Category Archives: beauty and cosmetics

Melting body fat with a microneedle patch

For many people this may seem like a dream come true but there is a proviso. So far researchers have gotten to the in vivo testing (mice)  with no word about human clinical trials, which means it could be quite a while, assuming human clinical trials go well, before any product comes to market. With that in mind, here’s more from a Sept.15, 2017 news item on Nanowerk,

Researchers have devised a medicated skin patch that can turn energy-storing white fat into energy-burning brown fat locally while raising the body’s overall metabolism. The patch could be used to burn off pockets of unwanted fat such as “love handles” and treat metabolic disorders like obesity and diabetes, according to researchers at Columbia University Medical Center (CUMC) and the University of North Carolina.

A Sept. 15, 2017 Columbia University Medical Center news release on EurekAlert, which originated the news item, describes the research further,

Humans have two types of fat. White fat stores excess energy in large triglyceride droplets. Brown fat has smaller droplets and a high number of mitochondria that burn fat to produce heat. Newborns have a relative abundance of brown fat, which protects against exposure to cold temperatures. But by adulthood, most brown fat is lost.

For years, researchers have been searching for therapies that can transform an adult’s white fat into brown fat–a process named browning–which can happen naturally when the body is exposed to cold temperatures–as a treatment for obesity and diabetes.

“There are several clinically available drugs that promote browning, but all must be given as pills or injections,” said study co-leader Li Qiang, PhD, assistant professor of pathology and cell biology at CUMC. “This exposes the whole body to the drugs, which can lead to side effects such as stomach upset, weight gain, and bone fractures. Our skin patch appears to alleviate these complications by delivering most drugs directly to fat tissue.”

To apply the treatment, the drugs are first encased in nanoparticles, each roughly 250 nanometers (nm) in diameter–too small to be seen by the naked eye. (In comparison, a human hair is about 100,000 nm wide.) The nanoparticles are then loaded into a centimeter-square skin patch containing dozens of microscopic needles. When applied to skin, the needles painlessly pierce the skin and gradually release the drug from nanoparticles into underlying tissue.

“The nanoparticles were designed to effectively hold the drug and then gradually collapse, releasing it into nearby tissue in a sustained way instead of spreading the drug throughout the body quickly,” said patch designer and study co-leader Zhen Gu, PhD, associate professor of joint biomedical engineering at the University of North Carolina at Chapel Hill and North Carolina State University.

The new treatment approach was tested in obese mice by loading the nanoparticles with one of two compounds known to promote browning: rosiglitazone (Avandia) or beta-adrenergic receptor agonist (CL 316243) that works well in mice but not in humans. Each mouse was given two patches–one loaded with drug-containing nanoparticles and another without drug–that were placed on either side of the lower abdomen. New patches were applied every three days for a total of four weeks. Control mice were also given two empty patches.

Mice treated with either of the two drugs had a 20 percent reduction in fat on the treated side compared to the untreated side. They also had significantly lower fasting blood glucose levels than untreated mice.

Tests in normal, lean mice revealed that treatment with either of the two drugs increased the animals’ oxygen consumption (a measure of overall metabolic activity) by about 20 percent compared to untreated controls.

Genetic analyses revealed that the treated side contained more genes associated with brown fat than on the untreated side, suggesting that the observed metabolic changes and fat reduction were due to an increase in browning in the treated mice.

“Many people will no doubt be excited to learn that we may be able to offer a noninvasive alternative to liposuction for reducing love handles,” says Dr. Qiang. “What’s much more important is that our patch may provide a safe and effective means of treating obesity and related metabolic disorders such as diabetes.” [emphasis mine]

The patch has not been tested in humans. The researchers are currently studying which drugs, or combination of drugs, work best to promote localized browning and increase overall metabolism.

The study was supported by grants from the North Carolina Translational and Clinical Sciences Institute and the National Institutes of Health (1UL1TR001111, R00DK97455, and P30DK063608).

Notice the emphasis on health and that the funding does not seem to be from industry (the National Institutes of Health is definitely a federal US agency but I’m not familiar with the North Carolina Translational and Clinical Sciences Institute).

Getting back to the research, here’s an animation featuring the work,

Here’s a link and a citation for the paper,

Locally Induced Adipose Tissue Browning by Microneedle Patch for Obesity Treatment by Yuqi Zhang†, Qiongming Liu, Jicheng Yu†, Shuangjiang Yu, Jinqiang Wang, Li Qiang, and Zhen Gu. ACS Nano, Article ASAP DOI: 10.1021/acsnano.7b04348 Publication Date (Web): September 15, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

I would imagine that Qiang and his colleagues will find a number of business entities will be lining up to fund their work. While the researchers may be focused primarily on health issues, I imagine business types will be seeing dollar signs (very big ones with many zeroes).

DNA sunscreen: the longer you wear it, the better it gets due to its sacrificial skin

Using this new sunscreen does mean slathering on salmon sperm, more or lees, (read the Methods section of the academic paper cited later in this post). Considering that you’ve likely eaten (insect parts in chocolate) and slathered on more discomfiting stuff already and this development gives you access to an all natural, highly effective sunscreen, if it ever makes its way out of the laboratory, it might not be so bad. From a July 26, 2017 article by Sarah Knapton for The Telegraph,

Sunscreen made from DNA [deoxyribonucleic acid] which acts like a second skin to prevent sun damage is on the horizon.

Scientists in the US have developed a film from the DNA of salmon which gets better at protecting the skin from ultraviolet light the more it is exposed to the Sun.

It also helps lock in moisture beneath the surface which is usually lost during tanning.

Exciting, yes? A July 27, 2017 Binghamton University news release (also on EurekAlert but dated July 26, 2017) provides more detail,

“Ultraviolet (UV) light can actually damage DNA, and that’s not good for the skin,” said Guy German, assistant professor of biomedical engineering at Binghamton University. “We thought, let’s flip it. What happens instead if we actually used DNA as a sacrificial layer? So instead of damaging DNA within the skin, we damage a layer on top of the skin.”

German and a team of researchers developed thin and optically transparent crystalline DNA films and irradiated them with UV light. They found that the more they exposed the film to UV light, the better the film got at absorbing it.

“If you translate that, it means to me that if you use this as a topical cream or sunscreen, the longer that you stay out on the beach, the better it gets at being a sunscreen,” said German.

As an added bonus, the DNA coatings are also hygroscopic, meaning that skin coated with the DNA films can store and hold water much more than uncoated skin. When applied to human skin, they are capable of slowing water evaporation and keeping the tissue hydrated for extended periods of time.

German intends to see next if these materials might be good as a wound covering for hostile environments where 1) you want to be able to see the wound healing without removing the dressing, 2) you want to protect the wound from the sun and 3) you want to keep the wound in a moist environment, known to promote faster wound healing rates.

“Not only do we think this might have applications for sunscreen and moisturizers directly, but if it’s optically transparent and prevents tissue damage from the sun and it’s good at keeping the skin hydrated, we think this might be potentially exploitable as a wound covering for extreme environments,” he said.

Here’s a link to and a citation for the paper,

Non-ionising UV light increases the optical density of hygroscopic self assembled DNA crystal films by Alexandria E. Gasperini, Susy Sanchez, Amber L. Doiron, Mark Lyles & Guy K. German. Scientific Reports 7, Article number: 6631 (2017) doi:10.1038/s41598-017-06884-8 Published online: 26 July 2017

This paper is open access.

The ultimate natural sunscreen

For those of us in the northern hemisphere, sunscreen season is on the horizon. While the “ultimate natural sunscreen” researchers from the University of California at San Diego (UCSD) have developed is a long way from the marketplace, this is encouraging news (from a May 17, 2017 news item on Nanowerk),

Chemists, materials scientists and nanoengineers at UC San Diego have created what may be the ultimate natural sunscreen.

In a paper published in the American Chemical Society journal ACS Central Science, they report the development of nanoparticles that mimic the behavior of natural melanosomes, melanin-producing cell structures that protect our skin, eyes and other tissues from the harmful effects of ultraviolet radiation.

“Basically, we succeeded in making a synthetic version of the nanoparticles that our skin uses to produce and store melanin and demonstrated in experiments in skin cells that they mimic the behavior of natural melanosomes,” said Nathan Gianneschi, a professor of chemistry and biochemistry, materials science and engineering and nanoengineering at UC San Diego, who headed the team of researchers. The achievement has practical applications.

A May 17, 2017 UCSD news release, which originated the news item, delves into the research,

“Defects in melanin production in humans can cause diseases such as vitiligo and albinism that lack effective treatments,” Gianneschi added.

Vitiligo develops when the immune system wrongly attempts to clear normal melanocytes from the skin, effectively stopping the production of melanocytes. Albinism is due to genetic defects that lead to either the absence or a chemical defect in tyrosinase, a copper-containing enzyme involved in the production of melanin. Both of these diseases lack effective treatments and result in a significant risk of skin cancer for patients.

“The widespread prevalence of these melanin-related diseases and an increasing interest in the performance of various polymeric materials related to melanin prompted us to look for novel synthetic routes for preparing melanin-like materials,” Gianneschi said.

UC San Diego Ultimate natural sunscreenThe scientists found that the synthetic nanoparticles were taken up in tissue culture by keratinocytes, the predominant cell type found in the epidermis, the outer layer of skin. Photo by Yuran Huang and Ying Jones/UC San Diego

Melanin particles are produced naturally in many different sizes and shapes by animals—for iridescent feathers in birds or the pigmented eyes and skin of some reptiles. But scientists have discovered that extracting melanins from natural sources is a difficult and potentially more complex process than producing them synthetically.

Gianneschi and his team discovered two years ago that synthetic melanin-like nanoparticles could be developed in a precisely controllable manner to mimic the performance of natural melanins used in bird feathers.

“We hypothesized that synthetic melanin-like nanoparticles would mimic naturally occurring melanosomes and be taken up by keratinocytes, the predominant cell type found in the epidermis, the outer layer of skin,” said Gianneschi.

In healthy humans, melanin is delivered to keratinocytes in the skin after being excreted as melanosomes from melanocytes.

The UC San Diego scientists prepared melanin-like nanoparticles through the spontaneous oxidation of dopamine—developing biocompatible, synthetic analogues of naturally occurring melanosomes. Then they studied their update, transport, distribution and ultraviolet radiation-protective capabilities in human keratinocytes in tissue culture.

The researchers found that these synthetic nanoparticles were not only taken up and distributed normally, like natural melanosomes, within the keratinocytes, they protected the skin cells from DNA damage due to ultraviolet radiation.

“Considering limitations in the treatment of melanin-defective related diseases and the biocompatibility of these synthetic melanin-like nanoparticles in terms of uptake and degradation, these systems have potential as artificial melanosomes for the development of novel therapies, possibly supplementing the biological functions of natural melanins,” the researchers said in their paper.

The other co-authors of the study were Yuran Huang and Ziying Hu of UC San Diego’s Materials Science and Engineering Program, Yiwen Li and Maria Proetto of the Department of Chemistry and Biochemistry; Xiujun Yue of the Department of Nanoengineering; and Ying Jones of the Electron Microscopy Core Facility.

The UC San Diego Office of Innovation and Commercialization has filed a patent application on the use of polydopamine-based artificial melanins as an intracellular UV-shield. Companies interested in commercializing this invention should contact Skip Cynar at invent@ucsd.edu

Here’s a link to and a citation fro the paper,

Mimicking Melanosomes: Polydopamine Nanoparticles as Artificial Microparasols by
Yuran Huang, Yiwen Li, Ziying Hu, Xiujun Yue, Maria T. Proetto, Ying Jones, and Nathan C. Gianneschi. ACS Cent. Sci., Article ASAP DOI: 10.1021/acscentsci.6b00230 Publication Date (Web): May 18, 2017

Copyright © 2017 American Chemical Society

This is an open access paper,

Plasmonic ‘Goldfinger’: antifungal nail polish with metallic nanoparticles

A March 29,.2017 news item on Nanowerk announces a new kind of nanopolish,

Since ancient times, people have used lustrous silver, platinum and gold to make jewelry and other adornments. Researchers have now developed a new way to add the metals to nail polish with minimal additives, resulting in durable, tinted — and potentially antibacterial — nail coloring.

Using metal nanoparticles in clear nail polish makes it durable and colorful without extra additives.
Credit: American Chemical Society

A March 29, 2017 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, adds a little more detail (Note: A link has been removed),

Nail polish comes in a bewildering array of colors. Current coloring techniques commonly incorporate pigment powders and additives. Scientists have recently started exploring the use of nanoparticles in polishes and have found that they can improve their durability and, in the case of silver nanoparticles, can treat fungal toenail infections. Marcus Lau, Friedrich Waag and Stephan Barcikowski wanted to see if they could come up with a simple way to integrate metal nanoparticles in nail polish.

The researchers started with store-bought bottles of clear, colorless nail polish and added small pieces of silver, gold, platinum or an alloy to them. To break the metals into nanoparticles, they shone a laser on them in short bursts over 15 minutes. Analysis showed that the method resulted in a variety of colored, transparent polishes with a metallic sheen. The researchers also used laser ablation to produce a master batch of metal nanoparticles in ethyl acetate, a polish thinner, which could then be added to individual bottles of polish. This could help boost the amount of production for commercialization. The researchers say the technique could also be used to create coatings for medical devices.

The authors acknowledge funding from the INTERREG-Program Germany-Netherlands.

A transparent nail varnish can be colored simply and directly with laser-generated nanoparticles. This does not only enable coloring of the varnish for cosmetic purposes, but also gives direct access to nanodoped varnishes to be used on any solid surface. Therefore, nanoparticle properties such as plasmonic properties or antibacterial effects can be easily adapted to surfaces for medical or optical purposes. The presented method for integration of metal (gold, platinum, silver, and alloy) nanoparticles into varnishes is straightforward and gives access to nanodoped polishes with optical properties, difficult to be achieved by dispersing powder pigments in the high-viscosity liquids. Courtesy: Industrial and Engineering & Chemistry Research

Here’s a link to and a citation for the paper,

Direct Integration of Laser-Generated Nanoparticles into Transparent Nail Polish: The Plasmonic “Goldfinger” by Marcus Lau, Friedrich Waag, and Stephan Barcikowski. Ind. Eng. Chem. Res., 2017, 56 (12), pp 3291–3296 DOI: 10.1021/acs.iecr.7b00039 Publication Date (Web): March 7, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Findings on oral exposure to nanoscale titanium dioxide

It’s been a while since I’ve run a piece on health concerns and nanoparticles. The nanoparticles in question are titanium dioxide and the concerns centre on oral exposure to them according to a Jan. 24, 2017 news item on Nanowerk,

Researchers from INRA [French National Institute for Agricultural Research] and their partners have studied the effects of oral exposure to titanium dioxide, an additive (E171) commonly used in foodstuffs, especially confectionary. They have shown for the first time that E171 crosses the intestinal barrier in animals and reaches other parts of the body.

Immune system disorders linked to the absorption of the nanoscale fraction of E171 particles were observed. The researchers also showed that chronic oral exposure to the additive spontaneously induced preneoplastic lesions in the colon, a non-malignant stage of carcinogenesis, in 40% of exposed animals.

Moreover, E171 was found to accelerate the development of lesions previously induced for experimental purposes. While the findings show that the additive plays a role in initiating and promoting the early stages of colorectal carcinogenesis, they cannot be extrapolated to humans or more advanced stages of the disease. [emphasis mine]

A Jan. 20, 2017 IINRA press release, which originated the news item,  provides more detail about European use of titanium dioxide as a food additive and about the research,

Present in many products including cosmetics, sunscreens, paint and building materials, titanium dioxide (or TiO2), known as E171 in Europe, is also widely used as an additive in the food industry to whiten or give opacity to products. It is commonly found in sweets, chocolate products, biscuits, chewing gum and food supplements, as well as in toothpaste and pharmaceutical products. Composed of micro- and nanoparticles, E171 is nevertheless not labelled a “nanomaterial”, since it does not contain more than 50% of nanoparticles (in general it contains from 10-40%). The International Agency for Research on Cancer (IARC) evaluated the risk of exposure to titanium dioxide by inhalation (occupational exposure), resulting in a Group 2B classification, reserved for potential carcinogens for humans.

Today, oral exposure to E171 is a concern, especially in children who tend to eat a lot of sweets. INRA researchers studied the product as a whole (that is, its mixed composition of micro- and nanoparticules), and have also evaluated the effect of the nanoscale particle fraction alone, by comparing it to a model nanoparticle.

Titanium dioxide crosses the intestinal barrier and passes into the bloodstream

The researchers exposed rats orally to a dose of 10mg of E171 per kilogram of body weight per day, similar to the exposure humans experience through food consumption (data from European Food Safety Agency, September 20162). They showed for the first time in vivo that titanium dioxide is absorbed by the intestine and passes into the bloodstream. Indeed, the researchers found titanium dioxide particles in the animals’ livers.

Titanium dioxide alters intestinal and systemic immune response

Titanium dioxide nanoparticles were present in the lining of the small intestine and in the colon, and entered the nuclei of the immune cells of Peyer’s patches, which induce immune response in the intestine. The researchers showed an imbalance in immune response, ranging from a defect in the production of cytokines in Peyer’s patches to the development of micro-inflammation in colon mucosa. In the spleen, representative of systemic immunity, exposure to E171 increases the capacity of immune cells to produce pro-inflammatory cytokines when they are activated in vitro.

Chronic oral exposure to titanium dioxide plays a role in initiating and promoting early stages of colorectal carcinogenesis

The researchers exposed rats to regular oral doses of titanium dioxide through drinking water for 100 days. In a group of rats previously treated with an experimental carcinogen, exposure to TiO2 led to an increase in the size of preneoplastic lesions. In a group of healthy rats exposed to E171, four out of eleven spontaneously developed preneoplastic lesions in the intestinal epithelium. Non-exposed animals presented no anomalies at the end of the 100-day study. These results indicate that E171 both initiates and promotes the early stages of colorectal carcinogenesis in animals.

These studies show for the first time that the additive E171 is a source of titanium dioxide nanoparticles in the intestine and the entire body, with consequences for both immune function and the development of preneoplastic lesions in the colon. These first findings justify a carcinogenesis study carried out under OECD [Organization for Economic Cooperation and Development] guidelines to continue observations at a later stage of cancer. They provide new data for evaluating the risks of the E171 additive in humans.

These studies were carried out within the framework of the Nanogut project, financed by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) within the French national programme for research related to the environment, health and the workplace (PNR EST) and coordinated by INRA. Sarah Bettini’s university thesis contract was financed by the French laboratory of excellence LabEx SERENADE.

Here’s a link to and a citation for the paper,

Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon by Sarah Bettini, Elisa Boutet-Robinet, Christel Cartier, Christine Coméra, Eric Gaultier, Jacques Dupuy, Nathalie Naud, Sylviane Taché, Patrick Grysan, Solenn Reguer, Nathalie Thieriet, Matthieu Réfrégiers, Dominique Thiaudière, Jean-Pierre Cravedi, Marie Carrière, Jean-Nicolas Audinot, Fabrice H. Pierre, Laurence Guzylack-Piriou, & Eric Houdeau. Scientific Reports 7, Article number: 40373 (2017) doi:10.1038/srep40373 Published online: 20 January 2017

This paper is open access.

The research is concerning but they don’t want to draw any conclusions yet, which explains the recommendation for further research.

Hairy strength could lead to new body armour

A Jan. 18, 2017 news item on Nanowerk announces research into hair strength from the University of California at San Diego (UCSD or UC San Diego),

In a new study, researchers at the University of California San Diego investigate why hair is incredibly strong and resistant to breaking. The findings could lead to the development of new materials for body armor and help cosmetic manufacturers create better hair care products.

Hair has a strength to weight ratio comparable to steel. It can be stretched up to one and a half times its original length before breaking. “We wanted to understand the mechanism behind this extraordinary property,” said Yang (Daniel) Yu, a nanoengineering Ph.D. student at UC San Diego and the first author of the study.

A Jan. 18 (?), 2017 UCSD news release, which originated the news item, provides more information,

“Nature creates a variety of interesting materials and architectures in very ingenious ways. We’re interested in understanding the correlation between the structure and the properties of biological materials to develop synthetic materials and designs — based on nature — that have better performance than existing ones,” said Marc Meyers, a professor of mechanical engineering at the UC San Diego Jacobs School of Engineering and the lead author of the study.

In a study published online in Dec. in the journal Materials Science and Engineering C, researchers examined at the nanoscale level how a strand of human hair behaves when it is deformed, or stretched. The team found that hair behaves differently depending on how fast or slow it is stretched. The faster hair is stretched, the stronger it is. “Think of a highly viscous substance like honey,” Meyers explained. “If you deform it fast it becomes stiff, but if you deform it slowly it readily pours.”

Hair consists of two main parts — the cortex, which is made up of parallel fibrils, and the matrix, which has an amorphous (random) structure. The matrix is sensitive to the speed at which hair is deformed, while the cortex is not. The combination of these two components, Yu explained, is what gives hair the ability to withstand high stress and strain.

And as hair is stretched, its structure changes in a particular way. At the nanoscale, the cortex fibrils in hair are each made up of thousands of coiled spiral-shaped chains of molecules called alpha helix chains. As hair is deformed, the alpha helix chains uncoil and become pleated sheet structures known as beta sheets. This structural change allows hair to handle a large amount deformation without breaking.

This structural transformation is partially reversible. When hair is stretched under a small amount of strain, it can recover its original shape. Stretch it further, the structural transformation becomes irreversible. “This is the first time evidence for this transformation has been discovered,” Yu said.

“Hair is such a common material with many fascinating properties,” said Bin Wang, a UC San Diego PhD alumna from the Department of Mechanical and Aerospace Engineering and co-author on the paper. Wang is now at the Shenzhen Institutes of Advanced Technology in China continuing research on hair.

The team also conducted stretching tests on hair at different humidity levels and temperatures. At higher humidity levels, hair can withstand up to 70 to 80 percent deformation before breaking (dry hair can undergo up to 50 percent deformation). Water essentially “softens” hair — it enters the matrix and breaks the sulfur bonds connecting the filaments inside a strand of hair. Researchers also found that hair starts to undergo permanent damage at 60 degrees Celsius (140 degrees Fahrenheit). Beyond this temperature, hair breaks faster at lower stress and strain.

“Since I was a child I always wondered why hair is so strong. Now I know why,” said Wen Yang, a former postdoctoral researcher in Meyers’ research group and co-author on the paper.

The team is currently conducting further studies on the effects of water on the properties of human hair. Moving forward, the team is investigating the detailed mechanism of how washing hair causes it to return to its original shape.

Here’s a link to and a citation for the paper,

Structure and mechanical behavior of human hair by Yang Yua, Wen Yang, Bin Wang, Marc André Meyers. Materials Science and Engineering: C Volume 73, 1 April 2017, Pages 152–163    http://dx.doi.org/10.1016/j.msec.2016.12.008

This paper is behind a paywall.

Panasonic and its next generation makeup mirror

Before leaping to Panasonic’s latest makeup mirror news, here’s an earlier iteration of their product at the 2016 Consumer Electronics Show (CES),

That was posted on Jan. 10, 2016 by Makeup University.

Panasonic has come back in 2017 to hype its “Snow Beauty Mirror,”  a product which builds on its predecessor’s abilities by allowing the mirror to create a makeup look which it then produces for the user. At least, they hope it will—in 2020. From a Jan. 8, 2017 article by Shusuke Murai about the mirror and Japan’s evolving appliances market for The Japan Times,

Panasonic Corp. is developing a “magic” mirror for 2020 that will use nanotechnology for high-definition TVs to offer advice on how to become more beautiful.

The aim of the Snow Beauty Mirror is “to let people become what they want to be,” said Panasonic’s Sachiko Kawaguchi, who is in charge of the product’s development.

“Since 2012 or 2013, many female high school students have taken advantage of blogs and other platforms to spread their own messages,” Kawaguchi said. “Now the trend is that, in this digital era, they change their faces (on a photo) as they like to make them appear as they want to be.”

When one sits in front of the computerized mirror, a camera and sensors start scanning the face to check the skin. It then shines a light to analyze reflection and absorption rates, find flaws like dark spots, wrinkles and large pores, and offer tips on how to improve appearances.

But this is when the real “magic” begins.

Tap print on the results screen and a special printer for the mirror churns out an ultrathin, 100-nanometer makeup-coated patch that is tailor-made for the person examined.

The patch is made of a safe material often used for surgery so it can be directly applied to the face. Once the patch settles, it is barely noticeable and resists falling off unless sprayed with water.

The technologies behind the patch involve Panasonic’s know-how in organic light-emitting diodes (OLED), Kawaguchi said. By using the company’s technology to spray OLED material precisely onto display substrates, the printer connected to the computerized mirror prints a makeup ink that is made of material similar to that used in foundation, she added.

Though the product is still in the early stages of development, Panasonic envisions the mirror allowing users to download their favorite makeups from a database and apply them. It also believes the makeup sheet can be used to cover blemishes and birthmarks.

Before coming up with the smart mirror, Panasonic conducted a survey involving more than 50 middle- to upper-class women from six major Asian cities whose ages ranged from their 20s to 40s about makeup habits and demands.

Some respondents said they were not sure how to care for their skin to make it look its best, while others said they were hesitant to visit makeup counters in department stores.

“As consumer needs are becoming increasingly diverse, the first thing to do is to offer a tailor-made solution to answer each individual’s needs,” Kawaguchi said.

Panasonic aims to introduce the smart mirror and cosmetics sheets at department stores and beauty salons by 2020.

But Kawaguchi said there are many technological and marketing hurdles that must first be overcome — including how to mass-produce the ultrathin sheets.

“We are still at about 30 percent of overall progress,” she said, adding that the company hopes to market the makeup sheet at a price as low as foundation and concealer combined.

“I hope that, by 2020, applying facial sheets will become a major way to do makeup,” she said.

For anyone interested in Japan’s appliances market, please read Murai’s article in its entirety.

Science innovation (nanomedicine) can be tough

Robert Langer is a well known researcher in the field of nanomedicine. Weirdly not included in a listing of prominent nanoscientists in a series by Slate.com writers (my Oct. 7, 2016 posting), it seems the English are making up for this oversight. Amy Fleming in an Oct. 17, 2016 article for the Guardian tells Langer’s story in the context of his recent award of the £1m Queen Elizabeth prize for engineering (Note: Links have been removed),

Robert Langer seems incredibly well adjusted for a man with transatlantic jetlag. And, for that matter, for someone who struggled for years to get his pioneering work in drug delivery accepted by the scientific establishment. As a young professor, his first nine research grant applications were turned down. Once, at a formal dinner in the early 80s, a senior colleague blew smoke in his eyes and told him to find another job.

And yet here he is, a good-natured nanotechnology trailblazer, swooping into the UK for duties associated with having won the £1m Queen Elizabeth prize for engineering. His work has improved the lives of 2 billion people and counting. He has collected awards from two US presidents, as well as the Queen. He has more than 1,000 patents on the go, and 30 companies have spun out from his vast lab at Massachusetts Institute of Technology (the largest biomedical lab in the world). At 68, he is still the future.

… the huge range of his research interests. There’s contraceptive microchip implants; a gel to repair damaged vocal cords; spinal cord repair tissue; an invisible “second skin” for conditions such as eczema (with the cosmetic side effect of rendering skin smooth and elastic); cutting-edge anti-frizz haircare; and what Langer calls “super-long-acting capsules or pills, that would last a week, a month, or even a year”. …

Fleming describes some of Langer’s innovations in more detail (Note: Links have been removed),

Commonly, when pharmaceuticals enter the body, they are coated in synthetic substances called polymers. These allow effective amounts of the drug to reach the body, slowly enough so as not to cause toxicity. Until Langer came along, this controlled method only worked for simpler, small-molecule drugs. Sophisticated large-molecule drugs, that can target diseases such as cancer, diabetes and mental illness, were too big to pass through polymers. “People wouldn’t think you could walk through a wall either,” he says. “But we built all these tortuous channels in what was the equivalent of the wall so somebody could get through, but they get through very slowly, like driving through London in rush hour.”

Langer also designed biologically tolerable polymer pellets – nanopellets, he calls them – that enable drugs to be implanted directly into cancer tumours. This enabled Langer and the cancer researcher Judah Folkman to isolate the first vascular inhibitors, which stop new blood vessels feeding tumours. “We thought it could be a new way of treating cancer,” Langer says, “and it’s become that. Drugs such as Avastin [bevacizumab] and Eylea [aflibercept] are based, in part, on our early research.” He also created new polymers that could dissolve like a bar of soap and release drugs in a very controlled way over months to years. And he and neurosurgeon Henry Brem developed implants (called gliadel wafers) that could be implanted in the brain to treat brain cancer. Trials in 1996 saw a 63% survival rate against just 19% in the control group.

If you have the time, it’s well worth reading Fleming’s article in its entirety.

Nanosunscreen in swimming pools

Thanks to Lynn L. Bergeson’s Sept. 21, 2016 posting for information about the US Environmental Protection Agency’s (EPA) research into what happens to the nanoparticles when your nanosunscreen washes off into a swimming pool. Bergeson’s post points to an Aug. 15, 2016 EPA blog posting by Susanna Blair,

… It’s not surprising that sunscreens are detected in pool water (after all, some is bound to wash off when we take a dip), but certain sunscreens have also been widely detected in our ecosystems and in our wastewater. So how is our sunscreen ending up in our environment and what are the impacts?

Well, EPA researchers are working to better understand this issue, specifically investigating sunscreens that contain engineered nanomaterials and how they might change when exposed to the chemicals in pool water [open access paper but you need to register for free] … But before I delve into that, let’s talk a bit about sunscreen chemistry and nanomaterials….

Blair goes on to provide a good brief description of  nanosunscreens before moving onto her main topic,

Many sunscreens contain titanium dioxide (TiO2) because it absorbs UV radiation, preventing it from damaging our skin. But titanium dioxide decomposes into other molecules when in the presence of water and UV radiation. This is important because one of the new molecules produced is called a singlet oxygen reactive oxygen species. These reactive oxygen species have been shown to cause extensive cell damage and even cell death in plants and animals. To shield skin from reactive oxygen species, titanium dioxide engineered nanomaterials are often coated with other materials such as aluminum hydroxide (Al(OH)3).

EPA researchers are testing to see whether swimming pool water degrades the aluminum hydroxide coating, and if the extent of this degradation is enough to allow the production of potentially harmful reactive oxygen species. In this study, the coated titanium dioxide engineered nanomaterials were exposed to pool water for time intervals ranging from 45 minutes to 14 days, followed by imaging using an electron microscope.  Results show that after 3 days, pool water caused the aluminum hydroxide coating to degrade, which can reduce the coating’s protective properties and increase the potential toxicity.  To be clear, even with degraded coating, the toxicity measured from the coated titanium dioxide, was significantly less [emphasis mine] than the uncoated material. So in the short-term – in the amount of time one might wear sunscreen before bathing and washing it off — these sunscreens still provide life-saving protection against UV radiation. However, the sunscreen chemicals will remain in the environment considerably longer, and continue to degrade as they are exposed to other things.

Blair finishes by explaining that research is continuing as the EPA researches the whole life cycle of engineered nanomaterials.

European Commission okays use of nanoscale titanium dioxide in cosmetics and beauty products (sunscreens)

Lynn L. Bergeson has a July 21, 2016 post on Nanotechnology Now with information about a July 14, 2016 European Commission (EC) regulation allowing nanoscale titanium dioxide to be used as a UV (ultraviolet) filter, i.e., sunscreen in various cosmetic and beauty products. You can find more details about the regulation and where it can be found in Bergeson’s posting. I was most interested in the specifics about the nano titanium dioxide particles,

… Titanium dioxide (nano) is not to be used in applications that may lead to exposure of the end user’s lungs by inhalation. Only nanomaterials having the following characteristics are allowed:
– Purity ¡Ý [sic] 99 percent;
– Rutile form, or rutile with up to 5 percent anatase, with crystalline structure and physical appearance as clusters of spherical, needle, or lanceolate shapes;
– Median particle size based on number size distribution ¡Ý [sic] 30 nanometers (nm);
– Aspect ratio from 1 to 4.5, and volume specific surface area ¡Ü [sic] 460 square meters per cubic meter (m2/cm3);
– Coated with silica, hydrated silica, alumina, aluminum hydroxide, aluminum stearate, stearic acid, trimethoxycaprylylsilane, glycerin, dimethicone, hydrogen dimethicone, or simethicone;
– Photocatalytic activity ¡Ü [sic] 10 percent compared to corresponding non-coated or non-doped reference, and
– Nanoparticles are photostable in the final formulation.

I’m guessing that purity should be greater than 99%, that median particle size should be greater than 30 nm, that aspect ratio should be less than 460 square meters per cubic meter, and that photocatalytic activity should be less than 10%.

If anyone should know better or have access to the data, please do let me know in the comments section.