Category Archives: intellectual property

‘Biomimicry’ patents

The US Patent and Trade Office (USPTO) has issued a new guidance document concerning ‘biomimicry’ patents according to David Bruggeman’s Dec. 20, 2014 post on his Pasco Phronesis blog (Note: Links have been removed),

The United States Patent and Trademark Office (USPTO) has released another guidance memo for patents derived ‘from nature’ (H/T ScienceInsider).  The USPTO released its first memo in March [2014], and between negative public comments and additional court action, releasing new guidance makes sense to me.

The USPTO is requesting comments on the guidance by March 16, 2014 and will be holding a holding a public forum for comments on Jan. 21, 2015. Here’s more detail about the comments from the USPTO 2014 Interim Guidance on Subject Matter Eligibility webpage,

The USPTO has prepared 2014 Interim Guidance on Patent Subject Matter Eligibility (Interim Eligibility Guidance) for USPTO personnel to use when determining subject matter eligibility under 35 U.S.C. 101 in view of recent decisions by the U.S. Supreme Court, including Alice Corp., Myriad, and Mayo.  The Interim Eligibility Guidance supplements the June 25, 2014 Preliminary Examination Instructions issued in view of Alice Corp. and supersedes the March 4, 2014 Procedure for Subject Matter Eligibility Analysis of Claims Reciting or Involving Laws of Nature/Natural Principles, Natural Phenomena, and/or Natural Products issued in view of Mayo and Myriad.  It is expected that the guidance will be updated in view of developments in the case law and in response to public feedback.

Any member of the public may submit written comments on the Interim Eligibility Guidance and claim example sets by electronic mail message over the Internet addressed to [email protected]  Electronic comments submitted in plain text are preferred, but also may be submitted in ADOBE® portable document format or MICROSOFT WORD® format.  The comments will be available for public inspection here at this Web page.  Because comments will be available for public inspection, information that is not desired to be made public, such as an address or a phone number, should not be included in the comments.  Comments will be accepted until March 16, 2015.

And there is also this about the public forum (from the Interim Guidance page),

A public forum will be hosted at the Alexandria campus of the USPTO on Jan. 21, 2015, to receive public feedback from any interested member of the public.  The Eligibility Forum will be an opportunity for the Office to provide an overview of the Interim Eligibility Guidance and for participants to present their interpretation of the impact of Supreme Court precedent on the complex legal and technical issues involved in subject matter eligibility analysis during examination by providing oral feedback on the Interim Eligibility Guidance and claim example sets.  Individuals will be provided an opportunity to make a presentation, to the extent that time permits.

Date and Location:  The Eligibility Forum will be held on Jan. 21, 2015, from 1pm – 5pm EST, in the Madison Auditorium North (Concourse Level), Madison Building, 600 Dulany Street, Alexandria, VA 22314. The meeting will also be accessible via WebEx.

Requests for Attendance at the Eligibility Forum:  Requests for attendance to the Eligibility Forum should be submitted by electronic mail through the Internet to [email protected] by JAN. 9, 2015.  Requests for attendance must include the attendee’s name, affiliation, title, mailing address, and telephone number.  An Internet e-mail address, if available, should also be provided.

If I understand David’s description of this guidance rightly, the use of something like curcumin (a constituent of turmeric) to heal wounds cannot be patented unless substantive changes have been made to the curcumin. In short, Laws Of Nature/Natural Principles, Natural Phenomena, And/Or Natural Products And/Or Abstract Ideas cannot be patented through the USPTO.

Nano and stem cell differentiation at Rutgers University (US)

A Nov. 14, 2014 news item on Azonano features a nanoparticle-based platform for differentiating stem cells,

Rutgers University Chemistry Associate Professor Ki-Bum Lee has developed patent-pending technology that may overcome one of the critical barriers to harnessing the full therapeutic potential of stem cells.

A Nov. 1, 2104 Rutgers University news release, which originated the news item, describes the challenge in more detail,

One of the major challenges facing researchers interested in regenerating cells and growing new tissue to treat debilitating injuries and diseases such as Parkinson’s disease, heart disease, and spinal cord trauma, is creating an easy, effective, and non-toxic methodology to control differentiation into specific cell lineages. Lee and colleagues at Rutgers and Kyoto University in Japan have invented a platform they call NanoScript, an important breakthrough for researchers in the area of gene expression. Gene expression is the way information encoded in a gene is used to direct the assembly of a protein molecule, which is integral to the process of tissue development through stem cell therapeutics.

Stem cells hold great promise for a wide range of medical therapeutics as they have the ability to grow tissue throughout the body. In many tissues, stem cells have an almost limitless ability to divide and replenish other cells, serving as an internal repair system.

Transcription factor (TF) proteins are master regulators of gene expression. TF proteins play a pivotal role in regulating stem cell differentiation. Although some have tried to make synthetic molecules that perform the functions of natural transcription factors, NanoScript is the first nanomaterial TF protein that can interact with endogenous DNA. …

“Our motivation was to develop a highly robust, efficient nanoparticle-based platform that can regulate gene expression and eventually stem cell differentiation,” said Lee, who leads a Rutgers research group primarily focused on developing and integrating nanotechnology with chemical biology to modulate signaling pathways in cancer and stem cells. “Because NanoScript is a functional replica of TF proteins and a tunable gene-regulating platform, it has great potential to do exactly that. The field of stem cell biology now has another platform to regulate differentiation while the field of nanotechnology has demonstrated for the first time that we can regulate gene expression at the transcriptional level.”

Here’s an image illustrating NanoScript and gold nanoparticles,

Courtesy Rutgers University

Courtesy Rutgers University

The news release goes on to describe the platform’s use of gold nanoparticles,

NanoScript was constructed by tethering functional peptides and small molecules called synthetic transcription factors, which mimic the individual TF domains, onto gold nanoparticles.

“NanoScript localizes within the nucleus and initiates transcription of a reporter plasmid by up to 30-fold,” said Sahishnu Patel, Rutgers Chemistry graduate student and co-author of the ACS Nano publication. “NanoScript can effectively transcribe targeted genes on endogenous DNA in a nonviral manner.”

Lee said the next step for his research is to study what happens to the gold nanoparticles after NanoScript is utilized, to ensure no toxic effects arise, and to ensure the effectiveness of NanoScript over long periods of time.

“Due to the unique tunable properties of NanoScript, we are highly confident this platform not only will serve as a desirable alternative to conventional gene-regulating methods,” Lee said, “but also has direct employment for applications involving gene manipulation such as stem cell differentiation, cancer therapy, and cellular reprogramming. Our research will continue to evaluate the long-term implications for the technology.”

Lee, originally from South Korea, joined the Rutgers faculty in 2008 and has earned many honors including the NIH Director’s New Innovator Award. Lee received his Ph.D. in Chemistry from Northwestern University where he studied with Professor Chad. A. Mirkin, a pioneer in the coupling of nanotechnology and biomolecules. Lee completed his postdoctoral training at The Scripps Research Institute with Professor Peter G. Schultz. Lee has served as a Visiting Scholar at both Princeton University and UCLA Medical School.

The primary interest of Lee’s group is to develop and integrate nanotechnologies and chemical functional genomics to modulate signaling pathways in mammalian cells towards specific cell lineages or behaviors. He has published more than 50 articles and filed for 17 corresponding patents.

Here’s a link to and a citation for the paper,

NanoScript: A Nanoparticle-Based Artificial Transcription Factor for Effective Gene Regulation by Sahishnu Patel, Dongju Jung, Perry T. Yin, Peter Carlton, Makoto Yamamoto, Toshikazu Bando, Hiroshi Sugiyama, and Ki-Bum Lee. ACS Nano, 2014, 8 (9), pp 8959–8967 DOI: 10.1021/nn501589f Publication Date (Web): August 18, 2014
Copyright © 2014 American Chemical Society

This paper is behind a paywall.

Killing mosquitos and other pests with genetics-based technology

Having supplied more than one tasty meal for mosquitos (or, as some prefer, mosquitoes), I am not their friend but couldn’t help but wonder about unintended consequences (as per Max Weber) on reading about a new patent awarded to Kansas State University (from a Nov. 12, 2014 news item on Nanowerk),

Kansas State University researchers have developed a patented method of keeping mosquitoes and other insect pests at bay.

U.S. Patent 8,841,272, “Double-Stranded RNA-Based Nanoparticles for Insect Gene Silencing,” was recently awarded to the Kansas State University Research Foundation, a nonprofit corporation responsible for managing technology transfer activities at the university. The patent covers microscopic, genetics-based technology that can help safely kill mosquitos and other insect pests.

A Nov. 12, 2014 Kansas State University news release, which originated the news item, provides more detail about the research,

Kun Yan Zhu, professor of entomology; Xin Zhang, research associate in the Division of Biology; and Jianzhen Zhang, visiting scientist from Shanxi University in China, developed the technology: nanoparticles comprised of a nontoxic, biodegradable polymer matrix and insect derived double-stranded ribonucleic acid, or dsRNA. Double-stranded RNA is a synthesized molecule that can trigger a biological process known as RNA interference, or RNAi, to destroy the genetic code of an insect in a specific DNA sequence.

The technology is expected to have great potential for safe and effective control of insect pests, Zhu said.

“For example, we can buy cockroach bait that contains a toxic substance to kill cockroaches. However, the bait could potentially harm whatever else ingests it,” Zhu said. “If we can incorporate dsRNA specifically targeting a cockroach gene in the bait rather than a toxic substance, the bait would not harm other organisms, such as pets, because the dsRNA is designed to specifically disable the function of the cockroach gene.”

Researchers developed the technology while looking at how to disable gene functions in mosquito larvae. After testing a series of unsuccessful genetic techniques, the team turned to a nanoparticle-based approach.

Once ingested, the nanoparticles act as a Trojan horse, releasing the loosely bound dsRNA into the insect gut. The dsRNA then triggers a genetic chain reaction that destroys specific messenger RNA, or mRNA, in the developing insects. Messenger RNA carries important genetic information.

In the studies on mosquito larvae, researchers designed dsRNA to target the mRNA encoding the enzymes that help mosquitoes produce chitin, the main component in the hard exoskeleton of insects, crustaceans and arachnids.

Researchers found that the developing mosquitoes produced less chitin. As a result, the mosquitoes were more prone to insecticides as they no longer had a sufficient amount of chitin for a normal functioning protective shell. If the production of chitin can be further reduced, the insects can be killed without using any toxic insecticides.

While mosquitos were the primary insect for which the nanoparticle-based method was developed, the technology can be applied to other insect pests, Zhu said.

“Our dsRNA molecules were designed based on specific gene sequences of the mosquito,” Zhu said. “You can design species-specific dsRNA for the same or different genes for other insect pests. When you make baits containing gene-specific nanoparticles, you may be able to kill the insects through the RNAi pathway. We see this having really broad applications for insect pest management.”

The patent is currently available to license through the Kansas State University Institute for Commercialization, which licenses the university’s intellectual property. The Institute for Commercialization can be contacted at 785-532-3900 and [email protected]

Eight U.S. patents have been awarded to the Kansas State University Research Foundation in 2014 for inventions by Kansas State University researchers.

Here’s an image of the ‘Trojan horse’ nanoparticles,

The nanoparticles, pictured as gold colored, are less than 100 nanometers in diameter. photo credit: bogdog Dan via photopincc

The nanoparticles, pictured as gold colored, are less than 100 nanometers in diameter. photo credit: bogdog Dan via photopincc

My guess is that the photographer has added some colour such as the gold and the pink to enhance the image as otherwise this would be a symphony of grey tones.

So, if this material will lead to weakened chitin such that pesticides and insecticides are more effective, does this mean that something else in the food chain will suffer because it no longer has mosquitos and other pests to munch on?

One last note, usually my ‘mosquito’ pieces concern malaria and the most recent of those was a Sept. 4, 2014 posting about a possible malaria vaccine being developed at the University of Connecticut.

Wonders of curcumin: wound healing; wonders of aromatic-turmerone: stem cells

Both curcumin and turmerone are constituents of turmeric which has been long lauded for its healing properties. Michael Berger has written a Nanowerk Spotlight article featuring curcumin and some recent work on burn wound healing. Meanwhile, a ScienceDaily news item details information about a team of researchers focused on tumerone as a means for regenerating brain stem cells.

Curcumin and burn wounds

In a Sept. 22, 2014 Nanowerk Spotlight article Michael Berger sums up the curcumin research effort (referencing some of this previous articles on the topic) in light of a new research paper about burn wound healing (Note: Links have been removed),

Despite significant progress in medical treatments of severe burn wounds, infection and subsequent sepsis persist as frequent causes of morbidity and mortality for burn victims. This is due not only to the extensive compromise of the protective barrier against microbial invasion, but also as a result of growing pathogen resistance to therapeutic options.

… Dr Adam Friedman, Assistant Professor of Dermatology and Director of Dermatologic research at the Montefiore-Albert Einstein College of Medicine, tells Nanowerk. “For me, this gap fuels innovation, serving as the inspiration for my research with broad-spectrum, multi-mechanistic antimicrobial nanomaterials.”

In new work, Friedman and a team of researchers from Albert Einstein College of Medicine and Oregon State University have explored the use of curcumin nanoparticles for the treatment of infected burn wounds, an application that resulted in reduced bacterial load and enhancing wound healing.

It certainly seems promising as per the article abstract,

Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent by Aimee E. Krausz, Brandon L. Adler, Vitor Cabral, Mahantesh Navati, Jessica Doerner, Rabab Charafeddine, Dinesh Chandra, Hongying Liang, Leslie Gunther, Alicea Clendaniel, Stacey Harper, Joel M. Friedman, Joshua D. Nosanchuk, & Adam J. Friedman. Nanomedicine: Nanotechnology, Biology and Medicine (article in press) published online 19 September 2014.http://www.nanomedjournal.com/article/S1549-9634%2814%2900527-9/abstract Uncorrected Proof

Burn wounds are often complicated by bacterial infection, contributing to morbidity and mortality. Agents commonly used to treat burn wound infection are limited by toxicity, incomplete microbial coverage, inadequate penetration, and rising resistance. Curcumin is a naturally derived substance with innate antimicrobial and wound healing properties. Acting by multiple mechanisms, curcumin is less likely than current antibiotics to select for resistant bacteria.

Curcumin’s poor aqueous solubility and rapid degradation profile hinder usage; nanoparticle encapsulation overcomes this pitfall and enables extended topical delivery of curcumin.

In this study, we synthesized and characterized curcumin nanoparticles (curc-np), which inhibited in vitro growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa in dose-dependent fashion, and inhibited MRSA growth and enhanced wound healing in an in vivo murine wound model. Curc-np may represent a novel topical antimicrobial and wound healing adjuvant for infected burn wounds and other cutaneous injuries.

Two things: This paper is behind a paywall and note the use of the term ‘in vivo’ which means they have tested on animals such as rats and mice for example, but not humans. Nonetheless, it seems a promising avenue for further exploration.

Interestingly, there was an attempt in 1995 to patent turmeric for use in wound healing as per my Dec. 26, 2011 posting which featured then current research on turmeric,

There has already been one court case regarding a curcumin patent,

Recently, turmeric came into the global limelight when the controversial patent “Use of Turmeric in Wound Healing” was awarded, in 1995, to the University of Mississippi Medical Center, USA. Indian Council of Scientific and Industrial Research (CSIR) aggressively contested this award of the patent. It was argued by them that turmeric has been an integral part of the traditional Indian medicinal system over several centuries, and therefore, is deemed to be ‘prior art’, hence is in the public domain. Subsequently, after protracted technical/legal battle USPTO decreed that turmeric is an Indian discovery and revoked the patent.

One last bit about curcumin, my April 22, 2014 posting featured work in Iran using curcumin for cancer-healing.

Tumerone

This excerpt from a Sept. 25, 2014, news item in ScienceDaily represents the first time that tumerone has been mentioned here,

A bioactive compound found in turmeric promotes stem cell proliferation and differentiation in the brain, reveals new research published today in the open access journal Stem Cell Research & Therapy. The findings suggest aromatic turmerone could be a future drug candidate for treating neurological disorders, such as stroke and Alzheimer’s disease.

A Sept. 25, 2014 news release on EurekAlert provides more information,

The study looked at the effects of aromatic (ar-) turmerone on endogenous neutral stem cells (NSC), which are stem cells found within adult brains. NSC differentiate into neurons, and play an important role in self-repair and recovery of brain function in neurodegenerative diseases. Previous studies of ar-turmerone have shown that the compound can block activation of microglia cells. When activated, these cells cause neuroinflammation, which is associated with different neurological disorders. However, ar-turmerone’s impact on the brain’s capacity to self-repair was unknown.

Researchers from the Institute of Neuroscience and Medicine in Jülich, Germany, studied the effects of ar-turmerone on NSC proliferation and differentiation both in vitro and in vivo. Rat fetal NSC were cultured and grown in six different concentrations of ar-turmerone over a 72 hour period. At certain concentrations, ar-turmerone was shown to increase NSC proliferation by up to 80%, without having any impact on cell death. The cell differentiation process also accelerated in ar-turmerone-treated cells compared to untreated control cells.

To test the effects of ar-turmerone on NSC in vivo, the researchers injected adult rats with ar-turmerone. Using PET imaging and a tracer to detect proliferating cells, they found that the subventricular zone (SVZ) was wider, and the hippocampus expanded, in the brains of rats injected with ar-turmerone than in control animals. The SVZ and hippocampus are the two sites in adult mammalian brains where neurogenesis, the growth of neurons, is known to occur.

Lead author of the study, Adele Rueger, said: “While several substances have been described to promote stem cell proliferation in the brain, fewer drugs additionally promote the differentiation of stem cells into neurons, which constitutes a major goal in regenerative medicine. Our findings on aromatic turmerone take us one step closer to achieving this goal.”

Ar-turmerone is the lesser-studied of two major bioactive compounds found in turmeric. The other compound is curcumin, which is well known for its anti-inflammatory and neuroprotective properties

Here’s a link to and a citation for the paper,

Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo by Joerg Hucklenbroich, Rebecca Klein, Bernd Neumaier, Rudolf Graf, Gereon Rudolf Fink, Michael Schroeter, and Maria Adele Rueger. Stem Cell Research & Therapy 2014, 5:100  doi:10.1186/scrt500

This is an open access paper.

Nanotechnology announcements: a new book and a new report

Two quick announcements. The first concerns a forthcoming book to be published in March 2015. Titled, Nanotechnology Law & Guidelines: A Practical Guide for the Nanotechnology Industries in Europe, the book is featured in an Aug. 15, 2014 news item on Nanowerk,

The book is a concise guideline to different issues of nanotechnology in the European Legislation.- It offers an extensive review of all European Patent Office (EPO) cases on nanotechnological inventions. The challenge for new nanotechnology patents is to determine how patent criteria could be met in a patent application. This book shows how to identify the approach and the ways to cope with this challenge.

More about the book and purchasing options can be found on the publisher’s (Springer) Nanotechnology Law & Guidelines webpage,

[Table of Contents:]

Introduction.- Part I Nanotechnology from Research to Manufacture: The legal framework of the nanotechnology research and development.- Structuring the research and development of nanotechnologies.- Manufacturing nanotechnologies.-

Part II Protecting Nanotechnological Inventions: A Matter of Strategy : Trade Secrets vs. Patents and Utility Models.- Trade Secrets and Nanotechnologies.- International, European or National Patent for Nanotechnological Inventions ?- Nanotechnology Patents and Novelty.- Nanotechnology Patents and the Inventive Step.- Nanotechnology Patents and the Industrial Application.- Drafting Nanotechnology Patents Applications.- Utility Models as Alternative Means for Protecting Nanotechnological Inventions.- Copyright, Databases and Designs in the Nano Industry.- Managing and Transferring Nanotechnology Intellectual Property.-

Part III Nanotechnologies Investment and Finance.- Corporate Law and the nanotechnology industry.- Tax Law for the nanotechnology industry.- Investing and financing a nanotechnological project.-

Part IV Marketing Nanotechnologies.- Authorization and Registration Systems.- Product Safety and Liability.- Advertising “Nano”.- “Nano” Trademarks.- Importing and Exporting Nanotechnologies. Annexes: Analytic Table of EPO Cases on Nanotechnologies.- Analytic Table of National Cases on Nanotechnologies.- Analytic Table of OHIM Cases on Nano Trademarks.

I was able to find some information about the author, Anthony Bochon on his University of Stanford (where he is a Fellow) biography page,

Anthony Bochon is an associate in a Brussels-based law firm, an associate lecturer in EU Law & Trade Law/IP Law at the Université libre de Bruxelles and a lecturer in EU Law at the Brussels Business Institute. He is an associate researcher at the unit of Economic Law of the Faculty of Law of the Université libre de Bruxelles. Anthony graduated magna cum laude from the Université libre de Bruxelles in 2010 and received a year later an LL.M. from the University of Cambridge where he studied EU Law, WTO Law and IP Law. He has published on topics such as biotechnological patents, EU trade law and antitrust law since 2008. Anthony is also the author of the first European website devoted to the emerging legal area of nanotechnology law, a field about which he writes frequently and speaks regularly at international conferences. His legal practice is mainly focussed on EU Law, competition law and regulatory issues and he has a strong and relevant experience in IP/IT Law. He devotes his current research to EU and U.S. trade secrets law. Anthony has been a TTLF Fellow since June 2013.

On a completely other note and in the more recent future, there’s a report about the US National Nanotechnology Initiative to be released Aug. 28, 2014 as per David Bruggeman’s Aug. 14. 2014 posting on his Pasco Phronesis blog, (Note: A link has been removed)

On August 28 PCAST [President’s Council of Advisors on Science and Technology] will hold a public conference call in connection with the release of two new reports.  One will be a review of the National Nanotechnology Initiative (periodically required by law) … .

The call runs from 11:45 a.m. to 12:30 p.m. Eastern.  Registration is required, and closes at noon Eastern on the 26th..

That’s it for nanotechnology announcements today (Aug. 15, 2014).

Colombia, copyright, and sharing a science thesis

You’d think that posting a thesis online while giving full attribution to the author would be considered laudable. Apparently, there’s one person in Colombia that disagrees. And, since many educational institutions ask for copies of a student’s thesis for inclusion in their academic libraries you might believe the making said thesis more widely available (most students would be thrilled at the attention to their work) wouldn’t pose a problem. Apparently the Colombia legal system disagrees as it is preparing to take a student to court (and possible to jail) for sharing scientific information.

While the story seems to be popping up everywhere, this Aug. 1, 2014 article by Kerry Gren for The Scientist acted as my first notice (Note: Links have been removed),

Three years ago, Diego Gómez, a conservation biology student at the University of Quindío in Colombia, posted another scientist’s graduate thesis online. “I thought it was something that could be of interested [sic] for other groups, so I shared it on the web,” Gómez wrote on the website of Fundación Karisma, an education advocacy group in Colombia. “I never imagined that this activity could be considered a crime.”

But the author of the thesis disagreed, and last year complained to the Colombian police about the posting. Gómez now faces up to eight years in jail and at least $6,000 in fines for violating copyright. His case highlights the plight of scientists in certain parts of the world who are less able to access and share scientific information.

This wouldn’t have gone far in a US court at all,” said Michael Carroll, the director of the Program on Information Justice and Intellectual Property at American University’s Washington School of Law. [emphasis mine] “I’m really upset about this case,” he added. “It bothers me when copyright law gets in the way of scientists doing their science.” [emphasis mine]

While I too am bothered by copyright law being used to subvert science or, in this case, science sharing, Carroll’s comment about US courts (an indirect reference to US law) seems ironic after reading Tim Cushing’s July 28, 2014 Techdirt posting on the case (Note: Links have been removed),

Upload a document to Scribd, go to prison for at least four years. Ridiculous and more than a bit frightening, but in a case that has some obvious parallels with Aaron Swartz’s prosecution, that’s the reality Colombian student Diego Gomez is facing. In the course of his research, he came across a paper integral to his research. In order to ensure others could follow his line of thinking, Gomez uploaded this document for others to view.

According to Gomez, this was a common citation practice among Colombian students …

To be clear, Gomez did not try to profit from the paper. He also wasn’t acting as some sort of indiscriminate distributor of infringing works. But under Colombian law, none of that matters. But to really see who’s to blame here for this ridiculous level of rights enforcement, you have to look past the local laws, past the paper’s author and directly at the US government.

[Gomez] is being sued under a criminal law that was reformed in 2006, following the conclusion of a free trade agreement between Colombia and the United States. The new law was meant to fulfill the trade agreement’s restrictive copyright standards, and it expanded criminal penalties for copyright infringement, increasing possible prison sentences and monetary fines.

More details on the awfulness of Colombia’s law (spurred on by US special interests) are available in the EFF’s [Electronic Frontier Federation] earlier coverage. Colombia gave the US copyright industry everything it wanted in order to secure this free trade agreement… and then it just kept going. …

This bill was hastily passed as a welcoming gift for President Obama, shoved through the legislative process in order to get out ahead of the administration’s appearance at a Colombia-hosted conference. This deference to the US government could cost Gomez at least four years of his life.

While Colombia seemed very eager to take the worst parts of US copyright law (and make them even more terrible), it was less inclined to take any of the good. …

Beneath all of this lies the ugly reality of the academic research market. Just as in the US, plenty of useful information is locked up and inaccessible to anyone unable to afford the frequently exorbitant fees charged by various gatekeepers. Copyright’s original intent — “to promote the progress of science and the useful arts” — isn’t served by this behavior. …

Erik Stokstad’s July 31, 2014 article for ScienceInsider offers more details such as these,

In 2011, Gómez came across a master’s thesis, completed at the National University of Colombia in 2006, that would be useful for identifying amphibians he had seen in protected areas. He posted the thesis on Scribd to allow it to be easily downloaded by other researchers and students. At the time, the downloads were free. When Scribd started charging unregistered users $5 per download, Gómez removed the thesis.

The author of the thesis, a Colombian herpetologist, however, had already notified police that it had been posted without his permission. After being contacted by police, Gómez cooperated with the investigation. In April 2013, a criminal complaint was filed. This past fall, he learned that the office of the attorney general was going to bring the case to trial. Gómez “was in a panic,” says Carolina Botero, an attorney at Fundación Karisma, a digital rights advocacy organization in Bogotá, which is advocating on his behalf.

The Electronic Frontier Federation’s July 23, 2014 posting by Maira Sutton places this incident within an international context and outlines Colombia’s legal framework as it pertains to this case.

Diego Gomez has written about his situation (English language version and Spanish language version) as per some July 2014 postings.

As for Aaron Swartz mentioned in the excerpt from Tim Cushing’s Techdirt post, anyone unfamiliar with the case can find all the information they might want in this Wikipedia entry.

Cardiac pacemakers: Korea’s in vivo demonstration of a self-powered one* and UK’s breath-based approach

As i best I can determine ,the last mention of a self-powered pacemaker and the like on this blog was in a Nov. 5, 2012 posting (Developing self-powered batteries for pacemakers). This latest news from The Korea Advanced Institute of Science and Technology (KAIST) is, I believe, the first time that such a device has been successfully tested in vivo. From a June 23, 2014 news item on ScienceDaily,

As the number of pacemakers implanted each year reaches into the millions worldwide, improving the lifespan of pacemaker batteries has been of great concern for developers and manufacturers. Currently, pacemaker batteries last seven years on average, requiring frequent replacements, which may pose patients to a potential risk involved in medical procedures.

A research team from the Korea Advanced Institute of Science and Technology (KAIST), headed by Professor Keon Jae Lee of the Department of Materials Science and Engineering at KAIST and Professor Boyoung Joung, M.D. of the Division of Cardiology at Severance Hospital of Yonsei University, has developed a self-powered artificial cardiac pacemaker that is operated semi-permanently by a flexible piezoelectric nanogenerator.

A June 23, 2014 KAIST news release on EurekAlert, which originated the news item, provides more details,

The artificial cardiac pacemaker is widely acknowledged as medical equipment that is integrated into the human body to regulate the heartbeats through electrical stimulation to contract the cardiac muscles of people who suffer from arrhythmia. However, repeated surgeries to replace pacemaker batteries have exposed elderly patients to health risks such as infections or severe bleeding during operations.

The team’s newly designed flexible piezoelectric nanogenerator directly stimulated a living rat’s heart using electrical energy converted from the small body movements of the rat. This technology could facilitate the use of self-powered flexible energy harvesters, not only prolonging the lifetime of cardiac pacemakers but also realizing real-time heart monitoring.

The research team fabricated high-performance flexible nanogenerators utilizing a bulk single-crystal PMN-PT thin film (iBULe Photonics). The harvested energy reached up to 8.2 V and 0.22 mA by bending and pushing motions, which were high enough values to directly stimulate the rat’s heart.

Professor Keon Jae Lee said:

“For clinical purposes, the current achievement will benefit the development of self-powered cardiac pacemakers as well as prevent heart attacks via the real-time diagnosis of heart arrhythmia. In addition, the flexible piezoelectric nanogenerator could also be utilized as an electrical source for various implantable medical devices.”

This image illustrating a self-powered nanogenerator for a cardiac pacemaker has been provided by KAIST,

This picture shows that a self-powered cardiac pacemaker is enabled by a flexible piezoelectric energy harvester. Credit: KAIST

This picture shows that a self-powered cardiac pacemaker is enabled by a flexible piezoelectric energy harvester.
Credit: KAIST

Here’s a link to and a citation for the paper,

Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester by Geon-Tae Hwang, Hyewon Park, Jeong-Ho Lee, SeKwon Oh, Kwi-Il Park, Myunghwan Byun, Hyelim Park, Gun Ahn, Chang Kyu Jeong, Kwangsoo No, HyukSang Kwon, Sang-Goo Lee, Boyoung Joung, and Keon Jae Lee. Advanced Materials DOI: 10.1002/adma.201400562
Article first published online: 17 APR 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

There was a May 15, 2014 KAIST news release on EurekAlert announcing this same piece of research but from a technical perspective,

The energy efficiency of KAIST’s piezoelectric nanogenerator has increased by almost 40 times, one step closer toward the commercialization of flexible energy harvesters that can supply power infinitely to wearable, implantable electronic devices

NANOGENERATORS are innovative self-powered energy harvesters that convert kinetic energy created from vibrational and mechanical sources into electrical power, removing the need of external circuits or batteries for electronic devices. This innovation is vital in realizing sustainable energy generation in isolated, inaccessible, or indoor environments and even in the human body.

Nanogenerators, a flexible and lightweight energy harvester on a plastic substrate, can scavenge energy from the extremely tiny movements of natural resources and human body such as wind, water flow, heartbeats, and diaphragm and respiration activities to generate electrical signals. The generators are not only self-powered, flexible devices but also can provide permanent power sources to implantable biomedical devices, including cardiac pacemakers and deep brain stimulators.

However, poor energy efficiency and a complex fabrication process have posed challenges to the commercialization of nanogenerators. Keon Jae Lee, Associate Professor of Materials Science and Engineering at KAIST, and his colleagues have recently proposed a solution by developing a robust technique to transfer a high-quality piezoelectric thin film from bulk sapphire substrates to plastic substrates using laser lift-off (LLO).

Applying the inorganic-based laser lift-off (LLO) process, the research team produced a large-area PZT thin film nanogenerators on flexible substrates (2 cm x 2 cm).

“We were able to convert a high-output performance of ~250 V from the slight mechanical deformation of a single thin plastic substrate. Such output power is just enough to turn on 100 LED lights,” Keon Jae Lee explained.

The self-powered nanogenerators can also work with finger and foot motions. For example, under the irregular and slight bending motions of a human finger, the measured current signals had a high electric power of ~8.7 μA. In addition, the piezoelectric nanogenerator has world-record power conversion efficiency, almost 40 times higher than previously reported similar research results, solving the drawbacks related to the fabrication complexity and low energy efficiency.

Lee further commented,

“Building on this concept, it is highly expected that tiny mechanical motions, including human body movements of muscle contraction and relaxation, can be readily converted into electrical energy and, furthermore, acted as eternal power sources.”

The research team is currently studying a method to build three-dimensional stacking of flexible piezoelectric thin films to enhance output power, as well as conducting a clinical experiment with a flexible nanogenerator.

In addition to the 2012 posting I mentioned earlier, there was also this July 12, 2010 posting which described research on harvesting biomechanical movement ( heart beat, blood flow, muscle stretching, or even irregular vibration) at the Georgia (US) Institute of Technology where the lead researcher observed,

…  Wang [Professor Zhong Lin Wang at Georgia Tech] tells Nanowerk. “However, the applications of the nanogenerators under in vivo and in vitro environments are distinct. Some crucial problems need to be addressed before using these devices in the human body, such as biocompatibility and toxicity.”

Bravo to the KAIST researchers for getting this research to the in vivo testing stage.

Meanwhile at the University of Bristol and at the University of Bath, researchers have received funding for a new approach to cardiac pacemakers, designed them with the breath in mind. From a June 24, 2014 news item on Azonano,

Pacemaker research from the Universities of Bath and Bristol could revolutionise the lives of over 750,000 people who live with heart failure in the UK.

The British Heart Foundation (BHF) is awarding funding to researchers developing a new type of heart pacemaker that modulates its pulses to match breathing rates.

A June 23, 2014 University of Bristol press release, which originated the news item, provides some context,

During 2012-13 in England, more than 40,000 patients had a pacemaker fitted.

Currently, the pulses from pacemakers are set at a constant rate when fitted which doesn’t replicate the natural beating of the human heart.

The normal healthy variation in heart rate during breathing is lost in cardiovascular disease and is an indicator for sleep apnoea, cardiac arrhythmia, hypertension, heart failure and sudden cardiac death.

The device is then briefly described (from the press release),

The novel device being developed by scientists at the Universities of Bath and Bristol uses synthetic neural technology to restore this natural variation of heart rate with lung inflation, and is targeted towards patients with heart failure.

The device works by saving the heart energy, improving its pumping efficiency and enhancing blood flow to the heart muscle itself.  Pre-clinical trials suggest the device gives a 25 per cent increase in the pumping ability, which is expected to extend the life of patients with heart failure.

One aim of the project is to miniaturise the pacemaker device to the size of a postage stamp and to develop an implant that could be used in humans within five years.

Dr Alain Nogaret, Senior Lecturer in Physics at the University of Bath, explained“This is a multidisciplinary project with strong translational value.  By combining fundamental science and nanotechnology we will be able to deliver a unique treatment for heart failure which is not currently addressed by mainstream cardiac rhythm management devices.”

The research team has already patented the technology and is working with NHS consultants at the Bristol Heart Institute, the University of California at San Diego and the University of Auckland. [emphasis mine]

Professor Julian Paton, from the University of Bristol, added: “We’ve known for almost 80 years that the heart beat is modulated by breathing but we have never fully understood the benefits this brings. The generous new funding from the BHF will allow us to reinstate this natural occurring synchrony between heart rate and breathing and understand how it brings therapy to hearts that are failing.”

Professor Jeremy Pearson, Associate Medical Director at the BHF, said: “This study is a novel and exciting first step towards a new generation of smarter pacemakers. More and more people are living with heart failure so our funding in this area is crucial. The work from this innovative research team could have a real impact on heart failure patients’ lives in the future.”

Given some current events (‘Tesla opens up its patents’, Mike Masnick’s June 12, 2014 posting on Techdirt), I wonder what the situation will be vis à vis patents by the time this device gets to market.

* ‘one’ added to title on Aug. 13, 2014.

Carbon capture with nanoporous material in the oilfields

Researchers at Rice University (Texas) have devised a new technique for carbon capture according to a June 3, 2014 news item on Nanowerk,

Rice University scientists have created an Earth-friendly way to separate carbon dioxide from natural gas at wellheads.

A porous material invented by the Rice lab of chemist James Tour sequesters carbon dioxide, a greenhouse gas, at ambient temperature with pressure provided by the wellhead and lets it go once the pressure is released. The material shows promise to replace more costly and energy-intensive processes.

A June 3, 2014 Rice University news release, which originated the news item, provides a general description of how carbon dioxide is currently removed during fossil fuel production and adds a few more details about the new technology,

Natural gas is the cleanest fossil fuel. Development of cost-effective means to separate carbon dioxide during the production process will improve this advantage over other fossil fuels and enable the economic production of gas resources with higher carbon dioxide content that would be too costly to recover using current carbon capture technologies, Tour said. Traditionally, carbon dioxide has been removed from natural gas to meet pipelines’ specifications.

The Tour lab, with assistance from the National Institute of Standards and Technology (NIST), produced the patented material that pulls only carbon dioxide molecules from flowing natural gas and polymerizes them while under pressure naturally provided by the well.

When the pressure is released, the carbon dioxide spontaneously depolymerizes and frees the sorbent material to collect more.

All of this works in ambient temperatures, unlike current high-temperature capture technologies that use up a significant portion of the energy being produced.

The news release mentions current political/legislative actions in the US and the implications for the oil and gas industry while further describing the advantages of this new technique,

“If the oil and gas industry does not respond to concerns about carbon dioxide and other emissions, it could well face new regulations,” Tour said, noting the White House issued its latest National Climate Assessment last month [May 2014] and, this week [June 2, 2014], set new rules to cut carbon pollution from the nation’s power plants.

“Our technique allows one to specifically remove carbon dioxide at the source. It doesn’t have to be transported to a collection station to do the separation,” he said. “This will be especially effective offshore, where the footprint of traditional methods that involve scrubbing towers or membranes are too cumbersome.

“This will enable companies to pump carbon dioxide directly back downhole, where it’s been for millions of years, or use it for enhanced oil recovery to further the release of oil and natural gas. Or they can package and sell it for other industrial applications,” he said.

This is an epic (Note to writer: well done) news release as only now is there a technical explanation,

The Rice material, a nanoporous solid of carbon with nitrogen or sulfur, is inexpensive and simple to produce compared with the liquid amine-based scrubbers used now, Tour said. “Amines are corrosive and hard on equipment,” he said. “They do capture carbon dioxide, but they need to be heated to about 140 degrees Celsius to release it for permanent storage. That’s a terrible waste of energy.”

Rice graduate student Chih-Chau Hwang, lead author of the paper, first tried to combine amines with porous carbon. “But I still needed to heat it to break the covalent bonds between the amine and carbon dioxide molecules,” he said. Hwang also considered metal oxide frameworks that trap carbon dioxide molecules, but they had the unfortunate side effect of capturing the desired methane as well and they are far too expensive to make for this application.

The porous carbon powder he settled on has massive surface area and turns the neat trick of converting gaseous carbon dioxide into solid polymer chains that nestle in the pores.

“Nobody’s ever seen a mechanism like this,” Tour said. “You’ve got to have that nucleophile (the sulfur or nitrogen atoms) to start the polymerization reaction. This would never work on simple activated carbon; the key is that the polymer forms and provides continuous selectivity for carbon dioxide.”

Methane, ethane and propane molecules that make up natural gas may try to stick to the carbon, but the growing polymer chains simply push them off, he said.

The researchers treated their carbon source with potassium hydroxide at 600 degrees Celsius to produce the powders with either sulfur or nitrogen atoms evenly distributed through the resulting porous material. The sulfur-infused powder performed best, absorbing 82 percent of its weight in carbon dioxide. The nitrogen-infused powder was nearly as good and improved with further processing.

Tour said the material did not degrade over many cycles, “and my guess is we won’t see any. After heating it to 600 degrees C for the one-step synthesis from inexpensive industrial polymers, the final carbon material has a surface area of 2,500 square meters per gram, and it is enormously robust and extremely stable.”

Apache Corp., a Houston-based oil and gas exploration and production company, funded the research at Rice and licensed the technology. Tour expected it will take time and more work on manufacturing and engineering aspects to commercialize.

Here’s a link to and a citation for the paper,

Capturing carbon dioxide as a polymer from natural gas by Chih-Chau Hwang, Josiah J. Tour, Carter Kittrell, Laura Espinal, Lawrence B. Alemany, & James M. Tour. Nature Communications 5, Article number: 3961 doi:10.1038/ncomms4961 Published 03 June 2014

This paper is behind a paywall.

The researchers have made an illustration of the material available,

 Illustration by Tanyia Johnson/Rice University

Illustration by Tanyia Johnson/Rice University

This morning, Azonano posted a June 6, 2014 news item about a patent for carbon capture,

CO2 Solutions Inc. ( the “Corporation”), an innovator in the field of enzyme-enabled carbon capture technology, today announced it has received a Notice of Allowance from the U.S. Patent and Trademark Office for its patent application No. 13/264,294 entitled Process for CO2 Capture Using Micro-Particles Comprising Biocatalysts.

One might almost think these announcements were timed to coincide with the US White House’s moves.

As for CO2 Solutions, this company is located in Québec, Canada.  You can find out more about the company here (you may want to click on the English language button).

Dreaming of the perfect face mask?

Researchers at Hong Kong Polytechnic University have something for anyone who has ever dreamed of getting a face mask that offers protection from the finest of pollutant particles, according to a May 13, 2014 news item on phys.org,

Researchers at the Hong Kong Polytechnic University have developed a ground-breaking filter technology that guards against the finest pollutants in the air

Haze is usually composed of pollutants in the form of tiny suspended particles or fine mists/droplets emitted from vehicles, coal-burning power plants and factories. Continued exposure increases the risk of developing respiratory problems, heart diseases and lung cancer. Can we avoid the unhealthy air?

A simple face mask that can block out suspended particles has been developed by scientists from the Department of Mechanical Engineering at the Hong Kong Polytechnic University (PolyU). The project is led by Professor Wallace Woon-Fong Leung, a renowned filtration expert, who has spent his career understanding these invisible killers.

An article for Hong Kong Polytechnic University’s April 2014 issue of Technology Frontiers, which originated the news item, describes the research problem and Professor Leung’s proposed face mask in more detail,

In Hong Kong, suspended particles PM 10 and PM 2.5 are being monitored.  PM 10 refers to particles that are 10 microns (or micrometres) in size or smaller, whereas PM 2.5 measures 2.5 microns or smaller.  At the forefront of combating air pollution, Professor Leung targets ultra-fine pollutants that have yet been picked up by air quality monitors – particles measuring 1 micron or below, which he perceived to be a more important threat to human health.

“In my view, nano-aerosols (colloid of fine solid particles or liquid droplets of sub-micron to nano-sizes), such as diesel emissions, are the most lethal for three reasons.  First, they are in their abundance by number suspended in the air.  Second, they are too small to be filtered out using current technologies.  Third, they can pass easily through our lungs and work their way into our respiratory systems, and subsequently our vascular, nervous and lymphatic systems, doing the worst kind of harm.”

However, it would be difficult to breathe through the mask if it were required to block out nano-aerosols.  To make an effective filter that is highly breathable, a new filter that provides high filtration efficiency yet low air resistance (or low pressure drop) is required.

According to Professor Leung, pollutant particles get into our body in two ways – by the airflow carrying them and by the diffusion motion of these tiny particles.  As the particles are intercepted by the fibres of the mask, they are filtered out before reaching our lungs.

Fibres from natural or synthetic materials can be made into nanofibres around 1/500 of the diameter of a hair (about 0.1 mm) through nanotechnologies.  While nanofibres increase the surface area for nano-aerosol interception, they also incur larger air resistance.  Professor Leung’s new innovation aims to divide optimal amount of nanofibres into multiple layers separated by a permeable space, allowing plenty of room for air to pass through.

A conventional face mask can only block out about 25% of 0.3-micron nano-aerosols under standard test conditions.  Professor Leung said, “The multi-layer nanofibre mask can block out at least 80% of suspended nano-aerosols, even the ones smaller than 0.3 micron.  In the meantime, the wearer can breathe as comfortably as wearing a conventional face mask, making it superb for any outdoor occasions. Another option is to provide a nanofiber mask that has the same capture efficiency as conventional face mask, yet it is at least several times more breathable, which would be suitable for the working group.”

The new filtration technology has been well recognized.  Recently, Professor Leung and his team have won a Gold Medal and a Special Merit Award from the Romania Ministry of National Education at the 42nd International Exhibition of Inventions of Geneva held in Switzerland.

If the breakthrough is turned into tightly-fit surgical masks, they are just as effective against bacteria and viruses whose sizes are under 1 micron.  “In the future, medical professionals at the frontline can have stronger protection against deadly bacteria and viruses,” added Professor Leung.

I did not find any published research about this proposed face mask but there is a 2009 patent for a Multilayer nanofiber filter (US 8523971 B2), which lists the inventors as: Wallace Woon-Fong Leung and Chi Ho Hung and the original assignee as: The Hong Kong Polytechnic University.  The description of the materials in the patent closely resembles the description of the face mask materials.

Bayer MaterialScience divests itself of carbon nanotube and graphene patents

Last year’s announcement from Bayer MaterialScience about withdrawing from the carbon nanotube market (featured in my May 9, 2013 posting) has now been followed with news of the company’s sale of its intellectual property (patents) associated with carbon nanotubes (CNTs) and graphene. From a March 31, 2014 news item on Nanowerk,

After concluding its research work on carbon nanotubes (CNT) and graphenes, Bayer MaterialScience is divesting itself of fundamental intellectual property in this field. The company FutureCarbon GmbH, based in Bayreuth, Germany, will acquire, as leading provider of carbon-based composites, the bulk of the corresponding patents from the past ten years. The two parties have now signed an agreement to this effect. The financial details of the transfer will not be disclosed.

The March 31, 2014 Bayer news release, which originated the news item, describes the winning bidder,

FutureCarbon GmbH is a leading innovator and provider of novel, carbon-based composites. As a specialist in the manufacture and in particular the refinement of various carbon materials, FutureCarbon enables a broad range of strategic industries, to easily utilize the extraordinary properties of carbon materials in their products.

“We enjoy a long-standing development partnership with Bayer. We are happy that we were able to acquire the Bayer patents for further market realization of the technology. They expand our applications base substantially and open up new possibilities and business segments for us,” said Dr. Walter Schütz, managing director of the Bayreuth company.

After Bayer MaterialScience announced the conclusion of its CNT projects in May 2013, various companies indicated their interest in making concrete use of intellectual property developed before the decision was made for FutureCarbon as ideal partner for taking over the accomplished knowledge.

About FutureCarbon GmbH
FutureCarbon specializes in the development and manufacture of carbon nanomaterials and their refinement to create what are called carbon supercomposites, primary products for further industrial processing. Carbon supercomposites are combinations of materials that unfold the special characteristics of carbon nano-materials in the macroscopic world of real applications. All of our materials are manufactured on an industrial scale.

You can find out more about FutureCarbon here.