomic systems.

The researchers then built an atom-level sandwich model of graphene, water, and a cell membrane, based on the group’s simplified force field. They carried out molecular dynamics simulations in which they changed the amount of power applied to the graphene, as well as the thickness of the intermediate water layer, and observed the amount of heat that carried over from the graphene to the cell membrane.

Watery crystals

Because the stiffness of graphene and biological tissue is so different, Qin and his colleagues expected that heat would conduct rather poorly between the two materials, building up steeply in the graphene before flooding and overheating the cell membrane. However, the intermediate water layer helped dissipate this heat, easing its conduction and preventing a temperature spike in the cell membrane.

Looking more closely at the interactions within this interface, the researchers made a surprising discovery: Within the sandwich model, the water, pressed against graphene’s chicken-wire pattern, morphed into a similar crystal-like structure.

“Graphene’s lattice acts like a template to guide the water to form network structures,” Qin explains. “The water acts more like a solid material and makes the stiffness transition from graphene and membrane less abrupt. We think this helps heat to conduct from graphene to the membrane side.”

The group varied the thickness of the intermediate water layer in simulations, and found that a 1-nanometer-wide layer of water helped to dissipate heat very effectively. In terms of the power applied to the system, they calculated that about a megawatt of power per meter squared, applied in tiny, microsecond bursts, was the most power that could be applied to the interface without overheating the cell membrane.

Qin says going forward, implant designers can use the group’s model and simulations to determine the critical power requirements for graphene devices of different dimensions. As for how they might practically control the thickness of the intermediate water layer, he says graphene’s surface may be modified to attract a particular number of water molecules.

“I think graphene provides a very promising candidate for implantable devices,” Qin says. “Our calculations can provide knowledge for designing these devices in the future, for specific applications, like sensors, monitors, and other biomedical applications.”

This research was supported in part by the MIT International Science and Technology Initiative (MISTI): MIT-China Seed Fund, the National Natural Science Foundation of China, DARPA [US Defense Advanced Research Projects Agency], the Department of Defense (DoD) Office of Naval Research, the DoD Multidisciplinary Research Initiatives program, the MIT Energy Initiative, and the National Science Foundation.

Here’s a link to and a citation for the paper,

Intercalated water layers promote thermal dissipation at bio–nano interfaces by Yanlei Wang, Zhao Qin, Markus J. Buehler, & Zhiping Xu. Nature Communications 7, Article number: 12854 doi:10.1038/ncomms12854 Published 23 September 2016

This paper is open access.

Nanosunscreen in swimming pools

Thanks to Lynn L. Bergeson’s Sept. 21, 2016 posting for information about the US Environmental Protection Agency’s (EPA) research into what happens to the nanoparticles when your nanosunscreen washes off into a swimming pool. Bergeson’s post points to an Aug. 15, 2016 EPA blog posting by Susanna Blair,

… It’s not surprising that sunscreens are detected in pool water (after all, some is bound to wash off when we take a dip), but certain sunscreens have also been widely detected in our ecosystems and in our wastewater. So how is our sunscreen ending up in our environment and what are the impacts?

Well, EPA researchers are working to better understand this issue, specifically investigating sunscreens that contain engineered nanomaterials and how they might change when exposed to the chemicals in pool water [open access paper but you need to register for free] … But before I delve into that, let’s talk a bit about sunscreen chemistry and nanomaterials….

Blair goes on to provide a good brief description of  nanosunscreens before moving onto her main topic,

Many sunscreens contain titanium dioxide (TiO2) because it absorbs UV radiation, preventing it from damaging our skin. But titanium dioxide decomposes into other molecules when in the presence of water and UV radiation. This is important because one of the new molecules produced is called a singlet oxygen reactive oxygen species. These reactive oxygen species have been shown to cause extensive cell damage and even cell death in plants and animals. To shield skin from reactive oxygen species, titanium dioxide engineered nanomaterials are often coated with other materials such as aluminum hydroxide (Al(OH)3).

EPA researchers are testing to see whether swimming pool water degrades the aluminum hydroxide coating, and if the extent of this degradation is enough to allow the production of potentially harmful reactive oxygen species. In this study, the coated titanium dioxide engineered nanomaterials were exposed to pool water for time intervals ranging from 45 minutes to 14 days, followed by imaging using an electron microscope.  Results show that after 3 days, pool water caused the aluminum hydroxide coating to degrade, which can reduce the coating’s protective properties and increase the potential toxicity.  To be clear, even with degraded coating, the toxicity measured from the coated titanium dioxide, was significantly less [emphasis mine] than the uncoated material. So in the short-term – in the amount of time one might wear sunscreen before bathing and washing it off — these sunscreens still provide life-saving protection against UV radiation. However, the sunscreen chemicals will remain in the environment considerably longer, and continue to degrade as they are exposed to other things.

Blair finishes by explaining that research is continuing as the EPA researches the whole life cycle of engineered nanomaterials.

Reliable findings on the presence of synthetic (engineered) nanoparticles in bodies of water

An Aug. 29, 2016 news item on Nanowerk announces research into determining the presence of engineered (synthetic) nanoparticles in bodies of water,

For a number of years now, an increasing number of synthetic nanoparticles have been manufactured and incorporated into various products, such as cosmetics. For the first time, a research project at the Technical University of Munich and the Bavarian Ministry of the Environment provides reliable findings on their presence in water bodies.

An Aug. 29, 2016 Technical University of Munich (TUM) press release, which originated the news item, provides more information,

Nanoparticles can improve the properties of materials and products. That is the reason why an increasing number of nanoparticles have been manufactured over the past several years. The worldwide consumption of silver nanoparticles is currently estimated at over 300 metric tons. These nanoparticles have the positive effect of killing bacteria and viruses. Products that are coated with these particles include refrigerators and surgical instruments. Silver nanoparticles can even be found in sportswear. This is because the silver particles can prevent the smell of sweat by killing the bacteria that cause it.

Previously, it was unknown whether and in what concentration these nanoparticles enter the environment and e.g. enter bodies of water. If they do, this poses a problem. That is because the silver nanoparticles are toxic to numerous aquatic organisms, and can upset sensitive ecological balances.

Analytical challenge

In the past, however, nanoparticles have not been easy to detect. That is because they measure only 1 to 100 nanometers across [nanoparticles may be larger than 100nm or smaller than 1nm but the official definitions usually specify up to 100nm although some definitions go up to 1000nm] – a nanometer is a millionth of a millimeter. “In order to know if a toxicological hazard exists, we need to know how many of these particles enter the environment, and in particular bodies of water”, explains Michael Schuster, Professor for Analytical Chemistry at the TU Munich.

This was an analytical challenge for the researchers charged with solving the problem on behalf of the Bavarian Ministry of the Environment. In order to overcome this issue, they used a well-known principle that utilizes the effect of surfactants to separate and concentrate the particles. “Surfactants are also found in washing and cleaning detergents”, explains Schuster. “Basically, what they do is envelop grease and dirt particles in what are called micelles, making it possible for them to float in water.” One side of the surfactant is water-soluble, the other fat-soluble. The fat-soluble ends collect around non-polar, non-water soluble compounds such as grease or around particles, and “trap” them in a micelle. The water-soluble, polar ends of the surfactants, on the other hand, point towards the water molecules, allowing the microscopically small micelle to float in water.

A box of sugar cubes in the Walchensee lake

The researchers applied this principle to the nanoparticles. “When the micelles surrounding the particles are warmed slightly, they start to clump”, explains Schuster. This turns the water cloudy. Using a centrifuge, the surfactants and the nanoparticles trapped in them can then be separated from the water. This procedure is called cloud point extraction. The researchers then use the surfactants that have been separated out in this manner – which contain the particles in an unmodified, but highly concentrated form – to measure how many silver nanoparticles are present. To do this, they use a highly sensitive atomic spectrometer configured to only detect silver. In this manner, concentrations in a range of less than one nanogram per liter can be detected. To put this in perspective, this would be like detecting a box of sugar cubes that had dissolved in the Walchensee lake.

With the help of this analysis procedure, it is possible to gain new insight into the concentration of nanoparticles in drinking and waste water, sewage sludge, rivers, and lakes. In Bavaria, the measurements yielded good news: The concentrations measured in the water bodies were extremely low. In was only in four of the 13 Upper Bavarian lakes examined that the concentration even exceeded the minimum detection limit of 0.2 nanograms per liter. No measured value exceeded 1.3 nanograms per liter. So far, no permissible values have been established for silver nanoparticles.

Representative for watercourses, the Isar river was examined from its source to its mouth at around 30 locations. The concentration of silver nanoparticles was also measured in the inflow and outflow of sewage treatment plants. The findings showed that at least 94 percent of silver nanoparticles are filtered out by the sewage treatment plants.

Unfortunately, the researchers have not published their results.

Removing viruses from water with a ‘mille-feuille’ filter

Mille-feuille is a pastry and it’s name translates to ‘a thousand leaves’, which hints at how a ‘mille-feuille’ nanofilter is constructed. From a May 18, 2016 news item on Nanowerk,

A simple paper sheet made by scientists at Uppsala University can improve the quality of life for millions of people by removing resistant viruses from water. The sheet, made of cellulose nanofibers, is called the mille-feuille filter as it has a unique layered internal architecture resembling that of the French puff pastry mille-feuille (Eng. thousand leaves).

Caption: The sheet made of cellulose nanofibers in the mille-feuille filter which can remove resistant viruses from water. Research led by Albert Mihranyan, Professor of Nanotechnology at Uppsala University, Image by Simon Gustafsson. Credit: Simon Gustafsson

Caption: The sheet made of cellulose nanofibers in the mille-feuille filter which can remove resistant viruses from water. Research led by Albert Mihranyan, Professor of Nanotechnology at Uppsala University, Image by Simon Gustafsson. Credit: Simon Gustafsson

A May 18, 2016 Uppsala University (Sweden) press release on EurekAlert, which originated the news item, expands on the theme,

With a filter material directly from nature, and by using simple production methods, we believe that our filter paper can become the affordable global water filtration solution and help save lives. Our goal is to develop a filter paper that can remove even the toughest viruses from water as easily as brewing coffee’, says Albert Mihranyan, Professor of Nanotechnology at Uppsala University, who heads the study.

Access to safe drinking water is among the UN’s Sustainable Development Goals. More than 748 million people lack access to safe drinking water and basic sanitation. Water-borne infections are among the global causes for mortality, especially in children under age of five, and viruses are among the most notorious water-borne infectious microorganisms. They can be both extremely resistant to disinfection and difficult to remove by filtration due to their small size.

Today we heavily rely on chemical disinfectants, such as chlorine, which may produce toxic by-products depending on water quality. Filtration is a very effective, robust, energy-efficient, and inert method of producing drinking water as it physically removes the microorganisms from water rather than inactivates them. But the high price of efficient filters is limiting their use today.

‘Safe drinking water is a problem not only in the low-income countries. Massive viral outbreaks have also occurred in Europe in the past, including Sweden, continues Mihranyan referring to the massive viral outbreak in Lilla Edet municipality in Sweden in 2008, when more than 2400 people or almost 20% of the local population got infected with Norovirus due to poor water. ‘ Cellulose is one of the most common filtering media used in daily life from tea-bags to vacuum cleaners. However, the general-purpose filter paper has too large pores to remove viruses. In 2014, the group has described for the first time a paper filter that can remove large size viruses, such as influenza virus.

Small size viruses have been much harder to get rid of, as they are extremely resistant to physical and chemical inactivation. A successful filter should not only remove viruses but also feature high flow, low fouling, and long life-time, which makes advanced filters very expensive to develop. Now, with the breakthrough achieved using the mille-feuille filter the long awaited shift to affordable advanced filtration solutions may at last become a reality. Another application of the filter includes production of therapeutic proteins and vaccines.

Here’s a link to and a citation for the paper,

Mille-feuille paper: a novel type of filter architecture for advanced virus separation applications by Simon Gustafsson, Pascal Lordat, Tobias Hanrieder, Marcel Asper,  Oliver Schaeferb, and Albert Mihranyan, Mater. Horiz., 2016, Advance Article DOI: 10.1039/C6MH00090H First published online 18 May 2016

This paper is behind a paywall.

Nature-inspired nanotubes from the Lawrence Berkeley National* Laboratory

A March 29, 2016 news item on Nanotechnology Now  announces a new technique for nature-inspired self-assembling polymer nanotubes,

When it comes to the various nanowidgets scientists are developing, nanotubes are especially intriguing. That’s because hollow tubes that have diameters of only a few billionths of a meter have the potential to be incredibly useful, from delivering cancer-fighting drugs inside cells to desalinating seawater.

But building nanostructures is difficult. And creating a large quantity of nanostructures with the same trait, such as millions of nanotubes with identical diameters, is even more difficult. This kind of precision manufacturing is needed to create the nanotechnologies of tomorrow.

Help could be on the way. As reported online the week of March 28 [2016] in the journal Proceedings of the National Academy of Sciences [PNAS], researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a family of nature-inspired polymers that, when placed in water, spontaneously assemble into hollow crystalline nanotubes. What’s more, the nanotubes can be tuned to all have the same diameter of between five and ten nanometers, depending on the length of the polymer chain.

A March 28, 2016 Berkeley Lab news release (also on EurekAlert), which originated the news item, provides more detail,

The polymers have two chemically distinct blocks that are the same size and shape. The scientists learned these blocks act like molecular tiles that form rings, which stack together to form nanotubes up to 100 nanometers long, all with the same diameter.

“This points to a new way we can use synthetic polymers to create complex nanostructures in a very precise way,” says Ron Zuckermann, who directs the Biological Nanostructures Facility in Berkeley Lab’s Molecular Foundry, where much of this research was conducted.

Several other Berkeley Lab scientists contributed to this research, including Nitash Balsara of the Materials Sciences Division and Ken Downing of the Molecular Biophysics and Integrated Bioimaging Division.

“Creating uniform structures in high yield is a goal in nanotechnology,” adds Zuckermann. “For example, if you can control the diameter of nanotubes, and the chemical groups exposed in their interior, then you can control what goes through—which could lead to new filtration and desalination technologies, to name a few examples.”

The research is the latest in the effort to build nanostructures that approach the complexity and function of nature’s proteins, but are made of durable materials. In this work, the Berkeley Lab scientists studied a polymer that is a member of the peptoid family. Peptoids are rugged synthetic polymers that mimic peptides, which nature uses to form proteins. They can be tuned at the atomic scale to carry out specific functions.

For the past several years, the scientists have studied a particular type of peptoid, called a diblock copolypeptoid, because it binds with lithium ions and could be used as a battery electrolyte. Along the way, they serendipitously found the compounds form nanotubes in water. How exactly these nanotubes form has yet to be determined, but this latest research sheds light on their structure, and hints at a new design principle that could be used to build nanotubes and other complex nanostructures.

Diblock copolypeptoids are composed of two peptoid blocks, one that’s hydrophobic one that’s hydrophilic. The scientists discovered both blocks crystallize when they meet in water, and form rings consisting of two to three individual peptoids. The rings then form hollow nanotubes.

Cryo-electron microscopy imaging of 50 of the nanotubes showed the diameter of each tube is highly uniform along its length, as well as from tube to tube. This analysis also revealed a striped pattern across the width of the nanotubes, which indicates the rings stack together to form tubes, and rules out other packing arrangements. In addition, the peptoids are thought to arrange themselves in a brick-like pattern, with hydrophobic blocks lining up with other hydrophobic blocks, and the same for hydrophilic blocks.

“Images of the tubes captured by electron microscopy were essential for establishing the presence of this unusual structure,” says Balsara. “The formation of tubular structures with a hydrophobic core is common for synthetic polymers dispersed in water, so we were quite surprised to see the formation of hollow tubes without a hydrophobic core.”

X-ray scattering analyses conducted at beamline 7.3.3 of the Advanced Light Source revealed even more about the nanotubes’ structure. For example, it showed that one of the peptoid blocks, which is usually amorphous, is actually crystalline.

Remarkably, the nanotubes assemble themselves without the usual nano-construction aids, such as electrostatic interactions or hydrogen bond networks.

“You wouldn’t expect something as intricate as this could be created without these crutches,” says Zuckermann. “But it turns out the chemical interactions that hold the nanotubes together are very simple. What’s special here is that the two peptoid blocks are chemically distinct, yet almost exactly the same size, which allows the chains to pack together in a very regular way. These insights could help us design useful nanotubes and other structures that are rugged and tunable—and which have uniform structures.”

This cryo-electron microscopy image shows the self-assembling nanotubes have the same diameter. The circles are head-on views of nanotubes. The dark-striped features likely result from crystallized peptoid blocks. (Credit: Berkeley Lab)

This cryo-electron microscopy image shows the self-assembling nanotubes have the same diameter. The circles are head-on views of nanotubes. The dark-striped features likely result from crystallized peptoid blocks. (Credit: Berkeley Lab)

Here’s a link to and a citation for the paper,

Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles by Jing Sun, Xi Jiang, Reidar Lund, Kenneth H. Downing, Nitash P. Balsara, and Ronald N. Zuckermann. PNAS 2016 ; published ahead of print March 28, 2016, doi: 10.1073/pnas.1517169113

This paper is behind a paywall.

*’Lawrence Berkeley Laboratory’ changed to ‘Lawrence Berkeley National Laboratory’ on April 3, 2016.

US Nanotechnology Initiative for water sustainability

Wednesday, March 23, 2016 was World Water Day and to coincide with that event the US National Nanotechnology Initiative (NNI) in collaboration with several other agencies announced a new ‘signature initiative’. From a March 24, 2016 news item on Nanowerk (Note: A link has been removed),

As a part of the White House Water Summit held yesterday on World Water Day, the Federal agencies participating in the National Nanotechnology Initiative (NNI) announced the launch of a Nanotechnology Signature Initiative (NSI), Water Sustainability through Nanotechnology: Nanoscale Solutions for a Global-Scale Challenge.

A March 23, 2016 NNI news release provides more information about why this initiative is important,

Access to clean water remains one of the world’s most pressing needs. As today’s White House Office of Science and Technology blog post explains, “the small size and exceptional properties of engineered nanomaterials are particularly promising for addressing the key technical challenges related to water quality and quantity.”

“One cannot find an issue more critical to human life and global security than clean, plentiful, and reliable water sources,” said Dr. Michael Meador, Director of the National Nanotechnology Coordination Office (NNCO). “Through the NSI mechanism, NNI member agencies will have an even greater ability to make meaningful strides toward this initiative’s thrust areas: increasing water availability, improving the efficiency of water delivery and use, and enabling next-generation water monitoring systems.”

A March 23, 2016 US White House blog posting by Lloyd Whitman and Lisa Friedersdorf describes the efforts in more detail (Note: A link has been removed),

The small size and exceptional properties of engineered nanomaterials are particularly promising for addressing the pressing technical challenges related to water quality and quantity. For example, the increased surface area—a cubic centimeter of nanoparticles has a surface area larger than a football field—and reactivity of nanometer-scale particles can be exploited to create catalysts for water purification that do not require rare or precious metals. And composites incorporating nanomaterials such as carbon nanotubes might one day enable stronger, lighter, and more durable piping systems and components. Under this NSI, Federal agencies will coordinate and collaborate to more rapidly develop nanotechnology-enabled solutions in three main thrusts: [thrust 1] increasing water availability; [thrust 2] improving the efficiency of water delivery and use; and [thrust 3] enabling next-generation water monitoring systems.

A technical “white paper” released by the agencies this week highlights key technical challenges for each thrust, identifies key objectives to overcome those challenges, and notes areas of research and development where nanotechnology promises to provide the needed solutions. By shining a spotlight on these areas, the new NSI will increase Federal coordination and collaboration, including with public and private stakeholders, which is vital to making progress in these areas. The additional focus and associated collective efforts will advance stewardship of water resources to support the essential food, energy, security, and environment needs of all stakeholders.

We applaud the commitment of the Federal agencies who will participate in this effort—the Department of Commerce/National Institute of Standards and Technology, Department of Energy, Environmental Protection Agency, National Aeronautics and Space Administration, National Science Foundation, and U.S. Department of Agriculture/National Institute of Food and Agriculture. As made clear at this week’s White House Water Summit, the world’s water systems are under tremendous stress, and new and emerging technologies will play a critical role in ensuring a sustainable water future.

The white paper (12 pp.) is titled: Water Sustainability through Nanotechnology: Nanoscale Solutions for a Global-Scale Challenge and describes the thrusts in more detail.

A March 22, 2016 US White House fact sheet lays out more details including funding,

Click here to learn more about all of the commitments and announcements being made today. They include:

  • Nearly $4 billion in private capital committed to investment in a broad range of water-infrastructure projects nationwide. This includes $1.5 billion from Ultra Capital to finance decentralized and scalable water-management solutions, and $500 million from Sustainable Water to develop water reclamation and reuse systems.
  • More than $1 billion from the private sector over the next decade to conduct research and development into new technologies. This includes $500 million from GE to fuel innovation, expertise, and global capabilities in advanced water, wastewater, and reuse technologies.
  • A Presidential Memorandum and supporting Action Plan on building national capabilities for long-term drought resilience in the United States, including by setting drought resilience policy goals, directing specific drought resilience activities to be completed by the end of the year, and permanently establishing the National Drought Resilience Partnership as an interagency task force responsible for coordinating drought-resilience, response, and recovery efforts.
  • Nearly $35 million this year in Federal grants from the Environmental Protection Agency, the National Oceanic and Atmospheric Administration, the National Science Foundation, and the U.S. Department of Agriculture to support cutting-edge water science;
  • The release of a new National Water Model that will dramatically enhance the Nation’s river-forecasting capabilities by delivering forecasts for approximately 2.7 million locations, up from 4,000 locations today (a 700-fold increase in forecast density).

This seems promising and hopefully other countries will follow suit.

Namib beetles, cacti, and pitcher plants teach scientists at Harvard University (US)

In this latest work from Harvard University’s Wyss Institute for Biologically Inspired Engineering, scientists have looked at three desert dwellers for survival strategies in water-poor areas. From a Feb. 25, 2015 news item on Nanowerk,

Organisms such as cacti and desert beetles can survive in arid environments because they’ve evolved mechanisms to collect water from thin air. The Namib desert beetle, for example, collects water droplets on the bumps of its shell while V-shaped cactus spines guide droplets to the plant’s body.

As the planet grows drier, researchers are looking to nature for more effective ways to pull water from air. Now, a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard University have drawn inspiration from these organisms to develop a better way to promote and transport condensed water droplets.

A Feb. 24, 2016 Harvard University press release by Leah Burrows (also on EurekAlert), which originated the news item, expands on the theme,

“Everybody is excited about bioinspired materials research,” said Joanna Aizenberg, the Amy Smith Berylson Professor of Materials Science at SEAS and core faculty member of the Wyss Institute. “However, so far, we tend to mimic one inspirational natural system at a time. Our research shows that a complex bio-inspired approach, in which we marry multiple biological species to come up with non-trivial designs for highly efficient materials with unprecedented properties, is a new, promising direction in biomimetics.”

The new system, described in Nature, is inspired by the bumpy shell of desert beetles, the asymmetric structure of cactus spines and slippery surfaces of pitcher plants. The material harnesses the power of these natural systems, plus Slippery Liquid-Infused Porous Surfaces technology (SLIPS) developed in Aizenberg’s lab, to collect and direct the flow of condensed water droplets.

This approach is promising not only for harvesting water but also for industrial heat exchangers.

“Thermal power plants, for example, rely on condensers to quickly convert steam to liquid water,” said Philseok Kim, co-author of the paper and co-founder and vice president of technology at SEAS spin-off SLIPS Technologies, Inc. “This design could help speed up that process and even allow for operation at a higher temperature, significantly improving the overall energy efficiency.”

The major challenges in harvesting atmospheric water are controlling the size of the droplets, speed in which they form and the direction in which they flow.

For years, researchers focused on the hybrid chemistry of the beetle’s bumps — a hydrophilic top with hydrophobic surroundings — to explain how the beetle attracted water. However, Aizenberg and her team took inspiration from a different possibility – that convex bumps themselves also might be able to harvest water.

“We experimentally found that the geometry of bumps alone could facilitate condensation,” said Kyoo-Chul Park, a postdoctoral researcher and the first author of the paper. “By optimizing that bump shape through detailed theoretical modeling and combining it with the asymmetry of cactus spines and the nearly friction-free coatings of pitcher plants, we were able to design a material that can collect and transport a greater volume of water in a short time compared to other surfaces.”

“Without one of those parameters, the whole system would not work synergistically to promote both the growth and accelerated directional transport of even small, fast condensing droplets,” said Park.

“This research is an exciting first step towards developing a passive system that can efficiently collect water and guide it to a reservoir,” said Kim.

Here’s a link to and a citation for the paper,

Condensation on slippery asymmetric bumps by Kyoo-Chul Park, Philseok Kim, Alison Grinthal, Neil He, David Fox, James C. Weaver, & Joanna Aizenberg. Nature (2016) doi:10.1038/nature16956 Published online 24 February 2016

This paper is behind a paywall.

I have featured the Namib beetle and its water harvesting capabilities most recently in a July 29, 2014 posting and the most recent story I have about SLIPS is in an Oct. 14, 2014 posting.

Harvard University’s Engineered Water Nanostructures (EWNS)

I last wrote about this research in a March 19, 2015 posting, which focused on work proving that a water-engineered nanostructure platform had microbial properties useful for decontaminating food and allowing manufacturers to avoid using chemicals for the task. This latest research focuses on finetuning the platform’s ability. Here’s more from the latest research paper’s abstract,

A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3.

Here’s a link to and a citation for the paper,

Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS) by Georgios Pyrgiotakis, Pallavi Vedantam, Caroline Cirenza, James McDevitt, Mary Eleftheriadou, Stephen S. Leonard, & Philip Demokritou. Scientific Reports 6, Article number: 21073 (2016) doi:10.1038/srep21073 Published online: 15 February 2016

This is an open access paper.