Category Archives: intellectual property

Cardiac pacemakers: Korea’s in vivo demonstration of a self-powered and UK’s breath-based approach

As i best I can determine ,the last mention of a self-powered pacemaker and the like on this blog was in a Nov. 5, 2012 posting (Developing self-powered batteries for pacemakers). This latest news from The Korea Advanced Institute of Science and Technology (KAIST) is, I believe, the first time that such a device has been successfully tested in vivo. From a June 23, 2014 news item on ScienceDaily,

As the number of pacemakers implanted each year reaches into the millions worldwide, improving the lifespan of pacemaker batteries has been of great concern for developers and manufacturers. Currently, pacemaker batteries last seven years on average, requiring frequent replacements, which may pose patients to a potential risk involved in medical procedures.

A research team from the Korea Advanced Institute of Science and Technology (KAIST), headed by Professor Keon Jae Lee of the Department of Materials Science and Engineering at KAIST and Professor Boyoung Joung, M.D. of the Division of Cardiology at Severance Hospital of Yonsei University, has developed a self-powered artificial cardiac pacemaker that is operated semi-permanently by a flexible piezoelectric nanogenerator.

A June 23, 2014 KAIST news release on EurekAlert, which originated the news item, provides more details,

The artificial cardiac pacemaker is widely acknowledged as medical equipment that is integrated into the human body to regulate the heartbeats through electrical stimulation to contract the cardiac muscles of people who suffer from arrhythmia. However, repeated surgeries to replace pacemaker batteries have exposed elderly patients to health risks such as infections or severe bleeding during operations.

The team’s newly designed flexible piezoelectric nanogenerator directly stimulated a living rat’s heart using electrical energy converted from the small body movements of the rat. This technology could facilitate the use of self-powered flexible energy harvesters, not only prolonging the lifetime of cardiac pacemakers but also realizing real-time heart monitoring.

The research team fabricated high-performance flexible nanogenerators utilizing a bulk single-crystal PMN-PT thin film (iBULe Photonics). The harvested energy reached up to 8.2 V and 0.22 mA by bending and pushing motions, which were high enough values to directly stimulate the rat’s heart.

Professor Keon Jae Lee said:

“For clinical purposes, the current achievement will benefit the development of self-powered cardiac pacemakers as well as prevent heart attacks via the real-time diagnosis of heart arrhythmia. In addition, the flexible piezoelectric nanogenerator could also be utilized as an electrical source for various implantable medical devices.”

This image illustrating a self-powered nanogenerator for a cardiac pacemaker has been provided by KAIST,

This picture shows that a self-powered cardiac pacemaker is enabled by a flexible piezoelectric energy harvester. Credit: KAIST

This picture shows that a self-powered cardiac pacemaker is enabled by a flexible piezoelectric energy harvester.
Credit: KAIST

Here’s a link to and a citation for the paper,

Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester by Geon-Tae Hwang, Hyewon Park, Jeong-Ho Lee, SeKwon Oh, Kwi-Il Park, Myunghwan Byun, Hyelim Park, Gun Ahn, Chang Kyu Jeong, Kwangsoo No, HyukSang Kwon, Sang-Goo Lee, Boyoung Joung, and Keon Jae Lee. Advanced Materials DOI: 10.1002/adma.201400562
Article first published online: 17 APR 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

There was a May 15, 2014 KAIST news release on EurekAlert announcing this same piece of research but from a technical perspective,

The energy efficiency of KAIST’s piezoelectric nanogenerator has increased by almost 40 times, one step closer toward the commercialization of flexible energy harvesters that can supply power infinitely to wearable, implantable electronic devices

NANOGENERATORS are innovative self-powered energy harvesters that convert kinetic energy created from vibrational and mechanical sources into electrical power, removing the need of external circuits or batteries for electronic devices. This innovation is vital in realizing sustainable energy generation in isolated, inaccessible, or indoor environments and even in the human body.

Nanogenerators, a flexible and lightweight energy harvester on a plastic substrate, can scavenge energy from the extremely tiny movements of natural resources and human body such as wind, water flow, heartbeats, and diaphragm and respiration activities to generate electrical signals. The generators are not only self-powered, flexible devices but also can provide permanent power sources to implantable biomedical devices, including cardiac pacemakers and deep brain stimulators.

However, poor energy efficiency and a complex fabrication process have posed challenges to the commercialization of nanogenerators. Keon Jae Lee, Associate Professor of Materials Science and Engineering at KAIST, and his colleagues have recently proposed a solution by developing a robust technique to transfer a high-quality piezoelectric thin film from bulk sapphire substrates to plastic substrates using laser lift-off (LLO).

Applying the inorganic-based laser lift-off (LLO) process, the research team produced a large-area PZT thin film nanogenerators on flexible substrates (2 cm x 2 cm).

“We were able to convert a high-output performance of ~250 V from the slight mechanical deformation of a single thin plastic substrate. Such output power is just enough to turn on 100 LED lights,” Keon Jae Lee explained.

The self-powered nanogenerators can also work with finger and foot motions. For example, under the irregular and slight bending motions of a human finger, the measured current signals had a high electric power of ~8.7 μA. In addition, the piezoelectric nanogenerator has world-record power conversion efficiency, almost 40 times higher than previously reported similar research results, solving the drawbacks related to the fabrication complexity and low energy efficiency.

Lee further commented,

“Building on this concept, it is highly expected that tiny mechanical motions, including human body movements of muscle contraction and relaxation, can be readily converted into electrical energy and, furthermore, acted as eternal power sources.”

The research team is currently studying a method to build three-dimensional stacking of flexible piezoelectric thin films to enhance output power, as well as conducting a clinical experiment with a flexible nanogenerator.

In addition to the 2012 posting I mentioned earlier, there was also this July 12, 2010 posting which described research on harvesting biomechanical movement ( heart beat, blood flow, muscle stretching, or even irregular vibration) at the Georgia (US) Institute of Technology where the lead researcher observed,

…  Wang [Professor Zhong Lin Wang at Georgia Tech] tells Nanowerk. “However, the applications of the nanogenerators under in vivo and in vitro environments are distinct. Some crucial problems need to be addressed before using these devices in the human body, such as biocompatibility and toxicity.”

Bravo to the KAIST researchers for getting this research to the in vivo testing stage.

Meanwhile at the University of Bristol and at the University of Bath, researchers have received funding for a new approach to cardiac pacemakers, designed them with the breath in mind. From a June 24, 2014 news item on Azonano,

Pacemaker research from the Universities of Bath and Bristol could revolutionise the lives of over 750,000 people who live with heart failure in the UK.

The British Heart Foundation (BHF) is awarding funding to researchers developing a new type of heart pacemaker that modulates its pulses to match breathing rates.

A June 23, 2014 University of Bristol press release, which originated the news item, provides some context,

During 2012-13 in England, more than 40,000 patients had a pacemaker fitted.

Currently, the pulses from pacemakers are set at a constant rate when fitted which doesn’t replicate the natural beating of the human heart.

The normal healthy variation in heart rate during breathing is lost in cardiovascular disease and is an indicator for sleep apnoea, cardiac arrhythmia, hypertension, heart failure and sudden cardiac death.

The device is then briefly described (from the press release),

The novel device being developed by scientists at the Universities of Bath and Bristol uses synthetic neural technology to restore this natural variation of heart rate with lung inflation, and is targeted towards patients with heart failure.

The device works by saving the heart energy, improving its pumping efficiency and enhancing blood flow to the heart muscle itself.  Pre-clinical trials suggest the device gives a 25 per cent increase in the pumping ability, which is expected to extend the life of patients with heart failure.

One aim of the project is to miniaturise the pacemaker device to the size of a postage stamp and to develop an implant that could be used in humans within five years.

Dr Alain Nogaret, Senior Lecturer in Physics at the University of Bath, explained“This is a multidisciplinary project with strong translational value.  By combining fundamental science and nanotechnology we will be able to deliver a unique treatment for heart failure which is not currently addressed by mainstream cardiac rhythm management devices.”

The research team has already patented the technology and is working with NHS consultants at the Bristol Heart Institute, the University of California at San Diego and the University of Auckland. [emphasis mine]

Professor Julian Paton, from the University of Bristol, added: “We’ve known for almost 80 years that the heart beat is modulated by breathing but we have never fully understood the benefits this brings. The generous new funding from the BHF will allow us to reinstate this natural occurring synchrony between heart rate and breathing and understand how it brings therapy to hearts that are failing.”

Professor Jeremy Pearson, Associate Medical Director at the BHF, said: “This study is a novel and exciting first step towards a new generation of smarter pacemakers. More and more people are living with heart failure so our funding in this area is crucial. The work from this innovative research team could have a real impact on heart failure patients’ lives in the future.”

Given some current events (‘Tesla opens up its patents’, Mike Masnick’s June 12, 2014 posting on Techdirt), I wonder what the situation will be vis à vis patents by the time this device gets to market.

Carbon capture with nanoporous material in the oilfields

Researchers at Rice University (Texas) have devised a new technique for carbon capture according to a June 3, 2014 news item on Nanowerk,

Rice University scientists have created an Earth-friendly way to separate carbon dioxide from natural gas at wellheads.

A porous material invented by the Rice lab of chemist James Tour sequesters carbon dioxide, a greenhouse gas, at ambient temperature with pressure provided by the wellhead and lets it go once the pressure is released. The material shows promise to replace more costly and energy-intensive processes.

A June 3, 2014 Rice University news release, which originated the news item, provides a general description of how carbon dioxide is currently removed during fossil fuel production and adds a few more details about the new technology,

Natural gas is the cleanest fossil fuel. Development of cost-effective means to separate carbon dioxide during the production process will improve this advantage over other fossil fuels and enable the economic production of gas resources with higher carbon dioxide content that would be too costly to recover using current carbon capture technologies, Tour said. Traditionally, carbon dioxide has been removed from natural gas to meet pipelines’ specifications.

The Tour lab, with assistance from the National Institute of Standards and Technology (NIST), produced the patented material that pulls only carbon dioxide molecules from flowing natural gas and polymerizes them while under pressure naturally provided by the well.

When the pressure is released, the carbon dioxide spontaneously depolymerizes and frees the sorbent material to collect more.

All of this works in ambient temperatures, unlike current high-temperature capture technologies that use up a significant portion of the energy being produced.

The news release mentions current political/legislative actions in the US and the implications for the oil and gas industry while further describing the advantages of this new technique,

“If the oil and gas industry does not respond to concerns about carbon dioxide and other emissions, it could well face new regulations,” Tour said, noting the White House issued its latest National Climate Assessment last month [May 2014] and, this week [June 2, 2014], set new rules to cut carbon pollution from the nation’s power plants.

“Our technique allows one to specifically remove carbon dioxide at the source. It doesn’t have to be transported to a collection station to do the separation,” he said. “This will be especially effective offshore, where the footprint of traditional methods that involve scrubbing towers or membranes are too cumbersome.

“This will enable companies to pump carbon dioxide directly back downhole, where it’s been for millions of years, or use it for enhanced oil recovery to further the release of oil and natural gas. Or they can package and sell it for other industrial applications,” he said.

This is an epic (Note to writer: well done) news release as only now is there a technical explanation,

The Rice material, a nanoporous solid of carbon with nitrogen or sulfur, is inexpensive and simple to produce compared with the liquid amine-based scrubbers used now, Tour said. “Amines are corrosive and hard on equipment,” he said. “They do capture carbon dioxide, but they need to be heated to about 140 degrees Celsius to release it for permanent storage. That’s a terrible waste of energy.”

Rice graduate student Chih-Chau Hwang, lead author of the paper, first tried to combine amines with porous carbon. “But I still needed to heat it to break the covalent bonds between the amine and carbon dioxide molecules,” he said. Hwang also considered metal oxide frameworks that trap carbon dioxide molecules, but they had the unfortunate side effect of capturing the desired methane as well and they are far too expensive to make for this application.

The porous carbon powder he settled on has massive surface area and turns the neat trick of converting gaseous carbon dioxide into solid polymer chains that nestle in the pores.

“Nobody’s ever seen a mechanism like this,” Tour said. “You’ve got to have that nucleophile (the sulfur or nitrogen atoms) to start the polymerization reaction. This would never work on simple activated carbon; the key is that the polymer forms and provides continuous selectivity for carbon dioxide.”

Methane, ethane and propane molecules that make up natural gas may try to stick to the carbon, but the growing polymer chains simply push them off, he said.

The researchers treated their carbon source with potassium hydroxide at 600 degrees Celsius to produce the powders with either sulfur or nitrogen atoms evenly distributed through the resulting porous material. The sulfur-infused powder performed best, absorbing 82 percent of its weight in carbon dioxide. The nitrogen-infused powder was nearly as good and improved with further processing.

Tour said the material did not degrade over many cycles, “and my guess is we won’t see any. After heating it to 600 degrees C for the one-step synthesis from inexpensive industrial polymers, the final carbon material has a surface area of 2,500 square meters per gram, and it is enormously robust and extremely stable.”

Apache Corp., a Houston-based oil and gas exploration and production company, funded the research at Rice and licensed the technology. Tour expected it will take time and more work on manufacturing and engineering aspects to commercialize.

Here’s a link to and a citation for the paper,

Capturing carbon dioxide as a polymer from natural gas by Chih-Chau Hwang, Josiah J. Tour, Carter Kittrell, Laura Espinal, Lawrence B. Alemany, & James M. Tour. Nature Communications 5, Article number: 3961 doi:10.1038/ncomms4961 Published 03 June 2014

This paper is behind a paywall.

The researchers have made an illustration of the material available,

 Illustration by Tanyia Johnson/Rice University

Illustration by Tanyia Johnson/Rice University

This morning, Azonano posted a June 6, 2014 news item about a patent for carbon capture,

CO2 Solutions Inc. ( the “Corporation”), an innovator in the field of enzyme-enabled carbon capture technology, today announced it has received a Notice of Allowance from the U.S. Patent and Trademark Office for its patent application No. 13/264,294 entitled Process for CO2 Capture Using Micro-Particles Comprising Biocatalysts.

One might almost think these announcements were timed to coincide with the US White House’s moves.

As for CO2 Solutions, this company is located in Québec, Canada.  You can find out more about the company here (you may want to click on the English language button).

Dreaming of the perfect face mask?

Researchers at Hong Kong Polytechnic University have something for anyone who has ever dreamed of getting a face mask that offers protection from the finest of pollutant particles, according to a May 13, 2014 news item on phys.org,

Researchers at the Hong Kong Polytechnic University have developed a ground-breaking filter technology that guards against the finest pollutants in the air

Haze is usually composed of pollutants in the form of tiny suspended particles or fine mists/droplets emitted from vehicles, coal-burning power plants and factories. Continued exposure increases the risk of developing respiratory problems, heart diseases and lung cancer. Can we avoid the unhealthy air?

A simple face mask that can block out suspended particles has been developed by scientists from the Department of Mechanical Engineering at the Hong Kong Polytechnic University (PolyU). The project is led by Professor Wallace Woon-Fong Leung, a renowned filtration expert, who has spent his career understanding these invisible killers.

An article for Hong Kong Polytechnic University’s April 2014 issue of Technology Frontiers, which originated the news item, describes the research problem and Professor Leung’s proposed face mask in more detail,

In Hong Kong, suspended particles PM 10 and PM 2.5 are being monitored.  PM 10 refers to particles that are 10 microns (or micrometres) in size or smaller, whereas PM 2.5 measures 2.5 microns or smaller.  At the forefront of combating air pollution, Professor Leung targets ultra-fine pollutants that have yet been picked up by air quality monitors – particles measuring 1 micron or below, which he perceived to be a more important threat to human health.

“In my view, nano-aerosols (colloid of fine solid particles or liquid droplets of sub-micron to nano-sizes), such as diesel emissions, are the most lethal for three reasons.  First, they are in their abundance by number suspended in the air.  Second, they are too small to be filtered out using current technologies.  Third, they can pass easily through our lungs and work their way into our respiratory systems, and subsequently our vascular, nervous and lymphatic systems, doing the worst kind of harm.”

However, it would be difficult to breathe through the mask if it were required to block out nano-aerosols.  To make an effective filter that is highly breathable, a new filter that provides high filtration efficiency yet low air resistance (or low pressure drop) is required.

According to Professor Leung, pollutant particles get into our body in two ways – by the airflow carrying them and by the diffusion motion of these tiny particles.  As the particles are intercepted by the fibres of the mask, they are filtered out before reaching our lungs.

Fibres from natural or synthetic materials can be made into nanofibres around 1/500 of the diameter of a hair (about 0.1 mm) through nanotechnologies.  While nanofibres increase the surface area for nano-aerosol interception, they also incur larger air resistance.  Professor Leung’s new innovation aims to divide optimal amount of nanofibres into multiple layers separated by a permeable space, allowing plenty of room for air to pass through.

A conventional face mask can only block out about 25% of 0.3-micron nano-aerosols under standard test conditions.  Professor Leung said, “The multi-layer nanofibre mask can block out at least 80% of suspended nano-aerosols, even the ones smaller than 0.3 micron.  In the meantime, the wearer can breathe as comfortably as wearing a conventional face mask, making it superb for any outdoor occasions. Another option is to provide a nanofiber mask that has the same capture efficiency as conventional face mask, yet it is at least several times more breathable, which would be suitable for the working group.”

The new filtration technology has been well recognized.  Recently, Professor Leung and his team have won a Gold Medal and a Special Merit Award from the Romania Ministry of National Education at the 42nd International Exhibition of Inventions of Geneva held in Switzerland.

If the breakthrough is turned into tightly-fit surgical masks, they are just as effective against bacteria and viruses whose sizes are under 1 micron.  “In the future, medical professionals at the frontline can have stronger protection against deadly bacteria and viruses,” added Professor Leung.

I did not find any published research about this proposed face mask but there is a 2009 patent for a Multilayer nanofiber filter (US 8523971 B2), which lists the inventors as: Wallace Woon-Fong Leung and Chi Ho Hung and the original assignee as: The Hong Kong Polytechnic University.  The description of the materials in the patent closely resembles the description of the face mask materials.

Bayer MaterialScience divests itself of carbon nanotube and graphene patents

Last year’s announcement from Bayer MaterialScience about withdrawing from the carbon nanotube market (featured in my May 9, 2013 posting) has now been followed with news of the company’s sale of its intellectual property (patents) associated with carbon nanotubes (CNTs) and graphene. From a March 31, 2014 news item on Nanowerk,

After concluding its research work on carbon nanotubes (CNT) and graphenes, Bayer MaterialScience is divesting itself of fundamental intellectual property in this field. The company FutureCarbon GmbH, based in Bayreuth, Germany, will acquire, as leading provider of carbon-based composites, the bulk of the corresponding patents from the past ten years. The two parties have now signed an agreement to this effect. The financial details of the transfer will not be disclosed.

The March 31, 2014 Bayer news release, which originated the news item, describes the winning bidder,

FutureCarbon GmbH is a leading innovator and provider of novel, carbon-based composites. As a specialist in the manufacture and in particular the refinement of various carbon materials, FutureCarbon enables a broad range of strategic industries, to easily utilize the extraordinary properties of carbon materials in their products.

“We enjoy a long-standing development partnership with Bayer. We are happy that we were able to acquire the Bayer patents for further market realization of the technology. They expand our applications base substantially and open up new possibilities and business segments for us,” said Dr. Walter Schütz, managing director of the Bayreuth company.

After Bayer MaterialScience announced the conclusion of its CNT projects in May 2013, various companies indicated their interest in making concrete use of intellectual property developed before the decision was made for FutureCarbon as ideal partner for taking over the accomplished knowledge.

About FutureCarbon GmbH
FutureCarbon specializes in the development and manufacture of carbon nanomaterials and their refinement to create what are called carbon supercomposites, primary products for further industrial processing. Carbon supercomposites are combinations of materials that unfold the special characteristics of carbon nano-materials in the macroscopic world of real applications. All of our materials are manufactured on an industrial scale.

You can find out more about FutureCarbon here.

Patents, Progress, and Commercialized Medicine livestream March 20, 2014 at 3:30 pm PST

Canada’s Situating Science; Science in Human Contexts research cluster is livestreaming another of their lectures in the Lives of Evidence series on Thursday, March 20, 2014, from the March 18, 2014 announcement,

Patents, Progress, and Commercialized Medicine
James Robert Brown, Professor of Philosophy at University of Toronto
Thursday, March 20 2014, 7:30 PM [AST or 3:30 pm PST]
Alumni Hall, New Academic Building, University of King’s College, 6350 Coburg Rd., Halifax, NS
Part 4 of The Lives of Evidence national lecture series.
Free.

Here’s a link to,

Watch live!

For anyone who likes to check these things out beforehand, here’s a description of the lecture (from the Patents, Progress and Commercialized Medicine event page),

Recent headline-making studies indicate that there is a crisis in medical research. Health issues are increasingly dominated by commercial interests, and this jeopardizes research, evidence and, ultimately, peoples’ health. Patentable solutions, typically drugs, are proposed for health problems while other approaches are ignored. This raises pressing questions: How can we ensure high-quality medicine in light of corporate research funding and massive financial conflicts of interest? How does this effect medicine, ethics, public policy, and politics? Is socialized medical research a viable solution?

Anyone familiar with this blog knows I’ve written many times about patent thickets, patent trolls, and other ways in which patents have been used to block new work and new products. I have written more rarely (i.e., once) about the lack of interest in pursuing nonpatentable solutions to diseases and that was an April 12, 2013 posting about artemisin and malaria.

For anyone interested in the series, Lives of Evidence, here’s more from the series page,

The Lives of Evidence National Lecture Series

Many questions are raised in light of the recent warnings about the “the death of evidence” and “War on Science”. What do we mean by “evidence”? How is evidence interpreted, represented and communicated? How do we create trust in research? What’s the relationship between research, funding and policy? Between evidence, explanations and expertise?

These are but some of the questions explored in the Situating Science national lecture series The Lives of Evidence. The national Situating Science project (www.SituSci.ca) and supporters are launching a multi-part national lecture series examining the cultural, ethical, political, and scientific role of evidence in our world, all of which impact citizens.

“Recent concerns about transparency, conflicts between experts, political interference in the scientific process, and dire warnings about the ‘death of evidence’,” says Situating Science Director Gordon McOuat, “have made it all the more crucial that we examine the origins, meaning and trust in our concepts of ‘evidence’. This lecture series will bring multiple perspectives – historical, philosophical, ethical, scientific – to explore our understanding of evidence and why so much is hinged on ‘getting it right’.”

The page provides a complete list of past and future events.

Law firm, McDermott Will & Emery presents 2013 nanotechnology patent review

A report titled, ‘2013 Nanotechnology Patent Literature Review: Graphitic Carbon-Based Nanotechnology and Energy Applications Are on the Rise‘ published by the law firm, McDermott Will & Emery, was first profiled in a Feb. 13, 2014 news item on Nanowerk,

In past years, the McDermott Will & Emery Nanotechnology Group has investigated trends in nanotechnology patent literature as a means of identifying research trends, pinpointing industry leaders and clarifying the importance of the United States in this technology revolution. McDermott Will & Emery offer their Special Report “2013 Nanotechnology Patent Literature Review: Graphitic Carbon-Based Nanotechnology and Energy Applications Are on the Rise” as a continuing study of trends observed in our 2013 and 2012 reports, and also present a renewed focus on trends in the energy sector.

… the McDermott team performed a more detailed analysis of the innovation trends in graphitic carbon-based nanotechnology innovations. Graphitic carbon-based nanoparticles (fullerenes, carbon nanotubes and graphene) have unique structures that give rise to interesting electrical, spectral, thermal and mechanical properties that can be exploited in applications across many technology sectors. While some of the same trends were seen when comparing graphitic carbon-based nanotechnology innovation to nanotechnology innovation in general, some surprising observations were made with respect to graphitic carbon-based nanotechnology innovation including the following:

  • While 50 percent of the graphitic carbon-based nanotechnology patent literature published in 2013 was assigned to U.S.-based entities, Eastern Asia’s market share is about 37 percent, which is 9 percent more than for nanotechnology patent literature in general.
  • While the United States has at least one of the top three assignees in each of the six technology sectors analyzed, Eastern Asia-based companies are more prevalent players in graphitic carbon-based nanoparticles as compared to nanotechnology innovation in general.
  • The Energy sector is also the fastest-growing sector for graphitic carbon-based nanotechnology innovation, with an 18 percent increase in 2013.

A Feb. 27, 2014 posting by Iona Kaiser, Carey Jordan & Valerie Moore (of the McDermott Will & Emery law firm) for the IP Watchdog blog provides more details about the law firm’s report published earlier this month (Feb. 2014),

… According to a recent GAO report [Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health (?) published in January 2014 and mentioned in my Feb. 10, 2014 posting], many experts in industry, government, and academia anticipate that nanotech innovations could match or exceed the economic and societal impacts of the digital revolution.  The nanomedicine market, which has been estimated at about 20 percent to about 40 percent of the overall nanotechnology market, was valued at 78.54 billion USD in 2012 and is expected to grow to 117.60 billion USD by 2019, according to a new market report published by Transparency Market Research “Nanomedicine Market (Neurology, Cardiovascular, Anti-inflammatory, Anti-infective, and Oncology Applications)–Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 – 2019.”

… Overall, the total volume of published nanotechnology patent literature increased 5 percent in 2013 and has more than tripled since 2003.  The number of U.S. patents issued in nanotechnology was more than 6,000 in 2013, a 17 percent increase over 2012.  Given the novelty and nonobviousness requirements of patenting, a 17 percent increase in issued U.S. patents indicates that nanotech innovation is growing rapidly.

As a measure of regional innovation and potential economic impact, the location of the assignees of nanotechnology patent literature was analyzed by region and country.  The assignee location may be a metric useful in forecasting where commercialization and economic impact will be greatest.  In a regional analysis, three epicenters for nanotechnology innovation emerge– North America, Eastern Asia, and Europe each with about 57 percent, 28 percent, and 20 percent, respectively, of the patent literature being assigned to entities residing therein. For individual countries, the U.S. maintains its dominance observed in previous years with about 54 percent of the nanotechnology patent literature published in 2013 being assigned to U.S.-based entities, followed by South Korea at 8.3 percent, Japan at 8.0 percent, and Germany at 5.8 percent.

Time will tell as to whether or not this portends a new patent thicket such as the one surrounding smartphones where the situation was sufficiently concerning that the UN held a telecommunications patent summit in 2012 (mentioned in my Oct. 10, 2012 posting). I also wrote a general piece mentioning patent trolls and other IP issues in a June 28, 2012 posting titled: ‘Billions lost to patent trolls; US White House asks for comments on intellectual property (IP) enforcement; and more on IP’.

‘Valley of Death’, ‘Manufacturing Middle’, and other concerns in new government report about the future of nanomanufacturing in the US

A Feb, 8, 2 014 news item on Nanowerk features a US Government Accountability Office (GAO) publication announcement (Note:  A link has been removed),

In a new report on nanotechnology manufacturing (or nanomanufacturing) released yesterday (“Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health”; pdf), the U.S. Government Accountability Office finds flaws in America’s approach to many things nano.

At a July 2013 forum, participants from industry, government, and academia discussed the future of nanomanufacturing; investments in nanotechnology R&D and challenges to U.S. competitiveness; ways to enhance U.S. competitiveness; and EHS concerns.

A summary and a PDF version of the report, published Jan. 31, 2014, can be found here on the GAO’s GAO-14-181SP (report’s document number) webpage.  From the summary,

The forum’s participants described nanomanufacturing as a future megatrend that will potentially match or surpass the digital revolution’s effect on society and the economy. They anticipated further scientific breakthroughs that will fuel new engineering developments; continued movement into the manufacturing sector; and more intense international competition.

Although limited data on international investments made comparisons difficult, participants viewed the U.S. as likely leading in nanotechnology research and development (R&D) today. At the same time, they identified several challenges to U.S. competitiveness in nanomanufacturing, such as inadequate U.S. participation and leadership in international standard setting; the lack of a national vision for a U.S. nanomanufacturing capability; some competitor nations’ aggressive actions and potential investments; and funding or investment gaps in the United States (illustrated in the figure, below), which may hamper U.S. innovators’ attempts to transition nanotechnology from R&D to full-scale manufacturing.

[downloaded from http://www.gao.gov/products/GAO-14-181SP]

[downloaded from http://www.gao.gov/products/GAO-14-181SP]

I read through (skimmed) this 125pp (PDF version;  119 pp. print version) report and allthough it’s not obvious in the portion I’ve excerpted from the summary or in the following sections, the participants did seem to feel that the US national nanotechnology effort was in relatively good shape overall but with some shortcomings that may become significant in the near future.

First, government investment illustrates the importance the US has placed on its nanotechnology efforts (excerpted from p. 11 PDF; p. 5 print),

Focusing on U.S. public investment since 2001, the overall growth in the funding of nanotechnology has been substantial, as indicated by the funding of the federal interagency National Nanotechnology Initiative (NNI), with a cumulative investment of about $18 billion for fiscal years 2001 through 20133. Adding the request for fiscal year 2014 brings the total to almost $20 billion. However, the amounts budgeted in recent years have not shown an increasing trend.

Next, the participants in the July 2013 forum focused on four innovations in four different industry sectors as a means of describing the overall situation (excerpted from p. 16 PDF; p. 10 print):

Semiconductors (Electronics and semiconductors)

Battery-powered vehicles (Energy and power)

Nano-based concrete (Materials and chemical industries)

Nanotherapeutics (Pharmaceuticals, biomedical, and biotechnology)

There was some talk about nanotechnology as a potentially disruptive technology,

Nanomanufacturing could eventually bring disruptive innovation and the creation of new jobs—at least for the nations that are able to compete globally. According to the model suggested by Christensen (2012a; 2012b), which was cited by a forum participant, the widespread disruption of existing industries (and their supply chains) can occur together with the generation of broader markets, which can lead to net job creation, primarily for nations that bring the disruptive technology to market. The Ford automobile plant (with its dramatic changes in the efficient assembly of vehicles) again provides an historical example: mass – produced automobiles made cheaply enough—through economies of scale—were sold to vast numbers of consumers, replacing horse and buggy transportation and creating jobs to (1) manufacture large numbers of cars and develop the supply chain; (2) retail new cars; and (3) service them. The introduction of minicomputers and then personal computers in the 1980s and 1990s provides another historical example; the smaller computers disrupted the dominant mainframe computing industry (Christensen et al. 2000). Personal computers were provided to millions of homes, and an analyst in the Bureau of Labor Statistics (Freeman 1996) documented the creation of jobs in related areas such as selling home computers and software. According to Christensen (2012b), “[A]lmost all net growth in jobs in America has been created by companies that were empowering—companies that made complicated things affordable and accessible so that more people could own them and use them.”14 As a counterpoint, a recent report analyzing manufacturing today (Manyika et al. 2012, 4) claims that manufacturing “cannot be expected to create mass employment in advanced economies on the scale that it did decades ago.”

Interestingly, there is no mention in any part of the report of the darker sides of a disruptive technology. After all, there were people who were very, very upset over the advent of computers. For example, a student (I was teaching a course on marketing communication) once informed me that she and her colleagues used to regularly clear bullets from the computerized equipment they were sending up to the camps (memory fails as to whether these were mining or logging camps) in northern British Columbia in the early days of the industry’s computerization.

Getting back to the report, I wasn’t expecting to see that one of the perceived problems is the US failure to participate in setting standards (excerpted from p. 23 PDF; p. 17 print),

Lack of sufficient U.S. participation in setting standards for nanotechnology or nanomanufacturing. Some participants discussed a possible need for a stronger role for the United States in setting commercial standards for nanomanufactured goods (including defining basic terminology in order to sell products in global markets).17

The participants discussed the ‘Valley of Death’ and the ‘Missing Middle’ (excerpted from pp. 31-2 PDF; pp. 25-6 print)

Forum participants said that middle-stage funding, investment, and support gaps occur for not only technology innovation but also manufacturing innovation. They described the Valley of Death (that is, the potential lack of funding or investment that may characterize the middle stages in the development of a technology or new product) and the Missing Middle (that is, a similar lack of adequate support for the middle stages of developing a manufacturing process or approach), as explained below.

The Valley of Death refers to a gap in funding or investment that can occur after research on a new technology and its initial development—for example, when the technology moves beyond tests in a controlled laboratory setting.22 In the medical area, participants said the problem of inadequate funding /investment may be exacerbated by requirements for clinical trials. To illustrate, one participant said that $10 million to $20 million is needed to bring a new medical treatment into clinical trials, but “support from [a major pharmaceutical company] typically is not forthcoming until Phase II clinical trials,” resulting in a  Valley of Death for  some U.S. medical innovations. Another participant mentioned an instance where a costly trial was required for an apparently low risk medical device—and this participant tied high costs of this type to potential difficulties that medical innovators might have obtaining venture capital. A funding /investment gap at this stage can prevent further development of a technology.

The term  Missing Middle has been used to refer to the lack of funding/investment that can occur with respect to manufacturing innovation—that is, maturing manufacturing capabilities and processes to produce technologies at scale, as illustrated in figure 8.23 Here, another important lack of support may be the absence of what one participant called an “industrial commons”  to sustain innovation within a  manufacturing sector.24 Logically, successful transitioning across the  middle stages of manufacturing development is a prerequisite to  achieving successful new approaches to manufacturing at scale.

There was discussion of the international scene with regard to the ‘Valley of Death’ and the ‘Missing Middle’ (excerpted from pp. 41-2 PDF; pp. 35-6 print)

Participants said that the Valley of Death and Missing Middle funding and investment gaps, which are of concern in the United States, do not apply to the same extent in some other countries—for example, China and Russia—or are being addressed. One participant said that other countries in which these gaps have occurred “have zeroed in [on them] with a laser beam.” Another participant summed up his view of the situation with the statement: “Government investments in establishing technology platforms, technology transfer, and commercialization are higher in other countries than in the United States.”  He further stated that those making higher investments include China, Russia, and the European Union.

Multiple participants referred to the European Commission’s upcoming Horizon 2020 program, which will have major funding extending over 7 years. In addition to providing major funding for fundamental research, the Horizon 2020 website states that the program will help to:

“…bridge the gap between research and the market by, for example, helping innovative enterprises to develop their technological breakthroughs into viable products with real commercial potential. This market-driven approach will include creating partnerships with the private sector and Member States to bring together the resources needed.”

A key program within Horizon 2020 consists of the European Institute of Innovation and Technology (EIT), which as illustrated in the “Knowledge Triangle” shown figure 11, below, emphasizes the nexus of business, research, and higher education. The 2014-2020 budget for this portion of Horizon 2020 is 2.7 billion euros (or close to $3.7 billion in U.S. dollars as of January 2014).

As is often the case with technology and science, participants mentioned intellectual property (IP) (excerpted from pp. 43-44 PDF; pp. 37-8 print),

Several participants discussed threats to IP associated with global competition.43 One participant described persistent attempts by other countries (or by certain elements in other countries) to breach information  systems at his nanomanufacturing company. Another described an IP challenge pertaining to research at U.S. universities, as follows:

•due to a culture of openness, especially among students, ideas and research are “leaking out” of universities prior to the initial researchers having patented or fully pursued them;

•there are many foreign students at U.S. universities; and

•there is a current lack of awareness about “leakage” and of university policies or training to counter it.

Additionally, one of our earlier interviewees said that one country targeted. Specific research projects at U.S. universities—and then required its own citizen-students to apply for admission to each targeted U.S. university and seek work on the targeted project.

Taken together with other factors, this situation can result in an overall failure to protect IP and undermine U.S. research competitiveness. (Although a culture of openness and the presence of foreign students are  generally considered strengths of the U.S. system, in this context such factors could represent a challenge to capturing the full value of U.S. investments.)

I would have liked to have seen a more critical response to the discussion about IP issues given the well-documented concerns regarding IP and its depressing affect on competitiveness as per my June 28, 2012 posting titled: Billions lost to patent trolls; US White House asks for comments on intellectual property (IP) enforcement; and more on IP, my  Oct. 10, 2012 posting titled: UN’s International Telecommunications Union holds patent summit in Geneva on Oct. 10, 2012, and my Oct. 31, 2011 posting titled: Patents as weapons and obstacles, amongst many, many others here.

This is a very readable report and it answered a few questions for me about the state of nanomanufacturing.

ETA Feb. 10, 2014 at 2:45 pm PDT, The Economist magazine has a Feb. 7, 2014 online article about this new report from the US.

ETA April 2, 2014: There’s an April 1, 2014 posting about this report  on the Foresight Institute blog titled, US government report highlights flaws in US nanotechnology effort.

European Patent Office (EPO) explains how to patent nano

A Jan. 28, 2014 news item on Nanowerk describes the European Patent Office’s brochure on patenting nanotechnology-derived applications (Note: A link has been removed),

The number of European applications filed for nanotechnology-related inventions has more than tripled since the mid-1990s.

The interdisciplinary nature of nanotechnology poses a challenge for patent offices, legal representatives, inventors and applicants alike.

A new brochure (Nanotechnology and patents; pdf) from the European Patent Office (EPO) explains how to get started if you want to search for nanotechnology inventions in patent databases, and what to look out for if you are thinking about applying to the EPO for a nanotechnology patent yourself.

The EPO’s 16 pp. Nanotechnology and Patents brochure (PDF) can be found here.  The EPO website is here and they do have a webpage dedicated to nanotechnology,

Nanotechnology – entities with a controlled geometrical size of at least one functional component below 100 nanometres in one or more dimensions susceptible of making physical, chemical or biological effects – is considered by many to be one of the key technologies of this century, with an expected market volume of EUR 1 trillion in 2015.

Nanotechnology can occur in almost any area of science and engineering: it is just as relevant to biotechnologists and physicists as it is to electrical and mechanical engineers or materials scientists. The interdisciplinary nature of the field means that anyone interested in literature on nanotechnology, especially existing patent documents, struggles to retrieve it from the databases available.

To get to grips with this new technology, the EPO introduced the “Y01N” tags to label nanotechnology.

Y01N became B82Y

Recently all patent offices worldwide started to classify nanotechnology uniformly under the International Patent Classification (IPC) system. To make this possible, a new symbol, B82Y was introduced into the IPC on 1 January 2011, building on the Y01N system that the EPO had been using to tag nanotechnology-related patent applications.

The new B82Y symbol makes it easier to retrieve relevant patent documents in this important technical area as it is now part of both the IPC and the CPC (Cooperative Patent Classification) schemes. The EPO has moved all nanotechnology documents from the Y01N area in its databases to B82Y. The Y01N codes have been discontinued.

Unfortunately, I’ve not been able to find a publication date for the brochure. Hopefully this was produced relatively recently. One final comment, you can go here to download the PDF or order a print copy (English only) from the one of the EPO’s publication pages.

Green chemistry and zinc oxide nanoparticles from Iran (plus some unhappy scoop about Elsevier and access)

It’s been a while since I’ve featured any research from Iran partly due to the fact that I find the information disappointingly scant. While the Dec. 22, 2013 news item on Nanowerk doesn’t provide quite as much detail as I’d like it does shine a light on an aspect of Iranian nanotechnology research that I haven’t previously encountered, green chemistry (Note: A link has been removed),

Researchers used a simple and eco-friendly method to produce homogenous zinc oxide (ZnO) nanoparticles with various applications in medical industries due to their photocatalytic and antibacterial properties (“Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth”).

Zinc oxide nanoparticles have numerous applications, among which mention can be made of photocatalytic issues, piezoelectric devices, synthesis of pigments, chemical sensors, drug carriers in targeted drug delivery, and the production of cosmetics such as sunscreen lotions.

The Dec. 22, 2013 Iran Nanotechnology Initiative Council (INIC) news release, which originated the news item, provides a bit more detail (Note: Links have been removed),

By using natural materials found in the geography of Iran and through sol-gel technique, the researchers synthesized zinc oxide nanoparticles in various sizes. To this end, they used zinc nitrate hexahydrate and gum tragacanth obtained from the Northern parts of Khorassan Razavi Province as the zinc-providing source and the agent to control the size of particles in aqueous solution, respectively.

Among the most important characteristics of the synthesis method, mention can be made of its simplicity, the use of cost-effective materials, conservation of green chemistry principals to prevent the use of hazardous materials to human safety and environment, production of nanoparticles in homogeneous size and with high efficiency, and most important of all, the use of native materials that are only found in Iran and its introduction to the world.

Here’s a link to and a citation for the paper,

Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth by Majid Darroudi, Zahra Sabouri, Reza Kazemi Oskuee, Ali Khorsand Zak, Hadi Kargar, and Mohamad Hasnul Naim Abd Hamidf. Ceramics International, Volume 39, Issue 8, December 2013, Pages 9195–9199

There’s a bit more technical information in the paper’s abstract,

The use of plant extract in the synthesis of nanomaterials can be a cost effective and eco-friendly approach. In this work we report the “green” and biosynthesis of zinc oxide nanoparticles (ZnO-NPs) using gum tragacanth. Spherical ZnO-NPs were synthesized at different calcination temperatures. Transmission electron microscopy (TEM) imaging showed the formation most of nanoparticles in the size range of below 50 nm. The powder X-ray diffraction (PXRD) analysis revealed wurtzite hexagonal ZnO with preferential orientation in (101) reflection plane. In vitro cytotoxicity studies on neuro2A cells showed a dose dependent toxicity with non-toxic effect of concentration below 2 µg/mL. The synthesized ZnO-NPs using gum tragacanth were found to be comparable to those obtained from conventional reduction methods using hazardous polymers or surfactants and this method can be an excellent alternative for the synthesis of ZnO-NPs using biomaterials.

I was not able to find the DOI (digital object identifier) and this paper is behind a paywall.

Elsevier and access

On a final note, Elsevier, the company that publishes Ceramics International and many other journals, is arousing some ire with what appears to be its latest policies concerning access according to a Dec. 20, 2013 posting by Mike Masnick for Techdirt Note: Links have been removed),

We just recently wrote about the terrible anti-science/anti-knowledge/anti-learning decision by publishing giant Elsevier to demand that Academia.edu take down copies of journal articles that were submitted directly by the authors, as Elsevier wished to lock all that knowledge (much of it taxpayer funded) in its ridiculously expensive journals. Mike Taylor now alerts us that Elsevier is actually going even further in its war on access to knowledge. Some might argue that Elsevier was okay in going after a “central repository” like Academia.edu, but at least it wasn’t going directly after academics who were posting pdfs of their own research on their own websites. While some more enlightened publishers explicitly allow this, many (including Elsevier) technically do not allow it, but have always looked the other way when authors post their own papers.

That’s now changed. As Taylor highlights, the University of Calgary sent a letter to its staff saying that a company “representing” Elsevier, was demanding that they take down all such articles on the University’s network.

While I do feature the topic of open access and other issues with intellectual property from time to time, you’ll find Masnick’s insights and those of his colleagues are those of people who are more intimately familiar (albeit firmly committed to open access) with the issues should you choose to read his Dec. 20, 2013 posting in its entirely.

GoldieBlox and the Beastie Boys: my final words (I hope)

One hopes that people will somehow be able to work things out when there’s a dispute although it seemed obvious at a fairly early stage with the GoldieBlox and Beastie Boys situation, as described in my Nov. 26, 2013 posting, that might not occur given the speed at which the situation escalated.

Thanks to a Dec.12, 2013 article on Slate by Kal Raustiala and Christopher Jon Sprigman, a couple of law professors, for an excellent and entertaining job of laying out some of the legal issues. Before discussing the article any further, here’s a précis of the situation: the GoldieBlox company repurposed (wrote a parody of) a Beastie Boys song to sell an engineering toy product to girls. The Beastie Boys (the remaining two) strenuously objected due to a policy of never allowing their songs to be used in advertising the GoldieBlox took a preliminary legal action and followed up by writing a public apology letter. At this point (dec. 17, 2013), the Beastie Boys have instituted their own legal action. Meanwhile, Raustiala and Sprigman point out that this seems to have bee a publicity strategy on GoldieBlox’s part.

What I had not fully appreciated, due to my ignorance of the Beastie Boys’ oeuvre, is the subversiveness of  the GoldieBlox parody (from the Raustiala & Sprigman article),,

Set to a basic drumbeat and vibraphone loop, the Beasties rap in “Girls” about their love of … girls. Sort of. As with many Beasties songs, the lyrics contain a lot of maybe serious/maybe satirical misogyny:

Girls, to do the dishes
Girls, to clean up my room
Girls, to do the laundry
Girls, and in the bathroom
Girls, that’s all I really want is girls
Two at a time I want girls
With New Wave hairdos I want girls
I ought to whip out my girls, girls, girls, girls, girls!

One of the best things about the GoldieBlox video is how it subverts the Beasties’ song to trash the very same gender stereotypes the Beasties celebrated. Here is GoldieBlox’s revision of the Beasties’ lyrics:

Girls, you think you know what we want
Girls, pink and pretty it’s girls
Just like the ‘50s it’s girls

You like to buy us pink toys
And everything else is for boys
And you can always get us dolls
And we’ll grow up like them, false

It’s time to change
We deserve to see a range
Cause all our toys look just the same
And we would like to use our brains

And we are all more than princess maids

Girls, to build a spaceship
Girls, to code a new app
To grow up knowing
That they can engineer that

Girls, that’s all we really need is girls
To bring us up to speed, it’s girls
Our opportunity is girls
Don’t underestimate girls

Clever and cute. And you might think that the Beastie Boys, who—by the way—made a career out of repurposing others’ music for their own songs through sampling, would roll with the punches. But that’s not what happened. Because the Beastie Boys never wanted their music to be used in commercials.

Raustiala & Sprigman go on to excerpt text from the 3rd (now deceased) Beastie Boys’ will, as well as, the trademark and copyright claims by the remaining band members before closing with this,

So the Beastie Boys should lose their lawsuit—although once the lawyers take over, anything can happen. Maybe the improbable will occur in court and the Beasties will win. But thanks to the media blizzard around this silly fight, GoldieBlox simply can’t lose.

Here’s more about the Slate article authors (Note: Links have been removed),

Kal Raustiala is a law professor at UCLA. He is a co-author of The Knockoff Economy: How Imitation Sparks Innovation.

Christopher Jon Sprigman is a professor at the New York University School of Law and co-director of the NYU Engelberg Center on Innovation Law and Policy. He is a co-author of The Knockoff Economy: How Imitation Sparks Innovation.

Clearly, these lawyers are not maximalists where intellectual property is concerned, which coincides with my own bias.

One final thought, did anyone else notice that the offbeat resemblance between Goldilocks and three bears and GoldieBlox and the Beastie Boys, a musical trio?

ETA May 12, 2014: Mike Masnick has written a May 12, 2014 posting on Techdirt titled, Goldieblox Agreed To Pay Charity $1 Million For Using Beastie Boys’ Girls.  Clearly, he’s not thrilled with the outcome.