Category Archives: energy

Like a starfish shell, facetless crystals

Made by accident, these facetless crystals could prove useful in applications for cells, medications, and more according to researchers at the University of Michigan in an Oct. 20, 2014 news item on Nanowerk,

In a design that mimics a hard-to-duplicate texture of starfish shells, University of Michigan engineers have made rounded crystals that have no facets.

“We call them nanolobes. They look like little hot air balloons that are rising from the surface,” said Olga Shalev, a doctoral student in materials science and engineering who worked on the project.

There is a video with the researcher, Olga Shalev, describing the nanolobes in more detail,

An Oct. 17, 2014 University of Michigan news release (also on EurekAlert*), which originated the news item, offers text for those who prefer to read about the science rather than receive it by video,

Both the nanolobes’ shape and the way they’re made have promising applications, the researchers say. The geometry could potentially be useful to guide light in advanced LEDs, solar cells and nonreflective surfaces. A layer might help a material repel water or dirt. And the process used to manufacture them – organic vapor jet printing – might lend itself to 3D-printing medications that absorb better into the body and make personalized dosing possible.

The nanoscale shapes are made out of boron subphthalocyanine chloride, a material often used in organic solar cells. It’s in a family of small molecular compounds that tend to make either flat films or faceted crystals with sharp edges, says Max Shtein, an associate professor of materials science and engineering, macromolecular science and engineering, chemical engineering, and art and design.

“In my years of working with these kinds of materials, I’ve never seen shapes that looked like these. They’re reminiscent of what you get from biological processes,” Shtein said. “Nature can sometimes produce crystals that are smooth, but engineers haven’t been able to do it reliably.”

Echinoderm sea creatures such as brittle stars have ordered rounded structures on their bodies that work as lenses to gather light into their rudimentary eyes. But in a lab, crystals composed of the same minerals tend either to be faceted with flat faces and sharp angles, or smooth, but lacking molecular order.

The U-M researchers made the curved crystals by accident several years ago. They’ve since traced their steps and figured out how to do it on purpose.

In 2010, Shaurjo Biswas, then a doctoral student at U-M, was making solar cells with the organic vapor jet printer. He was recalibrating the machine after switching between materials. Part of the recalibration process involves taking a close look at the fresh layers of material, of films, printed on a plate. Biswas X-rayed several films of different thicknesses to observe the crystal structure. He noticed that the boron subphthalocyanine chloride, which typically does not form ordered shapes, started to do so once the film got thicker than 600 nanometers. He made some thicker films to see what would happen.

“At first, we wondered if our apparatus was functioning properly,” Shtein said.

At 800 nanometers thick, the repeating nanolobe pattern emerged every time.

For a long while, the blobs were lab curiosities. Researchers were focused on other things. Then doctoral student Shalev got involved. She was fascinated by the structures and wanted to understand the reason for the phenomenon. She repeated the experiments in a modified apparatus that gave more control over the conditions to vary them systematically. She collaborated with physics professor Roy Clarke to gain a better understanding of the crystallization, and mechanical engineering professor Wei Lu to simulate the evolution of the surface.. She’s first author of a paper on the findings published in the current edition of Nature Communications.

“As far as we know, no other technology can do this,” Shalev said.

The organic vapor jet printing process the researchers use is a technique Shtein helped to develop when he was in graduate school. He describes it as spray painting, but with a gas rather than with a liquid. It’s cheaper and easier to do for certain applications than competing approaches that involve stencils or can only be done in a vacuum, Shtein says. He’s especially hopeful about the prospects for this technique to advance emerging 3D-printed pharmaceutical concepts.

For example, Shtein and Shalev believe this method offers a precise way to control the size and shape of the medicine particles, for easier absorption into the body. It could also allow drugs to be attached directly to other materials and it doesn’t require solvents that might introduce impurities.

Here’s a link to and a citation for the paper,

Growth and modelling of spherical crystalline morphologies of molecular materials by O. Shalev, S. Biswas, Y. Yang, T. Eddir, W. Lu, R. Clarke,  & M. Shtein. Nature Communications 5, Article number: 5204 doi:10.1038/ncomms6204 Published 16 October 2014

This paper is behind a paywall.

* EurekAlert link added on Oct. 20, 2014 at 1035 hours PDT.

University of Calgary (Alberta, Canada) welcomes ‘oil sands’ researcher with two news releases

I gather the boffins at the University of Calgary are beside themselves with joy as they welcome Steven Bryant from Texas, a nanoscience researcher with long ties to oil industry research. From an Oct. 17, 2014 University of Calgary news release by Stéphane Massinon,

The greatest energy challenge of the 21st century is to meet energy demand from available fuels while drastically reducing society’s environmental footprint.

The challenge is massive. The solution, according to Steven Bryant, may be miniscule.

Bryant will lead and co-ordinate nanotechnology and materials science research at the University of Calgary, and the integrated team of researchers from across campus who will aim to drastically change how the oilsands are developed.

Bryant says Alberta’s oilsands are a key resource for meeting the world’s energy demands and the status quo is not acceptable.

“There is a huge desire to extract this energy resource with less environmental impact and, we think, conceivably even zero-impact, because of some of the cool things that are becoming possible with nanotechnology,” says Bryant.

“That’s kind of blue-sky but that’s one of the things we will be trying to sow the seeds for — alternative ways to get the energy out of this resource altogether. It’s a chance to do things better than we are currently doing them because of rapid advances in mesoscience.”

The mention of mesoscience called to mind the mesocosm project featured in an Aug. 15, 2011 posting (Mesocosms and nanoparticles at Duke University) although it seems that mesoscience is a somewhat different beast according to Massinon’s news release,

Mesoscience — technology developed at smaller than 100 nanometres — offers many tantalizing options to increase the efficiency of in-situ oilsands development, or Steam-Assisted Gravity drainage (SAGD). SAGD is the extraction process in which producers drill horizontal wells beneath the surface to pump steam into the underground oilsands reservoirs to loosen the oil and pump it to the surface.

SAGD is the method currently used to pump nearly one million barrels per day in Alberta and the output is forecast to double by 2022. SAGD uses considerable volumes of water and requires energy to heat the water to produce the steam that softens the underground oil that is caked in sand.

By using nanotechnology, Bryant and his team are working on reducing the amount of energy needed to heat water to create steam while also making the underground heat source more efficient at gathering more oil.

“The holy grail for the last 30 years has been trying to get CO2 to be less viscous. If you can do that, then you can get it to contact a lot more of the oil and for the same amount of CO2, you get a lot more oil produced. That turned out to be hard to do because there aren’t many chemical ways to make CO2 more viscous,” says Bryant.

By employing innovative approaches now, industry, environment and consumers can benefit greatly in the not-too-distant future.

“These alternative ways to get the energy out are at least 10 years away. So it’s not going to happen tomorrow, but it’s worth thinking about now to try to see what might be possible,” says Bryant.

Apparently, Bryant (no mention of family members) is terribly excited about moving to Calgary, from the news release,

Bryant is looking forward to working in Canada’s energy hub and says he will also work with industry to tackle oil production issues.

Industry wants to be more efficient at extracting oil because it saves them money. Efficiency also means reducing the environmental footprint. He believes oil companies will welcome the research produced from the university and said Calgary is the ideal place to be world leaders in energy production and energy research.

“The university is close to where the action is. All the major operators are in town and there’s a chance to take things from the lab to the field. The University of Calgary is very well situated in that regard.”

Bryant is joining the Department of Chemical and Petroleum Engineering in the Schulich School of Engineering. Before accepting this position, he was at the University of Texas at Austin, as Bank of America Centennial Professor in the Department of Petroleum and Geosystems Engineering, and directed the Geological CO2 Storage Joint Industry Project and the Nanoparticles for Subsurface Engineering Industrial Affiliates Program.

Bryant pioneered the fields of digital petrophysics and nanoparticles for engineering applications, and has made some of the most significant advances in the past 20 years in porous media modeling, reactive transport theory and CO2 sequestration. Bryant has been published more than 280 times in books, book chapters, peer-reviewed journals and conference proceedings on applications in production engineering, reservoir engineering and formation evaluation. Over his career, Bryant has led major research initiatives involving industry partnerships and trained over 90 graduate students and postdoctoral fellows who found positions in several of the largest energy companies and national laboratories.

He looks forward to what happens next.

“There’s still a lot of cool, basic science to be done, but we’ll be doing it with an eye to making a difference in terms of how you get energy out of the oilsands. This won’t be business as usual.”

Meanwhile, there’s an Oct. 17, 2014 news item on Azonano that focuses on the University of Calgary’s response to receiving its first Canada Excellence Research Chair (a programme where the federal Canadian government throws a lot of money for salaries and research at universities which then try to recruit ‘world class’ researchers),

A world-leading nanotechnology researcher has come to Canada’s energy capital to become the first Canada Excellence Research Chair (CERC) at the University of Calgary.

Minister of State (Western Economic Diversification) Michelle Rempel announced today $10 million in federal funding to the university over seven years to create the CERC for Materials Engineering for Unconventional Oil Reservoirs. These funds will be matched by the University of Calgary.

The CERC has been awarded to renowned researcher Steven Bryant, who has joined the Schulich School of Engineering and will integrate a team of researchers from several departments of the Schulich School of Engineering and Faculty of Science.

An Oct. 17, 2014 University of Calgary news release (no byline is given but this is presumably from the university’s ‘corporate’ communications team), which originated the news item on Azonano,

Rempel said the federal government is focused on developing, attracting, and retaining world-leading researchers through record investment in science, technology and innovation. She added that Bryant’s application of new nanomaterials and technology will seek to develop new efficiencies within the oilsands industry while training the next generation of highly talented Canadian researchers.

“Our government is committed to ensuring advancement in sustainable energy resource technology. Dr. Bryant’s arrival at the University of Calgary will help consolidate Canada’s position as a global leader in this area. The research being conducted at the university is good for Calgary, good for the economy and good for Canada,” said Rempel.

President Elizabeth Cannon thanked the federal government for its financial support and said Bryant’s arrival vaults the university’s existing energy research to the next level.

“The University of Calgary is thrilled to have Dr. Steven Bryant join our energy research team, where he will play a key role exploring new and sustainable ways of developing unconventional resources,” said Cannon.

“We are confident that Dr. Bryant and his colleagues, working here at Canada’s energy university, will offer innovative solutions to the pressing challenges faced by our society: meeting ever-growing energy demands and drastically reducing our environmental footprint.”

In addition to the matching funds, the University of Calgary is planning additional support for major infrastructure and equipment for the CERC.

In 2008, the federal government launched the CERC program to encourage some of the most accomplished researchers around the world to work at Canadian universities.

The Canada Excellence Research Chair plays a significant role in the university’s energy strategy, which aims to make the University of Calgary a global leader in energy research. It is also critical to our Eyes High goal to becoming a top five Canadian research university.

Attracting world-class researchers to campus helps attract more students and post-docs to the university and exposes students and faculty to some of the world’s cutting-edge research.

Oddly, there’s no message of congratulations or recognition of this addition to Alberta’s nanotechnology community from Canada’s National Institute for Nanotechnology (NINT) located at the University of Alberta in Edmonton.

Replacing copper wire in motors?

Finnish researchers at Lappeenranta University of Technology (LUT) believe it may be possible to replace copper wire used in motors with spun carbon nanotubes. From an Oct. 15, 2014 news item on Azonano,

Lappeenranta University of Technology (LUT) introduces the first electrical motor applying carbon nanotube yarn. The material replaces copper wires in windings. The motor is a step towards lightweight, efficient electric drives. Its output power is 40 W and rotation speed 15000 rpm.

Aiming at upgrading the performance and energy efficiency of electrical machines, higher-conductivity wires are searched for windings. Here, the new technology may revolutionize the industry. The best carbon nanotubes (CNTs) demonstrate conductivities far beyond the best metals; CNT windings may have double the conductivity of copper windings.

”If we keep the design parameters unchanged only replacing copper with carbon nanotube yarns, the Joule losses in windings can be reduced to half of present machine losses. By lighter and more ecological CNT yarn, we can reduce machine dimensions and CO2 emissions in manufacturing and operation. Machines could also be run in higher temperatures,” says Professor Pyrhönen [Juha Pyrhönen], leading the prototype design at LUT.

An Oct. ??, 2014 (?) LUT press release, which originated the news item, further describes the work,

Traditionally, the windings in electrical machines are made of copper, which has the second best conductivity of metals at room temperature. Despite the high conductivity of copper, a large proportion of the electrical machine losses occur in the copper windings. For this reason, the Joule losses are often referred to as copper losses. The carbon nanotube yarn does not have a definite upper limit for conductivity (e.g. values of 100 MS/m have already been measured).

According to Pyrhönen, the electrical machines are so ubiquitous in everyday life that we often forget about their presence. In a single-family house alone there can be tens of electrical machines in various household appliances such as refrigerators, washing machines, hair dryers, and ventilators.

“In the industry, the number of electrical motors is enormous: there can be up to tens of thousands of motors in a single process industry unit. All these use copper in the windings. Consequently, finding a more efficient material to replace the copper conductors would lead to major changes in the industry,” tells Professor Pyrhönen.

There are big plans for this work according to the press release,

The prototype motor uses carbon nanotube yarns spun and converted into an isolated tape by a Japanese-Dutch company Teijin Aramid, which has developed the spinning technology in collaboration with Rice University, the USA. The industrial applications of the new material are still in their infancy; scaling up the production capacity together with improving the yarn performance will facilitate major steps in the future, believes Business Development Manager Dr. Marcin Otto from Teijin Aramid, agreeing with Professor Pyrhönen.

“There is a significant improvement potential in the electrical machines, but we are now facing the limits of material physics set by traditional winding materials. Superconductivity appears not to develop to such a level that it could, in general, be applied to electrical machines. Carbonic materials, however, seem to have a pole position: We expect that in the future, the conductivity of carbon nanotube yarns could be even three times the practical conductivity of copper in electrical machines. In addition, carbon is abundant while copper needs to be mined or recycled by heavy industrial processes.”

The researchers have produced this video about their research,

There’s a reference to some work done at Rice University (Texas, US) with Teijin Armid (Japanese-Dutch company) and Technion Institute (Israel) with spinning carbon nanotubes into threads that look like black cotton (you’ll see the threads in the video). It’s this work that has made the latest research in Finland possible. I have more about the the Rice/Teijin Armid/Technion CNT project in my Jan. 11, 2013 posting, Prima donna of nanomaterials (carbon nanotubes) tamed by scientists at Rice University (Texas, US), Teijin Armid (Dutch/Japanese company), and Technion Institute (based in Israel).

Fishnet of gold atoms improves solar cell performance

Apparently they’re calling the University of Western Ontario by a new name, Western University. Given the university’s location in what is generally acknowledged as central Canada or, sometimes, as eastern Canada, this seems like a geographically confusing approach not only in Canada but elsewhere too. After all, more than one country boasts a ‘west’.

A Sept. 26, 2014 news item on Nanowerk highlights new work on improving solar cell performance (Note: A link has been removed),

Scientists at Western University [Ontario, Canada] have discovered that a small molecule created with just 144 atoms of gold can increase solar cell performance by more than 10 per cent. These findings, published recently by the high-impact journal Nanoscale (“Tessellated gold nanostructures from Au144(SCH2CH2Ph)60 molecular precursors and their use in organic solar cell enhancement”), represent a game-changing innovation that holds the potential to take solar power mainstream and dramatically decrease the world’s dependence on traditional, resource-based sources of energy, says Giovanni Fanchini from Western’s Faculty of Science.

For those of us who remember ‘times tables’, the number 144 can have a special meaning as it is the last number (’12’ times ’12’ equals ‘144’) one was obliged to memorize. At least, that was true at my school in Vancouver, Canada but perhaps not elsewhere, eh?

Getting back to the ‘fishnet’, a Sept. 25, 2014 Western University news release, which originated the news item, expands the business possibilities for this work,

Fanchini, the Canada Research Chair in Carbon-based Nanomaterials and Nano-optoelectronics, says the new technology could easily be fast-tracked and integrated into prototypes of solar panels in one to two years and solar-powered phones in as little as five years.

“Every time you recharge your cell phone, you have to plug it in,” says Fanchini, an assistant professor in Western’s Department of Physics and Astronomy. “What if you could charge mobile devices like phones, tablets or laptops on the go? Not only would it be convenient, but the potential energy savings would be significant.”

The Western researchers have already started working with manufacturers of solar components to integrate their findings into existing solar cell technology and are excited about the potential.

“The Canadian business industry already has tremendous know-how in solar manufacturing,” says Fanchini. “Our invention is modular, an add-on to the existing production process, so we anticipate a working prototype very quickly.”

The news release then gives a few technical details,

Making nanoplasmonic enhancements, Fanchini and his team use “gold nanoclusters” as building blocks to create a flexible network of antennae on more traditional solar panels to attract an increase of light. While nanotechnology is the science of creating functional systems at the molecular level, nanoplasmonics investigates the interaction of light with and within these systems.

“Picture an extremely delicate fishnet of gold,” explains Fanchini explains, noting that the antennae are so miniscule they are unseen even with a conventional optical microscope. “The fishnet catches the light emitted by the sun and draws it into the active region of the solar cell.”

According to Fanchini, the spectrum of light reflected by gold is centered on the yellow colour and matches the light spectrum of the sun making it superior for such antennae as it greatly amplifies the amount of sunlight going directly into the device.

“Gold is very robust, resilient to oxidization and not easily damaged, making it the perfect material for long-term use,” says Fanchini. “And gold can also be recycled.”

It has been known for some time that larger gold nanoparticles enhance solar cell performance, but the Western team is getting results with “a ridiculously small amount” – approximately 10,000 times less than previous studies, which is 10,000 times less expensive too.

I hope to hear about a working prototype soon. Meanwhile, here’s a link to and a citation for the paper,

Tessellated gold nanostructures from Au144(SCH2CH2Ph)60 molecular precursors and their use in organic solar cell enhancement by Reg Bauld, Mahdi Hesari, Mark S. Workentin, and Giovanni Fanchini. Nanoscale, 2014,6, 7570-7575 DOI: 10.1039/C4NR01821D
First published online 06 May 2014

This paper is behind a paywall.

One final comment, it seems like a long lead time between publication of the paper and publicity. I wonder if the paper failed to get notice in May 2014, assuming there was a campaign at the time, or if this is considered a more optimal time period for getting noticed.

Canadian researchers harvest energy from chewing

Who knew that jaw movements have proved to be amongst the most promising activities for energy-harvesting? Apparently, scientists know and are coming up with ways to enjoy the harvest. From a Sept. 16, 2014 news item on Nanowerk,

A chin strap that can harvest energy from jaw movements has been created by a group of researchers in Canada.

It is hoped that the device can generate electricity from eating, chewing and talking, and power a number of small-scale implantable or wearable electronic devices, such as hearing aids, cochlear implants, electronic hearing protectors and communication devices.

An Institute of Physics (IOP) Sept. 16, 2014 news release (also on EurekAlert), which  generated the news item, explains just why jaw movements are so exciting and how the researchers went about ‘harvesting’,

Jaw movements have proved to be one of the most promising candidates for generating electricity from human body movements, with researchers estimating that an average of around 7 mW of power could be generated from chewing during meals alone.

To harvest this energy, the study’s researchers, from Sonomax-ÉTS Industrial Research Chair in In-ear Technologies (CRITIAS) at École de technologie supérieure (ÉTS) in Montreal, Canada, created a chinstrap made from piezoelectric fibre composites (PFC).

PFC is a type of piezoelectric smart material that consists of integrated electrodes and an adhesive polymer matrix. The material is able to produce an electric charge when it stretches and is subjected to mechanical stress.

In their study, the researchers created an energy-harvesting chinstrap made from a single layer of PFC and attached it to a pair of earmuffs using a pair of elastic side straps. To ensure maximum performance, the chinstrap was fitted snugly to the user, so when the user’s jaw moved it caused the strap to stretch.

To test the performance of the device, the subject was asked to chew gum for 60 seconds while wearing the device; at the same time the researchers recorded a number of different parameters.

The maximum amount of power that could be harvested from the jaw movements was around 18 µW, but taking into account the optimum set-up for the head-mounted device, the power output was around 10 µW.

Co-author of the study Aidin Delnavaz said: “Given that the average power available from chewing is around 7 mW, we still have a long way to go before we perfect the performance of the device.

“The power level we achieved is hardly sufficient for powering electrical devices at the moment; however, we can multiply the power output by adding more PFC layers to the chinstrap. For example, 20 PFC layers, with a total thickness of 6 mm, would be able to power a 200 µW intelligent hearing protector.”

One additional motivation for pursuing this area of research is the desire to curb the current dependency on batteries, which are not only expensive to replace but also extremely damaging to the environment if they are not disposed of properly.

“The only expensive part of the energy-harvesting device is the single PFC layer, which costs around $20. Considering the price and short lifetime of batteries, we estimate that a self-powered hearing protector based on the proposed chinstrap energy-harvesting device will start to pay back the investment after three years of use,” continued Delnavaz.

“Additionally, the device could substantially decrease the environmental impact of batteries and bring more comfort to users.

“We will now look at ways to increase the number of piezoelectric elements in the chinstrap to supply the power that small electronic devices demand, and also develop an appropriate power management circuit so that a tiny, rechargeable battery can be integrated into the device.”

Here’s a look at the ‘smart chinstrap’,

Caption: This is the experimental set up of an energy harvesting chin strap. Credit: Smart Materials and Structures/IOP Publishing

Caption: This is the experimental set up of an energy harvesting chin strap.
Credit: Smart Materials and Structures/IOP Publishing

I don’t see anyone rushing to get a chinstrap soon. Hopefully they’ll find a way to address some of the design issues. In the meantime, here’s a link to and a citation for the paper,

Flexible piezoelectric energy harvesting from jaw movements by Aidin Delnavaz and Jérémie Voix. 2014 Smart Mater. Struct. 23 105020 doi:10.1088/0964-1726/23/10/105020

This is an open access paper.

Buckydiamondoids steer electron flow

One doesn’t usually think about buckyballs (Buckminsterfullerenes) and diamondoids as being together in one molecule but that has not stopped scientists from trying to join them and, in this case, successfully. From a Sept. 9, 2014 news item on ScienceDaily,

Scientists have married two unconventional forms of carbon — one shaped like a soccer ball, the other a tiny diamond — to make a molecule that conducts electricity in only one direction. This tiny electronic component, known as a rectifier, could play a key role in shrinking chip components down to the size of molecules to enable faster, more powerful devices.

Here’s an illustration the scientists have provided,

Illustration of a buckydiamondoid molecule under a scanning tunneling microscope (STM). In this study the STM made images of the buckydiamondoids and probed their electronic properties.

Illustration of a buckydiamondoid molecule under a scanning tunneling microscope (STM). In this study the STM made images of the buckydiamondoids and probed their electronic properties.

A Sept. 9, 2014 Stanford University news release by Glenda Chui (also on EurekAlert), which originated the news item, provides some information about this piece of international research along with background information on buckyballs and diamondoids (Note: Links have been removed),

“We wanted to see what new, emergent properties might come out when you put these two ingredients together to create a ‘buckydiamondoid,'” said Hari Manoharan of the Stanford Institute for Materials and Energy Sciences (SIMES) at the U.S. Department of Energy’s SLAC National Accelerator Laboratory. “What we got was basically a one-way valve for conducting electricity – clearly more than the sum of its parts.”

The research team, which included scientists from Stanford University, Belgium, Germany and Ukraine, reported its results Sept. 9 in Nature Communications.

Many electronic circuits have three basic components: a material that conducts electrons; rectifiers, which commonly take the form of diodes, to steer that flow in a single direction; and transistors to switch the flow on and off. Scientists combined two offbeat ingredients – buckyballs and diamondoids – to create the new diode-like component.

Buckyballs – short for buckminsterfullerenes – are hollow carbon spheres whose 1985 discovery earned three scientists a Nobel Prize in chemistry. Diamondoids are tiny linked cages of carbon joined, or bonded, as they are in diamonds, with hydrogen atoms linked to the surface, but weighing less than a billionth of a billionth of a carat. Both are subjects of a lot of research aimed at understanding their properties and finding ways to use them.

In 2007, a team led by researchers from SLAC and Stanford discovered that a single layer of diamondoids on a metal surface can emit and focus electrons into a tiny beam. Manoharan and his colleagues wondered: What would happen if they paired an electron-emitting diamondoid with another molecule that likes to grab electrons? Buckyballs are just that sort of electron-grabbing molecule.

Details are then provided about this specific piece of research (from the Stanford news release),

For this study, diamondoids were produced in the SLAC laboratory of SIMES researchers Jeremy Dahl and Robert Carlson, who are world experts in extracting the tiny diamonds from petroleum. The diamondoids were then shipped to Germany, where chemists at Justus-Liebig University figured out how to attach them to buckyballs.

The resulting buckydiamondoids, which are just a few nanometers long, were tested in SIMES laboratories at Stanford. A team led by graduate student Jason Randel and postdoctoral researcher Francis Niestemski used a scanning tunneling microscope to make images of the hybrid molecules and measure their electronic behavior. They discovered that the hybrid is an excellent rectifier: The electrical current flowing through the molecule was up to 50 times stronger in one direction, from electron-spitting diamondoid to electron-catching buckyball, than in the opposite direction. This is something neither component can do on its own.

While this is not the first molecular rectifier ever invented, it’s the first one made from just carbon and hydrogen, a simplicity researchers find appealing, said Manoharan, who is an associate professor of physics at Stanford. The next step, he said, is to see if transistors can be constructed from the same basic ingredients.

“Buckyballs are easy to make – they can be isolated from soot – and the type of diamondoid we used here, which consists of two tiny cages, can be purchased commercially,” he said. “And now that our colleagues in Germany have figured out how to bind them together, others can follow the recipe. So while our research was aimed at gaining fundamental insights about a novel hybrid molecule, it could lead to advances that help make molecular electronics a reality.”

Other research collaborators came from the Catholic University of Louvain in Belgium and Kiev Polytechnic Institute in Ukraine. The primary funding for the work came from U.S. the Department of Energy Office of Science (Basic Energy Sciences, Materials Sciences and Engineering Divisions).

Here’s a link to and a citation for the paper,

Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids by Jason C. Randel, Francis C. Niestemski,    Andrés R. Botello-Mendez, Warren Mar, Georges Ndabashimiye, Sorin Melinte, Jeremy E. P. Dahl, Robert M. K. Carlson, Ekaterina D. Butova, Andrey A. Fokin, Peter R. Schreiner, Jean-Christophe Charlier & Hari C. Manoharan. Nature Communications 5, Article number: 4877 doi:10.1038/ncomms5877 Published 09 September 2014

This paper is open access. The scientists provided not only a standard illustration but a pretty picture of the buckydiamondoid,

Caption: An international team led by researchers at SLAC National Accelerator Laboratory and Stanford University joined two offbeat carbon molecules -- diamondoids, the square cages at left, and buckyballs, the soccer-ball shapes at right -- to create "buckydiamondoids," center. These hybrid molecules function as rectifiers, conducting electrons in only one direction, and could help pave the way to molecular electronic devices. Credit: Manoharan Lab/Stanford University

Caption: An international team led by researchers at SLAC National Accelerator Laboratory and Stanford University joined two offbeat carbon molecules — diamondoids, the square cages at left, and buckyballs, the soccer-ball shapes at right — to create “buckydiamondoids,” center. These hybrid molecules function as rectifiers, conducting electrons in only one direction, and could help pave the way to molecular electronic devices.
Credit: Manoharan Lab/Stanford University

Tibetan Buddhist singing bowls inspire more efficient solar cells

There’s no mention as to whether or not Dr Niraj Lal practices any form of meditation or how he came across Tibetan Buddhist singing bowls but somehow he was inspired by them when studying for his PhD at Cambridge University (UK). From a Sept. 8, 2014 news item by Niall Byrne for physorg.com,

The shape of a centuries-old Buddhist singing bowl has inspired a Canberra scientist to re-think the way that solar cells are designed to maximize their efficiency.

Dr Niraj Lal, of the Australian National University,  found during his PhD at the University of Cambridge, that small nano-sized versions of Buddhist singing bowls resonate with light in the same way as they do with sound, and he’s applied this shape to solar cells to increase their ability to capture more light and convert it into electricity.

A Sept. ?, 2014 news release from Australian science communication company, Science in Public, fills in a few more details without any mention of Lal’s meditation practices, should he have any,

“Current standard solar panels lose a large amount of light-energy as it hits the surface, making the panels’ generation of electricity inefficient,” says Niraj. “But if the cells are singing bowl-shaped, then the light bounces around inside the cell for longer”.

Normally used in meditation, music, and relaxation, Buddhist singing bowls make a continuous harmonic ringing sound when the rim of the metal bowl is vibrated with a wooden or other utensil.

During his PhD, Niraj discovered that his ‘nanobowls’ manipulated light by creating a ‘plasmonic’ resonance, which quadrupled the laboratory solar cell’s efficiency compared to a similarly made flat solar cell.

Now, Niraj and his team aim to change all that by applying his singing-bowl discovery to tandem solar cells: a technology that has previously been limited to aerospace applications.

In research which will be published in the November issue of IEEE Journal of Photonics, Niraj and his colleagues have shown that by layering two different types of solar panels on top of each other in tandem, the efficiency of flat rooftop solar panels can achieve 30 per cent—currently, laboratory silicon solar panels convert only 25 per cent of light into electricity, while commercial varieties convert closer to 20 per cent.

The tandem cell design works by absorbing a sunlight more effectively —each cell is made from a different material so that it can ‘see’ a different light wavelength.

“To a silicon solar cell, a rainbow just looks like a big bit of red in the sky—they don’t ‘see’ the blue, green or UV light—they convert all light to electricity as if it was red ,” says Niraj. “But when we put a second cell on top, which ‘sees’ the blue part of light, but allows the red to pass through to the ‘red-seeing’ cell below, we can reach a combined efficiency of more than 30 percent.”

Niraj and a team at ANU are now looking at ways to super-charge the tandem cell design by applying the Buddhist singing bowl shape to further increase efficiency.

“If we can make a solar cell that ‘sees’ more colours and  keeps the right light in the right layers, then we could increase efficiency even further,” says Niraj.

“Every extra percent in efficiency saves you thousands of dollars over the lifetime of the panel,” says Niraj. “Current roof-top solar panels have been steadily increasing in efficiency, which has been a big driver of the fourfold drop in the price for these panels over the last five years.”

More importantly, says Niraj, greater efficiency will allow solar technology to compete with fossil fuels and meet the challenges of climate change and access.

“Electricity is also one of the most enabling technologies we have ever seen, and linking people in rural areas around the world to electricity is one of the most powerful things we can do.”

At the end of the Science in Public news release there’s mention of a science communication competition,

Niraj was a 2014 national finalist of FameLab Australia. FameLab is a global science communication competition for early-career scientists. His work is supported by the Australian Research Council and ARENA – the Australian Renewable Energy Agency.

About FameLab

In 2014, the British Council and Fresh Science have joined forces to bring FameLab to Australia.

FameLab Australia will offer specialist science media training and, ultimately, the chance for early-career researchers to pitch their research at the FameLab International Grand Final in the UK at The Times Cheltenham Science Festival from 3 to 5 June 2014.

FameLab is an international communication competition for scientists, including engineers and mathematicians. Designed to inspire and motivate young researchers to actively engage with the public and with potential stakeholders, FameLab is all about finding the best new voices of science and engineering across the world.

Founded in 2005 by The Times Cheltenham Science Festival, FameLab, working in partnership with the British Council, has already seen more than 5,000 young scientists and engineers participate in over 23 different countries — from Hong Kong to South Africa, USA to Egypt.

Now, FameLab comes to Australia in a landmark collaboration with the British Council and Fresh Science — Australia’s very own science communication competition.

For more information about FameLab Australia, head to www.famelab.org.au

You can find out more about Australia’s Fresh Science here.

Getting back to Dr. Lal, here’s a video he made about his work and where he demonstrates a Tibetan Buddhist singing bowl (this is a very low tech video and the sound quality isn’t great),

Here’s a link to and a citation for Lal’s most recent paper,

Optics and Light Trapping for Tandem Solar Cells on Silicon by Lal, N.N.; White, T.P. ; and Catchpole, K.R. Photovoltaics, IEEE Journal of  (Volume:PP ,  Issue: 99) Page(s): 1 – 7 ISSN : 2156-3381 DOI: 10.1109/JPHOTOV.2014.2342491 Published online 19 August 2014

The paper is behind a paywall but there is open access to Lal’s 2012 University of Cambridge PhD thesis on his approach,

Enhancing solar cells with plasmonic nanovoids by Lal, Niraj Narsey
URI: http://www.dspace.cam.ac.uk/handle/1810/243864 Date:2012-07-03

Hap;y reading!

A tattoo that’s a biobattery and a sensor?

It’s going to be an American Chemical Society (ACS) 248th meeting kind of week as yet another interesting piece of scientific research is bruited (spread) about the internet. This time it’s all about sweat, exercise, and biobatteries. From an Aug. 13, 2014 news item on Nanowerk,

In the future, working up a sweat by exercising may not only be good for your health, but it could also power your small electronic devices. Researchers will report today that they have designed a sensor in the form of a temporary tattoo that can both monitor a person’s progress during exercise and produce power from their perspiration.

An Aug. 13, 2014 ACS news release on EurekAlert, which originated the news item, describes the inspiration (as opposed to perspiration) for this technology,

The device works by detecting and responding to lactate, which is naturally present in sweat. “Lactate is a very important indicator of how you are doing during exercise,” says Wenzhao Jia, Ph.D.

In general, the more intense the exercise, the more lactate the body produces. During strenuous physical activity, the body needs to generate more energy, so it activates a process called glycolysis. Glycolysis produces energy and lactate, the latter of which scientists can detect in the blood.

Professional athletes monitor their lactate levels during performance testing as a way to evaluate their fitness and training program. In addition, doctors measure lactate during exercise testing of patients for conditions marked by abnormally high lactate levels, such as heart or lung disease. Currently, lactate testing is inconvenient and intrusive because blood samples must be collected from the person at different times during the exercise regime and then analyzed.

The news release goes on to describe the research process which resulted in a temporary tattoo that could be used to power small scale electronics,

Jia, a postdoctoral student in the lab of Joseph Wang, D.Sc., at the University of California San Diego, and her colleagues developed a faster, easier and more comfortable way to measure lactate during exercise. They imprinted a flexible lactate sensor onto temporary tattoo paper. The sensor contained an enzyme that strips electrons from lactate, generating a weak electrical current. The researchers applied the tattoo to the upper arms of 10 healthy volunteers. Then the team measured the electrical current produced as the volunteers exercised at increasing resistance levels on a stationary bicycle for 30 minutes. In this way, they could continuously monitor sweat lactate levels over time and with changes in exercise intensity.

The team then went a step further, building on these findings to make a sweat-powered biobattery. Batteries produce energy by passing current, in the form of electrons, from an anode to a cathode. In this case, the anode contained the enzyme that removes electrons from lactate, and the cathode contained a molecule that accepts the electrons.

When 15 volunteers wore the tattoo biobatteries while exercising on a stationary bike, they produced different amounts of power. Interestingly, people who were less fit (exercising fewer than once a week) produced more power than those who were moderately fit (exercising one to three times per week). Enthusiasts who worked out more than three times per week produced the least amount of power. The researchers say that this is probably because the less-fit people became fatigued sooner, causing glycolysis to kick in earlier, forming more lactate. The maximum amount of energy produced by a person in the low-fitness group was 70 microWatts per cm2 of skin.

“The current produced is not that high, but we are working on enhancing it so that eventually we could power some small electronic devices,” Jia says. “Right now, we can get a maximum of 70 microWatts per cm2, but our electrodes are only 2 by 3 millimeters in size and generate about 4 microWatts — a bit small to generate enough power to run a watch, for example, which requires at least 10 microWatts. So besides working to get higher power, we also need to leverage electronics to store the generated current and make it sufficient for these requirements.”

Biobatteries offer certain advantages over conventional batteries: They recharge more quickly, use renewable energy sources (in this case, sweat), and are safer because they do not explode or leak toxic chemicals.

“These represent the first examples of epidermal electrochemical biosensing and biofuel cells that could potentially be used for a wide range of future applications,” Wang says.

The ACS has made a video about this work available,

It seems to me this tattoo battery could be used as a self-powered monitoring device in a medical application for heart or lung disease.

Hemp as a substitute for graphene in supercapacitors

As a member of the Cannabis plant family, hemp has an undeserved reputation due to its cousin’s (marijuana) notoriety and consciousness-altering properties. Hemp is, by contrast, the Puritan in the family, associated by the knowledgeable with virtues of thrift and hard work.

An Aug. 12, 2014 news item on Nanowerk highlights a hemp/supercapacitor presentation at the 248th meeting of the American Chemical Society (ACS),

As hemp makes a comeback in the U.S. after a decades-long ban on its cultivation, scientists are reporting that fibers from the plant can pack as much energy and power as graphene, long-touted as the model material for supercapacitors. They’re presenting their research, which a Canadian start-up company is working on scaling up, at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world’s largest scientific society.

David Mitlin, Ph.D., explains that supercapacitors are energy storage devices that have huge potential to transform the way future electronics are powered. Unlike today’s rechargeable batteries, which sip up energy over several hours, supercapacitors can charge and discharge within seconds. But they normally can’t store nearly as much energy as batteries, an important property known as energy density. One approach researchers are taking to boost supercapacitors’ energy density is to design better electrodes. Mitlin’s team has figured out how to make them from certain hemp fibers — and they can hold as much energy as the current top contender: graphene.

An Aug. 12, 2014 ACS news release features David Mitlin, formerly of the University of Alberta (Canada) where this research took place,, Mitlin is now with now with Clarkson University in New York,

“Our device’s electrochemical performance is on par with or better than graphene-based devices,” Mitlin says. “The key advantage is that our electrodes are made from biowaste using a simple process, and therefore, are much cheaper than graphene.”

The race toward the ideal supercapacitor has largely focused on graphene — a strong, light material made of atom-thick layers of carbon, which when stacked, can be made into electrodes. Scientists are investigating how they can take advantage of graphene’s unique properties to build better solar cells, water filtration systems, touch-screen technology, as well as batteries and supercapacitors. The problem is it’s expensive.

Mitlin’s group decided to see if they could make graphene-like carbons from hemp bast fibers. The fibers come from the inner bark of the plant and often are discarded from Canada’s fast-growing industries that use hemp for clothing, construction materials and other products. …

His team found that if they heated the fibers for 24 hours at a little over 350 degrees Fahrenheit, and then blasted the resulting material with more intense heat, it would exfoliate into carbon nanosheets.

Mitlin’s team built their supercapacitors using the hemp-derived carbons as electrodes and an ionic liquid as the electrolyte. Fully assembled, the devices performed far better than commercial supercapacitors in both energy density and the range of temperatures over which they can work. The hemp-based devices yielded energy densities as high as 12 Watt-hours per kilogram, two to three times higher than commercial counterparts. They also operate over an impressive temperature range, from freezing to more than 200 degrees Fahrenheit.

“We’re past the proof-of-principle stage for the fully functional supercapacitor,” he says. “Now we’re gearing up for small-scale manufacturing.”

I have not been able to confirm the name for Mitlin’s startup but I think it’s called Alta Supercaps (Alta being an abbreviation for Alberta,, amongst other things, and supercaps for supercapacitors) as per the information about a new startup on the Mitlin Group webspace (scroll down to the July 2, 2013 news item) which can still be found on the University of Alberta website (as of Aug. 12, 2014).

For those who would like more technical details, there is this July 2013 article by Mark Crawford for the ASME (American Society of Mechanical Engineers); Note: A link has been removed.

Activated carbons, templated carbons, carbon nanofibers, carbon nanotubes, and graphene have all been intensively studied as materials for supercapacitor electrodes. High manufacturing costs is one issue—another is that the power characteristics of many of these carbons are limited. This is a result of high microporosity, which increases ion transport limitations.

“It is becoming well understood that the key to achieving high power in porous electrodes is to reduce the ion transport limitations” says Mitlin. “Nanomaterials based on graphene and their hybrids have emerged as a new class of promising high-rate electrode candidates—they are, however, too expensive to manufacture compared to activated carbons derived from pyrolysis of agricultural wastes, or from the coking operations.”

Biomass, which mainly contains cellulose and lignin by-products, is widely utilized as a feedstock for producing activated carbons. Mitlin decided to test hemp bast fiber’s unique cellular structure to see if it could produce graphene-like carbon nanosheets.

Hemp fiber waste was pressure-cooked (hydrothermal synthesis) at 180 °C for 24 hours. The resulting carbonized material was treated with potassium hydroxide and then heated to temperatures as high as 800 °C, resulting in the formation of uniquely structured nanosheets. Testing of this material revealed that it discharged 49 kW of power per kg of material—nearly triple what standard commercial electrodes supply, 17 kW/kg.

Mitlin and his team successfully synthesized two-dimensional, yet interconnected, carbon nanosheets with superior electrochemical storage properties comparable to those of state-of-the-art graphene-based electrodes. “We were able to achieve this by employing a biomass precursor with a unique structure—hemp bast fiber,” says Mitlin. “The resultant graphene-like nanosheets possess fundamentally different properties—such as pore size distribution, physical interconnectedness, and electrical conductivity—as compared to conventional biomass-derived activated carbons.”

This image from Wikimedia was used to illustrate the Crawford article,

Hemp bast fiber is a low-cost graphene-like nanomaterial. Image: Wikimedia Commons

Hemp bast fiber is a low-cost graphene-like nanomaterial. Image: Wikimedia Commons

It seems to me that over the last few months there have been more than the usual number of supercapacitor stories, which makes the race to create the one that will break through in the marketplace fascinating to observe.

Wearable solar panels with perovskite

There was a bit of a flutter online in late July 2014 about solar cell research and perovskite, a material that could replace silicon therefore making solar cells more affordable, which hopefully would lead to greater adoption of the technology. Happily, the publishers of the study seem to have reissued their news release (h/t Aug. 11, 2014 news item on Nanwerk).

From the Wiley online press release Nr. 29/2014,

Textile solar cells are an ideal power source for small electronic devices incorporated into clothing. In the journal Angewandte Chemie, Chinese scientists have now introduced novel solar cells in the form of fibers that can be woven into a textile. The flexible, coaxial cells are based on a perovskite material and carbon nanotubes; they stand out due to their excellent energy conversion efficiency of 3.3 % and their low production cost.

The dilemma for solar cells: they are either inexpensive and inefficient, or they have a reasonable efficiency and are very expensive. One solution may come from solar cells made of perovskite materials, which are less expensive than silicon and do not require any expensive additives. Perovskites are materials with a special crystal structure that is like that of perovskite, a calcium titanate. These structures are often semiconductors and absorb light relatively efficiently. Most importantly, they can move electrons excited by light for long distances within the crystal lattice before they return to their energetic ground state and take up a solid position – a property that is very important in solar cells.

A team led by Hisheng Peng at Fudan University in Shanghai has now developed perovskite solar cells in the form of flexible fibers that can be woven into electronic textiles. Their production process is relatively simple and inexpensive because it uses a solution-based process to build up the layers.

The anode is a fine stainless steel wire coated with a compact n-semiconducting titanium dioxide layer. A layer of porous nanocrystalline titanium dioxide is deposited on top of this. This provides a large surface area for the subsequent deposition of the perovskite material CH3NH3PbI3. This is followed by a layer made of a special organic material. Finally a transparent layer of aligned carbon nanotubes is continuously wound over the whole thing to act as the cathode. The resulting fiber is so fine and flexible that it can be woven into textiles.

The perovskite layer absorbs light, that excites electrons and sets them free, causing a charge separation between the electrons and the formally positively charged “holes” The electrons enter the conducting band of the compact titanium dioxide layer and move to the anode. The “holes” are captured by the organic layer. The large surface area and the high electrical conductivity of the carbon nanotube cathode aid in the rapid conduction of the charges with high photoelectric currents. The fiber solar cell can attain an energy conversion efficiency of 3.3 %, exceeding that of all previous coaxial fiber solar cells made with either dyes or polymers.

Here’s an image used in the press release illustrating the new fiber,

[downloaded from http://www.wiley-vch.de/vch/journals/2002/press/201429press.pdf]

[downloaded from http://www.wiley-vch.de/vch/journals/2002/press/201429press.pdf]

Here’s a link to and a citation for the paper,

Integrating Perovskite Solar Cells into a Flexible Fiber by Longbin Qiu, Jue Deng, Xin Lu, Zhibin Yang, and Prof. Huisheng Peng. Angewandte Chemie International Edition DOI: 10.1002/anie.201404973 Article first published online: 22 JUL 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

I found a second item about perovskite and solar cells in a May 16, 2014 article by Vicki Marshall for Chemistry World which discussed some research in the UK (Note: Links have been removed),

A lead-free and non-toxic alternative to current perovskite solar-cell technology has been reported by researchers in the UK: tin halide perovskite solar cells. They are also cheaper to manufacture than the silicon solar cells currently dominating the market.

Nakita Noel, part of Henry Snaith’s research team at the University of Oxford, describes how perovskite materials have caused a bit of a whirlwind since they came out in 2009: ‘Everybody that’s working in the solar community is looking to beat silicon.’ Despite the high efficiency of conventional crystalline silicon solar cells (around 20%), high production and installation costs decrease their economic feasibility and widespread use.

The challenge to find a cheaper alternative led to the development of perovskite-based solar cells, as organic–inorganic metal trihalide perovskites have both abundant and cheap starting materials. However, the presence of lead in some semiconductors could create toxicology issues in the future. As Noel puts it ‘every conference you present at somebody is bound to put up their hand and ask “What about the lead – isn’t this toxic?”’

Brian Hardin, co-founder of PLANT PV, US, and an expert in new materials for photovoltaic cells, says the study ‘should be considered a seminal work on alternative perovskites and is extremely valuable to the field as they look to better understand how changes in chemistry affect solar cell performance and stability.’

Here’s a link to and a citation for the UK researchers’ paper,

Lead-free organic–inorganic tin halide perovskites for photovoltaic applications by Nakita K. Noel, Samuel D. Stranks, Antonio Abate, Christian Wehrenfennig, Simone Guarnera, Amir-Abbas Haghighirad, Aditya Sadhana, Giles E. Eperon, Sandeep K. Pathak, Michael B. Johnston, Annamaria Petrozza, Laura M. Herza, and Henry J. Snaith. Energy Environ. Sci., 2014, Advance Article DOI: 10.1039/C4EE01076K First published online 01 May 2014

This article was open access until June 27, 2014 but now it is behind a paywall.

I notice there’s no mention of lead in the materials describing the research paper from the Chinese scientists. Perhaps they were working with lead-free materials.