Category Archives: health

Overpromising and underdelivering: genome, stem cells, gene therapy and nano food

When people talk about overpromising (aka hype/hyperbole) and science, they’re usually referring to overexcited marketing collateral and/or a public relations initiative and/or news media coverage.  Scientists themselves don’t tend to be identified as one of the sources for hype even when that’s clearly the case. That’s right, scientists are people too and sometimes they get carried away by their enthusiasms as Emily Yoffe notes in her excellent Slate essay, The Medical Revolution; Where are the cures promised by stem cells, gene therapy, and the human genome? From Yoffe’s essay,

Dr. J. William Langston has been researching Parkinson’s disease for 25 years. At one time, it seemed likely he’d have to find another disease to study, because a cure for Parkinson’s looked imminent. In the late 1980s, the field of regenerative medicine seemed poised to make it possible for doctors to put healthy tissue in a damaged brain, reversing the destruction caused by the disease.

Langston was one of many optimists. In 1999, the then-head of the National Institute of Neurological Disorders and Stroke, Dr. Gerald Fischbach, testified before the Senate that with “skill and luck,” Parkinson’s could be cured in five to 10 years. Now Langston, who is 67, doesn’t think he’ll see a Parkinson’s cure in his professional lifetime. He no longer uses “the C word” and acknowledges he and others were naive. [emphasis mine] He understands the anger of patients who, he says, “are getting quite bitter” that they remain ill, long past the time when they thought they would have been restored to health.

The disappointments are so acute in part because the promises have been so big. Over the past two decades, we’ve been told that a new age of molecular medicine—using gene therapy, stem cells, and the knowledge gleaned from unlocking the human genome—would bring us medical miracles. [emphasis mine] Just as antibiotics conquered infectious diseases and vaccines eliminated the scourges of polio and smallpox, the ability to manipulate our cells and genes is supposed to vanquish everything from terrible inherited disorders, such as Huntington’s and cystic fibrosis, to widespread conditions like cancer, diabetes, and heart disease.

Yoffe goes on to outline the problems that researchers encounter when trying to ‘fix’ what’s gone wrong.

Parkinson’s disease was long held out as the model for new knowledge and technologies eradicating illnesses. Instead, it has become the model for its unforeseen consequences. [emphasis mine]

Langston, head of the Parkinson’s Institute and Clinical Center, explains that scientists believed the damage to patients took place in a discrete part of the brain, the substantia nigra. “It was a small target. All we’d have to do was replace the missing cells, do it once, and that would cure the disease,” Langston says. “We were wrong about that. This disease hits many other areas of the brain. You can’t just put transplants here and there. The brain is not a pincushion.”

Disease of all kinds have proven to be infinitely more complex than first realized. Disease is not ’cause and effect’ driven so much as it is a process with an infinite number of potential inputs and any number of potential outcomes. Take for example gene therapy (Note: the human genome project was supposed to yield gene therapies),

In some ways, gene therapy for boys with a deadly immune disorder, X-linked severe combined immune deficiency, also known as “bubble boy” disease, is the miracle made manifest. Inserting good genes into these children has allowed some to live normal lives. Unfortunately, within a few years of treatment, a significant minority have developed leukemia. The gene therapy, it turns out, activated existing cancer-causing genes in these children. This results in what the co-discoverer of the structure of DNA, James Watson, calls “the depressing calculus” of curing an invariably fatal disease—and hoping it doesn’t cause a sometimes-fatal one.

For me, it seems that that the human genome project was akin to taking a clock apart. Looking at the constituent parts and replacing broken ones does not guarantee that you will be able assemble a more efficient working version unless you know how the clock worked in the first place. We still don’t understand the basic parts, the genes,  interact with each other, within their environment, or with external inputs.

The state of our ignorance is illustrated by the recent sequencing of the genome of Bishop Desmond Tutu and four Bushmen. Three of the Bushmen had a gene mutation associated with a liver disease that kills people while young. But the Bushmen are all over 80—which means either the variation doesn’t actually cause the disease, or there are other factors protecting the Bushmen.

As for the pressures acting on the scientists themselves,

There are forces, both external and internal, on scientists that almost require them to oversell. Without money, there’s no science. Researchers must constantly convince administrators who control tax dollars, investors, and individual donors that the work they are doing will make a difference. Nancy Wexler says that in order to get funding, “You have to promise cures, that you’ll meet certain milestones within a certain time frame.”

The infomercial-level hype for both gene therapy and stem cells is not just because scientists are trying to convince funders, but because they want to believe. [emphases mine]

Scientific advances as one of Yoffe’s interview subjects points out involve a process dogged with failure and setbacks requiring an attitude of humility laced with patience and practiced over decades before an ‘overnight success’ occurs, if it ever does.

I was reminded of Yoffe’s article after reading a nano food article recently written by Kate Kelland for Reuters,

In a taste of things to come, food scientists say they have cooked up a way of using nanotechnology to make low-fat or fat-free foods just as appetizing and satisfying as their full-fat fellows.

The implications could be significant in combating the spread of health problems such as obesity, diabetes and heart disease.

There are two promising areas of research. First, they are looking at ways to slow digestion,

One thing they might look into is work by scientists at Britain’s Institute of Food Research (IFR), who said last month they had found an unexpected synergy that helped break down fat and might lead to new ways of slowing digestion, and ultimately to creating foods that made consumers feel fuller.

“Much of the fat in processed foods is eaten in the form of emulsions such as soups, yoghurt, ice cream and mayonnaise,” said the IFR’s Peter Wilde. “We are unpicking the mechanisms of digestion used to break them down so we can design fats in a rational way that are digested more slowly.”

The idea is that if digestion is slower, the final section of the intestine called the ileum will be put on its “ileal brake,” sending a signal to the consumer that means they feel full even though they have eaten less fat

This sounds harmless and it’s even possible it’s a good idea but then replacing diseased tissue with healthy tissue, as they tried with Parkinson’s Disease gene therapies, seemed like a good idea too. Just how well is the digestive process understood?

As for the second promising area of research,

Experts see promise in another nano technique which involves encapsulating nutrients in bubble-like structures known as vesicles that can be engineered to break down and release their contents at specific stages in the digestive system.

According to Vic Morris, a nano expert at the IFR, this technique in a larger form, micro-encapsulation, was well established in the food industry. The major difference with nano-encapsulation was that the smaller size might be able to take nutrients further or deliver them to more appropriate places. [emphasis mine]

They’ve been talking about trying to encapsulate and target medicines to more appropriate places and, as far as I’m aware, to no avail. I sense a little overenthusiasm on the experts’ part. Kelland does try to counterbalance this by discussing other issues with nanofood such as secretiveness about the food companies’ research, experts’ concerns over nanoparticles, and public concerns over genetically modified food. Still the allure of ‘all you can eat with no consequences’ is likely to overshadow any journalist’s attempt at balanced reporting with resulting disappointment when somebody realizes it’s all much more complicated than we thought.

Dexter Johnson’s Sept. 22, 2010 posting ( Protein-based Nanotubes Pass Electrical Signals Between Cells) on his Nanoclast blog offers more proof that we still have a lot to learn about basic biological processes,

A few years back, scientists led by Hans-Hermann Gerdes at the University of Bergen noticed that there were nanoscale tubes connecting cells sometimes over significant distances. This discovery launched a field known somewhat by the term in the biological community as the “nanotube field.”

Microbiologists remained somewhat skeptical on what this phenomenon was and weren’t entirely pleased with some explanations offered because they seemed to fall outside “existing biological concepts.”

So let’s start summing up.  The team notices nanotubes that connect cells over distances which microbiologists have difficulty accepting as “they [seem] to fall outside existing biological concepts. [emphasis mine] Now the team has published a paper which suggests that electrical signals pass through the nanotubes and that a ‘gap junction’ enables transmission to nonadjacent cells.  (Dexter’s description provides  more technical detail in an accessible writing style.)

As Dexter notes,

Another key biological question it helps address–or complicate, as the case may be–is the complexity of the human brain. This research makes the brain drastically more complex than originally thought, according to Gerdes. [emphasis mine]

Getting back to where I started, scientists are people too. They have their enthusiasms as well as pressure to get grants and produce results for governments and other investors, not to mention their own egos.  And while I’ve focused on the biological and medical sciences in this article, I think that all the sciences yield more questions than answers and that everything is far more complicated and  interconnected than we have yet to realize.

Research and the 2010 Canadian federal budget; nanotechnology, hype, markets, and medicine; Visionaries in Banagalore; materials science and PBS offer a grant opportunity; To Think To Write To Publish for emerging science writers

It’s time for quiet appreciation as Rob Annan (Don’t leave Canada behind blog) points out in his breakdown of the 2010 Canadian federal budget’s allocation for research.  From the posting (Budget 2010 – A Qualified Success),

Last year’s cuts to the research granting councils, though relatively small, were magnified by their inclusion in a so-called “stimulus budget” full of spending increases in other areas.

This year, the opposite is true. Funding increases, though relatively small, are made more significant by the context of spending restraint evidenced elsewhere in the budget.

Rob goes through the budget allocations for each of the research funding agencies and provides a comparison with previous funding amounts. As he points out, it’s not time to pop the champagne corks as this is a modest success albeit at a time when many were expecting deep cuts. One comment from me, this increase is not a good reason to get complacent and run back to the research facilities effectively disappearing from the public discourse. After all, there’s another budget next year.

Pallab Chatterjee of the IEEE (Institute of Electrical and Electronics Engineers) recently made some comments (on EDN [Electronics Design, Strategy, News] about nanotechnology and commercialization focusing (somewhat) on nanomedicine. It caught my eye because Andrew Maynard (2020 Science blog) has written a piece on cancer and nanomedicine which poses some questions about nanomedicine hype. First, the comments from Chatterjee,

The Nanosys announcement heralds the arrival of nanotechnology products from other companies that will soon be entering the market and shows that the typical eight- to 10-year gestation period for breakthrough technologies to reach commercialization is now reaching an end. For example, nanomedicine is now emerging as a major topic of investigation. To help solidify the topics in this area and to determine the best direction for commercialization, the ASME (American Society of Mechanical Engineers) held the First Global Congress on NEMB (nanoengineering for medicine and biology), a three-day event that took place last month in Houston.

As nanomedicine products hit the commercial marketplace, you can expect hype. According to Andrew (Nanotechnology and cancer treatment: Do we need a reality check?), government agencies have already been on a ‘hype’ trail of sorts (from 2020 Science),

Cancer treatment has been a poster-child for nanotechnology for almost as long as I’ve been involved with the field. As far back as in 1999, a brochure on nanotechnology published by the US government described future “synthetic anti-body-like nanoscale drugs or devices that might seek out and destroy malignant cells wherever they might be in the body.” Over the intervening decade, nanotechnology has become a cornerstone of the National Cancer Institute’s fight against cancer, and has featured prominently in the US government’s support for nanotechnology research and development.

Andrew goes on to quote various experts in the field discussing what they believe can be accomplished. These comments are hopeful and measured and stand in stark contrast to what I imagine will occur once nanomedicine products seriously enter the marketplace. Take for example, Michael Berger’s (Nanowerk) comments about the wildly overhyped nanotechnology market valuations. From Berger’s 2007 article (Debunking the trillion dollar nanotechnology market size hype),

There seems to be an arms race going on among nanotechnology investment and consulting firms as to who can come up with the highest figure for the size of the “nanotechnology market”. The current record stands at $2.95 trillion by 2015. The granddaddy of the trillion-dollar forecasts of course is the National Science Foundation’s (NSF) “$1 trillion by 2015″, which inevitably gets quoted in many articles, business plans and funding applications.

The problem with these forecasts is that they are based on a highly inflationary data collection and compilation methodology. The result is that the headline figures – $1 trillion!, $2 trillion!, $3 trillion! – are more reminiscent of supermarket tabloids than serious market research. Some would call it pure hype. This type of market size forecast leads to misguided expectations because few people read the entire report and in the end only the misleading trillion-dollar headline figure gets quoted out of context, even by people who should now better, and finally achieves a life by itself.

The comments and the figures that Berger cites are still being used ensuring commentary is still relevant. In fact, if you apply the psychology of how these claims become embedded, these comments can be applied to nanomedicine as well.

On a not entirely unrelated note, MIT’s (Massachusetts Institute of Technology) Technology Review Journal has organised a meeting in Bangalore which starts on Monday, March 8, 2010. From the news item on Business Standard,

Nearly a hundred of the world’s leading business and tech visionaries will discuss next generation technologies that are ready for the market in the annual Emerging Technologies Conference (Emtech) in Bangalore next week.

The two-day conference begining March 8 is being held in India for the second year in succession in association with CyberMedia.

The conference, organised by the Massachusetts Institute of Technology’s Technology Review journal, will cover a variety of cutting edge topics ranging from green computing techniques, clean transport alternatives and smarter energy grid to the role that wireless can play in connecting India.

Special sessions on innovative diagnostics and neglected diseases will draw attention towards unheralded health care fields. A session on the future of nanotechnology will touch on new capabilities, giving people new ways to make things and heal bodies.

Finally, I got my monthly NISENet (Nanoscale Informal Science Education Network) newsletter and found a couple of opportunities (from the newsletter), one for materials scientists,

Making Stuff Grant Opportunity
The Materials Research Society and WGBH will be premiering Making Stuff, a four-part PBS series about materials science, in fall 2010 and are looking for outreach partners to organize and host events, demos, workshops, and science cafes in connection with the premiere.  They’ll provide outreach partners with a stipend as well as a resource toolkit.  One of the four episodes is focused on nanotechnology, and nano will be a common thread throughout the episodes. You can find lots more information, as well as the application form, here.  Applications are due April 1st.

and one for emerging science writers,

Calling all “next generation” science and tech writers!

Our partners at ASU asked us to pass along this writing and publishing fellowship opportunity to all of you. They’re now accepting applications for To Think-To Write-To Publish, an intensive two-day workshop followed by a three-day conference in Arizona for early career writers of any genre with an interest in science and technology. The deadline is March 15th, click here to download the flier.

If you are interested in NISENet or want to submit a haiku about nanotechnology (sadly the newsletter doesn’t feature one this month), their website is here.

Miah and the Olympics; birth of the buckyball

Given that the Winter Olympics are due to open later this week in Vancouver (Canada), there is a  flurry of interest in gene doping and other means of enhancing athletic performance. (I’m mentioning this because developments in elite athletics find their way into consumer markets and because of my interest in human enhancement.) For example, the University of British Columbia (UBC) is hosting,

Sport, Ethics and Technology: Is High Performance Sport Inconsistent with Ideals and Ethics?

Date/time: Monday, February 8, 8 p.m.

Location: Chan Centre for the Performing Arts
University of British Columbia
6265 Crescent Road, Vancouver
For a map and closest parking, visit: www.maps.ubc.ca?130

As the Vancouver 2010 Olympic Winter Games approach, Olympic athletes will come under close public scrutiny.  New technology will offer unexpected advantages that will challenge the boundaries of what is considered a level playing field.

And given those challenges, how do we determine what is ethical and fair? These questions are explored with Richard Pound followed by a panel discussion with Jim Rupert, Beckie Scott and other participants.

*Richard Pound is a former Olympic swimmer, McGill Chancellor and World Anti-Doping Agency Chairman.

*Jim Rupert is an associate professor in the School of Human Kinetics at UBC. His research looks at future trends in doping and doping control as it pertains to genetics and “gene-doping.”

*Beckie Scott is a former Olympic cross-country ski racer who currently serves as a member of the IOC.

This event is one of five provocative dialogues presented by UBC’s Sport and Society series during February and March. Find details at: http://bit.ly/9LuMXO

Friday, Feb. 5, 2010, the lead article in Section B of The Vancouver Sun by Margaret Munro was (print version), Gene Doping; The latest way to boost performance. The article noted that Andy Miah, at the University of the West of Scotland, in contrast to Olivier Rabin and Theodore Friedmann, the experts (whose study was just published in the journal Science) quoted in the article, suggests that gene doping may be safer than current methods of enhancing performance.

I have mentioned Andy before (here in my series on human enhancement and here regarding a book he edited on art and the future). His response to the Rabin/Friedmann concerns is here. An abstract of Rabin and Friedmann’s article is available here but the full article is behind a paywall.

Andy was also featured in an article in The WestEnder (a Vancouver community newspaper) by Jackie Wong titled (in the print version), New-media [sic] centre seeks to democratize Olympic coverage. From the article,

“We can say that Vancouver 2010 is the first truly digital Olympic Games,” says Andy Miah, chair in Ethics and Emerging Technologies in the School of Media, Language, and Music at the University of the West of Scotland. Miah has been researching new media and the Olympics for 10 years, at six Olympic Games.

Andy has written an essay about new media and its role at the Vancouver 2010 Olympics at Huffington Post. From the essay,

…. perhaps the most interesting dimension of Vancouver’s media culture is the rise of three other media entities, the first of which is the W2 Centre on Hastings, led by Irwin Oostindie. W2 is a cultural and arts infrastructure, serving the independent sector. It will run an extensive programme of art, debate and cultural experiences, some of which will have buy in from the Vancouver Organizing Committee (VANOC), while other elements will be more independent. To this end, W2 will serve as a bridge between the privileged participants and the critical commentators around Games time. For example, they will host the Legal Observers programme, headed up by the Pivot Legal Society and BC Civil Liberties Association, which will monitor the operations of Olympic security during Games time. It will also host a cultural collaboration between the London 2012 and Vancouver 2010 Cultural Olympiads, as part of the UK’s Abandon Normal Devices festival, led by England’s Northwest.

You can read more here.

I’ve now mentioned the two areas that Andy sees as the two major controversies from the Vancouver Olympics, doping and new media activism.

One final note on this, Andy will be bringing a team of about 10 students from his university in Scotland who will be blogging from this site, Culture@tO Vancouver 2010. I’m not sure what the start date will be, presumably Feb. 12, 2010 when the games open.

Bucky balls are the popular name for the buckminsterfullerene (aka fullerene). Named for Buckminster Fuller, the molecule resembles one of Fuller’s geodesic domes. (There’s a geodesic dome in Vancouver which houses our local science centre and during the Olympics it will be home to the Sochi [host for 2014 Olympics], Russia pavilion.) The fullerene was first discovered at Rice University in Texas and this year marks its 25th anniversary and what many describe as the birth of nanotechnology. In celebration, the university is hosting a technical symposium.  From the news item on Nanowerk,

On Oct. 11-13, the best minds in carbon nanotechnology will gather at Rice University for a technical symposium during the Year of Nano, a series of events at the university celebrating the 25th anniversary of nano’s big bang.

Hmmm … I may have gone a little ‘link happy’ today. Tomorrow I should be looking at nano sponges and patents. Later this week I expect to be posting my interview with Dr. Cheryl Geisler, the new dean for Simon Fraser University’s new Faculty of Communication, Art and Technology (FCAT).

Reverse engineering the brain Ray Kurzweil style; funding for neuroprosthetics; a Canadian digital power list for 2009

After much hemming and hawing, I finally got around to reading something about Ray Kurzweil and his ideas in an interview at the H+ site and quite unexpectedly was engaged by his discussion of consciousness. From the interview,

I get very excited about discussions about the true nature of consciousness, because I‘ve been thinking about this issue for literally 50 years, going back to junior high school. And it‘s a very difficult subject. When some article purports to present the neurological basis of consciousness… I read it. And the articles usually start out, “Well, we think that consciousness is caused by…” You know, fill in the blank. And then it goes on with a big extensive examination of that phenomenon. And at the end of the article, I inevitably find myself thinking… where is the link to consciousness? Where is any justification for believing that this phenomenon should cause consciousness? Why would it cause consciousness?

Some scientists say, “Well, it‘s not a scientific issue, therefore it‘s not a real issue. Therefore consciousness is just an illusion and we should not waste time on it.” But we shouldn‘t be too quick to throw it overboard because our whole moral system and ethical system is based on consciousness.

The article is well worth a read  and I have to say I enjoyed his comments about science fiction movies. I’m not enamoured of his notion about trying to reverse engineer brains no matter how ‘mindfully’ done. I suspect I have a fundamental disagreement with many of Kurweil’s ideas which as far as I can tell are profoundly influenced by his experience and success in IT (information technology).

Unlike Kurzweil, I don’t view the brain or genomes as computer codes but I will read more about his work and ideas as he makes me think about some of my unconscious (pun intended) assumptions. (Note: in the H+ article Kurzweil mentions some nanotechnology guidelines from what the interviewers call the Forsyth Institute, I believe Kurzweil was referring to the Foresight Institute’s nanotechnology guidelines found here.)

I guess I’m getting a little blasé about money as I find the $1.6 million US funding awarded to help with neuroprosthetics for returning US soldiers a little on the skimpy side. From the news item on Nanowerk,

The conflicts in Iraq and Afghanistan have left a terrible legacy: more than 1,200 returning American soldiers have lost one or more limbs. To address this growing national need, researchers at Worcester Polytechnic Institute (WPI) are laying the groundwork for a new generation of advanced prosthetic limbs that will be fully integrated with the body and nervous system. These implantable neuroprosthetics will look and function like natural limbs, enabling injured soldiers and the more than 2 million other amputees in the United States lead higher quality, more independent lives.

As for making these limbs more natural looking, I find this contrasts a bit with some of Lanfranco Aceti’s work  (I first posted my comments about it here) where he notes that males (under 50) don’t want limbs that look natural. I don’t if he or someone else has followed up with that but it certainly poses an intriguing question about how we may be starting to view our bodies, gender differences and all.

Michael Geist has a 2009 Canadian digital power list on The Tyee website here. I was surprised that Gary Goodyear (Minister of State for Science and Technology) received no mention, given his portfolio.

Guest blogger on hormones, Suzanne Somers, and Oprah

Sorry for the delay in getting this up but here at last are my guest blogger’s comments on issues about estrogen and women’s health. First, I should introduce her, Susan Baxter, PhD. is co-author with Jerilynn Prior, MD of the newly published Estrogen Errors. Now for her comments,

In believing that hormones – pills, patches, injectables, bioidentical, you-name-it – will somehow keep you young and vibrant Suzanne Somers and Oprah are part of a long and undistinguished history, one that places estrogen front and centre. Progesterone, the other natural (post-ovulatory) hormone that crucially balances out estrogen during each menstrual cycle, an afterthought, if mentioned at all.

From the synthetic estrogen DES (diethylstilbestrol) in the 1930’s to the estrogen derived from pregnant mares’ urine, Premarin, since the 1950’s, estrogen “replacement” has morphed in our collective imaginations into the fountain of youth. And where it really started was with a 1966 bestseller, Feminine Forever.

Secretly produced by drug companies eager to market their estrogen pills, written by a kindly New York gynecologist Robert Wilson (his son later admitted to the drug company connection), Feminine Forever was blatant propaganda that took America by storm. In no time at all menopause became cemented in the popular imagination as a “deficiency” disease that estrogen could cure. And during an era where midlife women, no longer beautiful or fertile, were losing any status they may have had (as the TV series Mad Men depicts), Wilson’s song was one they wanted to hear. Really, it wasn’t age or the culture treating women badly; it wasn’t economic or social, it was medical. Then, once a handful of epidemiological studies linked taking estrogen with being healthier (bearing in mind that such studies can only show correlation, not cause), millions of women began taking hormone “replacement” therapy or “HRT”.

I use quotes for “HRT”, incidentally, because – as my coauthor endocrinologist Jerilynn Prior has accurately pointed out – how can hormones at menopause be a “replacement” when all women’s hormones naturally wane at this stage of their lives. The term suggests parity with a diabetic taking insulin – except it is not.

The estrogen-is-good-for-you argument should have died, once and for all, in 2002 when the largest clinical trial in history, the Women’s Health Initiative (WHI) was stopped early because the women who were taking the hormones were found to be suffering from ridiculously high levels of breast cancer, heart disease, stroke, blood clots and more. For those women whose perimenopause (the transition into menopause during, usually, the forties) is onerous, progesterone works for symptom relief and doesn’t cause anything dire. But no, here we are again, stuck in the inane and superficial: Oprah, Somers, Newsweek. What we are not hearing is how these women, along with everyone else, have so internalized the fallacy that a woman’s true nature is to be fertile (and with high levels of estrogen) that all else is forgotten. So we continue to argue about the what and the – when the real issue is the why. But, as the late Stephen Jay Gould once said, we believe most fervently in those facts that allow us to believe our social prejudices are true. And there is no prejudice as thoroughly engrained as that of the value of women being equal to their being young and fruitful.

That is the real story.

(My thanks to Frogheart and all the other bloggers – e.g., http://trueslant.com/womenomics/2009/06/08/did-anyone-else-think-the-newsweek-photo-of-oprah-was-mysogenistic-and-just-plain-dumb/ – and other commentators, many linked to on this blog, who have criticized the Newsweek story thoughtfully. However, as a social scientist and medical writer who has studied the subject, I continue to be appalled at our societal love affair with hormones, in general; estrogen, in particular; and our blithe disregard for the natural cycles and stages of a woman’s life.)

As I said in Part 2 of my post, titled Synchronicity, Oprah, Newsweek, and Hormones, it’s not necessary to denigrate someone personally to critique what their ideas. Thank you Susan!