Category Archives: science philosophy

Ishiguro’s robots and Swiss scientist question artificial intelligence at SXSW (South by Southwest) 2017

It seems unexpected to stumble across presentations on robots and on artificial intelligence at an entertainment conference such as South by South West (SXSW). Here’s why I thought so, from the SXSW Wikipedia entry (Note: Links have been removed),

South by Southwest (abbreviated as SXSW) is an annual conglomerate of film, interactive media, and music festivals and conferences that take place in mid-March in Austin, Texas, United States. It began in 1987, and has continued to grow in both scope and size every year. In 2011, the conference lasted for 10 days with SXSW Interactive lasting for 5 days, Music for 6 days, and Film running concurrently for 9 days.

Lifelike robots

The 2017 SXSW Interactive featured separate presentations by Japanese roboticist, Hiroshi Ishiguro (mentioned here a few times), and EPFL (École Polytechnique Fédérale de Lausanne; Switzerland) artificial intelligence expert, Marcel Salathé.

Ishiguro’s work is the subject of Harry McCracken’s March 14, 2017 article for Fast Company (Note: Links have been removed),

I’m sitting in the Japan Factory pavilion at SXSW in Austin, Texas, talking to two other attendees about whether human beings are more valuable than robots. I say that I believe human life to be uniquely precious, whereupon one of the others rebuts me by stating that humans allow cars to exist even though they kill humans.

It’s a reasonable point. But my fellow conventioneer has a bias: It’s a robot itself, with an ivory-colored, mask-like face and visible innards. So is the third participant in the conversation, a much more human automaton modeled on a Japanese woman and wearing a black-and-white blouse and a blue scarf.

We’re chatting as part of a demo of technologies developed by the robotics lab of Hiroshi Ishiguro, based at Osaka University, and Japanese telecommunications company NTT. Ishiguro has gained fame in the field by creating increasingly humanlike robots—that is, androids—with the ultimate goal of eliminating the uncanny valley that exists between people and robotic people.

I also caught up with Ishiguro himself at the conference—his second SXSW—to talk about his work. He’s a champion of the notion that people will respond best to robots who simulate humanity, thereby creating “a feeling of presence,” as he describes it. That gives him and his researchers a challenge that encompasses everything from technology to psychology. “Our approach is quite interdisciplinary,” he says, which is what prompted him to bring his work to SXSW.

A SXSW attendee talks about robots with two robots.

If you have the time, do read McCracken’t piece in its entirety.

You can find out more about the ‘uncanny valley’ in my March 10, 2011 posting about Ishiguro’s work if you scroll down about 70% of the way to find the ‘uncanny valley’ diagram and Masahiro Mori’s description of the concept he developed.

You can read more about Ishiguro and his colleague, Ryuichiro Higashinaka, on their SXSW biography page.

Artificial intelligence (AI)

In a March 15, 2017 EPFL press release by Hilary Sanctuary, scientist Marcel Salathé poses the question: Is Reliable Artificial Intelligence Possible?,

In the quest for reliable artificial intelligence, EPFL scientist Marcel Salathé argues that AI technology should be openly available. He will be discussing the topic at this year’s edition of South by South West on March 14th in Austin, Texas.

Will artificial intelligence (AI) change the nature of work? For EPFL theoretical biologist Marcel Salathé, the answer is invariably yes. To him, a more fundamental question that needs to be addressed is who owns that artificial intelligence?

“We have to hold AI accountable, and the only way to do this is to verify it for biases and make sure there is no deliberate misinformation,” says Salathé. “This is not possible if the AI is privatized.”

AI is both the algorithm and the data

So what exactly is AI? It is generally regarded as “intelligence exhibited by machines”. Today, it is highly task specific, specially designed to beat humans at strategic games like Chess and Go, or diagnose skin disease on par with doctors’ skills.

On a practical level, AI is implemented through what scientists call “machine learning”, which means using a computer to run specifically designed software that can be “trained”, i.e. process data with the help of algorithms and to correctly identify certain features from that data set. Like human cognition, AI learns by trial and error. Unlike humans, however, AI can process and recall large quantities of data, giving it a tremendous advantage over us.

Crucial to AI learning, therefore, is the underlying data. For Salathé, AI is defined by both the algorithm and the data, and as such, both should be publicly available.

Deep learning algorithms can be perturbed

Last year, Salathé created an algorithm to recognize plant diseases. With more than 50,000 photos of healthy and diseased plants in the database, the algorithm uses artificial intelligence to diagnose plant diseases with the help of your smartphone. As for human disease, a recent study by a Stanford Group on cancer showed that AI can be trained to recognize skin cancer slightly better than a group of doctors. The consequences are far-reaching: AI may one day diagnose our diseases instead of doctors. If so, will we really be able to trust its diagnosis?

These diagnostic tools use data sets of images to train and learn. But visual data sets can be perturbed that prevent deep learning algorithms from correctly classifying images. Deep neural networks are highly vulnerable to visual perturbations that are practically impossible to detect with the naked eye, yet causing the AI to misclassify images.

In future implementations of AI-assisted medical diagnostic tools, these perturbations pose a serious threat. More generally, the perturbations are real and may already be affecting the filtered information that reaches us every day. These vulnerabilities underscore the importance of certifying AI technology and monitoring its reliability.

h/t phys.org March 15, 2017 news item

As I noted earlier, these are not the kind of presentations you’d expect at an ‘entertainment’ festival.

Revisiting the scientific past for new breakthroughs

A March 2, 2017 article on phys.org features a thought-provoking (and, for some of us, confirming) take on scientific progress  (Note: Links have been removed),

The idea that science isn’t a process of constant progress might make some modern scientists feel a bit twitchy. Surely we know more now than we did 100 years ago? We’ve sequenced the genome, explored space and considerably lengthened the average human lifespan. We’ve invented aircraft, computers and nuclear energy. We’ve developed theories of relativity and quantum mechanics to explain how the universe works.

However, treating the history of science as a linear story of progression doesn’t reflect wholly how ideas emerge and are adapted, forgotten, rediscovered or ignored. While we are happy with the notion that the arts can return to old ideas, for example in neoclassicism, this idea is not commonly recognised in science. Is this constraint really present in principle? Or is it more a comment on received practice or, worse, on the general ignorance of the scientific community of its own intellectual history?

For one thing, not all lines of scientific enquiry are pursued to conclusion. For example, a few years ago, historian of science Hasok Chang undertook a careful examination of notebooks from scientists working in the 19th century. He unearthed notes from experiments in electrochemistry whose results received no explanation at the time. After repeating the experiments himself, Chang showed the results still don’t have a full explanation today. These research programmes had not been completed, simply put to one side and forgotten.

A March 1, 2017 essay by Giles Gasper (Durham University), Hannah Smithson (University of Oxford) and Tom Mcleish (Durham University) for The Conversation, which originated the article, expands on the theme (Note: Links have been removed),

… looping back into forgotten scientific history might also provide an alternative, regenerative way of thinking that doesn’t rely on what has come immediately before it.

Collaborating with an international team of colleagues, we have taken this hypothesis further by bringing scientists into close contact with scientific treatises from the early 13th century. The treatises were composed by the English polymath Robert Grosseteste – who later became Bishop of Lincoln – between 1195 and 1230. They cover a wide range of topics we would recognise as key to modern physics, including sound, light, colour, comets, the planets, the origin of the cosmos and more.

We have worked with paleographers (handwriting experts) and Latinists to decipher Grosseteste’s manuscripts, and with philosophers, theologians, historians and scientists to provide intellectual interpretation and context to his work. As a result, we’ve discovered that scientific and mathematical minds today still resonate with Grosseteste’s deeply physical and structured thinking.

Our first intuition and hope was that the scientists might bring a new analytic perspective to these very technical texts. And so it proved: the deep mathematical structure of a small treatise on colour, the De colore, was shown to describe what we would now call a three-dimensional abstract co-ordinate space for colour.

But more was true. During the examination of each treatise, at some point one of the group would say: “Did anyone ever try doing …?” or “What would happen if we followed through with this calculation, supposing he meant …”. Responding to this thinker from eight centuries ago has, to our delight and surprise, inspired new scientific work of a rather fresh cut. It isn’t connected in a linear way to current research programmes, but sheds light on them from new directions.

I encourage you to read the essay in its entirety.

Science as a post-truth concept

The word of 2016, according to the Oxford Dictionary of English, is ‘post-truth’ and Steve Fuller, a professor from the University of Warwick (UK), has written an intriguing Dec. 15, 2016 essay  for the Guardian tracing the origins of post-truth as it relates to the sciences (Note: Links have been removed),

Even today, more than fifty years after its first edition, Thomas Kuhn’s The Structure of Scientific Revolutions remains the first port of call to learn about the history, philosophy or sociology of science. This is the book famous for talking about science as governed by ‘paradigms’ until overtaken by ‘revolutions’.

Kuhn argued that the way that both scientists and the general public need to understand the history of science is Orwellian. He is alluding to 1984, in which the protagonist’s job is to rewrite newspapers from the past to make it seem as though the government’s current policy is where it had been heading all along. In this perpetually airbrushed version of history, the public never sees the U-turns, switches of allegiance and errors of judgement that might cause them to question the state’s progressive narrative. Confidence in the status quo is maintained and new recruits are inspired to follow in its lead. Kuhn claimed that what applies to totalitarian 1984 also applies to science united under the spell of a paradigm.
ADVERTISING

What makes Kuhn’s account of science ‘post-truth’ is that truth is no longer the arbiter of legitimate power but rather the mask of legitimacy that is worn by everyone in pursuit of power. Truth is just one more – albeit perhaps the most important – resource in a power game without end. In this respect, science differs from politics only in that the masks of its players rarely drop.

The explanation for what happens behind the masks lies in the work of the Italian political economist Vilfredo Pareto (1848-1923), devotee of Machiavelli, admired by Mussolini and one of sociology’s forgotten founders. Kuhn spent his formative years at Harvard in the late 1930s when the local kingmaker, biochemist Lawrence Henderson, not only taught the first history of science courses but also convened an interdisciplinary ‘Pareto Circle’ to get the university’s rising stars acquainted with the person he regarded as Marx’s only true rival.

For Pareto, what passes for social order is the result of the interplay of two sorts of elites, which he called, following Machiavelli, ‘lions’ and ‘foxes’. The lions acquire legitimacy from tradition, which in science is based on expertise rather than lineage or custom. Yet, like these earlier forms of legitimacy, expertise derives its authority from the cumulative weight of intergenerational experience. This is exactly what Kuhn meant by a ‘paradigm’ in science – a set of conventions by which knowledge builds in an orderly fashion to complete a certain world-view established by a founding figure – say, Newton or Darwin. Each new piece of knowledge is anointed by a process of ‘peer review’.
Advertisement

As in 1984, the lions normally dictate the historical narrative. But on the cutting room floor lies the activities of the other set of elites, the foxes. In today’s politics of science, they are known by a variety of names, ranging from ‘mavericks’ to ‘social constructivists’ to ‘pseudoscientists’. Foxes are characterised by dissent and unrest, thriving in a world of openness and opportunity.

Foxes stress the present as an ecstatic moment in which there is everything to play for. This includes a decisive break with ‘the past’, which they know has been fictionalized anyway, as in 1984. Self-styled visionaries present themselves, like Galileo, as the first to see what is in plain sight. Expertise appears as a repository of corrupt judgement designed to suppress promising alternatives to already bankrupt positions. For Kuhn, the scientific foxes get the upper hand whenever cracks appear in the lions’ smooth narrative, the persistent ‘anomalies’ that can’t be explained by the ruling paradigm.

But the foxes have their own Achilles Heel: They are strong in opposition but divisively self-critical in office. …

I encourage you to read the essay in its entirety although I don’t necessarily subscribe to the some of the statements. For example, I wouldn’t lump ‘mavericks’, ‘social constructivists’, and ‘pseudoscientists’ together without some discussion about ‘pseudoscience’. It’s true that an accusation of ‘pseudoscience’ is often leveled at people who are challenging the status quo but there are also situations where people use science as a mask to legitimate some fairly hinky work.

Westworld: a US television programme investigating AI (artificial intelligence) and consciousness

The US television network, Home Box Office (HBO) is getting ready to première Westworld, a new series based on a movie first released in 1973. Here’s more about the movie from its Wikipedia entry (Note: Links have been removed),

Westworld is a 1973 science fiction Western thriller film written and directed by novelist Michael Crichton and produced by Paul Lazarus III about amusement park robots that malfunction and begin killing visitors. It stars Yul Brynner as an android in a futuristic Western-themed amusement park, and Richard Benjamin and James Brolin as guests of the park.

Westworld was the first theatrical feature directed by Michael Crichton.[3] It was also the first feature film to use digital image processing, to pixellate photography to simulate an android point of view.[4] The film was nominated for Hugo, Nebula and Saturn awards, and was followed by a sequel film, Futureworld, and a short-lived television series, Beyond Westworld. In August 2013, HBO announced plans for a television series based on the original film.

The latest version is due to start broadcasting in the US on Sunday, Oct. 2, 2016 and as part of the publicity effort the producers are profiled by Sean Captain for Fast Company in a Sept. 30, 2016 article,

As Game of Thrones marches into its final seasons, HBO is debuting this Sunday what it hopes—and is betting millions of dollars on—will be its new blockbuster series: Westworld, a thorough reimagining of Michael Crichton’s 1973 cult classic film about a Western theme park populated by lifelike robot hosts. A philosophical prelude to Jurassic Park, Crichton’s Westworld is a cautionary tale about technology gone very wrong: the classic tale of robots that rise up and kill the humans. HBO’s new series, starring Evan Rachel Wood, Anthony Hopkins, and Ed Harris, is subtler and also darker: The humans are the scary ones.

“We subverted the entire premise of Westworld in that our sympathies are meant to be with the robots, the hosts,” says series co-creator Lisa Joy. She’s sitting on a couch in her Burbank office next to her partner in life and on the show—writer, director, producer, and husband Jonathan Nolan—who goes by Jonah. …

Their Westworld, which runs in the revered Sunday-night 9 p.m. time slot, combines present-day production values and futuristic technological visions—thoroughly revamping Crichton’s story with hybrid mechanical-biological robots [emphasis mine] fumbling along the blurry line between simulated and actual consciousness.

Captain never does explain the “hybrid mechanical-biological robots.” For example, do they have human skin or other organs grown for use in a robot? In other words, how are they hybrid?

That nitpick aside, the article provides some interesting nuggets of information and insight into the themes and ideas 2016 Westworld’s creators are exploring (Note: A link has been removed),

… Based on the four episodes I previewed (which get progressively more interesting), Westworld does a good job with the trope—which focused especially on the awakening of Dolores, an old soul of a robot played by Evan Rachel Wood. Dolores is also the catchall Spanish word for suffering, pain, grief, and other displeasures. “There are no coincidences in Westworld,” says Joy, noting that the name is also a play on Dolly, the first cloned mammal.

The show operates on a deeper, though hard-to-define level, that runs beneath the shoot-em and screw-em frontier adventure and robotic enlightenment narratives. It’s an allegory of how even today’s artificial intelligence is already taking over, by cataloging and monetizing our lives and identities. “Google and Facebook, their business is reading your mind in order to advertise shit to you,” says Jonah Nolan. …

“Exist free of rules, laws or judgment. No impulse is taboo,” reads a spoof home page for the resort that HBO launched a few weeks ago. That’s lived to the fullest by the park’s utterly sadistic loyal guest, played by Ed Harris and known only as the Man in Black.

The article also features some quotes from scientists on the topic of artificial intelligence (Note: Links have been removed),

“In some sense, being human, but less than human, it’s a good thing,” says Jon Gratch, professor of computer science and psychology at the University of Southern California [USC]. Gratch directs research at the university’s Institute for Creative Technologies on “virtual humans,” AI-driven onscreen avatars used in military-funded training programs. One of the projects, SimSensei, features an avatar of a sympathetic female therapist, Ellie. It uses AI and sensors to interpret facial expressions, posture, tension in the voice, and word choices by users in order to direct a conversation with them.

“One of the things that we’ve found is that people don’t feel like they’re being judged by this character,” says Gratch. In work with a National Guard unit, Ellie elicited more honest responses about their psychological stresses than a web form did, he says. Other data show that people are more honest when they know the avatar is controlled by an AI versus being told that it was controlled remotely by a human mental health clinician.

“If you build it like a human, and it can interact like a human. That solves a lot of the human-computer or human-robot interaction issues,” says professor Paul Rosenbloom, also with USC’s Institute for Creative Technologies. He works on artificial general intelligence, or AGI—the effort to create a human-like or human level of intellect.

Rosenbloom is building an AGI platform called Sigma that models human cognition, including emotions. These could make a more effective robotic tutor, for instance, “There are times you want the person to know you are unhappy with them, times you want them to know that you think they’re doing great,” he says, where “you” is the AI programmer. “And there’s an emotional component as well as the content.”

Achieving full AGI could take a long time, says Rosenbloom, perhaps a century. Bernie Meyerson, IBM’s chief innovation officer, is also circumspect in predicting if or when Watson could evolve into something like HAL or Her. “Boy, we are so far from that reality, or even that possibility, that it becomes ludicrous trying to get hung up there, when we’re trying to get something to reasonably deal with fact-based data,” he says.

Gratch, Rosenbloom, and Meyerson are talking about screen-based entities and concepts of consciousness and emotions. Then, there’s a scientist who’s talking about the difficulties with robots,

… Ken Goldberg, an artist and professor of engineering at UC [University of California] Berkeley, calls the notion of cyborg robots in Westworld “a pretty common trope in science fiction.” (Joy will take up the theme again, as the screenwriter for a new Battlestar Galactica movie.) Goldberg’s lab is struggling just to build and program a robotic hand that can reliably pick things up. But a sympathetic, somewhat believable Dolores in a virtual setting is not so farfetched.

Captain delves further into a thorny issue,

“Can simulations, at some point, become the real thing?” asks Patrick Lin, director of the Ethics + Emerging Sciences Group at California Polytechnic State University. “If we perfectly simulate a rainstorm on a computer, it’s still not a rainstorm. We won’t get wet. But is the mind or consciousness different? The jury is still out.”

While artificial consciousness is still in the dreamy phase, today’s level of AI is serious business. “What was sort of a highfalutin philosophical question a few years ago has become an urgent industrial need,” says Jonah Nolan. It’s not clear yet how the Delos management intends, beyond entrance fees, to monetize Westworld, although you get a hint when Ford tells Theresa Cullen “We know everything about our guests, don’t we? As we know everything about our employees.”

AI has a clear moneymaking model in this world, according to Nolan. “Facebook is monetizing your social graph, and Google is advertising to you.” Both companies (and others) are investing in AI to better understand users and find ways to make money off this knowledge. …

As my colleague David Bruggeman has often noted on his Pasco Phronesis blog, there’s a lot of science on television.

For anyone who’s interested in artificial intelligence and the effects it may have on urban life, see my Sept. 27, 2016 posting featuring the ‘One Hundred Year Study on Artificial Intelligence (AI100)’, hosted by Stanford University.

Points to anyone who recognized Jonah (Jonathan) Nolan as the producer for the US television series, Person of Interest, a programme based on the concept of a supercomputer with intelligence and personality and the ability to continuously monitor the population 24/7.

“Science is too important to be left to scientists alone”

The quote (“Science is too important to be left to scientists alone”) is from an essay/speech in the UK’s Guardian newspaper in their political science section. Written by Imran Khan, chief executive of the British Science Association, it marks the association’s relaunch (from a Guardian Dec. 1, 2015 piece),

No-one should feel the need to apologise for not being a scientist. And yet when I tell people I work for the British Science Association (BSA), embarrassment is a common response. “I don’t really understand science”, I hear. “Oh, I’m more of an arty person”, they say, or, “the last time I did science was at school”.

Such embarrassment is misplaced; not liking science is fine. The real concern is when people are excluded when they don’t need to be – and this happens with science more than it does for many other parts of our culture. Music, literature, politics, and sport, for instance, can all be shaped by anyone who consumes, creates, or critiques them – not just by their respective professional classes.

… Science is too important, valuable and fascinating to be left to professional scientists alone. For the good of society, the public, and scientific progress itself, science needs a broader community.

The scientific method can explain the world around us in an elegant and creative way, but scientists cannot escape the influence of external pressures and personal bias. Scientists have been put on a pedestal and are often seen as entirely rational, objective and expert – but this paints science as a near-infallible institution that doesn’t want or require engagement from non-scientists.

That is asking for trouble.

Given how strongly I agree with Khan’s comments, I’m not sure I can give his essay my usual critical eye on his writing. Here’s more,

As Richard Horton, editor of the Lancet, argues, a reduction in trust can be beneficial for those involved. In medicine, decades of activism and the prevalence of health information online is forcing greater transparency and improvements in medical practice. Can this approach be extended to the rest of science? Could we have a citizenship that critically questions all of the UK’s public institutions, including science?

Khan goes on to make some suggestions for more thoughtful science involvement,

For more people to be involved in science, we have to create a shared understanding of what science is. For instance, it’s tempting to see science as fundamentally progressive, an inherently benevolent force. But we have to recognise that it can have a dark side as well. This isn’t just an issue for scientists; the BSA believes that society as a whole should be able to bear some responsibility for how science is used.

Last year, for instance, we marked the centenary of the start of the First World War. It was one of the earliest – but certainly not the last – conflicts where the products of science were used to gas other human beings in their hundreds of thousands. Mustard gas, chlorine and phosgene were developed and deployed by both sides, despite previous treaties having banned them.

Nearly 200,000 British troops alone were struck by chemical attacks; non-fatal doses often scarred or afflicted soldiers for life. For many, this was the moment when we really became aware of the indiscriminately destructive potential of science. But, as part of the same conflict, science was also used to develop innovations such as blood transfusion, prosthetic limbs and reconstructive surgery.

Science does not exist in a moral vacuum. It is not inherently good or evil, but a platform for expressing human instincts, whether they be violence, kindness or creativity. We should celebrate new discoveries such as the Higgs Boson and the Mars Rover but we also need to find a space where scientists and the public can be involved in a debate about responsible scientific innovation. Both the innovators and the rest of us need to be held to account.

It is vital that the processes and products of science are readily available for the public to understand and interrogate. This is not to say that science isn’t regulated. One of the distinctive strengths of science is peer review; the process by which scientists hold each other to account. [emphasis mine]

Theoretically, peer review is the process by which scientists are held accountable by other scientists. However, it is an imperfect process as you can see in my Nov. 26, 2015 posting (A view to controversies about nanoparticle drug delivery, sticky-flares, and a PNAS surprise) which outlines one very current example of the difficulty two scientists have encountered when questioning results from a very prominent scientist in the field of nanomedicine. (There’s a formal peer review process which takes place prior to publication but informally scientists also respond to published  research with letters to the journal editors critiquing the work.)

Getting back to Khan, he provides an example of a broad-based group with authority over experts in medicine and science (Note: A link has been removed),

As an example, when the Human Fertilisation & Embryology Authority was created in 1991, its rules stipulated that the Chair, Deputy Chair and at least half of HFEA members needed to come from outside medicine or science. The group currently includes several people who have undergone IVF – people who are directly affected by the technology that the authority regulates.

This is a strong first step towards making funding and regulatory bodies truly representative of the population. While it has been good to see more diversity, we need to take this further. Key decisions on scientific innovation should always involve public dialogue, and it should be the responsibility of such boards to ensure that this happens.

For my last excerpt, Khan discusses education (Note: A link has been removed),

A scientific profession that looked more like the rest of the UK, and where a greater diversity of people knew scientists personally, should be something that we all aim for.

But, for the benefit of those who don’t rub shoulders with scientists, we also need to challenge the assumption that the study of science is primarily for the training of future experts. Although a report by the Royal Academy of Engineering states that one million engineers are needed by 2020 to meet the UK’s demands, we can’t let such figures instrumentalise education. The core aim of science education should be to ensure students leave school with the skills and confidence to discuss and shape scientific and technological advances in society, whatever their career choices.

One way to do this would be to stop segregating science into disciplines at school. In an age of inter-disciplinarity, studying physics, biology, and chemistry as supposedly separate subjects could be seen as an anachronism even for those going on to become scientists. But it’s perhaps even less helpful for those who we simply want to be members of a scientifically literate society; might a better route be having young people look at the science of, say, climate change, alongside its historical, geographic, and political elements?

(For a somewhat related piece, see my Aug. 7, 2015 posting titled: Science snobbery and the problem of accessibility.)

A provocative set of ideas, I encourage you to read Khan’s piece where he takes his ideas much further than I did mine. Khan’s thoughts can be found in their entirety in his Dec. 1, 2015 piece for the Guardian.

For the curious, the British Science Association can be found here.

A divisive scientific/philosophical debate that changed everything: Einstein vs. Bergson on the nature of time

A feud between a scientist and a philosopher—this seems like the setup for a joke but it’s not. According to a May 26, 2015 news item on phys.org, the book ‘The Physicist and the Philosopher: Einstein, Bergson, and the Debate That Changed Our Understanding of Time‘ chronicles a seminal debate and conflict that reverberates to this day,

Two of the 20th century’s greatest minds, one of them physicist Albert Einstein, came to intellectual blows one day in Paris in 1922. Their dispute, before a learned audience, was about the nature of time – mostly in connection with Einstein’s most famous work, the theory of relativity, which marks its centennial this year.

One immediate result of the controversy: There would be no mention of relativity in Einstein’s Nobel Prize, awarded a few months later.

One long-term result: a split between science and the humanities that continues to this day.

A May 26, 2015 University of Illinois at Urbana-Champaign news release, which originated the news item, provides some insight into a fascinating story,

The philosopher in the title, and Einstein’s adversary that day, was Henri Bergson, a French philosopher who was much more famous at the time than the German-born Einstein. Presidents and prime ministers carefully read Bergson’s work, and his public lectures often were filled to capacity. He was perhaps the pre-eminent public intellectual of his time, Canales [said.

Bergson did not challenge Einstein’s scientific claims about relativity, including the then-startling claim of time dilation, in which time slows down for objects traveling at higher speeds, Canales said.

What he challenged instead was Einstein’s interpretation of those claims, saying it went beyond science and was “a metaphysics grafted upon science.” He said that Einstein’s theory did not consider time as it was lived in human experience, the aspects of time that could not be captured by clocks or formulas.

Einstein quickly dismissed the philosopher’s criticism. To an audience that day of mostly philosophers, he made the incendiary statement that “the time of the philosophers does not exist.”

In the aftermath, Bergson published a book in which he thoroughly laid out his criticism of Einstein’s relativity and his theory of time. Both men and their supporters also spread their views through publications and letters, some of which employed “highly effective backbiting,” Canales said.

Bergson and Einstein also seemed to be on opposite ends of almost every pertinent issue of the time, from war and peace to race and faith, she said. “They seemed to take opposite stances in everything.”

Einstein supporters claimed that Bergson, though a gifted mathematician, did not completely understand Einstein’s theory. Bergson thought his theory of time was misunderstood by Einstein.

Bergson’s influence has been most prominent in novels and film, in their use of narrative twists and breaks and in time-shifting between past and future, Canales said. He also has had support among scientists, among them leading physicists who had helped develop relativity, as well as experts on quantum mechanics.

It was Einstein’s ideas that gained prominence, however, in part because later research only reinforced the science of relativity, but also because Bergson was effectively discredited by scientists, Canales said. Outside of philosophy, Bergson has been largely forgotten and is rarely even mentioned in Einstein biographies.

Canales said her book tells a “backstory of the rise of science” in the 20th century. It’s a story of “misunderstanding and mistrust,” she said.

“I took a pessimistic view of human nature and of our capacity to understand each other, and I think that view actually illuminates why so many humanists cannot talk to scientists, and scientists cannot talk to humanists.”

Canales said she sought to give an even-handed treatment to the two men and their views. In the process, however, she also sought to rehabilitate Bergson.

Just as Bergson was painted by some as anti-science, Canales said she knows she takes a similar risk in trying to give him his due in the dispute with Einstein, though it is not her intent. Being against science in the modern world, “makes no sense,” she said. “Clearly we should be for science.”

But we also need to think about science critically, Canales said. “We’re not taught to see science as it really is, as it really is practiced, as it really is done.” She said she hopes her book might help scientists and others understand the place of science “in more realistic terms.”

Canales’ book was published by Princeton University Press May 26, 2015. ‘The Physicist and the Philosopher: Einstein, Bergson, and the Debate That Changed Our Understanding of Time’ can be purchased here.

I expect anyone who reads this blog is likely to be familiar with Einstein but perhaps less so with Bergson. Here’s more about Bergson from his Wikipedia entry (Note: Links have been removed),

Henri-Louis Bergson (French: [bɛʁksɔn]; 18 October 1859 – 4 January 1941) was a major French philosopher, influential especially in the first half of the 20th century. Bergson convinced many thinkers that the processes of immediate experience and intuition are more significant than abstract rationalism and science for understanding reality. Bergson had a long affair with musicologist Janet Levy which led to her article “A Source of Musical Wit and Humor.” This was a well-regarded article used by many later writers.

He was awarded the 1927 Nobel Prize in Literature “in recognition of his rich and vitalizing ideas and the brilliant skill with which they have been presented”.[2] In 1930 France awarded him its highest honour, the Grand-Croix de la Legion d’honneur.

Brains, guts, health, and consciouness at TED 2014′s Session 5: Us

While most of the speakers I’m mentioning are the ‘science’ speakers in this session, they are more precisely ‘medical science’ speakers which takes me further than usual out of my comfort zone. That said, Nancy Kanwisher, brain researcher, opened the session (from her TED biography),

Using cutting-edge fMRI technology as her lens, Nancy Kanwisher zooms in on the brain regions responsible for some surprisingly specific elements of cognition.

Does the brain use specialized processors to solve complex problems, or does it rely instead on more general-purpose systems?

This question has been at the crux of brain research for centuries. MIT [Massachusetts Institute of Technology] researcher Nancy Kanwisher seeks to answer this question by discovering a “parts list” for the human mind and brain. “Understanding the nature of the human mind,” she says, “is arguably the greatest intellectual quest of all time.”

As many of us now know courtesy of researchers like Kanwisher, the brain has both general purpose regions and specialized regions for perception and complex processing but Kanwisher’s presentation was as much about the process of discovery as it was about the discoveries she and her colleagues have made. She talked about her personal experiences with functional magnetic resonance imaging (fMRI) as she tested (many times) her own brain first and then spent years looking at grayscale images as she decoded what she was observing and tested over and over and over again.

Next came the ‘gut guy’, or as microbial ecologist Rob Knight’s TED biography describes him,

Rob Knight explores the unseen microbial world that exists literally right under our noses — and everywhere else on (and in) our bodies.

Using scatological research methods that might repel the squeamish, microbial researcher Rob Knight uncovers the secret ecosystem (or “microbiome”) of microbes that inhabit our bodies — and the bodies of every creature on earth. In the process, he’s discovered a complex internal ecology that affects everything from weight loss to our susceptibility to disease. As he said to Nature in 2012, “What motivates me, from a pragmatic standpoint, is how understanding the microbial world might help us improve human and environmental health.”

Knight made the case that our microbes are what give us our individuality by noting that 99.99% of our DNA is the same from one person to the next but out microbial communities vary greatly person to person and the community in your mouth varies greatly from the community on your skin. He and his colleagues are using the information to consider new types of medical interventions. For example, research has shown that giving children antibiotics before the age of six months affects their future health.

Interestingly, we carry about 3 lbs. of microbes individually and Knight and his colleagues are still gathering information about those lbs. He mentioned the American Gut project (and solicited future volunteers from the live audience by mentioning he had just happened to bring 100 kits which were available at his table outside). This project is for US participant only.

Stephen Friend, oncologist and open science advocate was featured next. From his TED biography,

Inspired by open-source software models, Sage Bionetworks co-founder Stephen Friend builds tools that facilitate research sharing on a massive and revolutionary scale.

While working for Merck, Stephen Friend became frustrated by the slow pace at which big pharma created new treatments for desperate patients. Studying shared models like Wikipedia, Friend realized that the complexities of disease could only be understood — and combated — with collaboration and transparency, not by isolated scientists working in secret with proprietary data

Friend has a great name for someone who advocates for transparency and openness. He opened with stories about his work and how he came to be inspired to look for health rather than disease. He noted that for the most part, medical research is focused on the question of what went wrong with a patient rather than asking if healthy people have some sort of natural immunity or protection from cancer, Alzheimer’s, etc. Perhaps by examining health people we can find ways to more effectively intervene.

He provided two examples of research that examined natural immunity such as research in San Francisco (California) into why a small but significant percentage of people with HIV never developed AIDS; his other example was regarding research into lipid levels and why some people with high levels never develop heart disease.

I’m a little foggy about this point but I think he made a request for information about these medical phenomena and people from around the world shared their research with him in an open and transparent fashion.

This next bit was clear to me, he and his colleagues are moving to another stage with their research initiative which they have named the Resilience Project; Unexpected Heroes. He too solicited volunteers from the audience. I haven’t been able to locate a website for the project but there maybe some on the Sage Bionetworks website, the organization Friend co-founded. Good luck!

Finally, I wasn’t expecting to write about David Chalmers so my notes aren’t very good. A philosopher, here’s an excerpt from Chalmers’ TED biography,

In his work, David Chalmers explores the “hard problem of consciousness” — the idea that science can’t ever explain our subjective experience.

David Chalmers is a philosopher at the Australian National University and New York University. He works in philosophy of mind and in related areas of philosophy and cognitive science. While he’s especially known for his theories on consciousness, he’s also interested (and has extensively published) in all sorts of other issues in the foundations of cognitive science, the philosophy of language, metaphysics and epistemology.

Chalmers provided an interesting bookend to a session started with a brain researcher (Nancy Kanwisher) who breaks the brain down into various processing regions (vastly oversimplified but the easiest way to summarize her work in this context). Chalmers reviewed the ‘science of consciousness’ and noted that current work in science tends to be reductionist, i.e., examining parts of things such as brains and that same reductionism has been brought to the question of consciousness.

Rather than trying to prove consciousness, Chalmers proposes that we consider it a fundamental in the same way that we consider time, space, and mass to be fundamental. He noted that there’s precedence for additions and gave the example of James Clerk Maxwell and his proposal to consider electricity and magnetism as fundamental.

Chalmers next suggestion is a little more outré and based on some thinking (sorry I didn’t catch the theorist’s name) that suggests everything, including photons, has a type of consciousness (but not intelligence).

The beauty of silence in the practice of science

Most writers need silence at some point in their process and I feel strongly that’s true of anyone involved in creative endeavours of any kind including science. As well, it may seem contradictory to some but one needs to be both open (communicative) and closed (silent).

These days in the field of science there’s a lot of pressure to be open and communicative at all times according to Felicity Mellor’s [Senior Lecturer in Science Communication at Imperial College London] Jan. 15, 2014 blog posting for the Guardian and she feels it’s time to redress the balance (Note: Links have been removed),

Round the back of the British Library in London, a new building is taking shape. Due to open in 2015, the Crick Institute is set to become one of the largest research centres for biomedical science in Europe, housing over 1200 scientists.

The aim is to foster creative and imaginative research through interdisciplinary collaboration and the emphasis on collaboration pervades every aspect of the enterprise, from its joint foundation by six major institutions through to the very fabric of the building itself.

In stark contrast to the hunkered-down solidity of the British Library next door, with its pin-drop silences within, the glass walls and open-plan labs of the Crick Institute are intended to create “an atmosphere that maximises openness and permeability”. In place of the studious silences of the library, there will be the noisy cacophony of multidisciplinary exchanges.

Collaboration is clearly a key component of modern science and the Crick Institute is not alone in prioritising cross-disciplinary interaction. The rhetoric of openness is also widespread, with calls for public engagement and open data further extending the demands on scientists’ communications.

… Last year, Victoria Druce, then a student on the MSc in Science Communication at Imperial College, interviewed some of the scientists due to move into the Crick and found that they were already getting twitchy about sharing equipment and spoke territorially about their labs.

The unease is about more than territoriality (from the blog posting),

Researchers may quickly find ways to carve up the multidisciplinary spaces of the Crick Institute. But will they ever be able to shut themselves off from all that openness? Where, in these spaces of constant chatter, are scientists supposed to find a place to think?

Historically, the pursuit of knowledge was characterised as an activity conducted in, and requiring, silence, symbolically located in solitary spaces – whether the garret of the writer or the study of the intellectual. Newton was famously reluctant to engage with others and his theory of gravity came to him whilst sequestered in Lincolnshire, remote from the hubbub of London. Darwin, too, withdrew to Down House and held off publishing for as long as he could.

Mellor acknowledges that Darwin and Newton did not live in complete seclusion as there were neighbours, family members, and servants about during their ‘solitary’ sojourns but they still were able to enjoy some solitude where it seems the scientists at the Crick Institute will not (from the blog posting),

… when scientists recount moments of creativity, they frequently allude to periods of solitude and silence. If the aim of research centres like the Crick Institute is to foster creativity, then perhaps silence and withdrawal need to be catered for as well as collaboration and communication.

In response to this perceived need, Mellor and her colleague, Stephen Webster, organized a series of conferences titled, The silences of science, from the conferences’ homepage,

Constructive pauses and strategic delays in the practice and communication of science

The Silences of Science is an AHRC-funded reearch network examining different aspects of the paradox that science depends both on prolixity and on reticence. It seeks to interrogate the assumption that open and efficient channels of communication are always of greatest benefit to science and to society. It aims to remind the research community of the creative importance of silence, of interruptions in communication, of isolation and of ‘stuckness’.

Through a series of three workshops and conferences, the research network will bring together a range of scholars – from literary studies, anthropology, legal studies, religious studies, as well as from the history and philosophy of science and science communication studies – to draw on insights from their disciplines in order to examine the role of silence within the sciences.

Workshop/conference series: 

Conceptualising Silence: 2nd-3rd July 2013, Wellcome Trust. Programme here.

Silence in the History and Communication of Science: 17th December 2013, Imperial College London. (Further details and recordings of talks can be found here.)

The Role of Silence in Scientific Practice: Spring 2014, Imperial College London.

The most recent of the conferences features, as noted previously, audio recordings of some of the talks (from the Silence in the History and Communication of Science webpage),

Silence is often construed negatively, as a lack, an absence. Yet silences carry meaning. They can be strategic and directed at particular audiences; they can be fiercely contested or completely overlooked. Silence is not only oppressive but also generative, playing a key role in creative and intellectual processes. Conversely, speech, whilst seeming to facilitate open communication, can serve to mask important silences or can replace the quietude necessary for insightful thought with thoughtless babble.

Despite a currently dominant rhetoric that assumes that openness in science is an inherent good, science – and its communication – depends as much on discontinuities, on barriers and lacunae, as it does on the free flow of information. …

Brian Rappert (University of Exeter). The sounds of silencing.
Kees-Jan Schilt (University of Sussex), “Tired with this subject…”: Isaac Newton on publishing and the ideal natural philosopher.
Nick Verouden (Delft University of Technology), Silences as strategic communication in multi-disciplinary collaborations within the university and beyond.
Paul Merchant (National Life Stories, The British Library), “He didn’t go round the conference circuit talking about it”: oral histories of Joseph Farman and the ozone hole.
Emma Weitkamp (University of the West of England), Offering anonymity: journalists, PR and funders.
Carolyn Cobbold (University of Cambridge), The silent introduction of synthetic dyestuffs into food in the 19th century
Oliver Marsh (UCL), Lurking nine to five: ‘non-participants’ in online science communication.
Ann Grand (University of the West of England), Having it all: quality and quantity in open science.
Camilla Mørk Røstvik (University of Manchester), The silence of Rosalind Franklin’s Photograph 51
Elizabeth Hind, Reconstructing ancient thought: the case of Egyptian mathematics
Tim Boon (Science Museum) ‘The Silence of the Labs’: on mute machines and the communication of science
Alice White (University of Kent), Silence and selection: the “trick cyclist” at the War Office Selection Boards

Enjoy! One final note, Tim Boon’s ‘Silence of the Labs’ is not to be confused with the Canadian Broadcasting Corporation’s (CBC) Fifth Estate telecast titled Silence of the Labs (mentioned in my Jan. 6, 2014 posting),which focused on opposition to Canadian government initiatives which have forced journalists to send queries for interviews and interview questions to communications officers rather than directly to the scientists and such other measures.

Spirit of the law, the rule of law, Kiera Wilmot, and a science experiment in Florida

It’s tempting to ride my moral high horse regarding the Kiera Wilmot situation but on second thoughts I’ve decided to dismount. For those who are not familiar with the situation, Kiera Wilmot went to her Florida school on Monday, Apr. 29, 2013 and attempted a science experiment—unauthorized and in the school yard which resulted in an explosion that sounded like a firecracker going off. Shortly afterwards she found herself arrested, taken away in handcuffs, and expelled from school. She was charged on two felony charges (I believe) and will be tried as an adult.

As for the experiment, Wilmot brought a plastic bottle to school and, before classes started, decided to pour into it a quantity of household plumbing cleaner (Drano) and added a piece of aluminum foil resulting in smoke and an explosion that bystanders described as sounding like a firecracker. No one was injured and there was no damage. According to all the reports I’ve seen so far, Wilmot gets good grades and has never been in trouble.

Here’s the quote that Kyle Murzenrieder obtained for his Apr. 26, 2013 posting [as far as I can determine the incident occurred on Apr. 29 but, mysteriously, Murzenrieder’s posting is dated prior to that) on the Miami (Florida) New Times blog,

“She made a bad choice. Honestly, I don’t think she meant to ever hurt anyone,” principal Ron Pritchard told the station [local Miami tv station WTSP]. “She wanted to see what would happen [when the chemicals mixed] and was shocked by what it did. Her mother is shocked, too.”

The story has attracted international attention. Richard Luscombe in a May 2, 2013 story for the UK’s Guardian newspaper recounts the events and provides a perspective from a US educator of educators,

The unsupervised experiment on school grounds ended with Wilmot, 16, led away to a juvenile detention facility in handcuffs, expelled and charged as an adult with felony possession of a weapon and making or discharging a destructive device, with a possible penalty of up to 20 years in jail.

The episode has pitted campaigners for a common-sense approach to school discipline against an unrepentant school district that insists it is just following rules, warning parents to advise their children that there will always be “consequences to actions”.

“This is totally insane,” Dr Kathleen Nolan, a lecturer in teacher preparation at Princeton University and author of Police in the Hallways: Discipline in an Urban High School told the Guardian.

Steven D, a retired lawyer (not licenced to practice in Florida), provides a legal perspective on the charges Wilmot is facing in his May 2, 2013 posting on the Daily Kos,

Was Kiera’s science experiment a “destructive device” that she willingly made, possessed and intended to use as such?

In Florida, a person commits a felony when he or she “willfully and unlawfully makes, possesses, throws, projects, places, discharges, or attempts to make, possess, throw, project, place, or discharge any destructive device.”

No report I’ve seen suggests that her the result of her “experiment” caused any bodily harm to anyone or any property damage.  However, for the sake for argument let’s concede that her science experiment was a destructive device.  That doesn’t end the inquiry, however, regarding her guilt.  You see the law clearly states that for Kiera to be guilty of a felony, she must have both constructed her “destructive device,” and used it, willfully and unlawfully.  In short, the issue of her intent again appears, and it should give any prosecutor pause before pursuing felony charges against this young woman.  Why?  Because she herself has stated she just wanted to see what would happen when she mixed the aluminum foil strips with the chemicals in her toilet cleaner. ….

It’s well worth reading the full piece for the way Steven D. breaks down the language used in the laws under which Wilmot is being charged and examines the case. If I understand his points correctly, the prosecutor will have a very hard time proving there was any attempt to harm or cause damage to anyone or anything, which is what those laws are designed to discourage.

Scientific American is covering this evolving situation in a number of ways. Ashutosh Jogalekar (Ashutosh [Ash] Jogalekar is a chemist interested in the history and philosophy of science, according to the  description on his blog, The Curious Wavefunction; a member of the Scientific American blog network) wrote an essay on science, scientific query, youth, and Kiera Wilmot titled, America hates science, for Scientific American which was also published on Salon.com (Note: Links have been removed),

She [Wilmot] definitely deserved to be reprimanded and perhaps even punished in some way, maybe by putting her on probation. But when you arrest and expel students for slaking their scientific curiosity, whatever the other consequences of that action, be advised that you are almost certainly sacrificing a valuable scientist at the altar of arbitrarily wielded state and school power.

The latest incident however is only a reflection of, on one hand, the draconian measures that our educational and political institutions are taking to achieve the ostensible goal of “disciplining” American children, and on the other hand, the public obsession with chemophobia and “chemicals”. The absurdly named “chemical free” chemistry sets are already depriving students of the joy of chemistry. When I was growing up my chemistry set had a lot of potentially harmful chemicals like copper sulfate and potassium ferricyanide. On every bottle there were clear labels advising us of the hazards of that particular chemical, antidotes against poisoning and the phone number of the poison center. None of these labels deterred me or my parents, and the set opened up the wonderful world of chemistry to me.

Society’s ardent wish to enforce this principle of maximum precaution – whether it involves reacting to terrorism or to school pranks – is turning schools into straitjacketed environments with armed guards and law enforcement where misdemeanors, pranks and honest mistakes that would have gotten a student detention twenty years ago are leading instead to arrests and expulsions. The school environment in many states has turned into an overactive immune system.

Jogalekar is expressing a sentiment echoed not only by Dr. Kathleen Nolan in Luscombe’s UK Guardian story but elsewhere too, as per Tim Elfrink’s May 2, 2013 posting for the Miami New Times,

As the tale of Kiera Wilmot — the Bartow, Florida student expelled and charged with two felonies over a science project gone wrong — went viral yesterday, a wide movement to support the 16-year-old blossomed from blogs to radio shows to Change.org petitions. Best of all, though, has been a Twitter campaign by scientists and science fans with a simple premise: writing about the craziest stuff they’ve blown up over the years, all in the name of science. [emphasis mine]

The difference, of course, is that they were congratulated on their curiosity or slapped on the wrist, not hit with life-altering felonies.

Andrew David Thaler of the Southern Fried Science blog has started at least one of  the Twitter campaigns (this is the tag: #KieraWilmot) and you can find his commentary about the situation and tweets here on Storify.

While I am in agreement that the response to Wilmot’s ill-advised experiment is an extraordinary overreaction, I can understand the impact the act of setting off an explosive device in a schoolyard a scant two weeks after the Boston Marathon bombing incident (April 15, 2013) where four people were killed (including one of the bombers) and many others injured likely had on the authorities. The timing is spectacularly bad and points to a degree of self-absorption that one might expect of a 16-year-old.

That said, I think rather than trying Wilmot as an adult on two felony charges for a science experiment, it might be more useful to involve the community (Wilmot and her family, the other school children, the teachers, the administrators, and the parents) and have them review Wilmot’s actions and determine the appropriate response to her transgression.

Laws are meant to help us maintain social order. It seems to me that the spirit of the laws under which Wilmot is being charged is aimed at protecting the community from violence and harm and that spirit is being violated although authorities may be following the rule of law. Wilmot is a member of the community and she is being harmed by an unthinking response from adults who really should know better.

ETA May 3, 2013 4:45 pm PDT: Here’s a petition you can sign, if you are so inclined: https://www.change.org/petitions/polk-county-state-s-attorney-drop-felony-charges-against-16-year-old-kiera-wilmot

Is a philosophy of the Higgs and other physics particles a good idea?

Michael  Krämer of the RWTH Aachen University (Germany) muses about philosophy, the Higgs Boson, and more in a Mar. 24, 2013 posting on Jon Butterworth’s Life and Physics blog (Guardian science blogs; Note: A link has been removed),

Many of the great physicists of the 20th century have appreciated the importance of philosophy for science. Einstein, for example, wrote in a letter in 1944:

    I fully agree with you about the significance and educational value of methodology as well as history and philosophy of science. So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest.

At the same time, physics has always played a vital role in shaping ideas in modern philosophy. It appears, however, that we are now faced with the ruins of this beautiful marriage between physics and philosophy. Stephen Hawking has claimed recently that philosophy is “dead” because philosophers have not kept up with science …

Krämer is part of an interdisciplinary (physics and philosophy) project at the LHC (Large Hadron Collider at CERN [European Particle Physics Laboratory]), The Epistemology of the Large Hadron Collider. From the project home page (Note: A link has been removed),

This research collaboration works at the crossroads of physics, philosophy of science, and contemporary history of science. It aims at an epistemological analysis of the recently launched new accelerator experiment at CERN, the Large Hadron Collider (LHC). Central themes are (i) the mechanisms of generating the masses of the particles of the standard model, especially the Higgs-mechanism and the Higgs-particle the LHC has set out to detect; (ii) the ongoing research process with special emphasis on the interaction between a large experiment and a community of theoreticians; and (iii) the implications of an experiment that is characterized by its enormous complexity and the need to be highly selective in data gathering. With the heading “Epistemology of the LHC” the research group intends both a philosophical analysis of the theoretical structures and of the conditions of knowledge production, among them the criteria of acceptance, and a real-time monitoring of the ongoing physical development from the perspective of the history of science. Theresearch group has emerged from a collaboration between a High Energy Working group and the Interdisciplinary Centre for Science and Technology Studies and is based in Wuppertal but also involves external members and collaborators.

Krämer shares some of his ideas and the type of thinking generated when physicists and philosophers collide (I plead guilty to the word play; from Butterworth’s Guardian science blog),

… The relationship between experiment and theory (what impact does theoretical prejudice have on empirical findings?) or the role of models (how can we assess the uncertainty of a simplified representation of reality?) are scientific issues, but also issues from the foundation of philosophy of science. In that sense they are equally important for both fields, and philosophy may add a wider and critical perspective to the scientific discussion. And while not every particle physicist may be concerned with the ontological question of whether particles or fields are the more fundamental objects, our research practice is shaped by philosophical concepts. We do, for example, demand that a physical theory can be tested experimentally and thereby falsified, a criterion that has been emphasized by the philosopher Karl Popper already in 1934. The Higgs mechanism can be falsified, because it predicts how Higgs particles are produced and how they can be detected at the Large Hadron Collider.

On the other hand, some philosophers tell us that falsification is strictly speaking not possible: What if a Higgs property does not agree with the standard theory of particle physics? How do we know it is not influenced by some unknown and thus unaccounted factor, like a mysterious blonde walking past the LHC experiments and triggering the Higgs to decay? (This was an actual argument given in the meeting!)

The meeting Krämer is referring to is this one (from the meeting/conference website),

The first international conference and kick-off meeting of the German Society for Philosophy of Science/Gesellschaft für Wissenschaftsphilosophie (GWP) will take place from 11-14 March 2013 at the University of Hannover under the title:

How Much Philosophy in the Philosophy of Science?

Krämer then highlights some of the discussion that most interested in him (Note: A link has been removed),

… It is very hard for a philosopher to keep up with scientific progress, and how could one integrate various fields without having fully appreciated the essential features of the individual sciences? As Margaret Morrison from the University of Toronto pointed out in her talk, if philosophy steps back too far from the individual sciences, the account becomes too general and isolated from scientific practice. On the other hand, if philosophy is too close to an individual science, it may not be philosophy any longer.

I think philosophy of science should not consider itself primarily as a service to science, but rather identify and answer questions within its own domain. I certainly would not be concerned if my own research went unnoticed by biologists, chemists, or philosophers, as long as it advances particle physics. On the other hand, as Morrison pointed out, science does generate its own philosophical problems, and philosophy may provide some kind of broader perspective for understanding those problems.

It’s well worth reading Krämer’s full post for anyone who’s interested in how physicists (or Krämer) think about the role that philosophy could play (or not) in the field of physics.

The reference to Margaret Morrison from the University of Toronto (U of T) reminded me of the Bubble Chamber blog which is written by U of T historians and philosophers of science. Here’s a July 10, 2012 posting by Mike Thicke about the Higgs Boson and his response to philosopher Wayne Myrvold’s (University of Western Ontario) explanation of the statistics claims being made about the particle at that time,

We can all agree that reasoning and decision making in science is complicated. Scientists reason in many different contexts: in the lab, in their published papers, as career-minded professionals, as interested consumers of science, and as people going about their lives. It’s plausible to think that they reason in different ways in all of these contexts. When we’re discussing their reasoning as scientists, I believe distinguishing between the first three contexts is especially important. While Wayne’s explanation of the statistics behind the Higgs Boson discovery is very interesting, informative, and as far as I can tell correct, I think there are some confusions arising from his failure to make these distinctions.

Thicke does advise reading Myrvold’s July 4, 2012 posting before tackling his riposte.