Category Archives: intellectual property

Is it time to invest in a ‘brain chip’ company?

This story take a few twists and turns. First, ‘brain chips’ as they’re sometimes called would allow, theoretically, computers to learn and function like human brains. (Note: There’s another type of ‘brain chip’ which could be implanted in human brains to help deal with diseases such as Parkinson’s and Alzheimer’s. *Today’s [June 26, 2015] earlier posting about an artificial neuron points at some of the work being done in this areas.*)

Returning to the ‘brain ship’ at hand. Second, there’s a company called BrainChip, which has one patent and another pending for, yes, a ‘brain chip’.

The company, BrainChip, founded in Australia and now headquartered in California’s Silicon Valley, recently sparked some investor interest in Australia. From an April 7, 2015 article by Timna Jacks for the Australian Financial Review,

Former mining stock Aziana Limited has whet Australian investors’ appetite for science fiction, with its share price jumping 125 per cent since it announced it was acquiring a US-based tech company called BrainChip, which promises artificial intelligence through a microchip that replicates the neural system of the human brain.

Shares in the company closed at 9¢ before the Easter long weekend, having been priced at just 4¢ when the backdoor listing of BrainChip was announced to the market on March 18.

Creator of the patented digital chip, Peter Van Der Made told The Australian Financial Review the technology has the capacity to learn autonomously, due to its composition of 10,000 biomimic neurons, which, through a process known as synaptic time-dependent plasticity, can form memories and associations in the same way as a biological brain. He said it works 5000 times faster and uses a thousandth of the power of the fastest computers available today.

Mr Van Der Made is inviting technology partners to license the technology for their own chips and products, and is donating the technology to university laboratories in the US for research.

The Netherlands-born Australian, now based in southern California, was inspired to create the brain-like chip in 2004, after working at the IBM Internet Security Systems for two years, where he was chief scientist for behaviour analysis security systems. …

A June 23, 2015 article by Tony Malkovic on provide a few more details about BrainChip and about the deal,

Mr Van der Made and the company, also called BrainChip, are now based in Silicon Valley in California and he returned to Perth last month as part of the company’s recent merger and listing on the Australian Stock Exchange.

He says BrainChip has the ability to learn autonomously, evolve and associate information and respond to stimuli like a brain.

Mr Van der Made says the company’s chip technology is more than 5,000 faster than other technologies, yet uses only 1/1,000th of the power.

“It’s a hardware only solution, there is no software to slow things down,” he says.

“It doesn’t executes instructions, it learns and supplies what it has learnt to new information.

“BrainChip is on the road to position itself at the forefront of artificial intelligence,” he says.

“We have a clear advantage, at least 10 years, over anybody else in the market, that includes IBM.”

BrainChip is aiming at the global semiconductor market involving almost anything that involves a microprocessor.

You can find out more about the company, BrainChip here. The site does have a little more information about the technology,

Spiking Neuron Adaptive Processor (SNAP)

BrainChip’s inventor, Peter van der Made, has created an exciting new Spiking Neural Networking technology that has the ability to learn autonomously, evolve and associate information just like the human brain. The technology is developed as a digital design containing a configurable “sea of biomimic neurons’.

The technology is fast, completely digital, and consumes very low power, making it feasible to integrate large networks into portable battery-operated products, something that has never been possible before.

BrainChip neurons autonomously learn through a process known as STDP (Synaptic Time Dependent Plasticity). BrainChip’s fully digital neurons process input spikes directly in hardware. Sensory neurons convert physical stimuli into spikes. Learning occurs when the input is intense, or repeating through feedback and this is directly correlated to the way the brain learns.

Computing Artificial Neural Networks (ANNs)

The brain consists of specialized nerve cells that communicate with one another. Each such nerve cell is called a Neuron,. The inputs are memory nodes called synapses. When the neuron associates information, it produces a ‘spike’ or a ‘spike train’. Each spike is a pulse that triggers a value in the next synapse. Synapses store values, similar to the way a computer stores numbers. In combination, these values determine the function of the neural network. Synapses acquire values through learning.

In Artificial Neural Networks (ANNs) this complex function is generally simplified to a static summation and compare function, which severely limits computational power. BrainChip has redefined how neural networks work, replicating the behaviour of the brain. BrainChip’s artificial neurons are completely digital, biologically realistic resulting in increased computational power, high speed and extremely low power consumption.

The Problem with Artificial Neural Networks

Standard ANNs, running on computer hardware are processed sequentially; the processor runs a program that defines the neural network. This consumes considerable time and because these neurons are processed sequentially, all this delayed time adds up resulting in a significant linear decline in network performance with size.

BrainChip neurons are all mapped in parallel. Therefore the performance of the network is not dependent on the size of the network providing a clear speed advantage. So because there is no decline in performance with network size, learning also takes place in parallel within each synapse, making STDP learning very fast.

A hardware solution

BrainChip’s digital neural technology is the only custom hardware solution that is capable of STDP learning. The hardware requires no coding and has no software as it evolves learning through experience and user direction.

The BrainChip neuron is unique in that it is completely digital, behaves asynchronously like an analog neuron, and has a higher level of biological realism. It is more sophisticated than software neural models and is many orders of magnitude faster. The BrainChip neuron consists entirely of binary logic gates with no traditional CPU core. Hence, there are no ‘programming’ steps. Learning and training takes the place of programming and coding. Like of a child learning a task for the first time.

Software ‘neurons’, to compromise for limited processing power, are simplified to a point where they do not resemble any of the features of a biological neuron. This is due to the sequential nature of computers, whereby all data has to pass through a central processor in chunks of 16, 32 or 64 bits. In contrast, the brain’s network is parallel and processes the equivalent of millions of data bits simultaneously.

A significantly faster technology

Performing emulation in digital hardware has distinct advantages over software. As software is processed sequentially, one instruction at a time, Software Neural Networks perform slower with increasing size. Parallel hardware does not have this problem and maintains the same speed no matter how large the network is. Another advantage of hardware is that it is more power efficient by several orders of magnitude.

The speed of the BrainChip device is unparalleled in the industry.

For large neural networks a GPU (Graphics Processing Unit) is ~70 times faster than the Intel i7 executing a similar size neural network. The BrainChip neural network is faster still and takes far fewer CPU (Central Processing Unit) cycles, with just a little communication overhead, which means that the CPU is available for other tasks. The BrainChip network also responds much faster than a software network accelerating the performance of the entire system.

The BrainChip network is completely parallel, with no sequential dependencies. This means that the network does not slow down with increasing size.

Endorsed by the neuroscience community

A number of the world’s pre-eminent neuroscientists have endorsed the technology and are agreeing to joint develop projects.

BrainChip has the potential to become the de facto standard for all autonomous learning technology and computer products.


BrainChip’s autonomous learning technology patent was granted on the 21st September 2008 (Patent number US 8,250,011 “Autonomous learning dynamic artificial neural computing device and brain inspired system”). BrainChip is the only company in the world to have achieved autonomous learning in a network of Digital Neurons without any software.

A prototype Spiking Neuron Adaptive Processor was designed as a ‘proof of concept’ chip.

The first tests were completed at the end of 2007 and this design was used as the foundation for the US patent application which was filed in 2008. BrainChip has also applied for a continuation-in-part patent filed in 2012, the “Method and System for creating Dynamic Neural Function Libraries”, US Patent Application 13/461,800 which is pending.

Van der Made doesn’t seem to have published any papers on this work and the description of the technology provided on the website is frustratingly vague. There are many acronyms for processes but no mention of what this hardware might be. For example, is it based on a memristor or some kind of atomic ionic switch or something else altogether?

It would be interesting to find out more but, presumably, van der Made, wishes to withhold details. There are many companies following the same strategy while pursuing what they view as a business advantage.

* Artificial neuron link added June 26, 2015 at 1017 hours PST.

Canadian nanotechnology commercialization efforts: patents and a new facility

Nanotech Security, a Vancouver-area business focused on anti-counterfeiting strategies which has been featured here a number of times, has secured two patents according to a May 30, 2015 news item on Nanotechnology Now,

Nanotech Security Corp. (TSXV: NTS) (OTCQX: NTSFF), announced that the Company has been granted two patents; one from the United States Patent and Trademark Office and one from the European Patent Office. The Company continues to expand the protection of its technology with the addition of these patents to its intellectual property portfolio.

Clint Landrock, Nanotech Chief Technology officer, commented, “We are pleased to be granted these additional patents as they further solidify our hold on the next generation of authentication technologies for the banknote, branding and secure document industries.”

Notech Security’s May 27, 2015 news release, which originated the news item, provides more details about the technology being patented,

Based on these patents the Company has launched “Pearl”, our first foray in plasmonic full colour images.  A nano array image of Vermeer’s famous painting “Girl with a Pearl Earring”, which brilliantly displays her ruby lips, blue scarf and bright white collar and features two distinct authentication viewing modes in one feature.  The user can view the full colour image in both transmission and reflection (shining a light on or through the image) – an effect impossible for a hologram to achieve.  …

Here’s Pearl,


Courtesy Nanotech Security

The news release goes on,

Doug Blakeway, Nanotech Chief Executive Officer, commented, “An initial showing of Pearl to the banknote industry came back with comments of having never seen such a bright visual effect in a security device.”  Immediate interest in Pearl has initiated discussions with issuing authorities.

EPO No. 2,563,602 names Charles MacPherson as the inventor.  The patent covers layered optically variable devices (“OVDs”) such as colour shift foils that uniquely employs additional interactivity using piezoelectric layers to activate the authentication mode of a security device used as threads in products such as banknotes, passports and secure packaging.  This patented multi-layered thin film technology offers Nanotech a competitive edge in the development of colour shifting security devices.

USPTO No. 9,013,272 names Dr. Bozena Kaminska and Clint Landrock as co-inventors.  Building on patents previously granted to Nanotech, this patent secures integral intellectual property, which covers a range of diffractive and plasmonic luminescent devices such as security features used in banknotes.

Nano facility in Alberta

Presumably this Canadian federal government announcement about funding for a nanotechnology facility at the Northern Alberta Institute of Technology (NAIT) is in anticipation of a Fall 2015 election (from a May 31, 2015 news item on Nanotechnology Now,

Today [Friday, May 29, 2015], the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced $1.5 million in funding to support the Northern Alberta Institute of Technology (NAIT) in establishing a centre that will allow small- and medium-sized enterprises (SMEs) to test, develop, and commercialize micro- and nano-coated products.

A May 29, 2015 Western Economic Diversification Canada news release on MarketWired expands on the theme,

Federal funding will enable NAIT to purchase specialized coating handling and blasting equipment, a spray booth, cutting machines, compressors, and to upgrade the facility’s ventilation system and power supply.

The facility, which is also receiving support from MesoCoat Technology Canada, will operate within the existing Nanotechnology Centre for Applied Research, Industry Training and Services (nanoCARTS), and is expected to benefit a wide range of sectors including oil and gas, surface technology and engineering.

Quick Facts

  • Since 2006, the federal government has invested more than $13 billion in new funding in all facets of the innovation ecosystem including advanced research, research infrastructure, talent development, and business innovation.
  • NAIT’s nanoCARTS provides industry with prototyping, product enhancement, testing and characterization services related to nano and micro technology. The new facility will help to expand nanoCARTS’ range of services available to SMEs.
  • NAIT has the expertise in rapid prototyping, materials testing, manufacturing, training and mechanical design to help companies develop and commercialize new products.


“Our Government understands that technology advancements help increase Western Canada’s competitive advantage. By investing in the establishment of this new micro- and nano-coated product development centre, we are demonstrating our commitment to supporting jobs and economic growth.”

  • The Honourable Michelle Rempel, Minister of State for Western Economic Diversification

“Applied research is essential in NAIT’s role as a leading polytechnic. This investment strengthens our ability to work with industry to solve their real-world problems. This ultimately helps them to be competitive and innovative. I would like to thank the Government of Canada for its investment.”

  • Dr. Glenn Feltham, President and CEO, NAIT

“We are grateful to the Government of Canada for their financial and strategic support, which has been instrumental in establishing this centre at NAIT. The applied research we are carrying out has the potential to extend the lifespan of piping used in oil production and save billions of dollars in downtime and replacement costs. Wear-resistant clad pipes being developed at this centre are expected to make oil production safer, more efficient and more affordable.”

  • Stephen Goss, CEO, MesoCoat Technology Canada

That would seem to be the sum total of the Canadian commercialization effort at the moment. It contrasts somewhat with the US White House and its recently announced new initiatives to commercialize nanotechnology (see my May 27, 2015 post for a list).

CRISPR genome editing tools and human genetic engineering issues

This post is going to feature a human genetic engineering roundup of sorts.

First, the field of human genetic engineering encompasses more than the human genome as this paper (open access until June 5, 2015) notes in the context of a discussion about a specific CRISPR gene editing tool,

CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare by Rajendran Subin Raj Cheri Kunnumal, Yau Yuan-Yeu, Pandey Dinesh, and Kumar Anil. OMICS: A Journal of Integrative Biology. May 2015, 19(5): 261-275. doi:10.1089/omi.2015.0023 Published Online Ahead of Print: April 14, 2015

Here’s more about the paper from a May 7, 2015 Mary Ann Liebert publisher news release on EurekAlert,

Researchers have customized and refined a technique derived from the immune system of bacteria to develop the CRISPR-Cas9 genome engineering system, which enables targeted modifications to the genes of virtually any organism. The discovery and development of CRISPR-Cas9 technology, its wide range of potential applications in the agriculture/food industry and in modern medicine, and emerging regulatory issues are explored in a Review article published in OMICS: A Journal of Integrative Biology, …

“CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare” provides a detailed description of the CRISPR system and its applications in post-genomics biology. Subin Raj, Cheri Kunnumal Rajendran, Dinish Pandey, and Anil Kumar, G.B. Pant University of Agriculture and Technology (Uttarakhand, India) and Yuan-Yeu Yau, Northeastern State University (Broken Arrow, OK) describe the advantages of the RNA-guided Cas9 endonuclease-based technology, including the activity, specificity, and target range of the enzyme. The authors discuss the rapidly expanding uses of the CRISPR system in both basic biological research and product development, such as for crop improvement and the discovery of novel therapeutic agents. The regulatory implications of applying CRISPR-based genome editing to agricultural products is an evolving issue awaiting guidance by international regulatory agencies.

“CRISPR-Cas9 technology has triggered a revolution in genome engineering within living systems,” says OMICS Editor-in-Chief Vural Özdemir, MD, PhD, DABCP. “This article explains the varied applications and potentials of this technology from agriculture to nutrition to medicine.

Intellectual property (patents)

The CRISPR technology has spawned a number of intellectual property (patent) issues as a Dec. 21,2014 post by Glyn Moody on Techdirt stated,

Although not many outside the world of the biological sciences have heard of it yet, the CRISPR gene editing technique may turn out to be one of the most important discoveries of recent years — if patent battles don’t ruin it. Technology Review describes it as:

… an invention that may be the most important new genetic engineering technique since the beginning of the biotechnology age in the 1970s. The CRISPR system, dubbed a “search and replace function” for DNA, lets scientists easily disable genes or change their function by replacing DNA letters. During the last few months, scientists have shown that it’s possible to use CRISPR to rid mice of muscular dystrophy, cure them of a rare liver disease, make human cells immune to HIV, and genetically modify monkeys.

Unfortunately, rivalry between scientists claiming the credit for key parts of CRISPR threatens to spill over into patent litigation:

[A researcher at the MIT-Harvard Broad Institute, Feng] Zhang cofounded Editas Medicine, and this week the startup announced that it had licensed his patent from the Broad Institute. But Editas doesn’t have CRISPR sewn up. That’s because [Jennifer] Doudna, a structural biologist at the University of California, Berkeley, was a cofounder of Editas, too. And since Zhang’s patent came out, she’s broken off with the company, and her intellectual property — in the form of her own pending patent — has been licensed to Intellia, a competing startup unveiled only last month. Making matters still more complicated, [another CRISPR researcher, Emmanuelle] Charpentier sold her own rights in the same patent application to CRISPR Therapeutics.

Things are moving quickly on the patent front, not least because the Broad Institute paid extra to speed up its application, conscious of the high stakes at play here:

Along with the patent came more than 1,000 pages of documents. According to Zhang, Doudna’s predictions in her own earlier patent application that her discovery would work in humans was “mere conjecture” and that, instead, he was the first to show it, in a separate and “surprising” act of invention.

The patent documents have caused consternation. The scientific literature shows that several scientists managed to get CRISPR to work in human cells. In fact, its easy reproducibility in different organisms is the technology’s most exciting hallmark. That would suggest that, in patent terms, it was “obvious” that CRISPR would work in human cells, and that Zhang’s invention might not be worthy of its own patent.


Ethical and moral issues

The CRISPR technology has reignited a discussion about ethical and moral issues of human genetic engineering some of which is reviewed in an April 7, 2015 posting about a moratorium by Sheila Jasanoff, J. Benjamin Hurlbut and Krishanu Saha for the Guardian science blogs (Note: A link has been removed),

On April 3, 2015, a group of prominent biologists and ethicists writing in Science called for a moratorium on germline gene engineering; modifications to the human genome that will be passed on to future generations. The moratorium would apply to a technology called CRISPR/Cas9, which enables the removal of undesirable genes, insertion of desirable ones, and the broad recoding of nearly any DNA sequence.

Such modifications could affect every cell in an adult human being, including germ cells, and therefore be passed down through the generations. Many organisms across the range of biological complexity have already been edited in this way to generate designer bacteria, plants and primates. There is little reason to believe the same could not be done with human eggs, sperm and embryos. Now that the technology to engineer human germlines is here, the advocates for a moratorium declared, it is time to chart a prudent path forward. They recommend four actions: a hold on clinical applications; creation of expert forums; transparent research; and a globally representative group to recommend policy approaches.

The authors go on to review precedents and reasons for the moratorium while suggesting we need better ways for citizens to engage with and debate these issues,

An effective moratorium must be grounded in the principle that the power to modify the human genome demands serious engagement not only from scientists and ethicists but from all citizens. We need a more complex architecture for public deliberation, built on the recognition that we, as citizens, have a duty to participate in shaping our biotechnological futures, just as governments have a duty to empower us to participate in that process. Decisions such as whether or not to edit human genes should not be left to elite and invisible experts, whether in universities, ad hoc commissions, or parliamentary advisory committees. Nor should public deliberation be temporally limited by the span of a moratorium or narrowed to topics that experts deem reasonable to debate.

I recommend reading the post in its entirety as there are nuances that are best appreciated in the entirety of the piece.

Shortly after this essay was published, Chinese scientists announced they had genetically modified (nonviable) human embryos. From an April 22, 2015 article by David Cyranoski and Sara Reardon in Nature where the research and some of the ethical issues discussed,

In a world first, Chinese scientists have reported editing the genomes of human embryos. The results are published1 in the online journal Protein & Cell and confirm widespread rumours that such experiments had been conducted — rumours that sparked a high-profile debate last month2, 3 about the ethical implications of such work.

In the paper, researchers led by Junjiu Huang, a gene-function researcher at Sun Yat-sen University in Guangzhou, tried to head off such concerns by using ‘non-viable’ embryos, which cannot result in a live birth, that were obtained from local fertility clinics. The team attempted to modify the gene responsible for β-thalassaemia, a potentially fatal blood disorder, using a gene-editing technique known as CRISPR/Cas9. The researchers say that their results reveal serious obstacles to using the method in medical applications.

“I believe this is the first report of CRISPR/Cas9 applied to human pre-implantation embryos and as such the study is a landmark, as well as a cautionary tale,” says George Daley, a stem-cell biologist at Harvard Medical School in Boston, Massachusetts. “Their study should be a stern warning to any practitioner who thinks the technology is ready for testing to eradicate disease genes.”


Huang says that the paper was rejected by Nature and Science, in part because of ethical objections; both journals declined to comment on the claim. (Nature’s news team is editorially independent of its research editorial team.)

He adds that critics of the paper have noted that the low efficiencies and high number of off-target mutations could be specific to the abnormal embryos used in the study. Huang acknowledges the critique, but because there are no examples of gene editing in normal embryos he says that there is no way to know if the technique operates differently in them.

Still, he maintains that the embryos allow for a more meaningful model — and one closer to a normal human embryo — than an animal model or one using adult human cells. “We wanted to show our data to the world so people know what really happened with this model, rather than just talking about what would happen without data,” he says.

This, too, is a good and thoughtful read.

There was an official response in the US to the publication of this research, from an April 29, 2015 post by David Bruggeman on his Pasco Phronesis blog (Note: Links have been removed),

In light of Chinese researchers reporting their efforts to edit the genes of ‘non-viable’ human embryos, the National Institutes of Health (NIH) Director Francis Collins issued a statement (H/T Carl Zimmer).

“NIH will not fund any use of gene-editing technologies in human embryos. The concept of altering the human germline in embryos for clinical purposes has been debated over many years from many different perspectives, and has been viewed almost universally as a line that should not be crossed. Advances in technology have given us an elegant new way of carrying out genome editing, but the strong arguments against engaging in this activity remain. These include the serious and unquantifiable safety issues, ethical issues presented by altering the germline in a way that affects the next generation without their consent, and a current lack of compelling medical applications justifying the use of CRISPR/Cas9 in embryos.” …

More than CRISPR

As well, following on the April 22, 2015 Nature article about the controversial research, the Guardian published an April 26, 2015 post by Filippa Lentzos, Koos van der Bruggen and Kathryn Nixdorff which makes the case that CRISPR techniques do not comprise the only worrisome genetic engineering technology,

The genome-editing technique CRISPR-Cas9 is the latest in a series of technologies to hit the headlines. This week Chinese scientists used the technology to genetically modify human embryos – the news coming less than a month after a prominent group of scientists had called for a moratorium on the technology. The use of ‘gene drives’ to alter the genetic composition of whole populations of insects and other life forms has also raised significant concern.

But the technology posing the greatest, most immediate threat to humanity comes from ‘gain-of-function’ (GOF) experiments. This technology adds new properties to biological agents such as viruses, allowing them to jump to new species or making them more transmissible. While these are not new concepts, there is grave concern about a subset of experiments on influenza and SARS viruses which could metamorphose them into pandemic pathogens with catastrophic potential.

In October 2014 the US government stepped in, imposing a federal funding pause on the most dangerous GOF experiments and announcing a year-long deliberative process. Yet, this process has not been without its teething-problems. Foremost is the de facto lack of transparency and open discussion. Genuine engagement is essential in the GOF debate where the stakes for public health and safety are unusually high, and the benefits seem marginal at best, or non-existent at worst. …

Particularly worrisome about the GOF process is that it is exceedingly US-centric and lacks engagement with the international community. Microbes know no borders. The rest of the world has a huge stake in the regulation and oversight of GOF experiments.

Canadian perspective?

I became somewhat curious about the Canadian perspective on all this genome engineering discussion and found a focus on agricultural issues in the single Canadian blog piece I found. It’s an April 30, 2015 posting by Lisa Willemse on Genome Alberta’s Livestock blog has a twist in the final paragraph,

The spectre of undesirable inherited traits as a result of DNA disruption via genome editing in human germline has placed the technique – and the ethical debate – on the front page of newspapers around the globe. Calls for a moratorium on further research until both the ethical implications can be worked out and the procedure better refined and understood, will undoubtedly temper research activities in many labs for months and years to come.

On the surface, it’s hard to see how any of this will advance similar research in livestock or crops – at least initially.

Groups already wary of so-called “frankenfoods” may step up efforts to prevent genome-edited food products from hitting supermarket shelves. In the EU, where a stringent ban on genetically-modified (GM) foods is already in place, there are concerns that genome-edited foods will be captured under this rubric, holding back many perceived benefits. This includes pork and beef from animals with disease resistance, lower methane emissions and improved feed-to-food ratios, milk from higher-yield or hornless cattle, as well as food and feed crops with better, higher quality yields or weed resistance.

Still, at the heart of the human germline editing is the notion of a permanent genetic change that can be passed on to offspring, leading to concerns of designer babies and other advantages afforded only to those who can pay. This is far less of a concern in genome-editing involving crops and livestock, where the overriding aim is to increase food supply for the world’s population at lower cost. Given this, and that research for human medical benefits has always relied on safety testing and data accumulation through experimentation in non-human animals, it’s more likely that any moratorium in human studies will place increased pressure to demonstrate long-term safety of such techniques on those who are conducting the work in other species.

Willemse’s last paragraph offers a strong contrast to the Guardian and Nature pieces.

Finally, there’s a May 8, 2015 posting (which seems to be an automat4d summary of an article in the New Scientist) on a blog maintained by the Canadian Raelian Movement. These are people who believe that alien scientists landed on earth and created all the forms of life on this planet. You can find  more on their About page. In case it needs to be said, I do not subscribe to this belief system but I do find it interesting in and of itself and because one of the few Canadian sites that I could find offering an opinion on the matter even if it is in the form of a borrowed piece from the New Scientist.

A 2nd European roadmap for graphene

About 2.5 years ago there was an article titled, “A roadmap for graphene” (behind a paywall) which Nature magazine published online in Oct. 2012. I see at least two of the 2012 authors, Konstantin (Kostya) Novoselov and Vladimir Fal’ko,, are party to this second, more comprehensive roadmap featured in a Feb. 24, 2015 news item on Nanowerk,

In October 2013, academia and industry came together to form the Graphene Flagship. Now with 142 partners in 23 countries, and a growing number of associate members, the Graphene Flagship was established following a call from the European Commission to address big science and technology challenges of the day through long-term, multidisciplinary R&D efforts.

A Feb.  24, 2015 University of Cambridge news release, which originated the news item, describes the roadmap in more detail,

In an open-access paper published in the Royal Society of Chemistry journal Nanoscale, more than 60 academics and industrialists lay out a science and technology roadmap for graphene, related two-dimensional crystals, other 2D materials, and hybrid systems based on a combination of different 2D crystals and other nanomaterials. The roadmap covers the next ten years and beyond, and its objective is to guide the research community and industry toward the development of products based on graphene and related materials.

The roadmap highlights three broad areas of activity. The first task is to identify new layered materials, assess their potential, and develop reliable, reproducible and safe means of producing them on an industrial scale. Identification of new device concepts enabled by 2D materials is also called for, along with the development of component technologies. The ultimate goal is to integrate components and structures based on 2D materials into systems capable of providing new functionalities and application areas.

Eleven science and technology themes are identified in the roadmap. These are: fundamental science, health and environment, production, electronic devices, spintronics, photonics and optoelectronics, sensors, flexible electronics, energy conversion and storage, composite materials, and biomedical devices. The roadmap addresses each of these areas in turn, with timelines.

Research areas outlined in the roadmap correspond broadly with current flagship work packages, with the addition of a work package devoted to the growing area of biomedical applications, to be included in the next phase of the flagship. A recent independent assessment has confirmed that the Graphene Flagship is firmly on course, with hundreds of research papers, numerous patents and marketable products to its name.

Roadmap timelines predict that, before the end of the ten-year period of the flagship, products will be close to market in the areas of flexible electronics, composites, and energy, as well as advanced prototypes of silicon-integrated photonic devices, sensors, high-speed electronics, and biomedical devices.

“This publication concludes a four-year effort to collect and coordinate state-of-the-art science and technology of graphene and related materials,” says Andrea Ferrari, director of the Cambridge Graphene Centre, and chairman of the Executive Board of the Graphene Flagship. “We hope that this open-access roadmap will serve as the starting point for academia and industry in their efforts to take layered materials and composites from laboratory to market.” Ferrari led the roadmap effort with Italian Institute of Technology physicist Francesco Bonaccorso, who is a Royal Society Newton Fellow of the University of Cambridge, and a Fellow of Hughes Hall.

“We are very proud of the joint effort of the many authors who have produced this roadmap,” says Jari Kinaret, director of the Graphene Flagship. “The roadmap forms a solid foundation for the graphene community in Europe to plan its activities for the coming years. It is not a static document, but will evolve to reflect progress in the field, and new applications identified and pursued by industry.”

I have skimmed through the report briefly (wish I had more time) and have a couple of comments. First, there’s an excellent glossary of terms for anyone who might stumble over chemical abbreviations and/or more technical terminology. Second, they present a very interesting analysis of the intellectual property (patents) landscape (Note: Links have been removed. Incidental numbers are footnote references),

In the graphene area, there has been a particularly rapid increase in patent activity from around 2007.45 Much of this is driven by patent applications made by major corporations and universities in South Korea and USA.53 Additionally, a high level of graphene patent activity in China is also observed.54 These features have led some commentators to conclude that graphene innovations arising in Europe are being mainly exploited elsewhere.55 Nonetheless, an analysis of the Intellectual Property (IP) provides evidence that Europe already has a significant foothold in the graphene patent landscape and significant opportunities to secure future value. As the underlying graphene technology space develops, and the GRM [graphene and related materials] patent landscape matures, re-distribution of the patent landscape seems inevitable and Europe is well positioned to benefit from patent-based commercialisation of GRM research.

Overall, the graphene patent landscape is growing rapidly and already resembles that of sub-segments of the semiconductor and biotechnology industries,56 which experience high levels of patent activity. The patent strategies of the businesses active in such sub-sectors frequently include ‘portfolio maximization’56 and ‘portfolio optimization’56 strategies, and the sub-sectors experience the development of what commentators term ‘patent thickets’56, or multiple overlapping granted patent rights.56 A range of policies, regulatory and business strategies have been developed to limit such patent practices.57 In such circumstances, accurate patent landscaping may provide critical information to policy-makers, investors and individual industry participants, underpinning the development of sound policies, business strategies and research commercialisation plans.

It sounds like a patent thicket is developing (Note: Links have been removed. Incidental numbers are footnote references),,

Fig. 13 provides evidence of a relative increase in graphene patent filings in South Korea from 2007 to 2009 compared to 2004–2006. This could indicate increased commercial interest in graphene technology from around 2007. The period 2010 to 2012 shows a marked relative increase in graphene patent filings in China. It should be noted that a general increase in Chinese patent filings across many ST domains in this period is observed.76 Notwithstanding this general increase in Chinese patent activity, there does appear to be increased commercial interest in graphene in China. It is notable that the European Patent Office contribution as a percentage of all graphene patent filings globally falls from a 8% in the period 2007 to 2009 to 4% in the period 2010 to 2012.

The importance of the US, China and South Korea is emphasised by the top assignees, shown in Fig. 14. The corporation with most graphene patent applications is the Korean multinational Samsung, with over three times as many filings as its nearest rival. It has also patented an unrivalled range of graphene-technology applications, including synthesis procedures,77 transparent display devices,78 composite materials,79 transistors,80 batteries and solar cells.81 Samsung’s patent applications indicate a sustained and heavy investment in graphene R&D, as well as collaboration (co-assignment of patents) with a wide range of academic institutions.82,83


image file: c4nr01600a-f14.tif
Fig. 14 Top 10 graphene patent assignees by number and cumulative over all time as of end-July 2014. Number of patents are indicated in the red histograms referred to the left Y axis, while the cumulative percentage is the blue line, referred to the right Y axis.

It is also interesting to note that patent filings by universities and research institutions make up a significant proportion ([similar]50%) of total patent filings: the other half comprises contributions from small and medium-sized enterprises (SMEs) and multinationals.

Europe’s position is shown in Fig. 10, 12 and 14. While Europe makes a good showing in the geographical distribution of publications, it lags behind in patent applications, with only 7% of patent filings as compared to 30% in the US, 25% in China, and 13% in South Korea (Fig. 13) and only 9% of filings by academic institutions assigned in Europe (Fig. 15).


image file: c4nr01600a-f15.tif
Fig. 15 Geographical breakdown of academic patent holders as of July 2014.

While Europe is trailing other regions in terms of number of patent filings, it nevertheless has a significant foothold in the patent landscape. Currently, the top European patent holder is Finland’s Nokia, primarily around incorporation of graphene into electrical devices, including resonators and electrodes.72,84,85

This may sound like Europe is trailing behind but that’s not the case according to the roadmap (Note: Links have been removed. Incidental numbers are footnote references),

European Universities also show promise in the graphene patent landscape. We also find evidence of corporate-academic collaborations in Europe, including e.g. co-assignments filed with European research institutions and Germany’s AMO GmbH,86 and chemical giant BASF.87,88 Finally, Europe sees significant patent filings from a number of international corporate and university players including Samsung,77 Vorbeck Materials,89 Princeton University,90–92 and Rice University,93–95 perhaps reflecting the quality of the European ST base around graphene, and its importance as a market for graphene technologies.

There are a number of features in the graphene patent landscape which may lead to a risk of patent thickets96 or ‘multiple overlapping granted patents’ existing around aspects of graphene technology systems. [emphasis mine] There is a relatively high volume of patent activity around graphene, which is an early stage technology space, with applications in patent intensive industry sectors. Often patents claim carbon nano structures other than graphene in graphene patent landscapes, illustrating difficulties around defining ‘graphene’ and mapping the graphene patent landscape. Additionally, the graphene patent nomenclature is not entirely settled. Different patent examiners might grant patents over the same components which the different experts and industry players call by different names.

For anyone new to this blog, I am not a big fan of current patent regimes as they seem to be stifling rather encouraging innovation. Sadly, patents and copyright were originally developed to encourage creativity and innovation by allowing the creators to profit from their ideas. Over time a system designed to encourage innovation has devolved into one that does the opposite. (My Oct. 31, 2011 post titled Patents as weapons and obstacles, details my take on this matter.) I’m not arguing against patents and copyright but suggesting that the system be fixed or replaced with something that delivers on the original intention.

Getting back to the matter at hand, here’s a link to and a citation for the 200 pp. 2015 European Graphene roadmap,

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems by Andrea C. Ferrari, Francesco Bonaccorso, Vladimir Fal’ko, Konstantin S. Novoselov, Stephan Roche, Peter Bøggild, Stefano Borini, Frank H. L. Koppens, Vincenzo Palermo, Nicola Pugno, José A. Garrido, Roman Sordan, Alberto Bianco, Laura Ballerini, Maurizio Prato, Elefterios Lidorikis, Jani Kivioja, Claudio Marinelli, Tapani Ryhänen, Alberto Morpurgo, Jonathan N. Coleman, Valeria Nicolosi, Luigi Colombo, Albert Fert, Mar Garcia-Hernandez, Adrian Bachtold, Grégory F. Schneider, Francisco Guinea, Cees Dekker, Matteo Barbone, Zhipei Sun, Costas Galiotis,  Alexander N. Grigorenko, Gerasimos Konstantatos, Andras Kis, Mikhail Katsnelson, Lieven Vandersypen, Annick Loiseau, Vittorio Morandi, Daniel Neumaier, Emanuele Treossi, Vittorio Pellegrini, Marco Polini, Alessandro Tredicucci, Gareth M. Williams, Byung Hee Hong, Jong-Hyun Ahn, Jong Min Kim, Herbert Zirath, Bart J. van Wees, Herre van der Zant, Luigi Occhipinti, Andrea Di Matteo, Ian A. Kinloch, Thomas Seyller, Etienne Quesnel, Xinliang Feng,  Ken Teo, Nalin Rupesinghe, Pertti Hakonen, Simon R. T. Neil, Quentin Tannock, Tomas Löfwander and Jari Kinaret. Nanoscale, 2015, Advance Article DOI: 10.1039/C4NR01600A First published online 22 Sep 2014

Here’s a diagram illustrating the roadmap process,

Fig. 122 The STRs [science and technology roadmaps] follow a hierarchical structure where the strategic level in a) is connected to the more detailed roadmap shown in b). These general roadmaps are the condensed form of the topical roadmaps presented in the previous sections, and give technological targets for key applications to become commercially competitive and the forecasts for when the targets are predicted to be met.  Courtesy: Researchers and  the Royal Society's journal, Nanoscale

Fig. 122 The STRs [science and technology roadmaps] follow a hierarchical structure where the strategic level in a) is connected to the more detailed roadmap shown in b). These general roadmaps are the condensed form of the topical roadmaps presented in the previous sections, and give technological targets for key applications to become commercially competitive and the forecasts for when the targets are predicted to be met.
Courtesy: Researchers and the Royal Society’s journal, Nanoscale

The image here is not the best quality; the one embedded in the relevant Nanowerk news item is better.

As for the earlier roadmap, here’s my Oct. 11, 2012 post on the topic.

Patenting a new method for controlling the size and composition of nanoparticles

A research team at the Okinawa Institute of Science and Technology Graduate University (OIST) in Japan has developed and patented a new more precise production technique for nanoparticles, specifically quantum dots. From a Jan. 5, 2014 news item on Nanowerk, (Note:  A link has been removed),

The Nanoparticles by Design Unit at the Okinawa Institute of Science and Technology Graduate University is constantly finding new ways to endow the tiniest of particles with more specific properties. They have developed methods to control the size and chemical composition of nanoparticles, and now they have found a way to control the degree of crystallinity, or the way that atoms align inside the nanoparticles. A nanoparticle’s crystallinity impacts its optical, magnetic, and electrical properties. Professor Mukhles Sowwan and the researchers in his unit Dr. Cathal Cassidy and Vidyadhar Singh have applied for a patent for their method, which describes exactly how to create semiconductor nanoparticles of varying crystallinity.

A Jan. 5, 2015 OIST news release, which originated the news item,  describes the researchers’ work in more detail,

“Most scientists and even companies nowadays are using nanoparticles not optimized for their applications or devices,” explains Sowwan. “We hope, at a certain time, we will optimize the nanoparticles for specific applications.” To start though, the researchers in the Nanoparticles by Design Unit must figure out how to control a few basic characteristics of nanoparticles, such as crystallinity. A crystalline nanoparticle will have all of its atoms aligned in neat rows, while an amorphous nanoparticle will have more disordered atoms. A polycrystalline structure has atoms aligned in groups, which are also known as grains. Crystallinity is responsible for profound differences between products made of the same material. For example, soot is amorphous carbon, or carbon without any crystal grains, while diamonds are crystalline carbon.

“It’s the first time to control the crystallinity and the number of crystallites of very small semiconductor nanoparticle,” Sowwan says, explaining that people have long known how to induce crystallinity in bulk semiconductor materials. But part of the reason why Sowwan can control certain characteristics is because of the experimental method he and his researchers use, based on a modified nanoparticle deposition system. One of the most important features of this system is the possibility to interact with or modify freshly formed semiconductor nanoparticles in flight before reaching a substrate. “That substrate is problematic,” explains Sowwan, “because it is always impacting the properties of the nanoparticle.” Following the steps described in the newly suggested method, nanoscientists expose these nanoparticles in flight to a beam of metal atoms. The metal atoms diffuse onto the surface of the nanoparticles and form metal nanoclusters, just a few nanometers wide, inducing crystallization in the product. The researchers can then selectively remove the metal nanoclusters with plasma cleaning, a fairly simple physical procedure, retaining only the intact semiconductor nanoparticles of desired crystallinity.

The new patent will credit this method to OIST.  “To use this method for commercial purposes, such as engineered nanoparticles in solar cells or for medical bio-imaging, the technology will have to be licensed from OIST,and academic researchers will have to credit us in their research.” Sowwan says this is one of many characteristics he would like to control in order to produce more specialized nanoparticles. At the end of the day, this is one new set of directions in the rulebook of how to customize a nanoparticle.

It’s not clear how much money, if any,  OIST will be charging should other researchers choose to avail themselves of this technology. At present, you can take a look at the patent application which makes for some very interesting reading,

Patent application number: WO 2014141662 A1, Metal Induced Crystallization of Semiconductor Quantum Dots via google

The present invention relates to metal induced crystallization of amorphous semiconductor, and in particular, to metal induced crystallization of amorphous semiconductor small dots and quantum dots.

Control of crystallinity and grain structure has been a central component of advanced materials engineering and metallurgy for centuries, ranging from forging of ancient Japanese katana or swords (Non-Patent Literature No. 1) to modern nano-engineered transistor gate electrodes (Non-patent Literature Nos. 2 and 3). …

My understanding is that this is a US patent.

‘Biomimicry’ patents

The US Patent and Trade Office (USPTO) has issued a new guidance document concerning ‘biomimicry’ patents according to David Bruggeman’s Dec. 20, 2014 post on his Pasco Phronesis blog (Note: Links have been removed),

The United States Patent and Trademark Office (USPTO) has released another guidance memo for patents derived ‘from nature’ (H/T ScienceInsider).  The USPTO released its first memo in March [2014], and between negative public comments and additional court action, releasing new guidance makes sense to me.

The USPTO is requesting comments on the guidance by March 16, 2014 and will be holding a holding a public forum for comments on Jan. 21, 2015. Here’s more detail about the comments from the USPTO 2014 Interim Guidance on Subject Matter Eligibility webpage,

The USPTO has prepared 2014 Interim Guidance on Patent Subject Matter Eligibility (Interim Eligibility Guidance) for USPTO personnel to use when determining subject matter eligibility under 35 U.S.C. 101 in view of recent decisions by the U.S. Supreme Court, including Alice Corp., Myriad, and Mayo.  The Interim Eligibility Guidance supplements the June 25, 2014 Preliminary Examination Instructions issued in view of Alice Corp. and supersedes the March 4, 2014 Procedure for Subject Matter Eligibility Analysis of Claims Reciting or Involving Laws of Nature/Natural Principles, Natural Phenomena, and/or Natural Products issued in view of Mayo and Myriad.  It is expected that the guidance will be updated in view of developments in the case law and in response to public feedback.

Any member of the public may submit written comments on the Interim Eligibility Guidance and claim example sets by electronic mail message over the Internet addressed to  Electronic comments submitted in plain text are preferred, but also may be submitted in ADOBE® portable document format or MICROSOFT WORD® format.  The comments will be available for public inspection here at this Web page.  Because comments will be available for public inspection, information that is not desired to be made public, such as an address or a phone number, should not be included in the comments.  Comments will be accepted until March 16, 2015.

And there is also this about the public forum (from the Interim Guidance page),

A public forum will be hosted at the Alexandria campus of the USPTO on Jan. 21, 2015, to receive public feedback from any interested member of the public.  The Eligibility Forum will be an opportunity for the Office to provide an overview of the Interim Eligibility Guidance and for participants to present their interpretation of the impact of Supreme Court precedent on the complex legal and technical issues involved in subject matter eligibility analysis during examination by providing oral feedback on the Interim Eligibility Guidance and claim example sets.  Individuals will be provided an opportunity to make a presentation, to the extent that time permits.

Date and Location:  The Eligibility Forum will be held on Jan. 21, 2015, from 1pm – 5pm EST, in the Madison Auditorium North (Concourse Level), Madison Building, 600 Dulany Street, Alexandria, VA 22314. The meeting will also be accessible via WebEx.

Requests for Attendance at the Eligibility Forum:  Requests for attendance to the Eligibility Forum should be submitted by electronic mail through the Internet to by JAN. 9, 2015.  Requests for attendance must include the attendee’s name, affiliation, title, mailing address, and telephone number.  An Internet e-mail address, if available, should also be provided.

If I understand David’s description of this guidance rightly, the use of something like curcumin (a constituent of turmeric) to heal wounds cannot be patented unless substantive changes have been made to the curcumin. In short, Laws Of Nature/Natural Principles, Natural Phenomena, And/Or Natural Products And/Or Abstract Ideas cannot be patented through the USPTO.

Nano and stem cell differentiation at Rutgers University (US)

A Nov. 14, 2014 news item on Azonano features a nanoparticle-based platform for differentiating stem cells,

Rutgers University Chemistry Associate Professor Ki-Bum Lee has developed patent-pending technology that may overcome one of the critical barriers to harnessing the full therapeutic potential of stem cells.

A Nov. 1, 2104 Rutgers University news release, which originated the news item, describes the challenge in more detail,

One of the major challenges facing researchers interested in regenerating cells and growing new tissue to treat debilitating injuries and diseases such as Parkinson’s disease, heart disease, and spinal cord trauma, is creating an easy, effective, and non-toxic methodology to control differentiation into specific cell lineages. Lee and colleagues at Rutgers and Kyoto University in Japan have invented a platform they call NanoScript, an important breakthrough for researchers in the area of gene expression. Gene expression is the way information encoded in a gene is used to direct the assembly of a protein molecule, which is integral to the process of tissue development through stem cell therapeutics.

Stem cells hold great promise for a wide range of medical therapeutics as they have the ability to grow tissue throughout the body. In many tissues, stem cells have an almost limitless ability to divide and replenish other cells, serving as an internal repair system.

Transcription factor (TF) proteins are master regulators of gene expression. TF proteins play a pivotal role in regulating stem cell differentiation. Although some have tried to make synthetic molecules that perform the functions of natural transcription factors, NanoScript is the first nanomaterial TF protein that can interact with endogenous DNA. …

“Our motivation was to develop a highly robust, efficient nanoparticle-based platform that can regulate gene expression and eventually stem cell differentiation,” said Lee, who leads a Rutgers research group primarily focused on developing and integrating nanotechnology with chemical biology to modulate signaling pathways in cancer and stem cells. “Because NanoScript is a functional replica of TF proteins and a tunable gene-regulating platform, it has great potential to do exactly that. The field of stem cell biology now has another platform to regulate differentiation while the field of nanotechnology has demonstrated for the first time that we can regulate gene expression at the transcriptional level.”

Here’s an image illustrating NanoScript and gold nanoparticles,

Courtesy Rutgers University

Courtesy Rutgers University

The news release goes on to describe the platform’s use of gold nanoparticles,

NanoScript was constructed by tethering functional peptides and small molecules called synthetic transcription factors, which mimic the individual TF domains, onto gold nanoparticles.

“NanoScript localizes within the nucleus and initiates transcription of a reporter plasmid by up to 30-fold,” said Sahishnu Patel, Rutgers Chemistry graduate student and co-author of the ACS Nano publication. “NanoScript can effectively transcribe targeted genes on endogenous DNA in a nonviral manner.”

Lee said the next step for his research is to study what happens to the gold nanoparticles after NanoScript is utilized, to ensure no toxic effects arise, and to ensure the effectiveness of NanoScript over long periods of time.

“Due to the unique tunable properties of NanoScript, we are highly confident this platform not only will serve as a desirable alternative to conventional gene-regulating methods,” Lee said, “but also has direct employment for applications involving gene manipulation such as stem cell differentiation, cancer therapy, and cellular reprogramming. Our research will continue to evaluate the long-term implications for the technology.”

Lee, originally from South Korea, joined the Rutgers faculty in 2008 and has earned many honors including the NIH Director’s New Innovator Award. Lee received his Ph.D. in Chemistry from Northwestern University where he studied with Professor Chad. A. Mirkin, a pioneer in the coupling of nanotechnology and biomolecules. Lee completed his postdoctoral training at The Scripps Research Institute with Professor Peter G. Schultz. Lee has served as a Visiting Scholar at both Princeton University and UCLA Medical School.

The primary interest of Lee’s group is to develop and integrate nanotechnologies and chemical functional genomics to modulate signaling pathways in mammalian cells towards specific cell lineages or behaviors. He has published more than 50 articles and filed for 17 corresponding patents.

Here’s a link to and a citation for the paper,

NanoScript: A Nanoparticle-Based Artificial Transcription Factor for Effective Gene Regulation by Sahishnu Patel, Dongju Jung, Perry T. Yin, Peter Carlton, Makoto Yamamoto, Toshikazu Bando, Hiroshi Sugiyama, and Ki-Bum Lee. ACS Nano, 2014, 8 (9), pp 8959–8967 DOI: 10.1021/nn501589f Publication Date (Web): August 18, 2014
Copyright © 2014 American Chemical Society

This paper is behind a paywall.

Killing mosquitos and other pests with genetics-based technology

Having supplied more than one tasty meal for mosquitos (or, as some prefer, mosquitoes), I am not their friend but couldn’t help but wonder about unintended consequences (as per Max Weber) on reading about a new patent awarded to Kansas State University (from a Nov. 12, 2014 news item on Nanowerk),

Kansas State University researchers have developed a patented method of keeping mosquitoes and other insect pests at bay.

U.S. Patent 8,841,272, “Double-Stranded RNA-Based Nanoparticles for Insect Gene Silencing,” was recently awarded to the Kansas State University Research Foundation, a nonprofit corporation responsible for managing technology transfer activities at the university. The patent covers microscopic, genetics-based technology that can help safely kill mosquitos and other insect pests.

A Nov. 12, 2014 Kansas State University news release, which originated the news item, provides more detail about the research,

Kun Yan Zhu, professor of entomology; Xin Zhang, research associate in the Division of Biology; and Jianzhen Zhang, visiting scientist from Shanxi University in China, developed the technology: nanoparticles comprised of a nontoxic, biodegradable polymer matrix and insect derived double-stranded ribonucleic acid, or dsRNA. Double-stranded RNA is a synthesized molecule that can trigger a biological process known as RNA interference, or RNAi, to destroy the genetic code of an insect in a specific DNA sequence.

The technology is expected to have great potential for safe and effective control of insect pests, Zhu said.

“For example, we can buy cockroach bait that contains a toxic substance to kill cockroaches. However, the bait could potentially harm whatever else ingests it,” Zhu said. “If we can incorporate dsRNA specifically targeting a cockroach gene in the bait rather than a toxic substance, the bait would not harm other organisms, such as pets, because the dsRNA is designed to specifically disable the function of the cockroach gene.”

Researchers developed the technology while looking at how to disable gene functions in mosquito larvae. After testing a series of unsuccessful genetic techniques, the team turned to a nanoparticle-based approach.

Once ingested, the nanoparticles act as a Trojan horse, releasing the loosely bound dsRNA into the insect gut. The dsRNA then triggers a genetic chain reaction that destroys specific messenger RNA, or mRNA, in the developing insects. Messenger RNA carries important genetic information.

In the studies on mosquito larvae, researchers designed dsRNA to target the mRNA encoding the enzymes that help mosquitoes produce chitin, the main component in the hard exoskeleton of insects, crustaceans and arachnids.

Researchers found that the developing mosquitoes produced less chitin. As a result, the mosquitoes were more prone to insecticides as they no longer had a sufficient amount of chitin for a normal functioning protective shell. If the production of chitin can be further reduced, the insects can be killed without using any toxic insecticides.

While mosquitos were the primary insect for which the nanoparticle-based method was developed, the technology can be applied to other insect pests, Zhu said.

“Our dsRNA molecules were designed based on specific gene sequences of the mosquito,” Zhu said. “You can design species-specific dsRNA for the same or different genes for other insect pests. When you make baits containing gene-specific nanoparticles, you may be able to kill the insects through the RNAi pathway. We see this having really broad applications for insect pest management.”

The patent is currently available to license through the Kansas State University Institute for Commercialization, which licenses the university’s intellectual property. The Institute for Commercialization can be contacted at 785-532-3900 and

Eight U.S. patents have been awarded to the Kansas State University Research Foundation in 2014 for inventions by Kansas State University researchers.

Here’s an image of the ‘Trojan horse’ nanoparticles,

The nanoparticles, pictured as gold colored, are less than 100 nanometers in diameter. photo credit: bogdog Dan via photopincc

The nanoparticles, pictured as gold colored, are less than 100 nanometers in diameter. photo credit: bogdog Dan via photopincc

My guess is that the photographer has added some colour such as the gold and the pink to enhance the image as otherwise this would be a symphony of grey tones.

So, if this material will lead to weakened chitin such that pesticides and insecticides are more effective, does this mean that something else in the food chain will suffer because it no longer has mosquitos and other pests to munch on?

One last note, usually my ‘mosquito’ pieces concern malaria and the most recent of those was a Sept. 4, 2014 posting about a possible malaria vaccine being developed at the University of Connecticut.

Wonders of curcumin: wound healing; wonders of aromatic-turmerone: stem cells

Both curcumin and turmerone are constituents of turmeric which has been long lauded for its healing properties. Michael Berger has written a Nanowerk Spotlight article featuring curcumin and some recent work on burn wound healing. Meanwhile, a ScienceDaily news item details information about a team of researchers focused on tumerone as a means for regenerating brain stem cells.

Curcumin and burn wounds

In a Sept. 22, 2014 Nanowerk Spotlight article Michael Berger sums up the curcumin research effort (referencing some of this previous articles on the topic) in light of a new research paper about burn wound healing (Note: Links have been removed),

Despite significant progress in medical treatments of severe burn wounds, infection and subsequent sepsis persist as frequent causes of morbidity and mortality for burn victims. This is due not only to the extensive compromise of the protective barrier against microbial invasion, but also as a result of growing pathogen resistance to therapeutic options.

… Dr Adam Friedman, Assistant Professor of Dermatology and Director of Dermatologic research at the Montefiore-Albert Einstein College of Medicine, tells Nanowerk. “For me, this gap fuels innovation, serving as the inspiration for my research with broad-spectrum, multi-mechanistic antimicrobial nanomaterials.”

In new work, Friedman and a team of researchers from Albert Einstein College of Medicine and Oregon State University have explored the use of curcumin nanoparticles for the treatment of infected burn wounds, an application that resulted in reduced bacterial load and enhancing wound healing.

It certainly seems promising as per the article abstract,

Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent by Aimee E. Krausz, Brandon L. Adler, Vitor Cabral, Mahantesh Navati, Jessica Doerner, Rabab Charafeddine, Dinesh Chandra, Hongying Liang, Leslie Gunther, Alicea Clendaniel, Stacey Harper, Joel M. Friedman, Joshua D. Nosanchuk, & Adam J. Friedman. Nanomedicine: Nanotechnology, Biology and Medicine (article in press) published online 19 September 2014. Uncorrected Proof

Burn wounds are often complicated by bacterial infection, contributing to morbidity and mortality. Agents commonly used to treat burn wound infection are limited by toxicity, incomplete microbial coverage, inadequate penetration, and rising resistance. Curcumin is a naturally derived substance with innate antimicrobial and wound healing properties. Acting by multiple mechanisms, curcumin is less likely than current antibiotics to select for resistant bacteria.

Curcumin’s poor aqueous solubility and rapid degradation profile hinder usage; nanoparticle encapsulation overcomes this pitfall and enables extended topical delivery of curcumin.

In this study, we synthesized and characterized curcumin nanoparticles (curc-np), which inhibited in vitro growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa in dose-dependent fashion, and inhibited MRSA growth and enhanced wound healing in an in vivo murine wound model. Curc-np may represent a novel topical antimicrobial and wound healing adjuvant for infected burn wounds and other cutaneous injuries.

Two things: This paper is behind a paywall and note the use of the term ‘in vivo’ which means they have tested on animals such as rats and mice for example, but not humans. Nonetheless, it seems a promising avenue for further exploration.

Interestingly, there was an attempt in 1995 to patent turmeric for use in wound healing as per my Dec. 26, 2011 posting which featured then current research on turmeric,

There has already been one court case regarding a curcumin patent,

Recently, turmeric came into the global limelight when the controversial patent “Use of Turmeric in Wound Healing” was awarded, in 1995, to the University of Mississippi Medical Center, USA. Indian Council of Scientific and Industrial Research (CSIR) aggressively contested this award of the patent. It was argued by them that turmeric has been an integral part of the traditional Indian medicinal system over several centuries, and therefore, is deemed to be ‘prior art’, hence is in the public domain. Subsequently, after protracted technical/legal battle USPTO decreed that turmeric is an Indian discovery and revoked the patent.

One last bit about curcumin, my April 22, 2014 posting featured work in Iran using curcumin for cancer-healing.


This excerpt from a Sept. 25, 2014, news item in ScienceDaily represents the first time that tumerone has been mentioned here,

A bioactive compound found in turmeric promotes stem cell proliferation and differentiation in the brain, reveals new research published today in the open access journal Stem Cell Research & Therapy. The findings suggest aromatic turmerone could be a future drug candidate for treating neurological disorders, such as stroke and Alzheimer’s disease.

A Sept. 25, 2014 news release on EurekAlert provides more information,

The study looked at the effects of aromatic (ar-) turmerone on endogenous neutral stem cells (NSC), which are stem cells found within adult brains. NSC differentiate into neurons, and play an important role in self-repair and recovery of brain function in neurodegenerative diseases. Previous studies of ar-turmerone have shown that the compound can block activation of microglia cells. When activated, these cells cause neuroinflammation, which is associated with different neurological disorders. However, ar-turmerone’s impact on the brain’s capacity to self-repair was unknown.

Researchers from the Institute of Neuroscience and Medicine in Jülich, Germany, studied the effects of ar-turmerone on NSC proliferation and differentiation both in vitro and in vivo. Rat fetal NSC were cultured and grown in six different concentrations of ar-turmerone over a 72 hour period. At certain concentrations, ar-turmerone was shown to increase NSC proliferation by up to 80%, without having any impact on cell death. The cell differentiation process also accelerated in ar-turmerone-treated cells compared to untreated control cells.

To test the effects of ar-turmerone on NSC in vivo, the researchers injected adult rats with ar-turmerone. Using PET imaging and a tracer to detect proliferating cells, they found that the subventricular zone (SVZ) was wider, and the hippocampus expanded, in the brains of rats injected with ar-turmerone than in control animals. The SVZ and hippocampus are the two sites in adult mammalian brains where neurogenesis, the growth of neurons, is known to occur.

Lead author of the study, Adele Rueger, said: “While several substances have been described to promote stem cell proliferation in the brain, fewer drugs additionally promote the differentiation of stem cells into neurons, which constitutes a major goal in regenerative medicine. Our findings on aromatic turmerone take us one step closer to achieving this goal.”

Ar-turmerone is the lesser-studied of two major bioactive compounds found in turmeric. The other compound is curcumin, which is well known for its anti-inflammatory and neuroprotective properties

Here’s a link to and a citation for the paper,

Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo by Joerg Hucklenbroich, Rebecca Klein, Bernd Neumaier, Rudolf Graf, Gereon Rudolf Fink, Michael Schroeter, and Maria Adele Rueger. Stem Cell Research & Therapy 2014, 5:100  doi:10.1186/scrt500

This is an open access paper.

Nanotechnology announcements: a new book and a new report

Two quick announcements. The first concerns a forthcoming book to be published in March 2015. Titled, Nanotechnology Law & Guidelines: A Practical Guide for the Nanotechnology Industries in Europe, the book is featured in an Aug. 15, 2014 news item on Nanowerk,

The book is a concise guideline to different issues of nanotechnology in the European Legislation.- It offers an extensive review of all European Patent Office (EPO) cases on nanotechnological inventions. The challenge for new nanotechnology patents is to determine how patent criteria could be met in a patent application. This book shows how to identify the approach and the ways to cope with this challenge.

More about the book and purchasing options can be found on the publisher’s (Springer) Nanotechnology Law & Guidelines webpage,

[Table of Contents:]

Introduction.- Part I Nanotechnology from Research to Manufacture: The legal framework of the nanotechnology research and development.- Structuring the research and development of nanotechnologies.- Manufacturing nanotechnologies.-

Part II Protecting Nanotechnological Inventions: A Matter of Strategy : Trade Secrets vs. Patents and Utility Models.- Trade Secrets and Nanotechnologies.- International, European or National Patent for Nanotechnological Inventions ?- Nanotechnology Patents and Novelty.- Nanotechnology Patents and the Inventive Step.- Nanotechnology Patents and the Industrial Application.- Drafting Nanotechnology Patents Applications.- Utility Models as Alternative Means for Protecting Nanotechnological Inventions.- Copyright, Databases and Designs in the Nano Industry.- Managing and Transferring Nanotechnology Intellectual Property.-

Part III Nanotechnologies Investment and Finance.- Corporate Law and the nanotechnology industry.- Tax Law for the nanotechnology industry.- Investing and financing a nanotechnological project.-

Part IV Marketing Nanotechnologies.- Authorization and Registration Systems.- Product Safety and Liability.- Advertising “Nano”.- “Nano” Trademarks.- Importing and Exporting Nanotechnologies. Annexes: Analytic Table of EPO Cases on Nanotechnologies.- Analytic Table of National Cases on Nanotechnologies.- Analytic Table of OHIM Cases on Nano Trademarks.

I was able to find some information about the author, Anthony Bochon on his University of Stanford (where he is a Fellow) biography page,

Anthony Bochon is an associate in a Brussels-based law firm, an associate lecturer in EU Law & Trade Law/IP Law at the Université libre de Bruxelles and a lecturer in EU Law at the Brussels Business Institute. He is an associate researcher at the unit of Economic Law of the Faculty of Law of the Université libre de Bruxelles. Anthony graduated magna cum laude from the Université libre de Bruxelles in 2010 and received a year later an LL.M. from the University of Cambridge where he studied EU Law, WTO Law and IP Law. He has published on topics such as biotechnological patents, EU trade law and antitrust law since 2008. Anthony is also the author of the first European website devoted to the emerging legal area of nanotechnology law, a field about which he writes frequently and speaks regularly at international conferences. His legal practice is mainly focussed on EU Law, competition law and regulatory issues and he has a strong and relevant experience in IP/IT Law. He devotes his current research to EU and U.S. trade secrets law. Anthony has been a TTLF Fellow since June 2013.

On a completely other note and in the more recent future, there’s a report about the US National Nanotechnology Initiative to be released Aug. 28, 2014 as per David Bruggeman’s Aug. 14. 2014 posting on his Pasco Phronesis blog, (Note: A link has been removed)

On August 28 PCAST [President’s Council of Advisors on Science and Technology] will hold a public conference call in connection with the release of two new reports.  One will be a review of the National Nanotechnology Initiative (periodically required by law) … .

The call runs from 11:45 a.m. to 12:30 p.m. Eastern.  Registration is required, and closes at noon Eastern on the 26th..

That’s it for nanotechnology announcements today (Aug. 15, 2014).