Category Archives: intellectual property

Nanotechnology theft in Taiwan

Charges are being laid against five men in Taiwan for theft of intellectual property from a nanotechnology firm according to a July 28, 2016 news item on the http://www.vidalatinasd.com website,

Five former employees of a Taiwanese nanotechnology firm have been charged with violating trade secrets laws by stealing technology and taking it to China, the National Police Agency said Thursday [July 28, 2016].

The accused are three former employees of Hsin Fang Nano Technology, including a production section chief surnamed Yu and a plant manager surnamed Chen, along with two other business associates.

A July 28, 2016 news article by Jason Pan for Taipei Times offers more detail,

“The estimated financial loss to our company is about NT$2.6 billion [US$81.08 million]. We urge the government to crack down on intellectual property theft against Taiwanese businesses,” chairman Chang Jen-hung (張仁鴻) said.

Hsin Fang is a grinding mill machine manufacturer, which are used to produce ultra-fine nanopowders for use in pharmaceuticals, cosmetics, consumer electronics, health food, anti-radiation coating, military weapons and in other industrial applications.

Company officials said their nanopowder grinding mill, which incorporates an innovative “dry cryo-nanonization grinding system,” received a top award at a nanotechnology exhibition in Tokyo in 2012, and honors at other industry fairs in Taiwan and other countries.

The investigation in 2014 followed reports that Chen, Yu and other former employees, backed by business associates, started a new company in Yunlin County — Unicat Nano Advanced Materials & Devices Technology Co (環美凱特).

Unicat Nano later moved to Chongqing, China, setting up nanotechnology businesses that, according to investigators, were based on intellectual property stolen from Hsin Fang by Chen, Yu and other former employees.

This is the first alleged intellectual property crime regarding nanotechnology that I’ve covered here. The crimes I’ve usually covered are bombings (Mexico) or attempted bombings (Switzerland) as someone violently protests the technology.

Science (magazine) investigates Sci-Hub (a pirate site for scientific papers)

Sci-Hub, a pirate website for scientific papers, and its progenitor, Alexandra Elbakyan, have generated a couple of articles and an editorial in Science magazine’s latest issue (April 28, 2016?). An April 29, 2016 article by Bob Yirka for phys.org describes one of the articles (Note: Links have been removed),

A correspondent for the Science family of journals has published an investigative piece in Science on Sci-Hub, a website that illegally publishes scholarly literature, i.e. research papers. In his article, John Bohannon describes how he made contact with Alexandra Elbakyan, the founder of what is now the world’s largest site for pirated scholarly articles, data she gave him, and commentary on what was revealed. Bohannon has also published another piece focused exclusively on Elbakyan, describing her as a frustrated science student. Marcia McNutt, Editor-in-Chief of the Science Family also weighs in on her “love-hate” relationship with Sci-Hub, and explains in detail why she believes the site is likely to cause problems for scholarly publishing heading into the future.

An April 28, 2016 American Association for the Advancement of Science (AAAS) news release provides some detail about the number of downloads from the Sci-Hub site,

In this investigative news piece from Science, contributing correspondent John Bohannon dives into data from Sci-Hub, the world’s largest pirate website for scholarly literature. For the first time, basic questions about Sci-Hub’s millions of users can be answered: Where are they and what are they reading? Bohannon’s statistical analysis is based on server log data supplied by Alexandra Elbakyan herself, the neuroscientist who created Sci-Hub in 2011. After establishing contact with her through an encrypted chat system, Bohannon and Elbakyan worked together to create a data set for public release: 28 million Sci-Hub download requests going back to 1 September 2015, including the digital object identifier (DOI) for every paper and the clustered locations of users based on their Internet Protocol address. In his story, Bohannon reveals that Sci-Hub usage is highest in China with 4.4 million download requests over the 6-month period, followed by India and Iran. But Sci-Hub users are not limited to the developing world, he reports; the U.S. is the fifth largest downloader and some of the most intense Sci-Hub activity seems to be happening on US and European university campuses, supporting the claim that many users could be accessing the papers through their libraries, but turn to Sci-Hub for convenience.

Bohanon’s piece appears to be open access. Here’s a link and a citation,

Who’s downloading pirated papers? Everyone by John Bohannon. Science (2016). DOI: 10.1126/science.aaf5664 Published April 28, 2016.

Comments

The analysis of the data is fascinating but I’m not sure why this is being billed as an ‘investigative’ piece. Generally speaking I would expect an investigative piece to unearth new information which has likely been hidden. At the very least, I would expect some juicy inside information (i.e., gossip).

Bohannon certainly had no difficulty getting information (from the April 28, 2016 Science article),

For someone denounced as a criminal by powerful corporations and scholarly societies, Elbakyan was surprisingly forthcoming and transparent. After establishing contact through an encrypted chat system, she worked with me over the course of several weeks to create a data set for public release: every download event over the 6-month period starting 1 September 2015, including the digital object identifier (DOI) for every paper. To protect the privacy of Sci-Hub users, we agreed that she would first aggregate users’ geographic locations to the nearest city using data from Google Maps; no identifying internet protocol (IP) addresses were given to me. (The data set and details on how it was analyzed are freely accessible)

Why would it be surprising that someone who has made a point of freeing scientific research and making it accessible also makes the data from her Sci-Hub site freely available? The action certainly seems consistent with her raison d’être.

Bohannon steers away from making any serious criticisms of the current publishing régimes although he does mention a few bones of contention while laying them to rest, more or less. This is no great surprise since he’s writing for one of the ‘big three’, a journal that could be described as having a vested interest in maintaining the status quo. (For those who are unaware, there are three journal considered the most prestigious or high impact for scientific studies: Nature, Cell, and Science.)

Characterizing Elbakyan as a ‘frustrated’ student in an April 28, 2016 profile by John Bohannon (The frustrated science student behind Sci-Hub) seems a bit dismissive. Sci-Hub may have been borne of frustration but it is an extraordinary accomplishment.

The piece has resulted in at least one very irate librarian, John Dupuis, from an April 29, 2016 posting on his Confessions of a Science Librarian blog,

Overall, the articles are pretty good descriptions of the Sci-Hub phenomenon and relatively even-handed [emphasis mine], especially coming from one of the big society publishers like AAAS.

There was one bit in the main article, Who’s downloading pirated papers? Everyone, that really stuck in my craw. Basically, Sci-Hub — and all that article piracy — is librarians’ fault.

And for all the researchers at Western universities who use Sci-Hub instead, the anonymous publisher lays the blame on librarians for not making their online systems easier to use and educating their researchers. “I don’t think the issue is access—it’s the perception that access is difficult,” he says.

Fortunately it was countered, in the true “give both sides of the story” style of mainstream journalism, by another quote, this time from a librarian.

“I don’t agree,” says Ivy Anderson, the director of collections for the California Digital Library in Oakland, which provides journal access to the 240,000 researchers of the University of California system. The authentication systems that university researchers must use to read subscription journals from off campus, and even sometimes on campus with personal computers, “are there to enforce publisher restrictions,” she says.

But of course, I couldn’t let it go. Anderson’s response is perfectly fine but somehow there just wasn’t enough rage and exasperation in it. So I stewed about it over night and tweeted up a tweetstorm of rage this morning, with the idea that if the rant was well-received I would capture the text as part of a blog post.

As you may have guessed by my previous comments, I didn’t find the article quite as even-handed as Dupuis did. As for the offence to librarians, I did notice but it seems in line with the rest of the piece which dismisses, downplays, and offloads a few serious criticisms while ignoring how significant issues (problematic peer review process,  charging exorbitant rates for access to publicly funded research, failure to adequately tag published papers that are under review after serious concerns are raised, failure to respond in a timely fashion when serious concerns are raised about a published paper, positive publication bias, …) have spawned the open access movement and also Sci-Hub. When you consider that governments rely on bibliometric data such as number of papers published and number of papers published in high impact journals (such as one of the ‘big three’), it’s clear there’s a great deal at stake.

Other Sci-Hub pieces here

My last piece about Sci-Hub was a February 25, 2016 posting titled,’ Using copyright to shut down easy access to scientific research‘ featuring some of the discussion around Elsevier and its legal suite against Sci-Hub.

Bacteria and an anti-superbug coating from Ireland’s Sligo Institute of Technology

Unlike today’s (April 28, 2016) earlier piece about dealing with bacteria, the focus for this research is on superbugs and not the bacteria which form biofilm on medical implants and such. An April 21, 2016 news item on RTE News makes the announcement about a new means of dealing with superbugs,

A discovery by a team of scientists in Ireland could stem the spread of deadly superbugs predicted to kill millions of people worldwide over the coming decades.

The research has found an agent that can be baked into everyday items like smart-phones and door handles to combat the likes of MRSA and E. coli.

The nanotechnology has a 99.9 % kill rate of potentially lethal and drug-resistant bacteria, they say.

Lead scientist Professor Suresh C. Pillai, of Sligo Institute of Technology’s Nanotechnology Research Group, says the discovery is the culmination of 12 years work.

“This is a game changer,” he said.

“This breakthrough will change the whole fight against superbugs. It can effectively control the spread of bacteria.”

An April 21, 2016 Sligo Institute of Technology press release provides some context for the work and a few details about the coating,

News of the discovery comes just days after UK Chancellor of the Exchequer George Osborne warned that superbugs could become deadlier than cancer and are on course to kill 10 million people globally by 2050.

Speaking at the International Monetary Fund (IMF) in Washington, Mr Osborne warned that the problem would slash global GDP by around €100 trillion if it was not tackled.

Using nanotechnology, the discovery is an effective and practical antimicrobial solution — an agent that kills microorganisms or inhibits their growth — that can be used to protect a range of everyday items.

Items include anything made from glass, metallics and ceramics including computer or tablet screens, smartphones, ATMs, door handles, TVs, handrails, lifts, urinals, toilet seats, fridges, microwaves and ceramic floor or wall tiles.

It will be of particular use in hospitals and medical facilities which are losing the battle against the spread of killer superbugs.

Other common uses would include in swimming pools and public buildings, on glass in public buses and trains, sneeze guards protecting food in delis and restaurants as well as in clean rooms in the medical sector.

“It’s absolutely wonderful to finally be at this stage. This breakthrough will change the whole fight against superbugs. It can effectvely control the spread of bacteria,” said Prof. Pillai.

He continued: “Every single person has a sea of bacteria on their hands. The mobile phone is the most contaminated personal item that we can have. Bacteria grows on the phone and can live there for up to five months. As it is contaminated with proteins from saliva and from the hand, It’s fertile land for bacteria and has been shown to carry 30 times more bacteria than a toilet seat.”

The research started at Dublin Institute of Technology (DIT)’s CREST and involves scientists now based at IT Sligo, Dublin City University (DCU) and the University of Surrey. Major researchers included Dr Joanna Carroll and Dr Nigel S. Leyland.

It has been funded for the past eight years by John Browne, founder and CEO of Kastus Technologies Ltd, who is bringing the product to a global market. He was also supported by significant investment from Enterprise Ireland.

As there is nothing that will effectively kill antibiotic-resistant superbugs completely from the surface of items, scientists have been searching for a way to prevent the spread.

This has been in the form of building or ‘baking’ antimicrobial surfaces into products during the manufacturing process.

However, until now, all these materials were toxic or needed UV light in order to make them work. This meant they were not practical for indoor use and had limited commercial application.

“The challenge was the preparation of a solution that was activated by indoor light rather than UV light and we have now done that,” said Prof Pillai.

The new water-based solution can be sprayed onto any glass, ceramic or metallic surface during the production process, rendering the surface 99.9 per cent resistant to superbugs like MRSA, E. coli and other fungi. [emphasis mine]

The solution is sprayed on the product — such as a smartphone glass surface — and then ‘baked’ into it, forming a super-hard surface. The coating is transparent, permanent and scratch resistant and actually forms a harder surface than the original glass or ceramic material.

The team first developed the revolutionary material to work on ceramics and has spent the last five years adapting the formula – which is non-toxic and has no harmful bi-products ‑- to make it work on glass and metallic surfaces.

Research is now underway by the group on how to adapt the solution for use in plastics and paint, allowing even wider use of the protective material.

Prof Pillai, Kastus and the team have obtained a US and a UK patent on the unique process with a number of global patent applications pending. It is rare for such an academic scientific discovery to have such commercial viability.

“I was sold on this from the first moment I heard about it. It’s been a long road to here but it was such a compelling story that it was hard to walk away from so I had to see it through to the end,” said John Browne, Kastus CEO.

He continued: “This is a game changer. The uniqueness of antimicrobia surface treatment means that the applications for it in the real world are endless. The multinational glass manufacturers we are in negotiations with to sell the product to have been searching for years to come up with such a solution but have failed.”

If the coating kills 99.9%, doesn’t that mean 0.1% are immune? If that’s the case, won’t they reproduce and eventually establish themselves as a new kind of superbug?

Here’s a link to and a citation for the paper,

Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections by Nigel S. Leyland, Joanna Podporska-Carroll, John Browne, Steven J. Hinder, Brid Quilty, & Suresh C. Pillai. Scientific Reports 6, Article number: 24770 (2016) doi:10.1038/srep24770 Published online: 21 April 2016

This paper is open access.

Not enough talk about nano risks?

It’s not often that a controversy amongst visual artists intersects with a story about carbon nanotubes, risk, and the roles that  scientists play in public discourse.

Nano risks

Dr. Andrew Maynard, Director of the Risk Innovation Lab at Arizona State University, opens the discussion in a March 29, 2016 article for the appropriately named website, The Conversation (Note: Links have been removed),

Back in 2008, carbon nanotubes – exceptionally fine tubes made up of carbon atoms – were making headlines. A new study from the U.K. had just shown that, under some conditions, these long, slender fiber-like tubes could cause harm in mice in the same way that some asbestos fibers do.

As a collaborator in that study, I was at the time heavily involved in exploring the risks and benefits of novel nanoscale materials. Back then, there was intense interest in understanding how materials like this could be dangerous, and how they might be made safer.

Fast forward to a few weeks ago, when carbon nanotubes were in the news again, but for a very different reason. This time, there was outrage not over potential risks, but because the artist Anish Kapoor had been given exclusive rights to a carbon nanotube-based pigment – claimed to be one of the blackest pigments ever made.

The worries that even nanotech proponents had in the early 2000s about possible health and environmental risks – and their impact on investor and consumer confidence – seem to have evaporated.

I had covered the carbon nanotube-based coating in a March 14, 2016 posting here,

Surrey NanoSystems (UK) is billing their Vantablack as the world’s blackest coating and they now have a new product in that line according to a March 10, 2016 company press release (received via email),

A whole range of products can now take advantage of Vantablack’s astonishing characteristics, thanks to the development of a new spray version of the world’s blackest coating material. The new substance, Vantablack S-VIS, is easily applied at large scale to virtually any surface, whilst still delivering the proven performance of Vantablack.

Oddly, the company news release notes Vantablack S-VIS could be used in consumer products while including the recommendation that it not be used in products where physical contact or abrasion is possible,

… Its ability to deceive the eye also opens up a range of design possibilities to enhance styling and appearance in luxury goods and jewellery [emphasis mine].

… “We are continuing to develop the technology, and the new sprayable version really does open up the possibility of applying super-black coatings in many more types of airborne or terrestrial applications. Possibilities include commercial products such as cameras, [emphasis mine] equipment requiring improved performance in a smaller form factor, as well as differentiating the look of products by means of the coating’s unique aesthetic appearance. It’s a major step forward compared with today’s commercial absorber coatings.”

The structured surface of Vantablack S-VIS means that it is not recommended for applications where it is subject to physical contact or abrasion. [emphasis mine] Ideally, it should be applied to surfaces that are protected, either within a packaged product, or behind a glass or other protective layer.

Presumably Surrey NanoSystems is looking at ways to make its Vantablack S-VIS capable of being used in products such as jewellery, cameras, and other consumers products where physical contact and abrasions are a strong possibility.

Andrew has pointed questions about using Vantablack S-VIS in new applications (from his March 29, 2016 article; Note: Links have been removed),

The original Vantablack was a specialty carbon nanotube coating designed for use in space, to reduce the amount of stray light entering space-based optical instruments. It was this far remove from any people that made Vantablack seem pretty safe. Whatever its toxicity, the chances of it getting into someone’s body were vanishingly small. It wasn’t nontoxic, but the risk of exposure was minuscule.

In contrast, Vantablack S-VIS is designed to be used where people might touch it, inhale it, or even (unintentionally) ingest it.

To be clear, Vantablack S-VIS is not comparable to asbestos – the carbon nanotubes it relies on are too short, and too tightly bound together to behave like needle-like asbestos fibers. Yet its combination of novelty, low density and high surface area, together with the possibility of human exposure, still raise serious risk questions.

For instance, as an expert in nanomaterial safety, I would want to know how readily the spray – or bits of material dislodged from surfaces – can be inhaled or otherwise get into the body; what these particles look like; what is known about how their size, shape, surface area, porosity and chemistry affect their ability to damage cells; whether they can act as “Trojan horses” and carry more toxic materials into the body; and what is known about what happens when they get out into the environment.

Risk and the roles that scientists play

Andrew makes his point and holds various groups to account (from his March 29, 2016 article; Note: Links have been removed),

… in the case of Vantablack S-VIS, there’s been a conspicuous absence of such nanotechnology safety experts in media coverage.

This lack of engagement isn’t too surprising – publicly commenting on emerging topics is something we rarely train, or even encourage, our scientists to do.

And yet, where technologies are being commercialized at the same time their safety is being researched, there’s a need for clear lines of communication between scientists, users, journalists and other influencers. Otherwise, how else are people to know what questions they should be asking, and where the answers might lie?

In 2008, initiatives existed such as those at the Center for Biological and Environmental Nanotechnology (CBEN) at Rice University and the Project on Emerging Nanotechnologies (PEN) at the Woodrow Wilson International Center for Scholars (where I served as science advisor) that took this role seriously. These and similar programs worked closely with journalists and others to ensure an informed public dialogue around the safe, responsible and beneficial uses of nanotechnology.

In 2016, there are no comparable programs, to my knowledge – both CBEN and PEN came to the end of their funding some years ago.

Some of the onus here lies with scientists themselves to make appropriate connections with developers, consumers and others. But to do this, they need the support of the institutions they work in, as well as the organizations who fund them. This is not a new idea – there is of course a long and ongoing debate about how to ensure academic research can benefit ordinary people.

Media and risk

As mainstream media such as newspapers and broadcast news continue to suffer losses in audience numbers, the situation vis à vis science journalism has changed considerably since 2008. Finding information is more of a challenge even for the interested.

As for those who might be interested, the chances of catching their attention are considerably more challenging. For example, some years ago scientists claimed to have achieved ‘cold fusion’ and there were television interviews (on the 60 minutes tv programme, amongst others) and cover stories in Time magazine and Newsweek magazine, which you could find in the grocery checkout line. You didn’t have to look for it. In fact, it was difficult to avoid the story. Sadly, the scientists had oversold and misrepresented their findings and that too was extensively covered in mainstream media. The news cycle went on for months. Something similar happened in 2010 with ‘arsenic life’. There was much excitement and then it became clear that scientists had overstated and misrepresented their findings. That news cycle was completed within three or fewer weeks and most members of the public were unaware. Media saturation is no longer what it used to be.

Innovative outreach needs to be part of the discussion and perhaps the Vantablack S-VIS controversy amongst artists can be viewed through that lens.

Anish Kapoor and his exclusive rights to Vantablack

According to a Feb. 29, 2016 article by Henri Neuendorf for artnet news, there is some consternation regarding internationally known artist, Anish Kapoor and a deal he has made with Surrey Nanosystems, the makers of Vantablack in all its iterations (Note: Links have been removed),

Anish Kapoor provoked the fury of fellow artists by acquiring the exclusive rights to the blackest black in the world.

The Indian-born British artist has been working and experimenting with the “super black” paint since 2014 and has recently acquired exclusive rights to the pigment according to reports by the Daily Mail.

The artist clearly knows the value of this innovation for his work. “I’ve been working in this area for the last 30 years or so with all kinds of materials but conventional materials, and here’s one that does something completely different,” he said, adding “I’ve always been drawn to rather exotic materials.”

This description from his Wikipedia entry gives some idea of Kapoor’s stature (Note: Links have been removed),

Sir Anish Kapoor, CBE RA (Hindi: अनीश कपूर, Punjabi: ਅਨੀਸ਼ ਕਪੂਰ), (born 12 March 1954) is a British-Indian sculptor. Born in Bombay,[1][2] Kapoor has lived and worked in London since the early 1970s when he moved to study art, first at the Hornsey College of Art and later at the Chelsea School of Art and Design.

He represented Britain in the XLIV Venice Biennale in 1990, when he was awarded the Premio Duemila Prize. In 1991 he received the Turner Prize and in 2002 received the Unilever Commission for the Turbine Hall at Tate Modern. Notable public sculptures include Cloud Gate (colloquially known as “the Bean”) in Chicago’s Millennium Park; Sky Mirror, exhibited at the Rockefeller Center in New York City in 2006 and Kensington Gardens in London in 2010;[3] Temenos, at Middlehaven, Middlesbrough; Leviathan,[4] at the Grand Palais in Paris in 2011; and ArcelorMittal Orbit, commissioned as a permanent artwork for London’s Olympic Park and completed in 2012.[5]

Kapoor received a Knighthood in the 2013 Birthday Honours for services to visual arts. He was awarded an honorary doctorate degree from the University of Oxford in 2014.[6] [7] In 2012 he was awarded Padma Bhushan by Congress led Indian government which is India’s 3rd highest civilian award.[8]

Artists can be cutthroat but they can also be prankish. Take a look at this image of Kapoor and note the blue background,

Artist Anish Kapoor is known for the rich pigments he uses in his work. (Image: Andrew Winning/Reuters)

Artist Anish Kapoor is known for the rich pigments he uses in his work. (Image: Andrew Winning/Reuters)

I don’t know why or when this image (used to illustrate Andrew’s essay) was taken so it may be coincidental but the background for the image brings to mind, Yves Klein and his International Klein Blue (IKB) pigment. From the IKB Wikipedia entry,

L'accord bleu (RE 10), 1960, mixed media piece by Yves Klein featuring IKB pigment on canvas and sponges Jaredzimmerman (WMF) - Foundation Stedelijk Museum Amsterdam Collection

L’accord bleu (RE 10), 1960, mixed media piece by Yves Klein featuring IKB pigment on canvas and sponges Jaredzimmerman (WMF) – Foundation Stedelijk Museum Amsterdam Collection

Here’s more from the IKB Wikipedia entry (Note: Links have been removed),

International Klein Blue (IKB) was developed by Yves Klein in collaboration with Edouard Adam, a Parisian art paint supplier whose shop is still in business on the Boulevard Edgar-Quinet in Montparnasse.[1] The uniqueness of IKB does not derive from the ultramarine pigment, but rather from the matte, synthetic resin binder in which the color is suspended, and which allows the pigment to maintain as much of its original qualities and intensity of color as possible.[citation needed] The synthetic resin used in the binder is a polyvinyl acetate developed and marketed at the time under the name Rhodopas M or M60A by the French pharmaceutical company Rhône-Poulenc.[2] Adam still sells the binder under the name “Médium Adam 25.”[1]

In May 1960, Klein deposited a Soleau envelope, registering the paint formula under the name International Klein Blue (IKB) at the Institut national de la propriété industrielle (INPI),[3] but he never patented IKB. Only valid under French law, a soleau enveloppe registers the date of invention, according to the depositor, prior to any legal patent application. The copy held by the INPI was destroyed in 1965. Klein’s own copy, which the INPI returned to him duly stamped is still extant.[4]

In short, it’s not the first time an artist has ‘owned’ a colour. Kapoor is not a performance artist as was Klein but his sculptural work lends itself to spectacle and to stimulating public discourse. As to whether or not, this is a prank, I cannot say but it has stimulated a discourse which ranges from intellectual property and artists to the risks of carbon nanotubes and the role scientists could play in the discourse about the risks associated with emerging technologies.

Regardless of how is was intended, bravo to Kapoor.

More reading

Andrew’s March 29, 2016 article has also been reproduced on Nanowerk and Slate.

Johathan Jones has written about Kapoor and the Vantablack  controversy in a Feb. 29, 2016 article for The Guardian titled: Can an artist ever really own a colour?

UK’s National Graphene Institute kerfuffle gets bigger

First mentioned here in a March 18, 2016 posting titled: Tempest in a teapot or a sign of things to come? UK’s National Graphene Institute kerfuffle, the ‘scandal’ seems to be getting bigger, from a March 29, 2016 posting on Dexter Johnson’s Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website (Note: A link has been removed),

Since that news story broke, damage control from the NGI [UK National Graphene Institute], the University of Manchester, and BGT Materials, the company identified in the Times article, has been coming fast and furious. Even this blog’s coverage of the story has gotten comments from representatives of BGT Materials and the University of Manchester.

There was perhaps no greater effort in this coordinated defense than getting Andre Geim, a University of Manchester researcher who was a co-discoverer of graphene, to weigh in. …

Despite Geim’s recent public defense, and a full-on PR campaign to turn around the perception that the UK government was investing millions into UK research only to have the fruits of that research sold off to foreign interests, there was news last week that the UK Parliament would be launching an inquiry into the “benefits and disbenefits of the way that graphene’s intellectual property and commercialisation has been managed, including through research and innovation collaborations.”

The timing for the inquiry is intriguing but there have been no public comments or hints that the NGI kerfuffle precipitated the Graphene Inquiry,

The Science and Technology Committee issues a call for written submissions for its inquiry on graphene.

Send written submissions

The inquiry explores the lessons from graphene for research and innovation in other areas, as well as the management and commercialisation of graphene’s intellectual property. Issues include:

  • The research obstacles that have had to be overcome for graphene, including identifying research priorities and securing research funding, and the lessons from this for other areas of research.
  • The factors that have contributed to the successful development of graphene and how these might be applied in other areas, including translating research into innovation, managing/sharing intellectual property, securing development funding, and bringing key stakeholders together.
  • The benefits and disbenefits of the way that graphene’s intellectual property and commercialisation has been managed, including through research and innovation collaborations, and the lessons from this for other areas.

The deadline for submissions is midday on Monday 18 April 2016.

The Committee expects to take oral evidence later in April 2016.

Getting back to the NGI, BGT Materials, and University of Manchester situation, there’s a forceful comment from Daniel Cochlin (identified as a graphene communications and marketing manager at the University of Manchester in an April 2, 2015 posting on Nanoclast) in Dexter’s latest posting about the NGI. From the comments section of a March 29, 2016 posting on the Nanoclast blog,

Maybe the best way to respond is to directly counter some of your assertions.

1. The NGI’s comments on this blog were to counter factual inaccuracies contained in your story. Your Editor-in-Chief and Editorial Director, Digital were also emailed to complain about the story, with not so much as an acknowledgement of the email.
2. There was categorically no ‘coaxing’ of Sir Andre to make comments. He was motivated to by the inaccuracies and insinuations of the Sunday Times article.
3. Members of the Science and Technology Select Committee visited the NGI about ten days before the Sunday Times article and this was followed by their desire to hold an evidence session to discuss graphene commercialisation.
4. The matter of how many researchers work in the NGI is not ‘hotly contested’. The NGI is 75% full with around 130 researchers regularly working there. We would expect this figure to grow by 10-15% within the next few days as other facilities are closed down.
5. Graphene Lighting PLC is the spin-out company set up to produce and market the lightbulb. To describe them as a ‘shadowy spin-out’ is unjustified and, I would suggest, libelous [emphasis mine].
6. Your question about why, if BGT Materials is a UK company, was it not mentioned [emphasis mine] in connection with the lightbulb is confusing – as stated earlier the company set up to manage the lightbulb was Graphene Lighting PLC.

Let’s hope it doesn’t take three days for this to be accepted by your moderators, as it did last time.

*ETA March 31, 2016 at 1530 hours PDT: Dexter has posted response comments in answer to Cochlin’s. You can read them for youself here .* I have a couple of observations (1) The use of the word ‘libelous’ seems a bit over the top. However, it should be noted that it’s much easier to sue someone for libel in England where the University of Manchester is located than it is in most jurisdictions. In fact, there’s an industry known as ‘libel tourism’ where litigious companies and individuals shop around for a jurisdiction such as England where they can easily file suit. (2) As for BGT Materials not being mentioned in the 2015 press release for the graphene lightbulb, I cannot emphasize how unusual that is. Generally speaking, everyone and every agency that had any involvement in developing and bringing to market a new product, especially one that was the ‘first consumer graphene-based product’, is mentioned. When you consider that BGT Materials is a newish company according to its About page,

BGT Materials Limited (BGT), established in 2013, is dedicated to the development of graphene technologies that utilize this “wonder material” to enhance our lives. BGT has pioneered the mass production of large-area, high-quality graphene rapidly achieving the first milestone required for the commercialization of graphene-enhanced applications.

the situation grows more peculiar. A new company wants and needs that kind of exposure to attract investment and/or keep current stakeholders happy. One last comment about BGT Materials and its public relations, Thanasis Georgiou, VP BGT Materials, Visiting scientist at the University of Manchester (more can be found on his website’s About page), waded into the comments section of Dexter’s March 15, 2016 posting and the first about the kerfuffle. Gheorgiou starts out in a relatively friendly fashion but his followup has a sharper tone,

I appreciate your position but a simple email to us and we would clarify most of the issues that you raised. Indeed your article carries the same inaccuracies that the initial Sunday Times article does, which is currently the subject of a legal claim by BGT Materials. [emphasis mine]

For example, BGT Materials is a UK registered company, not a Taiwanese one. A quick google search and you can confirm this. There was no “shadowy Canadian investor”, the company went through a round of financing, as most technology startups do, in order to reach the market quickly.

It’s hard to tell if Gheorgiou is trying to inform Dexter or threaten him in his comment to the March 15, 2016 posting but taken together with Daniel Cochlin’s claim of libel in his comment to the March 29, 2016 posting, it suggests an attempt at intimidation.

These are understandable responses given the stakes involved but moving to the most damaging munitions in your arsenal is usually not a good choice for your first  or second response.

Tempest in a teapot or a sign of things to come? UK’s National Graphene Institute kerfuffle

A scandal-in-the-offing, intellectual property, miffed academics, a chortling businessman, graphene, and much more make this a fascinating story.

Before launching into the main attractions, those unfamiliar with the UK graphene effort might find this background informal useful. Graphene, was first isolated at the University of Manchester in 2004 by scientists Andre Geim* and Konstantin Novoselov, Russian immigrants, both of whom have since become Nobel laureates and knights of the realm. The excitement in the UK and elsewhere is due to graphene’s extraordinary properties which could lead to transparent electronics, foldable/bendable electronics, better implants, efficient and inexpensive (they hope) water filters, and more. The UK government has invested a lot of money in graphene as has the European Union (1B Euros in the Graphene Flagship) in the hope that huge economic benefits will be reaped.

Dexter Johnson’s March 15, 2016 posting on his Nanoclast blog (on the IEEE [Institute for Electrical and Electronics Engineers] website) provides details about the situation (Note: Links have been removed),

A technology that, a year ago, was being lauded as the “first commercially viable consumer product” using graphene now appears to be caught up in an imbroglio over who owns its intellectual property rights. The resulting controversy has left the research institute behind the technology in a bit of a public relations quagmire.

The venerable UK publication The Sunday Times reported this week on what appeared to be a mutiny occurring at the National Graphene Institute (NGI) located at the University of Manchester. Researchers at the NGI had reportedly stayed away from working at the institute’s gleaming new $71 million research facility over fears that their research was going to end up in the hands of foreign companies, in particular a Taiwan-based company called BGT Materials.

The “first commercially viable consumer product” noted in Dexter’s posting was a graphene-based lightbulb which was announced by the NGI to much loud crowing in March 2015 (see my March 30, 2015 posting). The company producing the lightbulb was announced as “… Graphene Lighting PLC is a spin-out based on a strategic partnership with the National Graphene Institute (NGI) at The University of Manchester to create graphene applications.” There was no mention of BGT.

Dexter describes the situation from the BGT perspective (from his March 15, 2016 posting), Note: Links have been removed,

… BGT did not demur when asked by  the Times whether it owned the technology. In fact, Chung Ping Lai, BGT’s CEO, claimed it was his company that had invented the technology for the light bulb and not the NGI. The Times report further stated that Lai controls all the key patents and claims to be delighted with his joint venture with the university. “I believe in luck and I have had luck in Manchester,” Lai told the Times.

With companies outside the UK holding majority stakes in the companies spun out of the NGI—allowing them to claim ownership of the technologies developed at the institute—one is left to wonder what was the purpose of the £50 million (US $79 million) earmarked for graphene research in the UK more than four years ago? Was it to develop a local economy based around graphene—a “Graphene Valley”, if you will? Or was it to prop up the local construction industry through the building of shiny new buildings that reportedly few people occupy? That’s the charge leveled by Andre Geim, Nobel laureate for his discovery of graphene, and NGI’s shining star. Geim reportedly described the new NGI building as: “Money put in the British building industry rather than science.”

Dexter ends his March 15, 2016 posting with an observation  that will seem familiar to Canadians,

Now, it seems the government’s eagerness to invest in graphene research—or at least, the facilities for conducting that research—might have ended up bringing it to the same place as its previous lack of investment: the science is done in the UK and the exploitation of the technology is done elsewhere.

The March 13, 2016 Sunday Times article [ETA on April 3, 2016: This article is now behind a paywall] by Tom Harper, Jon Ungoed-Thomas and Michael Sheridan, which seems to be the source of Dexter’s posting, takes a more partisan approach,

ACADEMICS are boycotting a top research facility after a company linked to China was given access to lucrative confidential material from one of Britain’s greatest scientific breakthroughs.

Some scientists at Manchester University working on graphene, a wonder substance 200 times stronger than steel, refuse to work at the new £61m national institution, set up to find ways to exploit the material, amid concerns over a deal struck between senior university management and BGT Materials.

The academics are concerned that the National Graphene Institute (NGI), which was opened last year by George Osborne, the chancellor, and forms one of the key planks of his “northern powerhouse” industrial strategy, does not have the necessary safeguards to protect their confidential research, which could revolutionise the electronics, energy, health and building industries.

BGT, which is controlled by a Taiwanese businessman, subsequently agreed to work with a Chinese manufacturing company and university to develop similar graphene technology.

BGT says its work in Manchester has been successful and it is “offensive” and “untrue” to suggest that it would unfairly use intellectual property. The university say there is no evidence “whatsoever” of unfair use of confidential information. Manchester says it is understandable that some scientists are cautious about the collaborative environment of the new institute. But one senior academic said the arrangement with BGT had caused the university’s graphene research to descend into “complete anarchy”.

The academic said: “The NGI is a national facility, and why should we use it for a company, which is not even an English [owned] company? How much [intellectual property] is staying in England and how much is going to Taiwan?”

The row highlights concerns that the UK has dawdled in developing one of its greatest discoveries. Nearly 50% of ­graphene-related patents have been filed in China, and just 1% in Britain.

Manchester signed a £5m “research collaboration agreement” with BGT Materials in October 2013. Although the company is controlled by a Taiwanese businessman, Chung-ping Lai, the university does have a 17.5% shareholding.

Manchester claimed that the commercial deal would “attract a significant number of jobs to the city” and “benefit the UK economy”.

However, an investigation by The Sunday Times has established:

Only four jobs have been created as a result of the deal and BGT has not paid the full £5m due under the agreement after two projects were cancelled.

Pictures sent to The Sunday Times by a source at the university last month show that the offices at the NGI [National Graphene Institute], which can accommodate 120 staff, were deserted.

British-based businessmen working with graphene have also told The Sunday Times of their concerns about the institute’s information security. Tim Harper, a Manchester-based graphene entrepreneur, said: “We looked at locating there [at the NGI] but we take intellectual property extremely seriously and it is a problem locating in such a facility.

“If you don’t have control over your computer systems or the keys to your lab, then you’ve got a problem.”

I recommend reading Dexter’s post and the Sunday Times article as they provide some compelling insight into the UK situation vis à vis nanotechnology, science, and innovation.

*’Gheim’ corrected to ‘Geim’ on March 30, 2016.

Using copyright to shut down easy access to scientific research

This started out as a simple post on copyright and publishers vis à vis Sci-Hub but then John Dupuis wrote a think piece (with which I disagree somewhat) on the situation in a Feb. 22, 2016 posting on his blog, Confessions of a Science Librarian. More on Dupuis and my take on it after a description of the situation.

Sci-Hub

Before getting to the controversy and legal suit, here’s a preamble about the purpose for copyright as per the US constitution from Mike Masnick’s Feb. 17, 2016 posting on Techdirt,

Lots of people are aware of the Constitutional underpinnings of our copyright system. Article 1, Section 8, Clause 8 famously says that Congress has the following power:

To promote the progress of science and useful arts, by securing for limited times to authors and inventors the exclusive right to their respective writings and discoveries.

We’ve argued at great length over the importance of the preamble of that section, “to promote the progress,” but many people are confused about the terms “science” and “useful arts.” In fact, many people not well-versed in the issue often get the two backwards and think that “science” refers to inventions, and thus enables a patent system, while “useful arts” refers to “artistic works” and thus enables the copyright system. The opposite is actually the case. “Science” at the time the Constitution was written was actually synonymous with “learning” and “education” (while “useful arts” was a term meaning invention and new productivity tools).

While over the centuries, many who stood to benefit from an aggressive system of copyright control have tried to rewrite, whitewash or simply ignore this history, turning the copyright system falsely into a “property” regime, the fact is that it was always intended as a system to encourage the wider dissemination of ideas for the purpose of education and learning. The (potentially misguided) intent appeared to be that by granting exclusive rights to a certain limited class of works, it would encourage the creation of those works, which would then be useful in educating the public (and within a few decades enter the public domain).

Masnick’s preamble leads to a case where Elsevier (Publishers) has attempted to halt the very successful Sci-Hub, which bills itself as “the first pirate website in the world to provide mass and public access to tens of millions of research papers.” From Masnick’s Feb. 17, 2016 posting,

Rightfully, this is being celebrated as a massive boon to science and learning, making these otherwise hidden nuggets of knowledge and science that were previously locked up and hidden away available to just about anyone. And, to be clear, this absolutely fits with the original intent of copyright law — which was to encourage such learning. In a very large number of cases, it is not the creators of this content and knowledge who want the information to be locked up. Many researchers and academics know that their research has much more of an impact the wider it is seen, read, shared and built upon. But the gatekeepers — such as Elsveier and other large academic publishers — have stepped in and demanded copyright, basically for doing very little.

They do not pay the researchers for their work. Often, in fact, that work is funded by taxpayer funds. In some cases, in certain fields, the publishers actually demand that the authors of these papers pay to submit them. The journals do not pay to review the papers either. They outsource that work to other academics for “peer review” — which again, is unpaid. Finally, these publishers profit massively, having convinced many universities that they need to subscribe, often paying many tens or even hundreds of thousands of dollars for subscriptions to journals that very few actually read.

Simon Oxenham of the Neurobonkers blog on the big think website wrote a Feb. 9 (?), 2016 post about Sci-Hub, its originator, and its current legal fight (Note: Links have been removed),

On September 5th, 2011, Alexandra Elbakyan, a researcher from Kazakhstan, created Sci-Hub, a website that bypasses journal paywalls, illegally providing access to nearly every scientific paper ever published immediately to anyone who wants it. …

This was a game changer. Before September 2011, there was no way for people to freely access paywalled research en masse; researchers like Elbakyan were out in the cold. Sci-Hub is the first website to offer this service and now makes the process as simple as the click of a single button.

As the number of papers in the LibGen database expands, the frequency with which Sci-Hub has to dip into publishers’ repositories falls and consequently the risk of Sci-Hub triggering its alarm bells becomes ever smaller. Elbakyan explains, “We have already downloaded most paywalled articles to the library … we have almost everything!” This may well be no exaggeration. Elsevier, one of the most prolific and controversial scientific publishers in the world, recently alleged in court that Sci-Hub is currently harvesting Elsevier content at a rate of thousands of papers per day. Elbakyan puts the number of papers downloaded from various publishers through Sci-Hub in the range of hundreds of thousands per day, delivered to a running total of over 19 million visitors.

In one fell swoop, a network has been created that likely has a greater level of access to science than any individual university, or even government for that matter, anywhere in the world. Sci-Hub represents the sum of countless different universities’ institutional access — literally a world of knowledge. This is important now more than ever in a world where even Harvard University can no longer afford to pay skyrocketing academic journal subscription fees, while Cornell axed many of its Elsevier subscriptions over a decade ago. For researchers outside the US’ and Western Europe’s richest institutions, routine piracy has long been the only way to conduct science, but increasingly the problem of unaffordable journals is coming closer to home.

… This was the experience of Elbakyan herself, who studied in Kazakhstan University and just like other students in countries where journal subscriptions are unaffordable for institutions, was forced to pirate research in order to complete her studies. Elbakyan told me, “Prices are very high, and that made it impossible to obtain papers by purchasing. You need to read many papers for research, and when each paper costs about 30 dollars, that is impossible.”

While Sci-Hub is not expected to win its case in the US, where one judge has already ordered a preliminary injunction making its former domain unavailable. (Sci-Hub moved.) Should you be sympathetic to Elsevier, you may want to take this into account (Note: Links have been removed),

Elsevier is the world’s largest academic publisher and by far the most controversial. Over 15,000 researchers have vowed to boycott the publisher for charging “exorbitantly high prices” and bundling expensive, unwanted journals with essential journals, a practice that allegedly is bankrupting university libraries. Elsevier also supports SOPA and PIPA, which the researchers claim threatens to restrict the free exchange of information. Elsevier is perhaps most notorious for delivering takedown notices to academics, demanding them to take their own research published with Elsevier off websites like Academia.edu.

The movement against Elsevier has only gathered speed over the course of the last year with the resignation of 31 editorial board members from the Elsevier journal Lingua, who left in protest to set up their own open-access journal, Glossa. Now the battleground has moved from the comparatively niche field of linguistics to the far larger field of cognitive sciences. Last month, a petition of over 1,500 cognitive science researchers called on the editors of the Elsevier journal Cognition to demand Elsevier offer “fair open access”. Elsevier currently charges researchers $2,150 per article if researchers wish their work published in Cognition to be accessible by the public, a sum far higher than the charges that led to the Lingua mutiny.

In her letter to Sweet [New York District Court Judge Robert W. Sweet], Elbakyan made a point that will likely come as a shock to many outside the academic community: Researchers and universities don’t earn a single penny from the fees charged by publishers [emphasis mine] such as Elsevier for accepting their work, while Elsevier has an annual income over a billion U.S. dollars.

As Masnick noted, much of this research is done on the public dime (i. e., funded by taxpayers). For her part, Elbakyan has written a letter defending her actions on ethical rather than legal grounds.

I recommend reading the Oxenham article as it provides details about how the site works and includes text from the letter Elbakyan wrote.  For those who don’t have much time, Masnick’s post offers a good précis.

Sci-Hub suit as a distraction from the real issues?

Getting to Dupuis’ Feb. 22, 2016 posting and his perspective on the situation,

My take? Mostly that it’s a sideshow.

One aspect that I have ranted about on Twitter which I think is worth mentioning explicitly is that I think Elsevier and all the other big publishers are actually quite happy to feed the social media rage machine with these whack-a-mole controversies. The controversies act as a sideshow, distracting from the real issues and solutions that they would prefer all of us not to think about.

By whack-a-mole controversies I mean this recurring story of some person or company or group that wants to “free” scholarly articles and then gets sued or harassed by the big publishers or their proxies to force them to shut down. This provokes wide outrage and condemnation aimed at the publishers, especially Elsevier who is reserved a special place in hell according to most advocates of openness (myself included).

In other words: Elsevier and its ilk are thrilled to be the target of all the outrage. Focusing on the whack-a-mole game distracts us from fixing the real problem: the entrenched systems of prestige, incentive and funding in academia. As long as researchers are channelled into “high impact” journals, as long as tenure committees reward publishing in closed rather than open venues, nothing will really change. Until funders get serious about mandating true open access publishing and are willing to put their money where their intentions are, nothing will change. Or at least, progress will be mostly limited to surface victories rather than systemic change.

I think Dupuis is referencing a conflict theory (I can’t remember what it’s called) which suggests that certain types of conflicts help to keep systems in place while apparently attacking those systems. His point is well made but I disagree somewhat in that I think these conflicts can also raise awareness and activate people who might otherwise ignore or mindlessly comply with those systems. So, if Elsevier and the other publishers are using these legal suits as diversionary tactics, they may find they’ve made a strategic error.

ETA April 29, 2016: Sci-Hub does seem to move around so I’ve updated the links so it can be accessed but Sci-Hub’s situation can change at any moment.

Montreal Neuro goes open science

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Montreal Neuro and its place in Canadian and world history

Before pursuing this announcement a little more closely, you might be interested in some of the institute’s research history (from the Montreal Neurological Institute Wikipedia entry and Note: Links have been removed),

The MNI was founded in 1934 by the neurosurgeon Dr. Wilder Penfield (1891–1976), with a $1.2 million grant from the Rockefeller Foundation of New York and the support of the government of Quebec, the city of Montreal, and private donors such as Izaak Walton Killam. In the years since the MNI’s first structure, the Rockefeller Pavilion was opened, several major structures were added to expand the scope of the MNI’s research and clinical activities. The MNI is the site of many Canadian “firsts.” Electroencephalography (EEG) was largely introduced and developed in Canada by MNI scientist Herbert Jasper, and all of the major new neuroimaging techniques—computer axial tomography (CAT), positron emission tomography (PET), and magnetic resonance imaging (MRI) were first used in Canada at the MNI. Working under the same roof, the Neuro’s scientists and physicians made discoveries that drew world attention. Penfield’s technique for epilepsy neurosurgery became known as the Montreal procedure. K.A.C. Elliott identified γ-aminobutyric acid (GABA) as the first inhibitory neurotransmitter. Brenda Milner revealed new aspects of brain function and ushered in the field of neuropsychology as a result of her groundbreaking study of the most famous neuroscience patient of the 20th century, H.M., who had anterograde amnesia and was unable to form new memories. In 2007, the Canadian government recognized the innovation and work of the MNI by naming it one of seven national Centres of Excellence in Commercialization and Research.

For those with the time and the interest, here’s a link to an interview (early 2015?) with Brenda Milner (and a bonus, related second link) as part of a science podcast series (from my March 6, 2015 posting),

Dr. Wendy Suzuki, a Professor of Neural Science and Psychology in the Center for Neural Science at New York University, whose research focuses on understanding how our brains form and retain new long-term memories and the effects of aerobic exercise on memory. Her book Healthy Brain, Happy Life will be published by Harper Collins in the Spring of 2015.

  • Totally Cerebral: Untangling the Mystery of Memory: Neuroscientist Wendy Suzuki introduces us to scientists who have uncovered some of the deepest secrets about our brains. She begins by talking with experimental psychologist Brenda Milner [interviewed in her office at McGill University, Montréal, Quebéc], who in the 1950s, completely changed our understanding of the parts of the brain important for forming new long-term memories.
  • Totally Cerebral: The Man Without a Memory: Imagine never being able to form a new long term memory after the age of 27. Welcome to the life of the famous amnesic patient “HM”. Neuroscientist Suzanne Corkin studied HM for almost half a century, and gives us a glimpse of what daily life was like for him, and his tremendous contribution to our understanding of how our memories work.

Brief personal anecdote
For those who just want the science, you may want to skip this section.

About 15 years ago, I had the privilege of talking with Mary Filer, a former surgical nurse and artist in glass. Originally from Saskatchewan, she, a former member of Wilder Penfield’s surgical team, was then in her 80s living in Vancouver and still associated with Montreal Neuro, albeit as an artist rather than a surgical nurse.

Penfield had encouraged her to pursue her interest in the arts (he was an art/science aficionado) and at this point her work could be seen many places throughout the world and, if memory serves, she had just been asked to go MNI for the unveiling of one of her latest pieces.

Her husband, then in his 90s, had founded the School of Architecture at McGill University. This couple had known all the ‘movers and shakers’ in Montreal society for decades and retired to Vancouver where their home was in a former chocolate factory.

It was one of those conversations, you just don’t forget.

More about ‘open science’ at Montreal Neuro

Brian Owens’ Jan. 21, 2016 article for Science Magazine offers some insight into the reason for the move to ‘open science’,

Guy Rouleau, the director of McGill University’s Montreal Neurological Institute (MNI) and Hospital in Canada, is frustrated with how slowly neuroscience research translates into treatments. “We’re doing a really shitty job,” he says. “It’s not because we’re not trying; it has to do with the complexity of the problem.”

So he and his colleagues at the renowned institute decided to try a radical solution. Starting this year, any work done there will conform to the principles of the “open-
science” movement—all results and data will be made freely available at the time of publication, for example, and the institute will not pursue patents on any of its discoveries. …

“It’s an experiment; no one has ever done this before,” he says. The intent is that neuroscience research will become more efficient if duplication is reduced and data are shared more widely and earlier. …”

After a year of consultations among the institute’s staff, pretty much everyone—about 70 principal investigators and 600 other scientific faculty and staff—has agreed to take part, Rouleau says. Over the next 6 months, individual units will hash out the details of how each will ensure that its work lives up to guiding principles for openness that the institute has developed. …

Owens’ article provides more information about implementation and issues about sharing. I encourage you to read it in its entirety.

As for getting more research to the patient, there’s a Jan. 26, 2016 Cafe Scientifique talk in Vancouver (my Jan. 22, 2016 ‘Events’ posting; scroll down about 40% of the way) regarding that issue although there’s no hint that the speakers will be discussing ‘open science’.

Legal Issues and Intellectual Property Rights in Citizen Science (Dec. 10, 2015 event in Washington, DC)

Surprisingly (to me anyway), two of the speakers are Canadian.

Here’s more about the event from a Nov. 30, 2015 email notice,

Legal Issues and Intellectual Property Rights in Citizen Science

Capitalizing on the momentum from the recent White House event — which appointed citizen science coordinators in Federal agencies, highlighted legislation introduced in Congress concerning funding mechanisms and clarifying legal and administrative issues to using citizen science, and launched a new Federal toolkit on citizen science and crowdsourcing —  the Commons Lab is hosting a panel examining the legal issues affecting federal citizen science and the potential intellectual property rights that could arise from using citizen science.

This panel corresponds with the launch of two new Commons Lab Publications:
•    Managing Intellectual Property Rights in Citizen Science, by Teresa Scassa and Haewon Chung
•    Crowdsourcing, Citizen Science, and the Law: Legal Issues Affecting Federal Agencies, by Robert Gellman

As a project manager or researcher conducting citizen science, either at the federal level or in partnership with governmental agencies, there are certain issues like the Information Quality Act that will impact citizen science and crowdsourcing project design. Being aware of these issues prior to initiating projects will save time and provide avenues for complying with or “lawfully evading” potential barriers. The Commons Lab web-enabled policy tool will also be demonstrated at the event. This tool helps users navigate the complicated laws discussed in Robert Gellman’s report on legal issues affecting citizen science.
Intellectual property rights in the age of open source, open data, open science and also, citizen science, are complicated and require significant forethought before embarking on a citizen science project.  Please join us to hear from two experts on the legal barriers and intellectual property rights issues in citizen science and collect a hard copy of the reports.

Speakers

Teresa Scassa, Canada Research Chair in Information Law and Professor in the Faculty of Law, University of Ottawa
Haewon Chung, Doctoral Candidate in Law, University of Ottawa
Robert Gellman, Privacy and Information Policy Consultant in Washington, DC

Moderator

Jay Benforado, Office of Research and Development, U.S. Environmental Protection Agency

Here are the logistics, from the email,

Thursday, December 10th, 2015
11:00am – 12:30pm

6th Floor Auditorium

Directions

Wilson Center
Ronald Reagan Building and
International Trade Center
One Woodrow Wilson Plaza
1300 Pennsylvania, Ave., NW
Washington, D.C. 20004

Phone: 202.691.4000

You can register here for the event should you be attending or check this page for the webcast.

Nano and Japan and South Korea

It’s not always easy to get perspective about nanotechnology research and commercialization efforts in Japan and South Korea. So, it was good to see Marjo Johne’s Nov. 9, 2015 article for the Globe and Mail,

Nanotechnology, a subfield in advanced manufacturing [?] that produces technologies less than 100 nanometres in size (a human hair is about 800 times wider), is a burgeoning industry that’s projected to grow to about $135-billion in Japan by 2020. South Korea’s government said it is aiming to boost its share of the sector to 20 per cent of the global market in 2020.

“Japan and Korea are active markets for nanotechnology,” says Mark Foley, a consultant with NanoGlobe Pte. Ltd., a Singapore-based firm that helps nanotech companies bring their products to market. “Japan is especially strong on the research side and [South] Korea is very fast in plugging nanotechnology into applications.”

Andrej Zagar, author of a research paper on nanotechnology in Japan, points to maturing areas in Japan’s nanotechnology sector: applications such as nano electronics, coatings, power electronic, and nano-micro electromechanical systems for sensors. “Japan’s IT sector is making the most progress as the implementations here are made most quickly,” says Mr. Zagar, who works as business development manager at LECIP Holdings Corp., a Tokyo-based company that manufactures intelligent transport systems for global markets. “As Japan is very environmentally focused, the environment sector in nanotech – fuel-cell materials, lithium-ion nanomaterials – is worth focusing on.”

A very interesting article, although don’t take everything as gospel. The definition of nanotechnology as a subfield in advanced manufacturing is problematic to me since nanotechnology has medical and agricultural applications, which wouldn’t typically be described as part of an advanced manufacturing subfield. As well, I’m not sure where biomimicry would fit into this advanced manufacturing scheme. In any event, the applications mentioned in the article do fit that definition; its just not a comprehensive one.

Anyone who’s read this blog for a while knows I’m not a big fan of patents or the practice of using filed patents as a measure of scientific progress but in the absence of of a viable alternative, there’s this from Johne’s article,

Patent statistics suggest accelerated rates of nanotech-related innovations in these countries. According to StatNano, a website that monitors nanotechnology developments in the world, Japan and South Korea have the second and third highest number of nanotechnology patents filed this year with the United States Patent and Trademark Office.

As of September, Japan had filed close to 3,283 patents while South Korea’s total was 1,845. While these numbers are but a fraction of the United States’ 13,759 nanotech patents filed so far this year, they top Germany, which has only 1,100 USPTO nanotech patent filings this year, and Canada, which ranks 10th worldwide with 375 filings.

In South Korea, the rise of nanotechnology can be traced back to 2001, when the South Korean government launched its nanotechnology development plan, along with $94-million in funding. Since then, South Korea has poured more money into nanotechnology. As of 2012, it had invested close to $2-billion in nanotech research and development.

The applications mentioned in the article are the focus of competition not only in Japan and South Korea but internationally,

Mr. Foley says nanofibres and smart clothing are particularly hot areas in Japan these days. Nanofibers have broad applications and can be used in water and air filtration systems. He points to Toray Industries Inc. and Teijin Ltd. as leaders in advanced fibre technology.

“We’ve also seen advances in smart clothing in the last year or two, with clothing that can conduct electricity and measure things like heart rate, body temperature and sweat,” he says. “Last year, a sporting company in Japan released smart clothing based on Toray technology.”

How did Foley determine that ‘smart clothing’ is a particularly hot area in Japan? Is it the number of patents filed? Is it the amount of product in the marketplace? Is it consumer demand? And, how do those numbers compare with other countries? Also, I would have liked a little more detail as to what Foley meant by ‘nanofibres’.

This is a very Asia-centric story, which is a welcome change from US-centric and European-centric stories on this topic, and inevitably, China is mentioned,

As the nanotechnology industry continues to gain traction on a global scale, Mr. Foley says Japan and South Korea may have a hard time holding on to their top spots in the international market; China is moving up fast from behind.

“Top Chinese researchers from Harvard and Cambridge are returning to China, where in Suzhou City they’ve built a nanocity with over 200 nanotechnology-related companies,” he says …

The ‘nano city’ Foley mentions is called Nanopolis or Nanopolis Suzhou. It’s been mentioned here twice, first in a Jan. 20, 2014 posting and again in a Sept. 26, 2014 posting. It’s a massive project and I gather that while some buildings are occupied there are still a significant percentage under construction.