Category Archives: synthetic biology

Genetic engineering: an eggplant in Bangladesh and a synthetic biology grant at Concordia University (Canada)

I have two bits of genetic engineering news.

Eggplants in Bangladesh

I always marvel at their beauty,

Bt eggplant is the first genetically engineered food crop to be successfully introduced in South Asia. The crop is helping some of the world’s poorest farmers feed their families and communities while reducing the use of pesticides. Photo by Cornell Alliance for Science.

A July 17, 2018 news item on phys.org describes a genetic engineering application,

Ansar Ali earned just 11,000 taka – about $130 U.S. dollars – from eggplant he grew last year in Bangladesh. This year, after planting Bt eggplant, he brought home more than double that amount, 27,000 taka. It’s a life-changing improvement for a subsistence farmer like Ali.

Bt eggplant, or brinjal as it’s known in Bangladesh, is the first genetically engineered food crop to be successfully introduced in South Asia. Bt brinjal is helping some of the world’s poorest farmers to feed their families and communities, improve profits and dramatically reduce pesticide use. That’s according to Tony Shelton, Cornell professor of entomology and director of the Bt brinjal project funded by the United States Agency for International Development (USAID). Shelton and Jahangir Hossain, the country coordinator for the project in Bangladesh, lead the Cornell initiative to get these seeds into the hands of the small-scale, resource-poor farmers who grow a crop consumed daily by millions of Bangladeshis.

A July 11, 2018 Cornell University news release by Krisy Gashler, which originated the news item, expands on the theme (Note: Links have been removed),

Bt brinjal was first developed by the Indian seed company Mahyco in the early 2000s. Scientists inserted a gene from the bacterium Bacillus thuringiensis (thus the name, Bt) into nine brinjal varieties. The plants were engineered to resist the fruit and shoot borer, a devastating insect whose larvae bore into the stem and fruit of an eggplant. The insects cause up to 80 percent crop loss.

The Bt protein produced by the engineered eggplant causes the fruit and shoot borer larva to stop feeding, but is safe for humans consuming the eggplant, as proven through years of biosafety trials. In fact, Bt is commonly used by organic farmers to control caterpillars but has to be sprayed frequently to be effective. The Bt eggplant produces essentially the same protein as in the spray. More than 80 percent of field corn and cotton grown in the U.S. contains a Bt gene for insect control.

“Farmers growing Bt brinjal in Bangladesh are seeing three times the production of other brinjal varieties, at half the production cost, and are getting better prices at the market,” Hossain said.

A recent survey found 50 percent of farmers in Bangladesh said that they experienced illness due to the intense spraying of insecticides. Most farmers work in bare feet and without eye protection, leading to pesticide exposure that causes skin and eye irritation, and vomiting.

“It’s terrible for these farmers’ health and the health of the environment to spray so much,” said Shelton, who found that pesticide use on Bt eggplant was reduced as much as 92 percent in commercial Bt brinjal plantings. “Bt brinjal is a solution that’s really making a difference in people’s lives.”

Alhaz Uddin, a farmer in the Tangail district, made 6,000 taka growing traditional brinjal, but had to spend 4,000 taka on pesticides to combat fruit and shoot borer.

“I sprayed pesticides several times in a week,” he said. “I got sick many times during the spray.”

Mahyco initially wanted to introduce Bt brinjal in India and underwent years of successful safety testing. But in 2010, due to pressure from anti-biotechnology groups, the Indian minister of the environment placed a moratorium on the seeds. It is still in effect today, leaving brinjal farmers there without the effective and safe method of control available to their neighbors in Bangladesh.

Even before the Indian moratorium, Cornell scientists hosted delegations from Bangladesh that wanted to learn about Bt brinjal and the Agricultural Biotechnology Support Project II (ABSP II), a consortium of public and private institutions in Asia and Africa intended to help with the commercial development, regulatory approval and dissemination of bio-engineered crops, including Bt brinjal.

Cornell worked with USAID, Mahyco and the Bangladesh Agricultural Research Institute to secure regulatory approval, and in 2014 the Bangladeshi government distributed a small number of Bt brinjal plants to 20 farmers in four districts. The next year 108 farmers grew Bt brinjal, and the following year the number of farmers more than doubled to 250. In 2017 the number increased to 6,512 and in 2018 to 27,012. The numbers are likely even higher, according to Shelton, as there are no constraints against farmers saving seeds and replanting.

“Farmers who plant Bt brinjal are required to plant a small perimeter of traditional brinjal around the Bt variety; research has shown that the insects will infest plants in the buffer area, and this will slow their evolutionary development of resistance to the Bt plants,” Shelton said.

In a March 2017 workshop, Bangladeshi Agriculture Minister Begum Matia Chowdhury called Bt brinjal “a success story of local and foreign collaboration.”

“We will be guided by the science-based information, not by the nonscientific whispering of a section of people,” Chowdhury said. “As human beings, it is our moral obligation that all people in our country should get food and not go to bed on an empty stomach. Biotechnology can play an important role in this effect.”

Here’s what an infested eggplant looks like,

Non-Bt eggplant infested with fruit and shoot borer. Photo by Cornell Alliance for Science

It looks more like a fig than an eggplant.

This is part of a more comprehensive project as revealed in a March 29, 2016 Cornell University news release issued on the occasion of a $4.8M, three-year grant from the U.S. Agency for International Development (USAID),

… The award supports USAID’s work under Feed the Future, the U.S. government’s global initiative to fight hunger and improve food security using agricultural science and technology.

In the Feed the Future South Asia Eggplant Improvement Partnership, Cornell will protect eggplant farmers from yield losses and improve their livelihoods in partnership with the Bangladesh Agricultural Research Institute (BARI) and the University of the Philippines at Los Baños. Eggplant, or brinjal, is a staple crop that is an important source of income and nutrition for farmers and consumers in South Asia.

Over the past decade, Cornell has led the Agricultural Biotechnology Support Project II (ABSPII), also funded by USAID, that prompted a consortium of institutions in Asia and Africa to use the tools of modern biotechnology, particularly genetic engineering, to improve crops to address major production constraints for which conventional plant breeding tools have not been effective.

In October 2013, Bangladesh became the first country in South Asia to approve commercial cultivation of a genetically engineered food crop. In February 2014, Matia Chowdhury, the Bangladesh minister of agriculture, released four varieties of Bt brinjal to 20 farmers. With the establishment of the 20 Bt brinjal demonstration plots in 2014 and 104 more in 2015, BARI reported a noticeable decrease in fruit and shoot borer infestation, increased yields, decreased use of pesticide and improved income for farmers.

The Feed the Future South Asia Eggplant Improvement Partnership addresses and integrates all elements of the commercialization process — including technology development, regulation, marketing, seed distribution, and product stewardship. It also provides strong platforms for policy development, capacity building, gender equality, outreach and communication.

Moving on from practical applications …

Canada’s synthetic biology training centre

It seems Concordia University (Montréa) is a major Canadian centre for all things ‘synthetic biological’. (from the History and Vision webpage on Concordia University’s Centre for Applied Synthetic Biology webspace),

History and vision

Emerging in 2012 from a collaboration between the Biology and Electrical and Computer Engineering Departments, the Centre received University-wide status in 2016 growing its membership to include Biochemistry, Journalism, Communication Studies, Mechanical, Industrial and Chemical Engineering.


Timeline

T17-36393-VPRG-Timeline-graphic-promo-v4

You can see the timeline does not yet include 2018 development(s). Also it started as “a collaboration between the Biology and Electrical and Computer Engineering Departments?” This suggests a vastly different approach to genetic engineering that that employed in the “eggplant” research. From a July 16, 2018 posting on the Genome Alberta blog,

The Natural Sciences and Engineering Research Council of Canada (NSERC) has committed $1.65 million dollars over six years to establish a research and training program at Concordia’s Centre for Applied Synthetic Biology.

The funds were awarded after Malcolm Whiteway (…), professor of biology and the Canada Research Chair in Microbial Genomics, and the grant application team submitted a proposal to NSERC’s Collaborative Research and Training Experience (CREATE) program.

The Synthetic Biology Applications CREATE program — or SynBioApps — will help students acquire and develop important professional skills that complement their academic education and improve their job-readiness.

‘Concordia is a natural fit’

“As the Canadian leader in synthetic biology and as the home of the country’s only genome foundry, Concordia is a natural fit for a training program in this growing area of research,” says Christophe Guy, vice-president of Research and Graduate Studies.

“In offering a program like SynBioApps, we are providing our students with both a fundamental education in science and the business skills they’ll need to transition into their professional careers.”

The program’s aims are twofold: First, it will teach students how to design and construct cells and proteins for the development of new products related to human health, green technologies, and fundamental biological investigations. Second, it will provide cross-disciplinary training and internship opportunities through the university’s District 3 Innovation Center.

SynBioApps will be open to students from biology, biochemistry, engineering, computing, and mathematics.

“The ability to apply engineering approaches to biological systems promises to revolutionize both biology and industry,” says Whiteway, who is also a member of the Centre for Applied Synthetic Biology.

“The SynBioApps program at Concordia will provide a training program to develop the students who will both investigate the biology and build these industries.”

You can find out more about Concordia’s Centre for Applied Synthetic Biology here (there are jobs listed on their home page) and you can find information about the Synthetic Biology Applications (SynBioApps) training programme here.

The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle

Setting the stage

Not unexpectedly, CRISPR-Cas9  or clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 can be dangerous as these scientists note in a July 16, 2018 news item on phys.org,

Scientists at the Wellcome Sanger Institute have discovered that CRISPR/Cas9 gene editing can cause greater genetic damage in cells than was previously thought. These results create safety implications for gene therapies using CRISPR/Cas9 in the future as the unexpected damage could lead to dangerous changes in some cells.

Reported today (16 July 2018) in the journal Nature Biotechnology, the study also revealed that standard tests for detecting DNA changes miss finding this genetic damage, and that caution and specific testing will be required for any potential gene therapies.

This CRISPR-Cas9 image reminds me of popcorn,

CRISPR-associated protein Cas9 (white) from Staphylococcus aureus based on Protein Database ID 5AXW. Credit: Thomas Splettstoesser (Wikipedia, CC BY-SA 4.0)[ downloaded from https://phys.org/news/2018-07-genome-crisprcas9-gene-higher-thought.html#jCp]

A July 16, 2018 Wellcome Sanger Institute press release (also on EurekAlert), which originated the news item, offers a little more explanation,

CRISPR/Cas9 is one of the newest genome editing tools. It can alter sections of DNA in cells by cutting at specific points and introducing changes at that location. Already extensively used in scientific research, CRISPR/Cas9 has also been seen as a promising way to create potential genome editing treatments for diseases such as HIV, cancer or sickle cell disease. Such therapeutics could inactivate a disease-causing gene, or correct a genetic mutation. However, any potential treatments would have to prove that they were safe.

Previous research had not shown many unforeseen mutations from CRISPR/Cas9 in the DNA at the genome editing target site. To investigate this further the researchers carried out a full systematic study in both mouse and human cells and discovered that CRISPR/Cas9 frequently caused extensive mutations, but at a greater distance from the target site.

The researchers found many of the cells had large genetic rearrangements such as DNA deletions and insertions. These could lead to important genes being switched on or off, which could have major implications for CRISPR/Cas9 use in therapies. In addition, some of these changes were too far away from the target site to be seen with standard genotyping methods.

Prof Allan Bradley, corresponding author on the study from the Wellcome Sanger Institute, said: “This is the first systematic assessment of unexpected events resulting from CRISPR/Cas9 editing in therapeutically relevant cells, and we found that changes in the DNA have been seriously underestimated before now. It is important that anyone thinking of using this technology for gene therapy proceeds with caution, and looks very carefully to check for possible harmful effects.”

Michael Kosicki, the first author from the Wellcome Sanger Institute, said: “My initial experiment used CRISPR/Cas9 as a tool to study gene activity, however it became clear that something unexpected was happening. Once we realised the extent of the genetic rearrangements we studied it systematically, looking at different genes and different therapeutically relevant cell lines, and showed that the CRISPR/Cas9 effects held true.”

The work has implications for how CRISPR/Cas9 is used therapeutically and is likely to re-spark researchers’ interest in finding alternatives to the standard CRISPR/Cas9 method for gene editing.

Prof Maria Jasin, an independent researcher from Memorial Slone Kettering Cancer Centre, New York, who was not involved in the study said: “This study is the first to assess the repertoire of genomic damage arising at a CRISPR/Cas9 cleavage site. While it is not known if genomic sites in other cell lines will be affected in the same way, this study shows that further research and specific testing is needed before CRISPR/Cas9 is used clinically.”

For anyone who’d like to better understand the terms gene editing and CRISPR-Cas9, the Wellcome Sanger Institute provides these explanatory webpages, What is genome editing? and What is CRISPR-Cas9?

For the more advanced, here’s a link and a citation for the paper,

Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements by Michael Kosicki, Kärt Tomberg, & Allan Bradley. Nature Biotechnology DOI: https://doi.org/10.1038/nbt.4192 Published 16 July 2018

This paper appears to be open access.

The kerfuffle

It seems this news has affected the CRISPR market. From a July 16, 2018 article by Cale Guthrie Weissman for Fast Company,

… CRISPR could unknowingly delete or alter non-targeted genes, which could lead to myriad unintended consequences. This is especially frightening, since the technology is going to be used in human clinical trials.

Meanwhile, other scientists working with CRISPR are trying to downplay the findings, telling STAT [a life sciences and business journalism website] that there have been no reported adverse effects similar to what the study describes. The news, however, has brought about a market reaction–at least three publicly traded companies that focus on CRISPR-based therapies are in stock nosedive. Crispr Therapeutics is down by over 6%; Editas fell by over 3%; and Intellia Therapeutics dropped by over 5%. [emphasis mine]

Damage control

Gaetan Burgio (geneticist, Australian National University)  in a July 16, 2018 essay on phys.org (originating from The Conversation) suggests some calm (Note: Links have been removed),

But a new study has called into question the precision of the technique [CRISPR gene editing technology].

The hope for gene editing is that it will be able to cure and correct diseases. To date, many successes have been reported, including curing deafness in mice, and in altering cells to cure cancer.

Some 17 clinical trials in human patients are registered [emphasis mine] testing gene editing on leukaemias, brain cancers and sickle cell anaemia (where red blood cells are misshaped, causing them to die). Before implementing CRISPR technology in clinics to treat cancer or congenital disorders, we must address whether the technique is safe and accurate.

There are a few options for getting around this problem. One option is to isolate the cells we wish to edit from the body and reinject only the ones we know have been correctly edited.

For example, lymphocytes (white blood cells) that are crucial to killing cancer cells could be taken out of the body, then modified using CRISPR to heighten their cancer-killing properties. The DNA of these cells could be sequenced in detail, and only the cells accurately and specifically gene-modified would be selected and delivered back into the body to kill the cancer cells.

While this strategy is valid for cells we can isolate from the body, some cells, such as neurons and muscles, cannot be removed from the body. These types of cells might not be suitable for gene editing using Cas9 scissors.

Fortunately, researchers have discovered other forms of CRISPR systems that don’t require the DNA to be cut. Some CRISPR systems only cut the RNA, not the DNA (DNA contains genetic instructions, RNA convey the instructions on how to synthesise proteins).

As RNA [ribonucleic acid] remains in our cells only for a specific period of time before being degraded, this would allow us to control the timing and duration of the CRISPR system delivery and reverse it (so the scissors are only functional for a short period of time).

This was found to be successful for dementia in mice. Similarly, some CRISPR systems simply change the letters of the DNA, rather than cutting them. This was successful for specific mutations causing diseases such as hereditary deafness in mice.

I agree with Burgio’s conclusion (not included here) that we have a lot more to learn and I can’t help wondering why there are 17 registered human clinical trials at this point.

A transatlantic report highlighting the risks and opportunities associated with synthetic biology and bioengineering

I love e-Life, the open access journal where its editors noted that a submitted synthetic biology and bioengineering report was replete with US and UK experts (along with a European or two) but no expert input from other parts of the world. In response the authors added ‘transatlantic’ to the title. It was a good decision since it was too late to add any new experts if the authors planned to have their paper published in the foreseeable future.

I’ve commented many times here when panels of experts include only Canadian, US, UK, and, sometimes, European or Commonwealth (Australia/New Zealand) experts that we need to broaden our perspectives and now I can add: or at least acknowledge (e.g. transatlantic) that the perspectives taken are reflective of a rather narrow range of countries.

Now getting to the report, here’s more from a November 21, 2017 University of Cambridge press release,

Human genome editing, 3D-printed replacement organs and artificial photosynthesis – the field of bioengineering offers great promise for tackling the major challenges that face our society. But as a new article out today highlights, these developments provide both opportunities and risks in the short and long term.

Rapid developments in the field of synthetic biology and its associated tools and methods, including more widely available gene editing techniques, have substantially increased our capabilities for bioengineering – the application of principles and techniques from engineering to biological systems, often with the goal of addressing ‘real-world’ problems.

In a feature article published in the open access journal eLife, an international team of experts led by Dr Bonnie Wintle and Dr Christian R. Boehm from the Centre for the Study of Existential Risk at the University of Cambridge, capture perspectives of industry, innovators, scholars, and the security community in the UK and US on what they view as the major emerging issues in the field.

Dr Wintle says: “The growth of the bio-based economy offers the promise of addressing global environmental and societal challenges, but as our paper shows, it can also present new kinds of challenges and risks. The sector needs to proceed with caution to ensure we can reap the benefits safely and securely.”

The report is intended as a summary and launching point for policy makers across a range of sectors to further explore those issues that may be relevant to them.

Among the issues highlighted by the report as being most relevant over the next five years are:

Artificial photosynthesis and carbon capture for producing biofuels

If technical hurdles can be overcome, such developments might contribute to the future adoption of carbon capture systems, and provide sustainable sources of commodity chemicals and fuel.

Enhanced photosynthesis for agricultural productivity

Synthetic biology may hold the key to increasing yields on currently farmed land – and hence helping address food security – by enhancing photosynthesis and reducing pre-harvest losses, as well as reducing post-harvest and post-consumer waste.

Synthetic gene drives

Gene drives promote the inheritance of preferred genetic traits throughout a species, for example to prevent malaria-transmitting mosquitoes from breeding. However, this technology raises questions about whether it may alter ecosystems [emphasis mine], potentially even creating niches where a new disease-carrying species or new disease organism may take hold.

Human genome editing

Genome engineering technologies such as CRISPR/Cas9 offer the possibility to improve human lifespans and health. However, their implementation poses major ethical dilemmas. It is feasible that individuals or states with the financial and technological means may elect to provide strategic advantages to future generations.

Defence agency research in biological engineering

The areas of synthetic biology in which some defence agencies invest raise the risk of ‘dual-use’. For example, one programme intends to use insects to disseminate engineered plant viruses that confer traits to the target plants they feed on, with the aim of protecting crops from potential plant pathogens – but such technologies could plausibly also be used by others to harm targets.

In the next five to ten years, the authors identified areas of interest including:

Regenerative medicine: 3D printing body parts and tissue engineering

While this technology will undoubtedly ease suffering caused by traumatic injuries and a myriad of illnesses, reversing the decay associated with age is still fraught with ethical, social and economic concerns. Healthcare systems would rapidly become overburdened by the cost of replenishing body parts of citizens as they age and could lead new socioeconomic classes, as only those who can pay for such care themselves can extend their healthy years.

Microbiome-based therapies

The human microbiome is implicated in a large number of human disorders, from Parkinson’s to colon cancer, as well as metabolic conditions such as obesity and type 2 diabetes. Synthetic biology approaches could greatly accelerate the development of more effective microbiota-based therapeutics. However, there is a risk that DNA from genetically engineered microbes may spread to other microbiota in the human microbiome or into the wider environment.

Intersection of information security and bio-automation

Advancements in automation technology combined with faster and more reliable engineering techniques have resulted in the emergence of robotic ‘cloud labs’ where digital information is transformed into DNA then expressed in some target organisms. This opens the possibility of new kinds of information security threats, which could include tampering with digital DNA sequences leading to the production of harmful organisms, and sabotaging vaccine and drug production through attacks on critical DNA sequence databases or equipment.

Over the longer term, issues identified include:

New makers disrupt pharmaceutical markets

Community bio-labs and entrepreneurial startups are customizing and sharing methods and tools for biological experiments and engineering. Combined with open business models and open source technologies, this could herald opportunities for manufacturing therapies tailored to regional diseases that multinational pharmaceutical companies might not find profitable. But this raises concerns around the potential disruption of existing manufacturing markets and raw material supply chains as well as fears about inadequate regulation, less rigorous product quality control and misuse.

Platform technologies to address emerging disease pandemics

Emerging infectious diseases—such as recent Ebola and Zika virus disease outbreaks—and potential biological weapons attacks require scalable, flexible diagnosis and treatment. New technologies could enable the rapid identification and development of vaccine candidates, and plant-based antibody production systems.

Shifting ownership models in biotechnology

The rise of off-patent, generic tools and the lowering of technical barriers for engineering biology has the potential to help those in low-resource settings, benefit from developing a sustainable bioeconomy based on local needs and priorities, particularly where new advances are made open for others to build on.

Dr Jenny Molloy comments: “One theme that emerged repeatedly was that of inequality of access to the technology and its benefits. The rise of open source, off-patent tools could enable widespread sharing of knowledge within the biological engineering field and increase access to benefits for those in developing countries.”

Professor Johnathan Napier from Rothamsted Research adds: “The challenges embodied in the Sustainable Development Goals will require all manner of ideas and innovations to deliver significant outcomes. In agriculture, we are on the cusp of new paradigms for how and what we grow, and where. Demonstrating the fairness and usefulness of such approaches is crucial to ensure public acceptance and also to delivering impact in a meaningful way.”

Dr Christian R. Boehm concludes: “As these technologies emerge and develop, we must ensure public trust and acceptance. People may be willing to accept some of the benefits, such as the shift in ownership away from big business and towards more open science, and the ability to address problems that disproportionately affect the developing world, such as food security and disease. But proceeding without the appropriate safety precautions and societal consensus—whatever the public health benefits—could damage the field for many years to come.”

The research was made possible by the Centre for the Study of Existential Risk, the Synthetic Biology Strategic Research Initiative (both at the University of Cambridge), and the Future of Humanity Institute (University of Oxford). It was based on a workshop co-funded by the Templeton World Charity Foundation and the European Research Council under the European Union’s Horizon 2020 research and innovation programme.

Here’s a link to and a citation for the paper,

A transatlantic perspective on 20 emerging issues in biological engineering by Bonnie C Wintle, Christian R Boehm, Catherine Rhodes, Jennifer C Molloy, Piers Millett, Laura Adam, Rainer Breitling, Rob Carlson, Rocco Casagrande, Malcolm Dando, Robert Doubleday, Eric Drexler, Brett Edwards, Tom Ellis, Nicholas G Evans, Richard Hammond, Jim Haseloff, Linda Kahl, Todd Kuiken, Benjamin R Lichman, Colette A Matthewman, Johnathan A Napier, Seán S ÓhÉigeartaigh, Nicola J Patron, Edward Perello, Philip Shapira, Joyce Tait, Eriko Takano, William J Sutherland. eLife; 14 Nov 2017; DOI: 10.7554/eLife.30247

This paper is open access and the editors have included their notes to the authors and the authors’ response.

You may have noticed that I highlighted a portion of the text concerning synthetic gene drives. Coincidentally I ran across a November 16, 2017 article by Ed Yong for The Atlantic where the topic is discussed within the context of a project in New Zealand, ‘Predator Free 2050’ (Note: A link has been removed),

Until the 13th century, the only land mammals in New Zealand were bats. In this furless world, local birds evolved a docile temperament. Many of them, like the iconic kiwi and the giant kakapo parrot, lost their powers of flight. Gentle and grounded, they were easy prey for the rats, dogs, cats, stoats, weasels, and possums that were later introduced by humans. Between them, these predators devour more than 26 million chicks and eggs every year. They have already driven a quarter of the nation’s unique birds to extinction.

Many species now persist only in offshore islands where rats and their ilk have been successfully eradicated, or in small mainland sites like Zealandia where they are encircled by predator-proof fences. The songs in those sanctuaries are echoes of the New Zealand that was.

But perhaps, they also represent the New Zealand that could be.

In recent years, many of the country’s conservationists and residents have rallied behind Predator-Free 2050, an extraordinarily ambitious plan to save the country’s birds by eradicating its invasive predators. Native birds of prey will be unharmed, but Predator-Free 2050’s research strategy, which is released today, spells doom for rats, possums, and stoats (a large weasel). They are to die, every last one of them. No country, anywhere in the world, has managed such a task in an area that big. The largest island ever cleared of rats, Australia’s Macquarie Island, is just 50 square miles in size. New Zealand is 2,000 times bigger. But, the country has committed to fulfilling its ecological moonshot within three decades.

In 2014, Kevin Esvelt, a biologist at MIT, drew a Venn diagram that troubles him to this day. In it, he and his colleagues laid out several possible uses for gene drives—a nascent technology for spreading designer genes through groups of wild animals. Typically, a given gene has a 50-50 chance of being passed to the next generation. But gene drives turn that coin toss into a guarantee, allowing traits to zoom through populations in just a few generations. There are a few natural examples, but with CRISPR, scientists can deliberately engineer such drives.

Suppose you have a population of rats, roughly half of which are brown, and the other half white. Now, imagine there is a gene that affects each rat’s color. It comes in two forms, one leading to brown fur, and the other leading to white fur. A male with two brown copies mates with a female with two white copies, and all their offspring inherit one of each. Those offspring breed themselves, and the brown and white genes continue cascading through the generations in a 50-50 split. This is the usual story of inheritance. But you can subvert it with CRISPR, by programming the brown gene to cut its counterpart and replace it with another copy of itself. Now, the rats’ children are all brown-furred, as are their grandchildren, and soon the whole population is brown.

Forget fur. The same technique could spread an antimalarial gene through a mosquito population, or drought-resistance through crop plants. The applications are vast, but so are the risks. In theory, gene drives spread so quickly and relentlessly that they could rewrite an entire wild population, and once released, they would be hard to contain. If the concept of modifying the genes of organisms is already distasteful to some, gene drives magnify that distaste across national, continental, and perhaps even global scales.

These excerpts don’t do justice to this thought-provoking article. If you have time, I recommend reading it in its entirety  as it provides some insight into gene drives and, with some imagination on the reader’s part, the potential for the other technologies discussed in the report.

One last comment, I notice that Eric Drexler is cited as on the report’s authors. He’s familiar to me as K. Eric Drexler, the author of the book that popularized nanotechnology in the US and other countries, Engines of Creation (1986) .

Book commentaries: The Science of Orphan Black: The Official Companion and Star Trek Treknology; The Science of Star Trek from Tricorders to Warp Drive

I got more than I expected from both books (“The Science of Orphan Black: The Official Companion” by Casey Griffin and Nina Nesseth and “Star Trek Treknology; The Science of Star Trek from Tricorders to Warp Drive” by Ethan Siegel) I’m going to discuss by changing my expectations.

The Science of Orphan Black: The Official Companion

I had expected a book about the making of the series with a few insider stories about the production along with some science. Instead, I was treated to a season by season breakdown of the major scientific and related ethical issues in the fields of cloning and genetics.I don’t follow those areas exhaustively but from my inexpert perspective, the authors covered everything I could have hoped for (e.g., CRISPR/CAS9, Henrietta Lacks, etc.) in an accessible but demanding writing style  In other words, it’s a good read but it’s not a light read.

There are many, many pictures of Tatiana Maslany as one of her various clone identities in the book. Unfortunately, the images do not boast good reproduction values. This was disconcerting as it can lead a reader (yes, that was me) to false expectations (e.g., this is a picture book) concerning the contents. The boxed snippets from the scripts and explanatory notes inset into the text helped to break up some of the more heavy going material while providing additional historical/scripting/etc. perspectives. One small niggle, the script snippets weren’t always as relevant to the discussion at hand as the authors no doubt hoped.

I suggest reading both the Foreword by Cosima Herter, the series science consultant, and (although it could have done with a little editing) The Conversation between Cosima Herter and Graeme Manson (one of the producers). That’s where you’ll find that the series seems to have been incubated in Vancouver, Canada. It’s also where you’ll find out how much of Cosima Herter’s real life story is included in the Cosima clone’s life story.

The Introduction tells you how the authors met (as members of ‘the clone club’) and started working together as recappers for the series. (For anyone unfamiliar with the phenomenon or terminology, episodes of popular series are recapitulated [recapped] on one or more popular websites. These may or may not be commercial, i.e., some are fan sites.)

One of the authors, Casey Griffin, is a PhD candidate at the University of Southern California (USC) studying in the field of developmental and stem cell biology. I was not able to get much more information but did find her LinkedIn profile. The other author also has a science background. Nina Nesseth is described as a science communicator on the back cover of the book but she’s described as a staff scientist for Science North, a science centre located in Sudbury, Ontario, Canada. Her LinkedIn profile lists an honours Bachelor of Science (Biological and Medical Sciences) from Laurentian University, also located in Sudbury, Ontario.

It’s no surprise, given the authors’ educational background, that a bibliography (selected) has been included. This is something I very much appreciated. Oddly, given that Nesseth lists a graduate certificate in publishing as one of her credentials (on LinkedIn), there is no index (!?!). Unusually, the copyright page is at the back of the book instead of the front and boasts a fairly harsh copyright notice (summary: don’t copy anything, ever … unless you get written permission from ECW Press and the other copyright owners; Note: Herter is the copyright owner of her Foreword while the authors own the rest).

There are logos on the copyright page—more than I’m accustomed to seeing. Interestingly, two of them are government logos. It seems that taxpayers contributed to the publication of this book. The copyright notice seems a little facey to me since taxpayers (at least partially) subsidized the book, as well, Canadian copyright law has a concept called fair dealing (in the US, there’s something similar: fair use). In other words, if I chose, I could copy portions of the text without asking for permission if there’s no intent to profit from it and as long as I give attributions.

How, for example, could anyone profit from this?

In fact, in January 2017, Jun Wu and colleagues published their success in creating pig-human hybrids. (description of real research on chimeras on p. 98)

Or this snippet of dialogue,

[Charlotte] You’re my big sister.

[Sarah] How old are you? (p. 101)

All the quoted text is from “The Science of Orphan Black: The Official Companion” by Casey Griffin and Nina Nesseth (paperback published August 22, 2017).

On the subject of chimeras, the Canadian Broadcasting Corporation (CBC) featured a January 26, 2017 article about the pig-human chimeras on its website along with a video,

Getting back to the book, copyright silliness aside, it’s a good book for anyone interested in some of the  science and the issues associated with biotechnology, synthetic biology, genomes, gene editing technologies, chimeras, and more. I don’t think you need to have seen the series in order to appreciate the book.

Star Trek Treknology; The Science of Star Trek from Tricorders to Warp Drive

This looks and feels like a coffee table book. The images in this book are of a much higher quality than those in the ‘Orphan Black’ book. With thicker paper and extensive ink coverage lending to its glossy, attractive looks, it’s a physically heavy book. The unusually heavy use of black ink  would seem to be in service of conveying the feeling that you are exploring the far reaches of outer space.

It’s clear that “Star Trek Treknology; The Science of Star Trek from Tricorders to Warp Drive’s” author, Ethan Siegel, PhD., is a serious Star Trek and space travel fan. All of the series and movies are referenced at one time or another in the book in relationship to technology (treknology).

Unlike Siegel, while I love science fiction and Star Trek, I have never been personally interested in space travel. Regardless, Siegel did draw me in with his impressive ability to describe and explain physics-related ideas. Unfortunately, his final chapter on medical and biological ‘treknology’ is not as good. He covers a wide range of topics but no one is an expert on everything.

Siegel has a Wikipedia entry, which notes this (Note: Links have been removed),

Ethan R. Siegel (August 3, 1978, Bronx)[1] is an American theoretical astrophysicist and science writer, who studies Big Bang theory. He is a professor at Lewis & Clark College and he blogs at Starts With a Bang, on ScienceBlogs and also on Forbes.com since 2016.

By contrast with the ‘Orphan Black’ book, the tone is upbeat. It’s one of the reasons Siegel appreciates Star Trek in its various iterations,

As we look at the real-life science and technology behind the greatest advances anticipated by Star Trek, it’s worth remembering that the greatest legacy of the show is its message of hope. The future can be brighter and better than our past or present has ever been. It’s our continuing mission to make it so. (p. 6)

All the quoted text is from “Star Trek Treknology; The Science of Star Trek from Tricorders to Warp Drive” by Ethan Siegel (hard cover published October 15, 2017).

This book too has one of those copyright notices that fail to note you don’t need permission when it’s fair dealing to copy part of the text. While it does have an index, it’s on the anemic side and, damningly, there are neither bibliography nor reference notes of any sort. If Siegel hadn’t done such a good writing job, I might not have been so distressed.

For example, it’s frustrating for someone like me who’s been trying to get information on cortical/neural  implants and finds this heretofore unknown and intriguing tidbit in Siegel’s text,

In 2016, the very first successful cortical implant into a patient with ALS [amyotrophic lateral sclerosis] was completed, marking the very first fully implanted brain-computer interface in a human being. (p. 180)

Are we talking about the Australia team, which announced human clinical trials for their neural/cortical implant (my February 15, 2016 posting) or was it preliminary work by a team in Ohio (US) which later (?) announced a successful implant for a quadriplegic (also known as tetraplegic) patient who was then able to move hands and fingers (see my April 19, 2016 posting)? Or is it an entirely different team?

One other thing, I was a bit surprised to see no mention of quantum or neuromorphic computing in the chapter on computing. I don’t believe either was part of the Star Trek universe but they (neuromorphic and quantum computing) are important developments and Siegel makes a point, on at least a few occasions, of contrasting present day research with what was and wasn’t ‘predicted’ by Star Trek.

As for the ‘predictions’, there’s a longstanding interplay between storytellers and science and sometimes it can be a little hard to figure out which came first. I think Siegel might have emphasized that give and take a bit more.

Regardless of my nitpicking, Siegel is a good writer and managed to put an astonishing amount of ‘educational’ material into a lively and engaging book. That is not easy.

Final thoughts

I enjoyed both books and am very excited to see grounded science being presented along with the fictional stories of both universes (Star Trek and Orphan Black).

Yes, both books have their shortcomings (harsh copyright notices, no index, no bibliography, no reference notes, etc.) but in the main they offer adults who are sufficiently motivated a wealth of current scientific and technical information along with some elucidation of ethical issues.

Why don’t you CRISPR yourself?

It must have been quite the conference. Josiah Zayner plunged a needle into himself and claimed to have changed his DNA (deoxyribonucleic acid) while giving his talk. (*Segue: There is some Canadian content if you keep reading.*) From an Oct. 10, 2017 article by Adele Peters for Fast Company (Note: A link has been removed),

“What we’ve got here is some DNA, and this is a syringe,” Josiah Zayner tells a room full of synthetic biologists and other researchers. He fills the needle and plunges it into his skin. “This will modify my muscle genes and give me bigger muscles.”

Zayner, a biohacker–basically meaning he experiments with biology in a DIY lab rather than a traditional one–was giving a talk called “A Step-by-Step Guide to Genetically Modifying Yourself With CRISPR” at the SynBioBeta conference in San Francisco, where other presentations featured academics in suits and the young CEOs of typical biotech startups. Unlike the others, he started his workshop by handing out shots of scotch and a booklet explaining the basics of DIY [do-it-yourwelf] genome engineering.

If you want to genetically modify yourself, it turns out, it’s not necessarily complicated. As he offered samples in small baggies to the crowd, Zayner explained that it took him about five minutes to make the DNA that he brought to the presentation. The vial held Cas9, an enzyme that snips DNA at a particular location targeted by guide RNA, in the gene-editing system known as CRISPR. In this case, it was designed to knock out the myostatin gene, which produces a hormone that limits muscle growth and lets muscles atrophy. In a study in China, dogs with the edited gene had double the muscle mass of normal dogs. If anyone in the audience wanted to try it, they could take a vial home and inject it later. Even rubbing it on skin, Zayner said, would have some effect on cells, albeit limited.

Peters goes on to note that Zayner has a PhD in molecular biology and biophysics and worked for NASA (US National Aeronautics and Space Administration). Zayner’s Wikipedia entry fills in a few more details (Note: Links have been removed),

Zayner graduated from the University of Chicago with a Ph.D. in biophysics in 2013. He then spent two years as a researcher at NASA’s Ames Research Center,[2] where he worked on Martian colony habitat design. While at the agency, Zayner also analyzed speech patterns in online chat, Twitter, and books, and found that language on Twitter and online chat is closer to how people talk than to how they write.[3] Zayner found NASA’s scientific work less innovative than he expected, and upon leaving in January 2016, he launched a crowdfunding campaign to provide CRISPR kits to let the general public experiment with editing bacterial DNA. He also continued his grad school business, The ODIN, which sells kits to let the general public experiment at home. As of May 2016, The ODIN had four employees and operates out of Zayner’s garage.[2]

He refers to himself as a biohacker and believes in the importance in letting the general public participate in scientific experimentation, rather than leaving it segregated to labs.[2][4][1] Zayner found the biohacking community exclusive and hierarchical, particularly in the types of people who decide what is “safe”. He hopes that his projects can let even more people experiment in their homes. Other scientists responded that biohacking is inherently privileged, as it requires leisure time and money, and that deviance from the safety rules of concern would lead to even harsher regulations for all.[5] Zayner’s public CRISPR kit campaign coincided with wider scrutiny over genetic modification. Zayner maintained that these fears were based on misunderstandings of the product, as genetic experiments on yeast and bacteria cannot produce a viral epidemic.[6][7] In April 2015, Zayner ran a hoax on Craigslist to raise awareness about the future potential of forgery in forensics genetics testing.[8]

In February 2016, Zayner performed a full body microbiome transplant on himself, including a fecal transplant, to experiment with microbiome engineering and see if he could cure himself from gastrointestinal and other health issues. The microbiome from the donors feces successfully transplanted in Zayner’s gut according to DNA sequencing done on samples.[2] This experiment was documented by filmmakers Kate McLean and Mario Furloni and turned into the short documentary film Gut Hack.[9]

In December 2016, Zayner created a fluorescent beer by engineering yeast to contain the green fluorescent protein from jellyfish. Zayner’s company, The ODIN, released kits to allow people to create their own engineered fluorescent yeast and this was met with some controversy as the FDA declared the green fluorescent protein can be seen as a color additive.[10] Zayner, views the kit as a way that individual can use genetic engineering to create things in their everyday life.[11]

I found the video for Zayner’s now completed crowdfunding campaign,

I also found The ODIN website (mentioned in the Wikipedia essay) where they claim to be selling various gene editing and gene engineering kits including the CRISPR editing kits mentioned in Peters’ article,

In 2016, he [Zayner] sold $200,000 worth of products, including a kit for yeast that can be used to brew glowing bioluminescent beer, a kit to discover antibiotics at home, and a full home lab that’s roughly the cost of a MacBook Pro. In 2017, he expects to double sales. Many kits are simple, and most buyers probably aren’t using the supplies to attempt to engineer themselves (many kits go to classrooms). But Zayner also hopes that as people using the kits gain genetic literacy, they experiment in wilder ways.

Zayner sells a full home biohacking lab that’s roughly the cost of a MacBook Pro. [Photo: The ODIN]

He questions whether traditional research methods, like randomized controlled trials, are the only way to make discoveries, pointing out that in newer personalized medicine (such as immunotherapy for cancer, which is personalized for each patient), a sample size of one person makes sense. At his workshop, he argued that people should have the choice to self-experiment if they want to; we also change our DNA when we drink alcohol or smoke cigarettes or breathe in dirty city air. Other society-sanctioned activities are more dangerous. “We sacrifice maybe a million people a year to the car gods,” he said. “If you ask someone, ‘Would you get rid of cars?’–no.” …

US researchers both conventional and DIY types such as Zayner are not the only ones who are editing genes. The Chinese study mentioned in Peters’ article was written up in an Oct. 19, 2015 article by Antonio Regalado for the MIT [Massachusetts Institute of Technology] Technology Review (Note: Links have been removed),

Scientists in China say they are the first to use gene editing to produce customized dogs. They created a beagle with double the amount of muscle mass by deleting a gene called myostatin.

The dogs have “more muscles and are expected to have stronger running ability, which is good for hunting, police (military) applications,” Liangxue Lai, a researcher with the Key Laboratory of Regenerative Biology at the Guangzhou Institutes of Biomedicine and Health, said in an e-mail.

Lai and 28 colleagues reported their results last week in the Journal of Molecular Cell Biology, saying they intend to create dogs with other DNA mutations, including ones that mimic human diseases such as Parkinson’s and muscular dystrophy. “The goal of the research is to explore an approach to the generation of new disease dog models for biomedical research,” says Lai. “Dogs are very close to humans in terms of metabolic, physiological, and anatomical characteristics.”

Lai said his group had no plans breed to breed the extra-muscular beagles as pets. Other teams, however, could move quickly to commercialize gene-altered dogs, potentially editing their DNA to change their size, enhance their intelligence, or correct genetic illnesses. A different Chinese Institute, BGI, said in September it had begun selling miniature pigs, created via gene editing, for $1,600 each as novelty pets.

People have been influencing the genetics of dogs for millennia. By at least 36,000 years ago, early humans had already started to tame wolves and shape the companions we have today. Charles Darwin frequently cited dog breeding in The Origin of Species to demonstrate how evolution gradually occurs by a process of selection. With CRISPR, however, evolution is no longer gradual or subject to chance. It is immediate and under human control.

It is precisely that power that is stirring wide debate and concern over CRISPR. Yet at least some researchers think that gene-edited dogs could put a furry, friendly face on the technology. In an interview this month, George Church, a professor at Harvard University who leads a large effort to employ CRISPR editing, said he thinks it will be possible to augment dogs by using DNA edits to make them live longer or simply make them smarter.

Church said he also believed the alteration of dogs and other large animals could open a path to eventual gene editing of people. “Germline editing of pigs or dogs offers a line into it,” he said. “People might say, ‘Hey, it works.’ ”

In the meantime, Zayner’s ideas are certainly thought provoking. I’m not endorsing either his products or his ideas but it should be noted that early science pioneers such as Humphrey Davy and others experimented on themselves. For anyone unfamiliar with Davy, (from the Humphrey Davy Wikipedia entry; Note: Links have been removed),

Sir Humphry Davy, 1st Baronet PRS MRIA FGS (17 December 1778 – 29 May 1829) was a Cornish chemist and inventor,[1] who is best remembered today for isolating a series of substances for the first time: potassium and sodium in 1807 and calcium, strontium, barium, magnesium and boron the following year, as well as discovering the elemental nature of chlorine and iodine. He also studied the forces involved in these separations, inventing the new field of electrochemistry. Berzelius called Davy’s 1806 Bakerian Lecture On Some Chemical Agencies of Electricity[2] “one of the best memoirs which has ever enriched the theory of chemistry.”[3] He was a Baronet, President of the Royal Society (PRS), Member of the Royal Irish Academy (MRIA), and Fellow of the Geological Society (FGS). He also invented the Davy lamp and a very early form of incandescent light bulb.

Canadian content*

A Nov. 11, 2017 posting on the Canadian Broadcasting Corporation’s (CBC) Quirks and Quarks blog notes that self-experimentation has a long history and goes on to describe Zayner’s and others biohacking exploits before describing the legality of biohacking in Canada,

With biohackers entering into the space traditionally held by scientists and clinicians, it begs questions. Professor Timothy Caulfield, a Canada research chair in health, law and policy at the University of Alberta, says when he hears of somebody giving themselves biohacked gene therapy, he wonders: “Is this legal? Is this safe? And if it’s not safe, is there anything that we can do about regulating it? And to be honest with you that’s a tough question and I think it’s an open question.”

In Canada, Caulfield says, Health Canada focuses on products. “You have to have something that you are going to regulate or you have to have something that’s making health claims. So if there is a product that is saying I can cure X, Y, or Z, Health Canada can say, ‘Well let’s make sure the science really backs up that claim.’ The problem with these do-it-yourself approaches is there isn’t really a product. You know these people are experimenting on themselves with something that may or may not be designed for health purposes.”

According to Caufield, if you could buy a gene therapy kit that was being marketed to you to biohack yourself, that would be different. “Health Canada could jump in. But right here that’s not the case,” he says.

There are places in the world that do regulate biohacking, says Caulfield. “Germany, for example, they have specific laws for it. And here in Canada we do have a regulatory framework that says that you cannot do gene therapy that will alter the germ line. In other words, you can’t do gene therapy or any kind of genetic editing that will create a change that you will pass on to your offspring. So that would be illegal, but that’s not what’s happening here. And I don’t think there’s a regulatory framework that adequately captures it.”

Infectious disease and policy experts aren’t that concerned yet about the possibility of a biohacker unleashing a genetically modified super germ into the population.

“I think in the future that could be a problem,”says Caulfield, “but this isn’t something that would be easy to do in your garage. I think it’s complicated science. But having said that, the science is moving quickly. We need to think about how we are going to control the potential harms.”

You can find out more about the ‘wild’ people (mostly men) of early science in Richard Holmes’ 2008 book, The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science.

Finally, should you be interested in connecting with synthetic biology enthusiasts, entrepreneurs, and others, SynBioBeta is more than a conference; it’s also an activity hub.

ETA January 25, 2018 (five minutes later): There are some CRISPR/CAS9 events taking place in Toronto, Canada on January 24 and 25, 2018. One is a workshop with Portuguese artist, Marta de Menezes, and the other is a panel discussion. See my January 10, 2018 posting for more details.

*’Segue: There is some Canadian content if you keep reading.’ and ‘Canadian content’ added January 25, 2018 six minutes after first publication.

ETA February 20, 2018: Sarah Zhang’s Feb. 20, 2018 article for The Atlantic revisits Josiah Zayner’s decision to inject himself with CRISPR,

When Josiah Zayner watched a biotech CEO drop his pants at a biohacking conference and inject himself with an untested herpes treatment, he realized things had gone off the rails.

Zayner is no stranger to stunts in biohacking—loosely defined as experiments, often on the self, that take place outside of traditional lab spaces. You might say he invented their latest incarnation: He’s sterilized his body to “transplant” his entire microbiome in front of a reporter. He’s squabbled with the FDA about selling a kit to make glow-in-the-dark beer. He’s extensively documented attempts to genetically engineer the color of his skin. And most notoriously, he injected his arm with DNA encoding for CRISPR that could theoretically enhance his muscles—in between taking swigs of Scotch at a live-streamed event during an October conference. (Experts say—and even Zayner himself in the live-stream conceded—it’s unlikely to work.)

So when Zayner saw Ascendance Biomedical’s CEO injecting himself on a live-stream earlier this month, you might say there was an uneasy flicker of recognition.

“Honestly, I kind of blame myself,” Zayner told me recently. He’s been in a soul-searching mood; he recently had a kid and the backlash to the CRISPR stunt in October [2017] had been getting to him. “There’s no doubt in my mind that somebody is going to end up hurt eventually,” he said.

Yup, it’s one of the reasons for rules; people take things too far. The trick is figuring out how to achieve balance between risk taking and recklessness.

“Innovation and its enemies” and “Science in Wonderland”: a commentary on two books and a few thoughts about fish (1 of 2)

There’s more than one way to approach the introduction of emerging technologies and sciences to ‘the public’. Calestous Juma in his 2016 book, ”Innovation and Its Enemies; Why People Resist New Technologies” takes a direct approach, as can be seen from the title while Melanie Keene’s 2015 book, “Science in Wonderland; The Scientific Fairy Tales of Victorian Britain” presents a more fantastical one. The fish in the headline tie together, thematically and tenuously, both books with a real life situation.

Innovation and Its Enemies

Calestous Juma, the author of “Innovation and Its Enemies” has impressive credentials,

  • Professor of the Practice of International Development,
  • Director of the Science, Technology, and Globalization Project at Harvard Kennedy School’s Better Science and International Affairs,
  • Founding Director of the African Centre for Technology Studies in Nairobi (Kenya),
  • Fellow of the Royal Society of London, and
  • Foreign Associate of the US National Academy of Sciences.

Even better, Juma is an excellent storyteller perhaps too much so for a book which presents a series of science and technology adoption case histories. (Given the range of historical time periods, geography, and the innovations themselves, he always has to stop short.)  The breadth is breathtaking and Juma manages with aplomb. For example, the innovations covered include: coffee, electricity, mechanical refrigeration, margarine, recorded sound, farm mechanization, and the printing press. He also covers two recently emerging technologies/innovations: transgenic crops and AquAdvantage salmon (more about the salmon later).

Juma provides an analysis of the various ways in which the public and institutions panic over innovation and goes on to offer solutions. He also injects a subtle note of humour from time to time. Here’s how Juma describes various countries’ response to risks and benefits,

In the United States products are safe until proven risky.

In France products are risky until proven safe.

In the United Kingdom products are risky even when proven safe.

In India products are safe when proven risky.

In Canada products are neither safe nor risky.

In Japan products are either safe or risky.

In Brazil products are both safe and risky.

In sub-Saharan Africa products are risky even if they do not exist. (pp. 4-5)

To Calestous Juma, thank you for mentioning Canada and for so aptly describing the quintessentially Canadian approach to not just products and innovation but to life itself, ‘we just don’t know; it could be this or it could be that or it could be something entirely different; we just don’t know and probably will never know.’.

One of the aspects that I most appreciated in this book was the broadening of the geographical perspective on innovation and emerging technologies to include the Middle East, China, and other regions/countries. As I’ve  noted in past postings, much of the discussion here in Canada is Eurocentric and/or UScentric. For example, the Council of Canadian Academies which conducts assessments of various science questions at the request of Canadian and regional governments routinely fills the ‘international’ slot(s) for their expert panels with academics from Europe (mostly Great Britain) and/or the US (or sometimes from Australia and/or New Zealand).

A good example of Juma’s expanded perspective on emerging technology is offered in Art Carden’s July 7, 2017 book review for Forbes.com (Note: A link has been removed),

In the chapter on coffee, Juma discusses how Middle Eastern and European societies resisted the beverage and, in particular, worked to shut down coffeehouses. Islamic jurists debated whether the kick from coffee is the same as intoxication and therefore something to be prohibited. Appealing to “the principle of original permissibility — al-ibaha, al-asliya — under which products were considered acceptable until expressly outlawed,” the fifteenth-century jurist Muhamad al-Dhabani issued several fatwas in support of keeping coffee legal.

This wasn’t the last word on coffee, which was banned and permitted and banned and permitted and banned and permitted in various places over time. Some rulers were skeptical of coffee because it was brewed and consumed in public coffeehouses — places where people could indulge in vices like gambling and tobacco use or perhaps exchange unorthodox ideas that were a threat to their power. It seems absurd in retrospect, but political control of all things coffee is no laughing matter.

The bans extended to Europe, where coffee threatened beverages like tea, wine, and beer. Predictably, and all in the name of public safety (of course!), European governments with the counsel of experts like brewers, vintners, and the British East India Tea Company regulated coffee importation and consumption. The list of affected interest groups is long, as is the list of meddlesome governments. Charles II of England would issue A Proclamation for the Suppression of Coffee Houses in 1675. Sweden prohibited coffee imports on five separate occasions between 1756 and 1817. In the late seventeenth century, France required that all coffee be imported through Marseilles so that it could be more easily monopolized and taxed.

Carden who teaches economics at Stanford University (California, US) focuses on issues of individual liberty and the rule of law with regards to innovation. I can appreciate the need to focus tightly when you have a limited word count but Carden could have a spared a few words to do more justice to Juma’s comprehensive and focused work.

At the risk of being accused of the fault I’ve attributed to Carden, I must mention the printing press chapter. While it was good to see a history of the printing press and attendant social upheavals noting its impact and discovery in regions other than Europe; it was shocking to someone educated in Canada to find Marshall McLuhan entirely ignored. Even now, I believe it’s virtually impossible to discuss the printing press as a technology, in Canada anyway, without mentioning our ‘communications god’ Marshall McLuhan and his 1962 book, The Gutenberg Galaxy.

Getting back to Juma’s book, his breadth and depth of knowledge, history, and geography is packaged in a relatively succinct 316 pp. As a writer, I admire his ability to distill the salient points and to devote chapters on two emerging technologies. It’s notoriously difficult to write about a currently emerging technology and Juma even managed to include a reference published only months (in early 2016) before “Innovation and its enemires” was published in July 2016.

Irrespective of Marshall McLuhan, I feel there are a few flaws. The book is intended for policy makers and industry (lobbyists, anyone?), he reaffirms (in academia, industry, government) a tendency toward a top-down approach to eliminating resistance. From Juma’s perspective, there needs to be better science education because no one who is properly informed should have any objections to an emerging/new technology. Juma never considers the possibility that resistance to a new technology might be a reasonable response. As well, while there was some mention of corporate resistance to new technologies which might threaten profits and revenue, Juma didn’t spare any comments about how corporate sovereignty and/or intellectual property issues are used to stifle innovation and quite successfully, by the way.

My concerns aside, testimony to the book’s worth is Carden’s review almost a year after publication. As well, Sir Peter Gluckman, Chief Science Advisor to the federal government of New Zealand, mentions Juma’s book in his January 16, 2017 talk, Science Advice in a Troubled World, for the Canadian Science Policy Centre.

Science in Wonderland

Melanie Keene’s 2015 book, “Science in Wonderland; The scientific fairy tales of Victorian Britain” provides an overview of the fashion for writing and reading scientific and mathematical fairy tales and, inadvertently, provides an overview of a public education programme,

A fairy queen (Victoria) sat on the throne of Victoria’s Britain, and she presided over a fairy tale age. The nineteenth century witnessed an unprecedented interest in fairies and in their tales, as they were used as an enchanted mirror in which to reflection question, and distort contemporary society.30  …  Fairies could be found disporting themselves thought the century on stage and page, in picture and print, from local haunts to global transports. There were myriad ways in which authors, painters, illustrators, advertisers, pantomime performers, singers, and more, capture this contemporary enthusiasm and engaged with fairyland and folklore; books, exhibitions, and images for children were one of the most significant. (p. 13)

… Anthropologists even made fairies the subject of scientific analysis, as ‘fairyology’ determined whether fairies should be part of natural history or part of supernatural lore; just on aspect of the revival of interest in folklore. Was there a tribe of fairy creatures somewhere out thee waiting to be discovered, across the globe of in the fossil record? Were fairies some kind of folks memory of any extinct race? (p. 14)

Scientific engagements with fairyland was widespread, and not just as an attractive means of packaging new facts for Victorian children.42 … The fairy tales of science had an important role to play in conceiving of new scientific disciplines; in celebrating new discoveries; in criticizing lofty ambitions; in inculcating habits of mind and body; in inspiring wonder; in positing future directions; and in the consideration of what the sciences were, and should be. A close reading of these tales provides a more sophisticated understanding of the content and status of the Victorian sciences; they give insights into what these new scientific disciplines were trying to do; how they were trying to cement a certain place in the world; and how they hoped to recruit and train new participants. (p. 18)

Segue: Should you be inclined to believe that society has moved on from fairies; it is possible to become a certified fairyologist (check out the fairyologist.com website).

“Science in Wonderland,” the title being a reference to Lewis Carroll’s Alice, was marketed quite differently than “innovation and its enemies”. There is no description of the author, as is the protocol in academic tomes, so here’s more from her webpage on the University of Cambridge (Homerton College) website,

Role:
Fellow, Graduate Tutor, Director of Studies for History and Philosophy of Science

Getting back to Keene’s book, she makes the point that the fairy tales were based on science and integrated scientific terminology in imaginative ways although some books with more success than other others. Topics ranged from paleontology, botany, and astronomy to microscopy and more.

This book provides a contrast to Juma’s direct focus on policy makers with its overview of the fairy narratives. Keene is primarily interested in children but her book casts a wider net  “… they give insights into what these new scientific disciplines were trying to do; how they were trying to cement a certain place in the world; and how they hoped to recruit and train new participants.”

In a sense both authors are describing how technologies are introduced and integrated into society. Keene provides a view that must seem almost halcyon for many contemporary innovation enthusiasts. As her topic area is children’s literature any resistance she notes is primarily literary invoking a debate about whether or not science was killing imagination and whimsy.

It would probably help if you’d taken a course in children’s literature of the 19th century before reading Keene’s book is written . Even if you haven’t taken a course, it’s still quite accessible, although I was left wondering about ‘Alice in Wonderland’ and its relationship to mathematics (see Melanie Bayley’s December 16, 2009 story for the New Scientist for a detailed rundown).

As an added bonus, fairy tale illustrations are included throughout the book along with a section of higher quality reproductions.

One of the unexpected delights of Keene’s book was the section on L. Frank Baum and his electricity fairy tale, “The Master Key.” She stretches to include “The Wizard of Oz,” which doesn’t really fit but I can’t see how she could avoid mentioning Baum’s most famous creation. There’s also a surprising (to me) focus on water, which when it’s paired with the interest in microscopy makes sense. Keene isn’t the only one who has to stretch to make things fit into her narrative and so from water I move onto fish bringing me back to one of Juma’s emerging technologies

Part 2: Fish and final comments

Cyborg bacteria to reduce carbon dioxide

This video is a bit technical but then it is about work being presented to chemists at the American Chemical Society’s (ACS) at the 254th National Meeting & Exposition Aug. 20 -24, 2017,

For a more plain language explanation, there’s an August 22, 2017 ACS news release (also on EurekAlert),

Photosynthesis provides energy for the vast majority of life on Earth. But chlorophyll, the green pigment that plants use to harvest sunlight, is relatively inefficient. To enable humans to capture more of the sun’s energy than natural photosynthesis can, scientists have taught bacteria to cover themselves in tiny, highly efficient solar panels to produce useful compounds.

“Rather than rely on inefficient chlorophyll to harvest sunlight, I’ve taught bacteria how to grow and cover their bodies with tiny semiconductor nanocrystals,” says Kelsey K. Sakimoto, Ph.D., who carried out the research in the lab of Peidong Yang, Ph.D. “These nanocrystals are much more efficient than chlorophyll and can be grown at a fraction of the cost of manufactured solar panels.”

Humans increasingly are looking to find alternatives to fossil fuels as sources of energy and feedstocks for chemical production. Many scientists have worked to create artificial photosynthetic systems to generate renewable energy and simple organic chemicals using sunlight. Progress has been made, but the systems are not efficient enough for commercial production of fuels and feedstocks.

Research in Yang’s lab at the University of California, Berkeley, where Sakimoto earned his Ph.D., focuses on harnessing inorganic semiconductors that can capture sunlight to organisms such as bacteria that can then use the energy to produce useful chemicals from carbon dioxide and water. “The thrust of research in my lab is to essentially ‘supercharge’ nonphotosynthetic bacteria by providing them energy in the form of electrons from inorganic semiconductors, like cadmium sulfide, that are efficient light absorbers,” Yang says. “We are now looking for more benign light absorbers than cadmium sulfide to provide bacteria with energy from light.”

Sakimoto worked with a naturally occurring, nonphotosynthetic bacterium, Moorella thermoacetica, which, as part of its normal respiration, produces acetic acid from carbon dioxide (CO2). Acetic acid is a versatile chemical that can be readily upgraded to a number of fuels, polymers, pharmaceuticals and commodity chemicals through complementary, genetically engineered bacteria.

When Sakimoto fed cadmium and the amino acid cysteine, which contains a sulfur atom, to the bacteria, they synthesized cadmium sulfide (CdS) nanoparticles, which function as solar panels on their surfaces. The hybrid organism, M. thermoacetica-CdS, produces acetic acid from CO2, water and light. “Once covered with these tiny solar panels, the bacteria can synthesize food, fuels and plastics, all using solar energy,” Sakimoto says. “These bacteria outperform natural photosynthesis.”

The bacteria operate at an efficiency of more than 80 percent, and the process is self-replicating and self-regenerating, making this a zero-waste technology. “Synthetic biology and the ability to expand the product scope of CO2 reduction will be crucial to poising this technology as a replacement, or one of many replacements, for the petrochemical industry,” Sakimoto says.

So, do the inorganic-biological hybrids have commercial potential? “I sure hope so!” he says. “Many current systems in artificial photosynthesis require solid electrodes, which is a huge cost. Our algal biofuels are much more attractive, as the whole CO2-to-chemical apparatus is self-contained and only requires a big vat out in the sun.” But he points out that the system still requires some tweaking to tune both the semiconductor and the bacteria. He also suggests that it is possible that the hybrid bacteria he created may have some naturally occurring analog. “A future direction, if this phenomenon exists in nature, would be to bioprospect for these organisms and put them to use,” he says.

For more insight into the work, check out Dexter Johnson’s Aug. 22, 2017 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website),

“It’s actually a natural, overlooked feature of their biology,” explains Sakimoto in an e-mail interview with IEEE Spectrum. “This bacterium has a detoxification pathway, meaning if it encounters a toxic metal, like cadmium, it will try to precipitate it out, thereby detoxifying it. So when we introduce cadmium ions into the growth medium in which M. thermoacetica is hanging out, it will convert the amino acid cysteine into sulfide, which precipitates out cadmium as cadmium sulfide. The crystals then assemble and stick onto the bacterium through normal electrostatic interactions.”

I’ve just excerpted one bit, there’s more in Dexter’s posting.

Science for the global citizen course at McMaster University in Winter 2018

It’s never too early to start planning for your course load if a June 20, 2017 McMaster University (Ontario, Canada) news release is to be believed,

In the Winter 2018 term, the School of Interdisciplinary Science is offering Science 2M03: Science for the Global Citizen, a new course designed to explore those questions and more. In this blended-learning course, students from all Faculties will examine the links between science and the larger society through live guest lecturers and evidence-based online discussions.This course is open to students enrolled in Level II or above in any program. No scientific background is needed, only an interest in becoming a more engaged and informed citizen.

The new course will cover a broad range of contemporary scientific issues with significant political, economic, social, and health implications. Topics range from artificial intelligence (AI) to genetically modified organisms (GMOs) to space exploration.

Course instructors, Dr. Kim Dej, Dr. Chad Harvey, Dr. Rosa da Silva, and Dr. Sarah Symons, all from the School of Interdisciplinary Science, will examine the basic scientific theories and concepts behind these topical issues, and highlight the application and interpretation of science in popular media and public policy.

After taking this course, students from all academic backgrounds will have a better understanding of how science is conducted, how knowledge changes, and how we can become better consumers of scientific information and more informed citizens.

3 
 63 
 1 
 68 How can science help address the key challenges in our society? How does society affect the way that science is conducted? Do citizens have a strong enough understanding of science and its methods to answer these and other similar questions? In the Winter 2018 term, the School of Interdisciplinary Science is offering Science 2M03: Science for the Global Citizen, a new course designed to explore those questions and more. In this blended-learning course, students from all Faculties will examine the links between science and the larger society through live guest lecturers and evidence-based online discussions. This course is open to students enrolled in Level II or above in any program. No scientific background is needed, only an interest in becoming a more engaged and informed citizen. The new course will cover a broad range of contemporary scientific issues with significant political, economic, social, and health implications. Topics range from artificial intelligence (AI) to genetically modified organisms (GMOs) to space exploration. Course instructors, Dr. Kim Dej, Dr. Chad Harvey, Dr. Rosa da Silva, and Dr. Sarah Symons, all from the School of Interdisciplinary Science, will examine the basic scientific theories and concepts behind these topical issues, and highlight the application and interpretation of science in popular media and public policy. After taking this course, students from all academic backgrounds will have a better understanding of how science is conducted, how knowledge changes, and how we can become better consumers of scientific information and more informed citizens.

I’m glad to see this kind of course being offered. It does seem a bit odd that none of the instructors involved with this course appear to be from the social sciences or humanities. Drs. Dej, Harvey, and da Silva all have a background in biological sciences and Dr. Symons is a physicist. Taking another look at this line from the course description, “The new course will cover a broad range of contemporary scientific issues with significant political, economic, social, and health implications,” has me wondering how these scientists are going to cover the material, especially as I couldn’t find any papers on these topics written by any of these instructors. This section puzzles me even more, “… highlight the application and interpretation of science in popular media and public policy.” Again none of these instructors seem to have published on the topic of science in popular media or science public policy.

Guest speakers can help to fill in the blanks but with four instructors (and I would imagine a tight budget) it’s hard to believe there are going to be that many guests.

I appreciate that this is more of what they used to call a ‘survey course’ meant to introduce a number of ideas rather than conveying any in depth information but I do find the instructors’ apparent lack of theoretical knowledge about anything other than their respective fields of science somewhat disconcerting.

Regardless, I wish both the instructors and the students all the best.