Category Archives: clothing

Vampire nanogenerators: 2017

Researchers have been working on ways to harvest energy from bloodstreams. I last wrote about this type of research in an April 3, 2009 posting about ‘vampire batteries ‘(for use in pacemakers). The latest work according to a Sept. 8, 2017 news item on Nanowerk comes from China,

Men build dams and huge turbines to turn the energy of waterfalls and tides into electricity. To produce hydropower on a much smaller scale, Chinese scientists have now developed a lightweight power generator based on carbon nanotube fibers suitable to convert even the energy of flowing blood in blood vessels into electricity. They describe their innovation in the journal Angewandte Chemie (“A One-Dimensional Fluidic Nanogenerator with a High Power Conversion Efficiency”)

A Sept. 8, 2017 Wiley Publishing news release (also on EurekAlert), which originated the news item, expands on the theme,

For thousands of years, people have used the energy of flowing or falling water for their purposes, first to power mechanical engines such as watermills, then to generate electricity by exploiting height differences in the landscape or sea tides. Using naturally flowing water as a sustainable power source has the advantage that there are (almost) no dependencies on weather or daylight. Even flexible, minute power generators that make use of the flow of biological fluids are conceivable. How such a system could work is explained by a research team from Fudan University in Shanghai, China. Huisheng Peng and his co-workers have developed a fiber with a thickness of less than a millimeter that generates electrical power when surrounded by flowing saline solution—in a thin tube or even in a blood vessel.

The construction principle of the fiber is quite simple. An ordered array of carbon nanotubes was continuously wrapped around a polymeric core. Carbon nanotubes are well known to be electroactive and mechanically stable; they can be spun and aligned in sheets. In the as-prepared electroactive threads, the carbon nanotube sheets coated the fiber core with a thickness of less than half a micron. For power generation, the thread or “fiber-shaped fluidic nanogenerator” (FFNG), as the authors call it, was connected to electrodes and immersed into flowing water or simply repeatedly dipped into a saline solution. “The electricity was derived from the relative movement between the FFNG and the solution,” the scientists explained. According to the theory, an electrical double layer is created around the fiber, and then the flowing solution distorts the symmetrical charge distribution, generating an electricity gradient along the long axis.

The power output efficiency of this system was high. Compared with other types of miniature energy-harvesting devices, the FFNG was reported to show a superior power conversion efficiency of more than 20%. Other advantages are elasticity, tunability, lightweight, and one-dimensionality, thus offering prospects of exciting technological applications. The FFNG can be made stretchable just by spinning the sheets around an elastic fiber substrate. If woven into fabrics, wearable electronics become thus a very interesting option for FFNG application. Another exciting application is the harvesting of electrical energy from the bloodstream for medical applications. First tests with frog nerves proved to be successful.

Here’s a link to and a citation for the paper,

A One-Dimensional Fluidic Nanogenerator with a High Power Conversion Efficiency by Yifan Xu, Dr. Peining Chen, Jing Zhang, Songlin Xie, Dr. Fang Wan, Jue Deng, Dr. Xunliang Cheng, Yajie Hu, Meng Liao, Dr. Bingjie Wang, Dr. Xuemei Sun, and Prof. Dr. Huisheng Peng. Angewandte Chemie International Edition DOI: 10.1002/anie.201706620 Version of Record online: 7 SEP 2017

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Korean researchers extend food shelf *life* with nanomicrobial coating

These Korean scientists have applied their new coating to food and to shoe insoles as they test various uses for their technology. From an Aug. 11, 2017 news item on Nanowerk,

The edible coating on produce has drawn a great deal of attention in the food and agricultural industry. It could not only prolong postharvest shelf life of produce against external changes in the environment but also provide additional nutrients to be useful for human health. However, most versions of the coating have had intrinsic limitations in their practical application.

First, highly specific interactions between coating materials and target surfaces are required for a stable and durable coating. Even further, the coating of bulk substrates, such as fruits, is time consuming or is not achievable in the conventional solution-based coating. In this respect, material-independent and rapid coating strategies are highly demanded.

The research team led by Professor Insung Choi of the Department of Chemistry developed a sprayable nanocoating technique using plant-derived polyphenol that can be applied to any surface.

An Aug. 10, 2017 KAIST (Korea Advanced Institute of Science and Technology) press release, which originated the news item, expands on the theme,

Polyphenols, a metabolite of photosynthesis, possess several hydroxyl groups and are found in a large number of plants showing excellent antioxidant properties. They have been widely used as a nontoxic food additive and are known to exhibit antibacterial, as well as potential anti-carcinogenic capabilities. Polyphenols can also be used with iron ions, which are naturally found in the body, to form an adhesive complex, which has been used in leather tanning, ink, etc.

The research team combined these chemical properties of polyphenol-iron complexes with spray techniques to develop their nanocoating technology. Compared to conventional immersion coating methods, which dip substrates in specialized coating solutions, this spray technique can coat the select areas more quickly. The spray also prevents cross contamination, which is a big concern for immersion methods. The research team has showcased the spray’s ability to coat a variety of different materials, including metals, plastics, glass, as well as textile fabrics. The polyphenol complex has been used to form antifogging films on corrective lenses, as well as antifungal treatments for shoe soles, demonstrating the versatility of their technique.

Furthermore, the spray has been used to coat produce with a naturally antibacterial, edible film. The coatings significantly improved the shelf life of tangerines and strawberries, preserving freshness beyond 28 days and 58 hours, respectively. (Uncoated fruit decomposed and became moldy under the same conditions). See the image below.

 

a –I, II: Uncoated and coated tangerines incubated for 14 and 28 days in daily-life settings

b –I: Uncoated and coated strawberries incubated for 58 hours in daily-life settings

b –II: Statistical investigation of the resulting edibility.

Professor Choi said, “Nanocoating technologies are still in their infancy, but they have untapped potential for exciting applications. As we have shown, nanocoatings can be easily adapted for several different uses, and the creative combination of existing nanomaterials and coating methods can synergize to unlock this potential.”

Here’s a link to and a citation for the paper,

Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits by Ji Park, Sohee Choi, Hee Moon, Hyelin Seo, Ji Kim, Seok-Pyo Hong, Bong Lee, Eunhye Kang, Jinho Lee, Dong Ryu, & Insung S. Choi. Scientific Reports 7, Article number: 6980 (2017) doi:10.1038/s41598-017-07257-x Published online: 01 August 2017

This paper is open access.

*’life’ added to correct headline on Sept. 4, 2017.

Followup on Pashmina nanotech tag story

I’m not sure if this is the same initiative as the one I described in my Feb. 27, 2013 posting about nanotechnology-enabled anti-counterfeiting labels for Pashmina shawls and other products but it seems likely. From a May 16, 2017 article by Athar Parvaiz for factordaily.com,

Until a few years ago, if you were buying a coveted Kashmiri Pashmina, chances were you’d be worried about being sold a fake. Despite having a geographical indications (GI) tag, fakes and machine-made shawls abound in the market.

But a couple of years ago, the Jammu and Kashmir (J&K) government decided to take things in its hands and reinstate buyers’ faith in the Rs 2,000-crore industry, which provides employment to around 300,000 people. It started using nanotechnology to label Pashmina products like shawls, mufflers and stoles to ensure authenticity.

Pashmina artisans say the move has benefitted them greatly, and most of them prefer to sell certified products as they get full price for the authenticated shawls. Experts from the Pashmina Testing and Quality Certification Centre (PTQCC) said they label about 500 shawls per month, which is almost all the products produced in the state, as the number hardly crosses 500 to 600 per month these days.

Gowhar Ahmad, a Pashmina artist from downtown Srinagar, says he’s sold several shawls with authentication labels since the laboratory was established in 2015. “However, customers repeatedly ask about the authenticity of my products as most of them haven’t heard of the certification. When I tell them about it, they run searches on their phones and only then are they convinced,” he said.

“The government should spread information about how it is ensuring the authenticity of Pashmina shawls,” Ahmad said. He added the labelled shawls fetch full price while machine-made products don’t even get half.

Another artist, Nazir Ahmad from Eidgah in Srinagar, agreed that the labelling is helpful, and reiterated Gowhar’s point about the need to spread the word about it outside Kashmir. “The government should also set up more laboratories for certification of Pashmina products,” he added. At present an artisan has to wait for up to seven days to get a shawl labelled. With more laboratories, the wait time can be reduced, he said.

These artisans may soon have reason to cheer. Mustaq Ahmad Shah, assistant director of handicrafts in Srinagar, said the handicrafts department plans to launch an extensive advertising campaign “to spread information on how to tell apart genuine and fake pashmina products following the recent steps taken by the state government to maintain the purity and glory of this heritage industry.” The department is also considering creating more PTQCC  facilities for the benefit of Pashmina artisans, he added.

Parvaiz describes the difference between authentic Pashmina wool products and the counterfeit products, as well as, the certification process,

According to experts, fake Pashmina-makers add nylon to below-standard Pashmina from Mongolia and China so that it can withstand the pressure of being spun on automatic machines. These shawls appear deceptively similar to genuine handmade Pashmina and most buyers get easily duped.

“But, after three-four years, the wool fibre starts shrinking and separating from the nylon, especially after washing,” Yasir Ahmad Mir, a professor at Srinagar’s Craft Development Institute (CDI) said. The extremely fine fibre of Pashmina can’t be spun by machine; it can be only hand-spun, he added.

“We do laboratory tests to determine whether the Pashmina is hand-spun or machine-spun and whether the shawl has been hand-woven or machine-made,” said Younus Farooq, manager at the PTQCC.

If a product withstands the scrutiny of laboratory testing, it gets a a non-detachable secure fusion authentication label (microchip) containing nano-particles with a unique layering code, readable under infrared light. The label contains information about the product along with a unique number. It is stuck on the Pashmina product with the help of heat without compromising on its aesthetics.

It was nice to find a followup article all these years later.

Nanotechnology-enabled warming textile being introduced at Berlin (Germany) Fashion Week July 4 – 7, 2017

Acanthurus GmbH, a Frankfurt-based (Germany) nanotechnology company announced its participation in Berlin Fashion Week’s (July 4 – 7, 2017) showcase for technology in fashion, Panorama Berlin  (according to Berlin Fashion Week’s Fashion Fair Highlights in July 2017 webpage; scroll down to Panorama Berlin subsection).

Here are more details about Acanthurus’ participation from a July 4, 2017 news item on innovationintextiles.com,

This week, Frankfurt-based nanotechnology company Acanthurus GmbH will introduce its innovative nanothermal warming textile technology nanogy at the Berlin FashionTech exhibition. An innovative warming technology was developed by Chinese market leader j-NOVA for the European market, under the brand name nanogy.

A July 3, 2017 nanogy press release, which originated the news item, offers another perspective on the story,

Too cold for your favorite dress? Leave your heavy coat at home and stay warm with ground-breaking nanotechnology instead.

Frankfurt-based nano technology company Acanthurus GmbH has brought an innovative warming technology developed by Chinese market leader j-NOVA© to the European market, under the brand name nanogy. “This will make freezing a thing of the past,” says Carsten Wortmann, founder and CEO of Acanthurus GmbH. The ultra-light, high-tech textiles can be integrated into any garment – including that go-to jacket everyone loves to wear on chilly days. All you need is a standard power bank to feel the warmth flow through your body, even on the coldest of days.

The innovative, lightweight technology is completely non-metallic, meaning it emits no radiation. The non-metallic nature of the technology allows it to be washed at any temperature, so there’s no need to worry about accidental spillages, whatever the circumstances. The technology is extremely thin and flexible and, as there is absolutely no metal included, can be scrunched or crumpled without damaging its function. This also means that the technology can be integrated into garments without any visible lines or hems, making it the optimal solution for fashion and textile companies alike.

nanogy measures an energy conversion rate of over 90%, making it one of the most sustainable and environmentally friendly warming solutions ever developed. The technology is also recyclable, so consumers can dispose of it as they would any other garment.

“Our focus is not just to provide world class technology, but also to improve people’s lives without harming our environment. We call this a nanothermal experience, and our current use cases have only covered a fraction of potential opportunities,” says Jeni Odley, Director of Acanthurus GmbH. As expected for any modern tech company, users can even control the temperature of the textile with a mobile app, making the integration of nanogy a simplified, one-touch experience.

I wasn’t able to find much about j-Nova but there was this from the ISPO Munich 2017 exhibitor details webpage,

j-NOVA.WORKS Co., Ltd.

4-B302, No. 328 Creative Industry Park, Xinhu St., Suzhou Industrial Park
215123 Jiangsu Prov.
China
P  +49 69 130277-70
F  +49 69 130277-75

As the new generation of warming technology, we introduce our first series of intelligent textiles: j-NOVA intelligent warming textiles.

The intelligent textiles are based on complex nano-technology, and maintain a constant temperature whilst preserving a low energy conversion rate. The technology can achieve an efficiency level of up to 90%, depending on its power source.

The combination of advanced nano material and intelligent modules bring warmth from the fabric and garment itself, which can be scrunched up or washed without affecting its function.

j-NOVA.WORKS aims to balance technology with tradition, and to improve the relationship between nature and humans.

Acanthurus GmbH is the sole European Distributor.

So, j-NOVA is the company with the nanotechnology and Acanthurus represents their interests in Europe. I wish I could find out more about the technology but this is the best I’ve been able to accomplish in the time I have available.

Scientists claim off-the-shelf, power-generating clothes almost here

PEDOT-coated yarns act as “normal” wires to transmit electricity from a wall outlet to an incandescent lightbulb. Materials scientist Trisha Andrew at UMass Amherst and colleagues outline in a new paper how they have invented a way to apply breathable, pliable, metal-free electrodes to fabric and off-the-shelf clothing so it feels good to the touch and also transports electricity to power small electronics. Harvesting body motion energy generates the power. Courtesy: UMass Amherst

I’m not quite as optimistic (it’s a long way from the lab to the marketplace) as the scientists do eventually note but this does seem promising (from a May 23, 2017 news item on Nanowerk),

A lightweight, comfortable jacket that can generate the power to light up a jogger at night may sound futuristic, but materials scientist Trisha Andrew at the University of Massachusetts Amherst could make one today.

In a new paper this month, she and colleagues outline how they have invented a way to apply breathable, pliable, metal-free electrodes to fabric and off-the-shelf clothing so it feels good to the touch and also transports enough electricity to power small electronics.

A May 23, 2017 University of Massachusetts Amherst news release (also on EurekAlert), which originated the news item,

She says, “Our lab works on textile electronics. We aim to build up the materials science so you can give us any garment you want, any fabric, any weave type, and turn it into a conductor. Such conducting textiles can then be built up into sophisticated electronics. One such application is to harvest body motion energy and convert it into electricity in such a way that every time you move, it generates power.” Powering advanced fabrics that can monitor health data remotely are important to the military and increasingly valued by the health care industry, she notes.

Generating small electric currents through relative movement of layers is called triboelectric charging, explains Andrew, who trained as a polymer chemist and electrical engineer. Materials can become electrically charged as they create friction by moving against a different material, like rubbing a comb on a sweater. “By sandwiching layers of differently materials between two conducting electrodes, a few microwatts of power can be generated when we move,” she adds.

In the current early online edition of Advanced Functional Materials, she and postdoctoral researcher Lu Shuai Zhang in her lab describe the vapor deposition method they use to coat fabrics with a conducting polymer, poly(3,4-ethylenedioxytiophene) also known as PEDOT, to make plain-woven, conducting fabrics that are resistant to stretching and wear and remain stable after washing and ironing. The thickest coating they put down is about 500 nanometers, or about 1/10 the diameter of a human hair, which retains a fabric’s hand feel.

The authors report results of testing electrical conductivity, fabric stability, chemical and mechanical stability of PEDOT films and textile parameter effects on conductivity for 14 fabrics, including five cottons with different weaves, linen and silk from a craft store.

“Our article describes the materials science needed to make these robust conductors,” Andrew says. “We show them to be stable to washing, rubbing, human sweat and a lot of wear and tear.” PEDOT coating did not change the feel of any fabric as determined by touch with bare hands before and after coating. Coating did not increase fabric weight by more than 2 percent. The work was supported by the Air Force Office of Scientific Research.

Until recently, she and Zhang point out, textile scientists have tended not to use vapor deposition because of technical difficulties and high cost of scaling up from the laboratory. But over the last 10 years, industries such as carpet manufacturers and mechanical component makers have shown that the technology can be scaled up and remain cost-effective. The researchers say their invention also overcomes the obstacle of power-generating electronics mounted on plastic or cladded, veneer-like fibers that make garments heavier and/or less flexible than off-the-shelf clothing “no matter how thin or flexible these device arrays are.”

“There is strong motivation to use something that is already familiar, such as cotton/silk thread, fabrics and clothes, and imperceptibly adapting it to a new technological application.” Andrew adds, “This is a huge leap for consumer products, if you don’t have to convince people to wear something different than what they are already wearing.”

Test results were sometimes a surprise, Andrew notes. “You’d be amazed how much stress your clothes go through until you try to make a coating that will survive a shirt being pulled over the head. The stress can be huge, up to a thousand newtons of force. For comparison, one footstep is equal to about 10 newtons, so it’s yanking hard. If your coating is not stable, a single pull like that will flake it all off. That’s why we had to show that we could bend it, rub it and torture it. That is a very powerful requirement to move forward.”

Andrew is director of wearable electronics at the Center for Personalized Health Monitoring in UMass Amherst’s Institute of Applied Life Sciences (IALS). Since the basic work reported this month was completed, her lab has also made a wearable heart rate monitor with an off-the-shelf fitness bra to which they added eight monitoring electrodes. They will soon test it with volunteers on a treadmill at the IALS human movement facility.

She explains that a hospital heart rate monitor has 12 electrodes, while the wrist-worn fitness devices popular today have one, which makes them prone to false positives. They will be testing a bra with eight electrodes, alone and worn with leggings that add four more, against a control to see if sensors can match the accuracy and sensitivity of what a hospital can do. As the authors note in their paper, flexible, body-worn electronics represent a frontier of human interface devices that make advanced physiological and performance monitoring possible.

For the future, Andrew says, “We’re working on taking any garment you give us and turning it into a solar cell so that as you are walking around the sunlight that hits your clothes can be stored in a battery or be plugged in to power a small electronic device.”

Zhang and Andrew believe their vapor coating is able to stick to fabrics by a process called surface grafting, which takes advantage of free bonds dangling on the surface chemically bonding to one end of the polymer coating, but they have yet to investigate this fully.

Here’s a link to and a citation for the paper,

Rugged Textile Electrodes for Wearable Devices Obtained by Vapor Coating Off-the-Shelf, Plain-Woven Fabrics by Lushuai Zhang, Marianne Fairbanks, and Trisha L. Andrew. Advanced Functional Materials DOI: 10.1002/adfm.201700415 Version of Record online: 2 MAY 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Gamechanging electronics with new ultrafast, flexible, and transparent electronics

There are two news bits about game-changing electronics, one from the UK and the other from the US.

United Kingdom (UK)

An April 3, 2017 news item on Azonano announces the possibility of a future golden age of electronics courtesy of the University of Exeter,

Engineering experts from the University of Exeter have come up with a breakthrough way to create the smallest, quickest, highest-capacity memories for transparent and flexible applications that could lead to a future golden age of electronics.

A March 31, 2017 University of Exeter press release (also on EurekAlert), which originated the news item, expands on the theme (Note: Links have been removed),

Engineering experts from the University of Exeter have developed innovative new memory using a hybrid of graphene oxide and titanium oxide. Their devices are low cost and eco-friendly to produce, are also perfectly suited for use in flexible electronic devices such as ‘bendable’ mobile phone, computer and television screens, and even ‘intelligent’ clothing.

Crucially, these devices may also have the potential to offer a cheaper and more adaptable alternative to ‘flash memory’, which is currently used in many common devices such as memory cards, graphics cards and USB computer drives.

The research team insist that these innovative new devices have the potential to revolutionise not only how data is stored, but also take flexible electronics to a new age in terms of speed, efficiency and power.

Professor David Wright, an Electronic Engineering expert from the University of Exeter and lead author of the paper said: “Using graphene oxide to produce memory devices has been reported before, but they were typically very large, slow, and aimed at the ‘cheap and cheerful’ end of the electronics goods market.

“Our hybrid graphene oxide-titanium oxide memory is, in contrast, just 50 nanometres long and 8 nanometres thick and can be written to and read from in less than five nanoseconds – with one nanometre being one billionth of a metre and one nanosecond a billionth of a second.”

Professor Craciun, a co-author of the work, added: “Being able to improve data storage is the backbone of tomorrow’s knowledge economy, as well as industry on a global scale. Our work offers the opportunity to completely transform graphene-oxide memory technology, and the potential and possibilities it offers.”

Here’s a link to and a citation for the paper,

Multilevel Ultrafast Flexible Nanoscale Nonvolatile Hybrid Graphene Oxide–Titanium Oxide Memories by V. Karthik Nagareddy, Matthew D. Barnes, Federico Zipoli, Khue T. Lai, Arseny M. Alexeev, Monica Felicia Craciun, and C. David Wright. ACS Nano, 2017, 11 (3), pp 3010–3021 DOI: 10.1021/acsnano.6b08668 Publication Date (Web): February 21, 2017

Copyright © 2017 American Chemical Society

This paper appears to be open access.

United States (US)

Researchers from Stanford University have developed flexible, biodegradable electronics.

A newly developed flexible, biodegradable semiconductor developed by Stanford engineers shown on a human hair. (Image credit: Bao lab)

A human hair? That’s amazing and this May 3, 2017 news item on Nanowerk reveals more,

As electronics become increasingly pervasive in our lives – from smart phones to wearable sensors – so too does the ever rising amount of electronic waste they create. A United Nations Environment Program report found that almost 50 million tons of electronic waste were thrown out in 2017–more than 20 percent higher than waste in 2015.

Troubled by this mounting waste, Stanford engineer Zhenan Bao and her team are rethinking electronics. “In my group, we have been trying to mimic the function of human skin to think about how to develop future electronic devices,” Bao said. She described how skin is stretchable, self-healable and also biodegradable – an attractive list of characteristics for electronics. “We have achieved the first two [flexible and self-healing], so the biodegradability was something we wanted to tackle.”

The team created a flexible electronic device that can easily degrade just by adding a weak acid like vinegar. The results were published in the Proceedings of the National Academy of Sciences (“Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics”).

“This is the first example of a semiconductive polymer that can decompose,” said lead author Ting Lei, a postdoctoral fellow working with Bao.

A May 1, 2017 Stanford University news release by Sarah Derouin, which originated the news item, provides more detail,

In addition to the polymer – essentially a flexible, conductive plastic – the team developed a degradable electronic circuit and a new biodegradable substrate material for mounting the electrical components. This substrate supports the electrical components, flexing and molding to rough and smooth surfaces alike. When the electronic device is no longer needed, the whole thing can biodegrade into nontoxic components.

Biodegradable bits

Bao, a professor of chemical engineering and materials science and engineering, had previously created a stretchable electrode modeled on human skin. That material could bend and twist in a way that could allow it to interface with the skin or brain, but it couldn’t degrade. That limited its application for implantable devices and – important to Bao – contributed to waste.

Flexible, biodegradable semiconductor on an avacado

The flexible semiconductor can adhere to smooth or rough surfaces and biodegrade to nontoxic products. (Image credit: Bao lab)

Bao said that creating a robust material that is both a good electrical conductor and biodegradable was a challenge, considering traditional polymer chemistry. “We have been trying to think how we can achieve both great electronic property but also have the biodegradability,” Bao said.

Eventually, the team found that by tweaking the chemical structure of the flexible material it would break apart under mild stressors. “We came up with an idea of making these molecules using a special type of chemical linkage that can retain the ability for the electron to smoothly transport along the molecule,” Bao said. “But also this chemical bond is sensitive to weak acid – even weaker than pure vinegar.” The result was a material that could carry an electronic signal but break down without requiring extreme measures.

In addition to the biodegradable polymer, the team developed a new type of electrical component and a substrate material that attaches to the entire electronic component. Electronic components are usually made of gold. But for this device, the researchers crafted components from iron. Bao noted that iron is a very environmentally friendly product and is nontoxic to humans.

The researchers created the substrate, which carries the electronic circuit and the polymer, from cellulose. Cellulose is the same substance that makes up paper. But unlike paper, the team altered cellulose fibers so the “paper” is transparent and flexible, while still breaking down easily. The thin film substrate allows the electronics to be worn on the skin or even implanted inside the body.

From implants to plants

The combination of a biodegradable conductive polymer and substrate makes the electronic device useful in a plethora of settings – from wearable electronics to large-scale environmental surveys with sensor dusts.

“We envision these soft patches that are very thin and conformable to the skin that can measure blood pressure, glucose value, sweat content,” Bao said. A person could wear a specifically designed patch for a day or week, then download the data. According to Bao, this short-term use of disposable electronics seems a perfect fit for a degradable, flexible design.

And it’s not just for skin surveys: the biodegradable substrate, polymers and iron electrodes make the entire component compatible with insertion into the human body. The polymer breaks down to product concentrations much lower than the published acceptable levels found in drinking water. Although the polymer was found to be biocompatible, Bao said that more studies would need to be done before implants are a regular occurrence.

Biodegradable electronics have the potential to go far beyond collecting heart disease and glucose data. These components could be used in places where surveys cover large areas in remote locations. Lei described a research scenario where biodegradable electronics are dropped by airplane over a forest to survey the landscape. “It’s a very large area and very hard for people to spread the sensors,” he said. “Also, if you spread the sensors, it’s very hard to gather them back. You don’t want to contaminate the environment so we need something that can be decomposed.” Instead of plastic littering the forest floor, the sensors would biodegrade away.

As the number of electronics increase, biodegradability will become more important. Lei is excited by their advancements and wants to keep improving performance of biodegradable electronics. “We currently have computers and cell phones and we generate millions and billions of cell phones, and it’s hard to decompose,” he said. “We hope we can develop some materials that can be decomposed so there is less waste.”

Other authors on the study include Ming Guan, Jia Liu, Hung-Cheng Lin, Raphael Pfattner, Leo Shaw, Allister McGuire, and Jeffrey Tok of Stanford University; Tsung-Ching Huang of Hewlett Packard Enterprise; and Lei-Lai Shao and Kwang-Ting Cheng of University of California, Santa Barbara.

The research was funded by the Air Force Office for Scientific Research; BASF; Marie Curie Cofund; Beatriu de Pinós fellowship; and the Kodak Graduate Fellowship.

Here’s a link to and a citation for the team’s latest paper,

Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics by Ting Lei, Ming Guan, Jia Liu, Hung-Cheng Lin, Raphael Pfattner, Leo Shaw, Allister F. McGuire, Tsung-Ching Huang, Leilai Shao, Kwang-Ting Cheng, Jeffrey B.-H. Tok, and Zhenan Bao. PNAS 2017 doi: 10.1073/pnas.1701478114 published ahead of print May 1, 2017

This paper is behind a paywall.

The mention of cellulose in the second item piqued my interest so I checked to see if they’d used nanocellulose. No, they did not. Microcrystalline cellulose powder was used to constitute a cellulose film but they found a way to render this film at the nanoscale. From the Stanford paper (Note: Links have been removed),

… Moreover, cellulose films have been previously used as biodegradable substrates in electronics (28⇓–30). However, these cellulose films are typically made with thicknesses well over 10 μm and thus cannot be used to fabricate ultrathin electronics with substrate thicknesses below 1–2 μm (7, 18, 19). To the best of our knowledge, there have been no reports on ultrathin (1–2 μm) biodegradable substrates for electronics. Thus, to realize them, we subsequently developed a method described herein to obtain ultrathin (800 nm) cellulose films (Fig. 1B and SI Appendix, Fig. S8). First, microcrystalline cellulose powders were dissolved in LiCl/N,N-dimethylacetamide (DMAc) and reacted with hexamethyldisilazane (HMDS) (31, 32), providing trimethylsilyl-functionalized cellulose (TMSC) (Fig. 1B). To fabricate films or devices, TMSC in chlorobenzene (CB) (70 mg/mL) was spin-coated on a thin dextran sacrificial layer. The TMSC film was measured to be 1.2 μm. After hydrolyzing the film in 95% acetic acid vapor for 2 h, the trimethylsilyl groups were removed, giving a 400-nm-thick cellulose film. The film thickness significantly decreased to one-third of the original film thickness, largely due to the removal of the bulky trimethylsilyl groups. The hydrolyzed cellulose film is insoluble in most organic solvents, for example, toluene, THF, chloroform, CB, and water. Thus, we can sequentially repeat the above steps to obtain an 800-nm-thick film, which is robust enough for further device fabrication and peel-off. By soaking the device in water, the dextran layer is dissolved, starting from the edges of the device to the center. This process ultimately releases the ultrathin substrate and leaves it floating on water surface (Fig. 3A, Inset).

Finally, I don’t have any grand thoughts; it’s just interesting to see different approaches to flexible electronics.

Singing posters and talking shirts can communicate with you via car radio or smartphones

Singing posters and talking shirts haven’t gone beyond the prototype stage yet but I imagine University of Washington engineers are hoping this will happen sooner rather than later. In the meantime, they are  presenting their work at a conference according to a March 1, 2017 news item on ScienceDaily,

Imagine you’re waiting in your car and a poster for a concert from a local band catches your eye. What if you could just tune your car to a radio station and actually listen to that band’s music? Or perhaps you see the poster on the side of a bus stop. What if it could send your smartphone a link for discounted tickets or give you directions to the venue?

Going further, imagine you go for a run, and your shirt can sense your perspiration and send data on your vital signs directly to your phone.

A new technique pioneered by University of Washington engineers makes these “smart” posters and clothing a reality by allowing them to communicate directly with your car’s radio or your smartphone. For instance, bus stop billboards could send digital content about local attractions. A street sign could broadcast the name of an intersection or notice that it is safe to cross a street, improving accessibility for the disabled. In addition, clothing with integrated sensors could monitor vital signs and send them to a phone. [emphasis mine]

“What we want to do is enable smart cities and fabrics where everyday objects in outdoor environments — whether it’s posters or street signs or even the shirt you’re wearing — can ‘talk’ to you by sending information to your phone or car,” said lead faculty and UW assistant professor of computer science and engineering Shyam Gollakota.

“The challenge is that radio technologies like WiFi, Bluetooth and conventional FM radios would last less than half a day with a coin cell battery when transmitting,” said co-author and UW electrical engineering doctoral student Vikram Iyer. “So we developed a new way of communication where we send information by reflecting ambient FM radio signals that are already in the air, which consumes close to zero power.”

The UW team has — for the first time — demonstrated how to apply a technique called “backscattering” to outdoor FM radio signals. The new system transmits messages by reflecting and encoding audio and data in these signals that are ubiquitous in urban environments, without affecting the original radio transmissions. Results are published in a paper to be presented in Boston at the 14th USENIX Symposium on Networked Systems Design and Implementation in March [2017].

The team demonstrated that a “singing poster” for the band Simply Three placed at a bus stop could transmit a snippet of the band’s music, as well as an advertisement for the band, to a smartphone at a distance of 12 feet or to a car over 60 feet away. They overlaid the audio and data on top of ambient news signals from a local NPR radio station.

The University of Washington has produced a video demonstration of the technology

A March 1, 2017 University of Washington news release (also on EurekAlert), which originated the news item, explains further (Note: Links have been removed),

“FM radio signals are everywhere. You can listen to music or news in your car and it’s a common way for us to get our information,” said co-author and UW computer science and engineering doctoral student Anran Wang. “So what we do is basically make each of these everyday objects into a mini FM radio station at almost zero power.”

Such ubiquitous low-power connectivity can also enable smart fabric applications such as clothing integrated with sensors to monitor a runner’s gait and vital signs that transmits the information directly to a user’s phone. In a second demonstration, the researchers from the UW Networks & Mobile Systems Lab used conductive thread to sew an antenna into a cotton T-shirt, which was able to use ambient radio signals to transmit data to a smartphone at rates up to 3.2 kilobits per second.

The system works by taking an everyday FM radio signal broadcast from an urban radio tower. The “smart” poster or T-shirt uses a low-power reflector to manipulate the signal in a way that encodes the desired audio or data on top of the FM broadcast to send a “message” to the smartphone receiver on an unoccupied frequency in the FM radio band.

“Our system doesn’t disturb existing FM radio frequencies,” said co-author Joshua Smith, UW associate professor of computer science and engineering and of electrical engineering. “We send our messages on an adjacent band that no one is using — so we can piggyback on your favorite news or music channel without disturbing the original transmission.”

The team demonstrated three different methods for sending audio signals and data using FM backscatter: one simply overlays the new information on top of the existing signals, another takes advantage of unused portions of a stereo FM broadcast, and the third uses cooperation between two smartphones to decode the message.

“Because of the unique structure of FM radio signals, multiplying the original signal with the backscattered signal actually produces an additive frequency change,” said co-author Vamsi Talla, a UW postdoctoral researcher in computer science and engineering. “These frequency changes can be decoded as audio on the normal FM receivers built into cars and smartphones.”

In the team’s demonstrations, the total power consumption of the backscatter system was 11 microwatts, which could be easily supplied by a tiny coin-cell battery for a couple of years, or powered using tiny solar cells.

I cannot help but notice the interest in using this technology is for monitoring purposes, which could be benign or otherwise.

For anyone curious about the 14th USENIX Symposium on Networked Systems Design and Implementation being held March 27 – 29, 2017 in Boston, Massachusetts, you can find out more here.

Making wearable technology more comfortable—with green tea for squishy supercapacitor

Researchers in India have designed a new type of wearable technology based on green team. From a Feb. 15, 2017 news item on plys.org,

Wearable electronics are here—the most prominent versions are sold in the form of watches or sports bands. But soon, more comfortable products could become available in softer materials made in part with an unexpected ingredient: green tea. Researchers report in ACS’ The Journal of Physical Chemistry C a new flexible and compact rechargeable energy storage device for wearable electronics that is infused with green tea polyphenols.

A Feb. 15, 2017 American Chemical Society (ACS) news release, (also on EurekAlert), which originated the news item, provides a little more information about the squishy supercapacitors (Note: Links have been removed),

Powering soft wearable electronics with a long-lasting source of energy remains a big challenge. Supercapacitors could potentially fill this role — they meet the power requirements, and can rapidly charge and discharge many times. But most supercapacitors are rigid, and the compressible supercapacitors developed so far have run into roadblocks. They have been made with carbon-coated polymer sponges, but the coating material tends to bunch up and compromise performance. Guruswamy Kumaraswamy, Kothandam Krishnamoorthy and colleagues wanted to take a different approach.

The researchers prepared polymer gels in green tea extract, which infuses the gel with polyphenols. The polyphenols converted a silver nitrate solution into a uniform coating of silver nanoparticles. Thin layers of conducting gold and poly(3,4-ethylenedioxythiophene) were then applied. And the resulting supercapacitor demonstrated power and energy densities of 2,715 watts per kilogram and 22 watt-hours per kilogram — enough to operate a heart rate monitor, LEDs or a Bluetooth module. The researchers tested the device’s durability and found that it performed well even after being compressed more than 100 times.

The authors acknowledge funding from the University Grants Commission of India, the Council of Scientific and Industrial Research (India) and the Board of Research in Nuclear Sciences (India).

Here’s a link to and a citation for the paper,

Elastic Compressible Energy Storage Devices from Ice Templated Polymer Gels treated with Polyphenols by Chayanika Das, Soumyajyoti Chatterjee, Guruswamy Kumaraswamy, and Kothandam Krishnamoorthy. J. Phys. Chem. C, Article ASAP DOI: 10.1021/acs.jpcc.6b12822 Publication Date (Web): January 26, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Imprinting fibres at the nanometric scale

Switzerland’s École Polytechnique Fédérale de Lausanne (EPFL) announces a discovery in a Jan. 24, 2017 press release (also on EurkeAlert),

Researchers at EPFL have come up with a way of imprinting nanometric patterns on the inside and outside of polymer fibers. These fibers could prove useful in guiding nerve regeneration and producing optical effects, for example, as well as in eventually creating artificial tissue and smart bandages.

Researchers at EPFL’s Laboratory of Photonic Materials and Fibre Devices, which is run by Fabien Sorin, have come up with a simple and innovative technique for drawing or imprinting complex, nanometric patterns on hollow polymer fibers. Their work has been published in Advanced Functional Materials.

The potential applications of this breakthrough are numerous. The imprinted designs could be used to impart certain optical effects on a fiber or make it water-resistant. They could also guide stem-cell growth in textured fiber channels or be used to break down the fiber at a specific location and point in time in order to release drugs as part of a smart bandage.

Stretching the fiber like molten plastic

To make their nanometric imprints, the researchers began with a technique called thermal drawing, which is the technique used to fabricate optical fibers. Thermal drawing involves engraving or imprinting millimeter-sized patterns on a preform, which is a macroscopic version of the target fiber. The imprinted preform is heated to change its viscosity, stretched like molten plastic into a long, thin fiber and then allowed to harden again. Stretching causes the pattern to shrink while maintaining its proportions and position. Yet this method has a major shortcoming: the pattern does not remain intact below the micrometer scale. “When the fiber is stretched, the surface tension of the structured polymer causes the pattern to deform and even disappear below a certain size, around several microns,” said Sorin.

To avoid this problem, the EPFL researchers came up with the idea of sandwiching the imprinted preform in a sacrificial polymer [emphasis mine]. This polymer protects the pattern during stretching by reducing the surface tension. It is discarded once the stretching is complete. Thanks to this trick, the researchers are able to apply tiny and highly complex patterns to various types of fibers. “We have achieved 300-nanometer patterns, but we could easily make them as small as several tens of nanometers,” said Sorin. This is the first time that such minute and highly complex patterns have been imprinted on flexible fiber on a very large scale. “This technique enables to achieve textures with feature sizes two order of magnitude smaller than previously reported,” said Sorin. “It could be applied to kilometers of fibers at a highly reasonable cost.”

To highlight potential applications of their achievement, the researchers teamed up with the Bertarelli Foundation Chair in Neuroprosthetic Technology, led by Stéphanie Lacour. Working in vitro, they were able to use their fibers to guide neurites from a spinal ganglion (on the spinal nerve). This was an encouraging step toward using these fibers to help nerves regenerate or to create artificial tissue.

This development could have implications in many other fields besides biology. “Fibers that are rendered water-resistant by the pattern could be used to make clothes. Or we could give the fibers special optical effects for design or detection purposes. There is also much to be done with the many new microfluidic systems out there,” said Sorin. The next step for the researchers will be to join forces with other EPFL labs on initiatives such as studying in vivo nerve regeneration. All this, thanks to the wonder of imprinted polymer fibers.

I like the term “sacrificial polymer.”

Here’s a link to and a citation for the paper,

Controlled Sub-Micrometer Hierarchical Textures Engineered in Polymeric Fibers and Microchannels via Thermal Drawing by Tung Nguyen-Dang, Alba C. de Luca, Wei Yan, Yunpeng Qu, Alexis G. Page, Marco Volpi, Tapajyoti Das Gupta, Stéphanie P. Lacour, and Fabien Sorin. Advanced Functional Materials DOI: 10.1002/adfm.201605935 Version of Record online: 24 JAN 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Little black graphene dress

Graphene Dress. Courtesy: intu

I don’t think there are many women who can carry off this garment. Of course that’s not the point as the dress is designed to show off its technical capabilities. A Jan. 31, 2017 news item on Nanowerk announces the little black graphene dress (lbgd?),

Science and fashion have been brought together to create the world’s most technically advanced dress, the intu Little Black Graphene Dress.

The new prototype garment showcases the future uses of the revolutionary, Nobel Prize winning material graphene and incorporating it into fashion for the first time, in the ultimate wearable tech statement garment.

A Jan. 25, 2017 National Graphene Institute at University of Manchester press release, which originated the news item, expands on the theme,

The project between intu Trafford Centre, renowned wearable tech company Cute Circuit which has made dresses for the likes of Katy Perry and Nicole Scherzinger and the National Graphene Institute at The University of Manchester, uses graphene in a number of innovative ways to create the world’s most high tech LBD – highlighting the material’s incredible properties.

The dress is complete with a graphene sensor which captures the rate in which the wearer is breathing via a contracting graphene band around the models waist, the micro LED which is featured across the bust on translucent conductive graphene responds to the sensor making the LED flash and changing colour depending on breathing rate. It marks a major step in the future uses of graphene in fashion where it is hoped the highly conductive transparent material could be used to create designs which act as screens showcasing digital imagery which could be programmed to change and updated by the wearer meaning one garment could be in any colour hue or design.

The 3D printed graphene filament shows the intricate structural detail of graphene in raised diamond shaped patterns and showcases graphene’s unrivalled conductivity with flashing LED lights.

The high tech LBD can be controlled by The Q app created by Cute Circuit to change the way the garment illuminates.

The dress was created by the Manchester shopping centre to celebrate Manchester’s crown as the European City of Science. The dress will then be on display at intu Trafford Centre, it will then be available for museums and galleries to loan for fashion displays.

Richard Paxton, general manager at intu Trafford Centre said: “We have a real passion for fashion and fashion firsts, this dress is a celebration of Manchester, its amazing love for innovation and textiles, showcasing this new wonder material in a truly unique and exciting way. It really is the world’s most high-tech dress featuring the most advanced super-material and something intu is very proud to have created in collaboration with Cute Circuit and the National Graphene Institute. Hopefully this project inspires more people to experiment with graphene and its wide range of uses.”

Francesca Rosella, Chief Creative Director for Cute Circuit said: “This was such an exciting project for us to get involved in, graphene has never been used in the fashion industry and being the first to use it was a real honour allowing us to have a lot of fun creating the stunning intu Little Black Graphene Dress, and showcasing graphene’s amazing properties.”

Dr Paul Wiper, Research Associate, National Graphene Institute said: “This is a fantastic project, graphene is still very much at its infancy for real-world applications and showcasing its amazing properties through the forum of fashion is very exciting. The dress is truly a one of a kind and shows what creativity, imagination and a desire to innovate can create using graphene and related two-dimensional materials.”

The dress is modelled by Britain’s Next Top Model finalist Bethan Sowerby who is from Manchester and used to work at intu Trafford Centre’s Top Shop.

Probably not coming soon to a store near you.