Category Archives: electronics

Aliens wreak havoc on our personal electronics

The aliens in question are subatomic particles and the havoc they wreak is low-grade according to the scientist who was presenting on the topic at the AAAS (American Association for the Advancement of Science) 2017 Annual Meeting (Feb. 16 – 20, 2017) in Boston, Massachusetts. From a Feb. 17, 2017 news item on ScienceDaily,

You may not realize it but alien subatomic particles raining down from outer space are wreaking low-grade havoc on your smartphones, computers and other personal electronic devices.

When your computer crashes and you get the dreaded blue screen or your smartphone freezes and you have to go through the time-consuming process of a reset, most likely you blame the manufacturer: Microsoft or Apple or Samsung. In many instances, however, these operational failures may be caused by the impact of electrically charged particles generated by cosmic rays that originate outside the solar system.

“This is a really big problem, but it is mostly invisible to the public,” said Bharat Bhuva, professor of electrical engineering at Vanderbilt University, in a presentation on Friday, Feb. 17 at a session titled “Cloudy with a Chance of Solar Flares: Quantifying the Risk of Space Weather” at the annual meeting of the American Association for the Advancement of Science in Boston.

A Feb. 17, 2017 Vanderbilt University news release (also on EurekAlert), which originated the news item, expands on  the theme,

When cosmic rays traveling at fractions of the speed of light strike the Earth’s atmosphere they create cascades of secondary particles including energetic neutrons, muons, pions and alpha particles. Millions of these particles strike your body each second. Despite their numbers, this subatomic torrent is imperceptible and has no known harmful effects on living organisms. However, a fraction of these particles carry enough energy to interfere with the operation of microelectronic circuitry. When they interact with integrated circuits, they may alter individual bits of data stored in memory. This is called a single-event upset or SEU.

Since it is difficult to know when and where these particles will strike and they do not do any physical damage, the malfunctions they cause are very difficult to characterize. As a result, determining the prevalence of SEUs is not easy or straightforward. “When you have a single bit flip, it could have any number of causes. It could be a software bug or a hardware flaw, for example. The only way you can determine that it is a single-event upset is by eliminating all the other possible causes,” Bhuva explained.

There have been a number of incidents that illustrate how serious the problem can be, Bhuva reported. For example, in 2003 in the town of Schaerbeek, Belgium a bit flip in an electronic voting machine added 4,096 extra votes to one candidate. The error was only detected because it gave the candidate more votes than were possible and it was traced to a single bit flip in the machine’s register. In 2008, the avionics system of a Qantus passenger jet flying from Singapore to Perth appeared to suffer from a single-event upset that caused the autopilot to disengage. As a result, the aircraft dove 690 feet in only 23 seconds, injuring about a third of the passengers seriously enough to cause the aircraft to divert to the nearest airstrip. In addition, there have been a number of unexplained glitches in airline computers – some of which experts feel must have been caused by SEUs – that have resulted in cancellation of hundreds of flights resulting in significant economic losses.

An analysis of SEU failure rates for consumer electronic devices performed by Ritesh Mastipuram and Edwin Wee at Cypress Semiconductor on a previous generation of technology shows how prevalent the problem may be. Their results were published in 2004 in Electronic Design News and provided the following estimates:

  • A simple cell phone with 500 kilobytes of memory should only have one potential error every 28 years.
  • A router farm like those used by Internet providers with only 25 gigabytes of memory may experience one potential networking error that interrupts their operation every 17 hours.
  • A person flying in an airplane at 35,000 feet (where radiation levels are considerably higher than they are at sea level) who is working on a laptop with 500 kilobytes of memory may experience one potential error every five hours.

Bhuva is a member of Vanderbilt’s Radiation Effects Research Group, which was established in 1987 and is the largest academic program in the United States that studies the effects of radiation on electronic systems. The group’s primary focus was on military and space applications. Since 2001, the group has also been analyzing radiation effects on consumer electronics in the terrestrial environment. They have studied this phenomenon in the last eight generations of computer chip technology, including the current generation that uses 3D transistors (known as FinFET) that are only 16 nanometers in size. The 16-nanometer study was funded by a group of top microelectronics companies, including Altera, ARM, AMD, Broadcom, Cisco Systems, Marvell, MediaTek, Renesas, Qualcomm, Synopsys, and TSMC

“The semiconductor manufacturers are very concerned about this problem because it is getting more serious as the size of the transistors in computer chips shrink and the power and capacity of our digital systems increase,” Bhuva said. “In addition, microelectronic circuits are everywhere and our society is becoming increasingly dependent on them.”

To determine the rate of SEUs in 16-nanometer chips, the Vanderbilt researchers took samples of the integrated circuits to the Irradiation of Chips and Electronics (ICE) House at Los Alamos National Laboratory. There they exposed them to a neutron beam and analyzed how many SEUs the chips experienced. Experts measure the failure rate of microelectronic circuits in a unit called a FIT, which stands for failure in time. One FIT is one failure per transistor in one billion hours of operation. That may seem infinitesimal but it adds up extremely quickly with billions of transistors in many of our devices and billions of electronic systems in use today (the number of smartphones alone is in the billions). Most electronic components have failure rates measured in 100’s and 1,000’s of FITs.

chart

Trends in single event upset failure rates at the individual transistor, integrated circuit and system or device level for the three most recent manufacturing technologies. (Bharat Bhuva, Radiation Effects Research Group, Vanderbilt University)

“Our study confirms that this is a serious and growing problem,” said Bhuva.“This did not come as a surprise. Through our research on radiation effects on electronic circuits developed for military and space applications, we have been anticipating such effects on electronic systems operating in the terrestrial environment.”

Although the details of the Vanderbilt studies are proprietary, Bhuva described the general trend that they have found in the last three generations of integrated circuit technology: 28-nanometer, 20-nanometer and 16-nanometer.

As transistor sizes have shrunk, they have required less and less electrical charge to represent a logical bit. So the likelihood that one bit will “flip” from 0 to 1 (or 1 to 0) when struck by an energetic particle has been increasing. This has been partially offset by the fact that as the transistors have gotten smaller they have become smaller targets so the rate at which they are struck has decreased.

More significantly, the current generation of 16-nanometer circuits have a 3D architecture that replaced the previous 2D architecture and has proven to be significantly less susceptible to SEUs. Although this improvement has been offset by the increase in the number of transistors in each chip, the failure rate at the chip level has also dropped slightly. However, the increase in the total number of transistors being used in new electronic systems has meant that the SEU failure rate at the device level has continued to rise.

Unfortunately, it is not practical to simply shield microelectronics from these energetic particles. For example, it would take more than 10 feet of concrete to keep a circuit from being zapped by energetic neutrons. However, there are ways to design computer chips to dramatically reduce their vulnerability.

For cases where reliability is absolutely critical, you can simply design the processors in triplicate and have them vote. Bhuva pointed out: “The probability that SEUs will occur in two of the circuits at the same time is vanishingly small. So if two circuits produce the same result it should be correct.” This is the approach that NASA used to maximize the reliability of spacecraft computer systems.

The good news, Bhuva said, is that the aviation, medical equipment, IT, transportation, communications, financial and power industries are all aware of the problem and are taking steps to address it. “It is only the consumer electronics sector that has been lagging behind in addressing this problem.”

The engineer’s bottom line: “This is a major problem for industry and engineers, but it isn’t something that members of the general public need to worry much about.”

That’s fascinating and I hope the consumer electronics industry catches up with this ‘alien invasion’ issue. Finally, the ‘bit flips’ made me think of the 1956 movie ‘Invasion of the Body Snatchers‘.

Drive to operationalize transistors that outperform silicon gets a boost

Dexter Johnson has written a Jan. 19, 2017 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers]) about work which could lead to supplanting silicon-based transistors with carbon nanotube-based transistors in the future (Note: Links have been removed),

The end appears nigh for scaling down silicon-based complimentary metal-oxide semiconductor (CMOS) transistors, with some experts seeing the cutoff date as early as 2020.

While carbon nanotubes (CNTs) have long been among the nanomaterials investigated to serve as replacement for silicon in CMOS field-effect transistors (FETs) in a post-silicon future, they have always been bogged down by some frustrating technical problems. But, with some of the main technical showstoppers having been largely addressed—like sorting between metallic and semiconducting carbon nanotubes—the stage has been set for CNTs to start making their presence felt a bit more urgently in the chip industry.

Peking University scientists in China have now developed carbon nanotube field-effect transistors (CNT FETs) having a critical dimension—the gate length—of just five nanometers that would outperform silicon-based CMOS FETs at the same scale. The researchers claim in the journal Science that this marks the first time that sub-10 nanometer CNT CMOS FETs have been reported.

More importantly than just being the first, the Peking group showed that their CNT-based FETs can operate faster and at a lower supply voltage than their silicon-based counterparts.

A Jan. 20, 2017 article by Bob Yirka for phys.org provides more insight into the work at Peking University,

One of the most promising candidates is carbon nanotubes—due to their unique properties, transistors based on them could be smaller, faster and more efficient. Unfortunately, the difficulty in growing carbon nanotubes and their sometimes persnickety nature means that a way to make them and mass produce them has not been found. In this new effort, the researchers report on a method of creating carbon nanotube transistors that are suitable for testing, but not mass production.

To create the transistors, the researchers took a novel approach—instead of growing carbon nanotubes that had certain desired properties, they grew some and put them randomly on a silicon surface and then added electronics that would work with the properties they had—clearly not a strategy that would work for mass production, but one that allowed for building a carbon nanotube transistor that could be tested to see if it would verify theories about its performance. Realizing there would still be scaling problems using traditional electrodes, the researchers built a new kind by etching very tiny sheets of graphene. The result was a very tiny transistor, the team reports, capable of moving more current than a standard CMOS transistor using just half of the normal amount of voltage. It was also faster due to a much shorter switch delay, courtesy of a gate capacitance of just 70 femtoseconds.

Peking University has published an edited and more comprehensive version of the phys.org article first reported by Lisa Zyga and edited by Arthars,

Now in a new paper published in Nano Letters, researchers Tian Pei, et al., at Peking University in Beijing, China, have developed a modular method for constructing complicated integrated circuits (ICs) made from many FETs on individual CNTs. To demonstrate, they constructed an 8-bits BUS system–a circuit that is widely used for transferring data in computers–that contains 46 FETs on six CNTs. This is the most complicated CNT IC fabricated to date, and the fabrication process is expected to lead to even more complex circuits.

SEM image of an eight-transistor (8-T) unit that was fabricated on two CNTs (marked with two white dotted lines). The scale bar is 100 μm. (Copyright: 2014 American Chemical Society)

Ever since the first CNT FET was fabricated in 1998, researchers have been working to improve CNT-based electronics. As the scientists explain in their paper, semiconducting CNTs are promising candidates for replacing silicon wires because they are thinner, which offers better scaling-down potential, and also because they have a higher carrier mobility, resulting in higher operating speeds.

Yet CNT-based electronics still face challenges. One of the most significant challenges is obtaining arrays of semiconducting CNTs while removing the less-suitable metallic CNTs. Although scientists have devised a variety of ways to separate semiconducting and metallic CNTs, these methods almost always result in damaged semiconducting CNTs with degraded performance.

To get around this problem, researchers usually build ICs on single CNTs, which can be individually selected based on their condition. It’s difficult to use more than one CNT because no two are alike: they each have slightly different diameters and properties that affect performance. However, using just one CNT limits the complexity of these devices to simple logic and arithmetical gates.

The 8-T unit can be used as the basic building block of a variety of ICs other than BUS systems, making this modular method a universal and efficient way to construct large-scale CNT ICs. Building on their previous research, the scientists hope to explore these possibilities in the future.

“In our earlier work, we showed that a carbon nanotube based field-effect transistor is about five (n-type FET) to ten (p-type FET) times faster than its silicon counterparts, but uses much less energy, about a few percent of that of similar sized silicon transistors,” Peng said.

“In the future, we plan to construct large-scale integrated circuits that outperform silicon-based systems. These circuits are faster, smaller, and consume much less power. They can also work at extremely low temperatures (e.g., in space) and moderately high temperatures (potentially no cooling system required), on flexible and transparent substrates, and potentially be bio-compatible.”

Here’s a link to and a citation for the paper,

Scaling carbon nanotube complementary transistors to 5-nm gate lengths by Chenguang Qiu, Zhiyong Zhang, Mengmeng Xiao, Yingjun Yang, Donglai Zhong, Lian-Mao Peng. Science  20 Jan 2017: Vol. 355, Issue 6322, pp. 271-276 DOI: 10.1126/science.aaj1628

This paper is behind a paywall.

New electrical contact technology to exploit nanoscale catalytic effects

A Jan. 20,, 2017 news item on Nanotechnology Now announces research into nanoscale electrical contact technology,

Research by scientists at Swansea University [UK] is helping to meet the challenge of incorporating nanoscale structures into future semiconductor devices that will create new technologies and impact on all aspects of everyday life.

Dr Alex Lord and Professor Steve Wilks from the Centre for Nanohealth led the collaborative research published in Nano Letters. The research team looked at ways to engineer electrical contact technology on minute scales with simple and effective modifications to nanowires that can be used to develop enhanced devices based on the nanomaterials. Well-defined electrical contacts are essential for any electrical circuit and electronic device because they control the flow of electricity that is fundamental to the operational capability.

Everyday materials that are being scaled down to the size of nanometres (one million times smaller than a millimetre on a standard ruler) by scientists on a global scale are seen as the future of electronic devices. The scientific and engineering advances are leading to new technologies such as energy producing clothing to power our personal gadgets and sensors to monitor our health and the surrounding environment.

Over the coming years this will make a massive contribution to the explosion that is the Internet of Things connecting everything from our homes to our cars into a web of communication. All of these new technologies require similar advances in electrical circuits and especially electrical contacts that allow the devices to work correctly with electricity.

A Jan. 19, 2017 Swansea University press release (also on EurekAlert), which originated the news item, explains in greater detail,

Professor Steve Wilks said: “Nanotechnology has delivered new materials and new technologies and the applications of nanotechnology will continue to expand over the coming decades with much of its usefulness stemming from effects that occur at the atomic- or nano-scale. With the advent of nanotechnology, new technologies have emerged such as chemical and biological sensors, quantum computing, energy harvesting, lasers, and environmental and photon-detectors, but there is a pressing need to develop new electrical contact preparation techniques to ensure these devices become an everyday reality.”

“Traditional methods of engineering electrical contacts have been applied to nanomaterials but often neglect the nanoscale effects that nanoscientists have worked so hard to uncover.  Currently, there isn’t a design toolbox to make electrical contacts of chosen properties to nanomaterials and in some respects the research is lagging behind our potential application of the enhanced materials.”

The Swansea research team1 used specialist experimental equipment and collaborated with Professor Quentin Ramasse of the SuperSTEM Laboratory, Science and Facilities Technology Council.  The scientists were able to physically interact with the nanostructures and measure how the nanoscale modifications affected the electrical performance.

Their experiments found for the first time, that simple changes to the catalyst edge can turn-on or turn-off the dominant electrical conduction and most importantly reveal a powerful technique that will allow nanoengineers to select the properties of manufacturable nanowire devices.

Dr Lord said: “The experiments had a simple premise but were challenging to optimise and allow atomic-scale imaging of the interfaces. However, it was essential to this study and will allow many more materials to be investigated in a similar way.”

“This research now gives us an understanding of these new effects and will allow engineers in the future to reliably produce electrical contacts to these nanomaterials which is essential for the materials to be used in the technologies of tomorrow.

“In the near future this work can help enhance current nanotechnology devices such as biosensors and also lead to new technologies such as Transient Electronics that are devices that diminish and vanish without a trace which is an essential property when they are applied as diagnostic tools inside the human body.”

References
1. Lord, A. M., Ramasse, Q. M., Kepaptsoglou, D. M., Evans, J. E., Davies, P. R., Ward, M. B. & Wilks, S. P. 2016 Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires. Nano Lett. (doi:10.1021/acs.nanolett.6b03699). http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b03699
2 .Lord, A. M. et al. 2015 Controlling the electrical transport properties of nanocontacts to nanowires. Nano Lett. 15, 4248–4254. (doi:10.1021/nl503743t) http://pubs.acs.org/doi/abs/10.1021/nl503743t

Both papers are open access.

Going underground to observe atoms in a bid for better batteries

A Jan. 16, 2017 news item on ScienceDaily describes what lengths researchers at Stanford University (US) will go to in pursuit of their goals,

In a lab 18 feet below the Engineering Quad of Stanford University, researchers in the Dionne lab camped out with one of the most advanced microscopes in the world to capture an unimaginably small reaction.

The lab members conducted arduous experiments — sometimes requiring a continuous 30 hours of work — to capture real-time, dynamic visualizations of atoms that could someday help our phone batteries last longer and our electric vehicles go farther on a single charge.

Toiling underground in the tunneled labs, they recorded atoms moving in and out of nanoparticles less than 100 nanometers in size, with a resolution approaching 1 nanometer.

A Jan. 16, 2017 Stanford University news release (also on EurekAlert) by Taylor Kubota, which originated the news item, provides more detail,

“The ability to directly visualize reactions in real time with such high resolution will allow us to explore many unanswered questions in the chemical and physical sciences,” said Jen Dionne, associate professor of materials science and engineering at Stanford and senior author of the paper detailing this work, published Jan. 16 [2017] in Nature Communications. “While the experiments are not easy, they would not be possible without the remarkable advances in electron microscopy from the past decade.”

Their experiments focused on hydrogen moving into palladium, a class of reactions known as an intercalation-driven phase transition. This reaction is physically analogous to how ions flow through a battery or fuel cell during charging and discharging. Observing this process in real time provides insight into why nanoparticles make better electrodes than bulk materials and fits into Dionne’s larger interest in energy storage devices that can charge faster, hold more energy and stave off permanent failure.

Technical complexity and ghosts

For these experiments, the Dionne lab created palladium nanocubes, a form of nanoparticle, that ranged in size from about 15 to 80 nanometers, and then placed them in a hydrogen gas environment within an electron microscope. The researchers knew that hydrogen would change both the dimensions of the lattice and the electronic properties of the nanoparticle. They thought that, with the appropriate microscope lens and aperture configuration, techniques called scanning transmission electron microscopy and electron energy loss spectroscopy might show hydrogen uptake in real time.

After months of trial and error, the results were extremely detailed, real-time videos of the changes in the particle as hydrogen was introduced. The entire process was so complicated and novel that the first time it worked, the lab didn’t even have the video software running, leading them to capture their first movie success on a smartphone.

Following these videos, they examined the nanocubes during intermediate stages of hydrogenation using a second technique in the microscope, called dark-field imaging, which relies on scattered electrons. In order to pause the hydrogenation process, the researchers plunged the nanocubes into an ice bath of liquid nitrogen mid-reaction, dropping their temperature to 100 degrees Kelvin (-280 F). These dark-field images served as a way to check that the application of the electron beam hadn’t influenced the previous observations and allowed the researchers to see detailed structural changes during the reaction.

“With the average experiment spanning about 24 hours at this low temperature, we faced many instrument problems and called Ai Leen Koh [co-author and research scientist at Stanford’s Nano Shared Facilities] at the weirdest hours of the night,” recalled Fariah Hayee, co-lead author of the study and graduate student in the Dionne lab. “We even encountered a ‘ghost-of-the-joystick problem,’ where the joystick seemed to move the sample uncontrollably for some time.”

While most electron microscopes operate with the specimen held in a vacuum, the microscope used for this research has the advanced ability to allow the researchers to introduce liquids or gases to their specimen.

“We benefit tremendously from having access to one of the best microscope facilities in the world,” said Tarun Narayan, co-lead author of this study and recent doctoral graduate from the Dionne lab. “Without these specific tools, we wouldn’t be able to introduce hydrogen gas or cool down our samples enough to see these processes take place.”

Pushing out imperfections

Aside from being a widely applicable proof of concept for this suite of visualization techniques, watching the atoms move provides greater validation for the high hopes many scientists have for nanoparticle energy storage technologies.

The researchers saw the atoms move in through the corners of the nanocube and observed the formation of various imperfections within the particle as hydrogen moved within it. This sounds like an argument against the promise of nanoparticles but that’s because it’s not the whole story.

“The nanoparticle has the ability to self-heal,” said Dionne. “When you first introduce hydrogen, the particle deforms and loses its perfect crystallinity. But once the particle has absorbed as much hydrogen as it can, it transforms itself back to a perfect crystal again.”

The researchers describe this as imperfections being “pushed out” of the nanoparticle. This ability of the nanocube to self-heal makes it more durable, a key property needed for energy storage materials that can sustain many charge and discharge cycles.

Looking toward the future

As the efficiency of renewable energy generation increases, the need for higher quality energy storage is more pressing than ever. It’s likely that the future of storage will rely on new chemistries and the findings of this research, including the microscopy techniques the researchers refined along the way, will apply to nearly any solution in those categories.

For its part, the Dionne lab has many directions it can go from here. The team could look at a variety of material compositions, or compare how the sizes and shapes of nanoparticles affect the way they work, and, soon, take advantage of new upgrades to their microscope to study light-driven reactions. At present, Hayee has moved on to experimenting with nanorods, which have more surface area for the ions to move through, promising potentially even faster kinetics.

Here’s a link to and a citation for the paper,

Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles by Tarun C. Narayan, Fariah Hayee, Andrea Baldi, Ai Leen Koh, Robert Sinclair, & Jennifer A. Dionne. Nature Communications 8, Article number: 14020 (2017) doi:10.1038/ncomms14020 Published online: 16 January 2017

This paper is open access.

Nanotechnology cracks Wall Street (Daily)

David Dittman’s Jan. 11, 2017 article for wallstreetdaily.com portrays a great deal of excitement about nanotechnology and the possibilities (I’m highlighting the article because it showcases Dexter Johnson’s Nanoclast blog),

When we talk about next-generation aircraft, next-generation wearable biomedical devices, and next-generation fiber-optic communication, the consistent theme is nano: nanotechnology, nanomaterials, nanophotonics.

For decades, manufacturers have used carbon fiber to make lighter sports equipment, stronger aircraft, and better textiles.

Now, as Dexter Johnson of IEEE [Institute of Electrical and Electronics Engineers] Spectrum reports [on his Nanoclast blog], carbon nanotubes will help make aerospace composites more efficient:

Now researchers at the University of Surrey’s Advanced Technology Institute (ATI), the University of Bristol’s Advanced Composite Centre for Innovation and Science (ACCIS), and aerospace company Bombardier [headquartered in Montréal, Canada] have collaborated on the development of a carbon nanotube-enabled material set to replace the polymer sizing. The reinforced polymers produced with this new material have enhanced electrical and thermal conductivity, opening up new functional possibilities. It will be possible, say the British researchers, to embed gadgets such as sensors and energy harvesters directly into the material.

When it comes to flight, lighter is better, so building sensors and energy harvesters into the body of aircraft marks a significant leap forward.

Johnson also reports for IEEE Spectrum on a “novel hybrid nanomaterial” based on oscillations of electrons — a major advance in nanophotonics:

Researchers at the University of Texas at Austin have developed a hybrid nanomaterial that enables the writing, erasing and rewriting of optical components. The researchers believe that this nanomaterial and the techniques used in exploiting it could create a new generation of optical chips and circuits.

Of course, the concept of rewritable optics is not altogether new; it forms the basis of optical storage mediums like CDs and DVDs. However, CDs and DVDs require bulky light sources, optical media and light detectors. The advantage of the rewritable integrated photonic circuits developed here is that it all happens on a 2-D material.

“To develop rewritable integrated nanophotonic circuits, one has to be able to confine light within a 2-D plane, where the light can travel in the plane over a long distance and be arbitrarily controlled in terms of its propagation direction, amplitude, frequency and phase,” explained Yuebing Zheng, a professor at the University of Texas who led the research… “Our material, which is a hybrid, makes it possible to develop rewritable integrated nanophotonic circuits.”

Who knew that mixing graphene with homemade Silly Putty would create a potentially groundbreaking new material that could make “wearables” actually useful?

Next-generation biomedical devices will undoubtedly include some of this stuff:

A dash of graphene can transform the stretchy goo known as Silly Putty into a pressure sensor able to monitor a human pulse or even track the dainty steps of a small spider.

The material, dubbed G-putty, could be developed into a device that continuously monitors blood pressure, its inventors hope.

The guys who made G-putty often rely on “household stuff” in their research.

It’s nice to see a blogger’s work be highlighted. Congratulations Dexter.

G-putty was mentioned here in a Dec. 30, 2016 posting which also includes a link to Dexter’s piece on the topic.

Keeping up with science is impossible: ruminations on a nanotechnology talk

I think it’s time to give this suggestion again. Always hold a little doubt about the science information you read and hear. Everybody makes mistakes.

Here’s an example of what can happen. George Tulevski who gave a talk about nanotechnology in Nov. 2016 for TED@IBM is an accomplished scientist who appears to have made an error during his TED talk. From Tulevski’s The Next Step in Nanotechnology talk transcript page,

When I was a graduate student, it was one of the most exciting times to be working in nanotechnology. There were scientific breakthroughs happening all the time. The conferences were buzzing, there was tons of money pouring in from funding agencies. And the reason is when objects get really small, they’re governed by a different set of physics that govern ordinary objects, like the ones we interact with. We call this physics quantum mechanics. [emphases mine] And what it tells you is that you can precisely tune their behavior just by making seemingly small changes to them, like adding or removing a handful of atoms, or twisting the material. It’s like this ultimate toolkit. You really felt empowered; you felt like you could make anything.

In September 2016, scientists at Cambridge University (UK) announced they had concrete proof that the physics governing materials at the nanoscale is unique, i.e., it does not follow the rules of either classical or quantum physics. From my Oct. 26, 2016 posting,

A Sept. 29, 2016 University of Cambridge press release, which originated the news item, hones in on the peculiarities of the nanoscale,

In the middle, on the order of around 10–100,000 molecules, something different is going on. Because it’s such a tiny scale, the particles have a really big surface-area-to-volume ratio. This means the energetics of what goes on at the surface become very important, much as they do on the atomic scale, where quantum mechanics is often applied.

Classical thermodynamics breaks down. But because there are so many particles, and there are many interactions between them, the quantum model doesn’t quite work either.

It is very, very easy to miss new developments no matter how tirelessly you scan for information.

Tulevski is a good, interesting, and informed speaker but I do have one other hesitation regarding his talk. He seems to think that over the last 15 years there should have been more practical applications arising from the field of nanotechnology. There are two aspects here. First, he seems to be dating the ‘nanotechnology’ effort from the beginning of the US National Nanotechnology Initiative and there are many scientists who would object to that as the starting point. Second, 15 or even 30 or more years is a brief period of time especially when you are investigating that which hasn’t been investigated before. For example, you might want to check out the book, “Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life” (published 1985) is a book by Steven Shapin and Simon Schaffer (Wikipedia entry for the book). The amount of time (years) spent on how to make just the glue which held the various experimental apparatuses together was a revelation to me. Of  course, it makes perfect sense that if you’re trying something new, you’re going to have figure out everything.

By the way, I include my blog as one of the sources of information that can be faulty despite efforts to make corrections and to keep up with the latest. Even the scientists at Cambridge University can run into some problems as I noted in my Jan. 28, 2016 posting.

Getting back to Tulevsk, herei’s a link to his lively, informative talk :
https://www.ted.com/talks/george_tulevski_the_next_step_in_nanotechnology#t-562570

ETA Jan. 24, 2017: For some insight into how uncertain, tortuous, and expensive commercializing technology can be read Dexter Johnson’s Jan. 23, 2017 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website). Here’s an excerpt (Note: Links have been removed),

The brief description of this odyssey includes US $78 million in financing over 15 years and $50 million in revenues over that period through licensing of its technology and patents. That revenue includes a back-against-the-wall sell-off of a key business unit to Lockheed Martin in 2008.  Another key moment occured back in 2012 when Belgian-based nanoelectronics powerhouse Imec took on the job of further developing Nantero’s carbon-nanotube-based memory back in 2012. Despite the money and support from major electronics players, the big commercial breakout of their NRAM technology seemed ever less likely to happen with the passage of time.

Nano-chimneys to cut down heat

Heat is always a problem with electronics—even nanoelectronics. Scientists at Rice University (US) believe they may have a solution for nanoelectronics heat problems, according to a Jan. 4, 2017 news item on ScienceDaily,

A few nanoscale adjustments may be all that is required to make graphene-nanotube junctions excel at transferring heat, according to Rice University scientists.

The Rice lab of theoretical physicist Boris Yakobson found that putting a cone-like “chimney” between the graphene and [carbon] nanotube all but eliminates a barrier that blocks heat from escaping.

Caption: Simulations by Rice University scientists show that placing cones between graphene and carbon nanotubes could enhance heat dissipation from nano-electronics. The nano-chimneys become better at conducting heat-carrying phonons by spreading out the number of heptagons required by the graphene-to-nanotube transition. Credit: Alex Kutana/Rice University

A Jan. 4, 2016 Rice University news release (also on EurekAlert), which originated the news item, describes the research in more detail,

Heat is transferred through phonons, quasiparticle waves that also transmit sound. The Rice theory offers a strategy to channel damaging heat away from next-generation nano-electronics.

Both graphene and carbon nanotubes consist of six-atom rings, which create a chicken-wire appearance, and both excel at the rapid transfer of electricity and phonons.

But when a nanotube grows from graphene, atoms facilitate the turn by forming heptagonal (seven-member) rings instead. Scientists have determined that forests of nanotubes grown from graphene are excellent for storing hydrogen for energy applications, but in electronics, the heptagons scatter phonons and hinder the escape of heat through the pillars.

The Rice researchers discovered through computer simulations that removing atoms here and there from the two-dimensional graphene base would force a cone to form between the graphene and the nanotube. The geometric properties (aka topology) of the graphene-to-cone and cone-to-nanotube transitions require the same total number of heptagons, but they are more sparsely spaced and leave a clear path of hexagons available for heat to race up the chimney.

“Our interest in advancing new applications for low-dimensional carbon — fullerenes, nanotubes and graphene — is broad,” Yakobson said. “One way is to use them as building blocks to fill three-dimensional spaces with different designs, creating anisotropic, nonuniform scaffolds with properties that none of the current bulk materials have. In this case, we studied a combination of nanotubes and graphene, connected by cones, motivated by seeing such shapes obtained in our colleagues’ experimental labs.”

The researchers tested phonon conduction through simulations of free-standing nanotubes, pillared graphene and nano-chimneys with a cone radius of either 20 or 40 angstroms. The pillared graphene was 20 percent less conductive than plain nanotubes. The 20-angstrom nano-chimneys were just as conductive as plain nanotubes, while 40-angstrom cones were 20 percent better than the nanotubes.

“The tunability of such structures is virtually limitless, stemming from the vast combinatorial possibilities of arranging the elementary modules,” said Alex Kutana, a Rice research scientist and co-author of the study. “The actual challenge is to find the most useful structures given a vast number of possibilities and then make them in the lab reliably.

“In the present case, the fine-tuning parameters could be cone shapes and radii, nanotube spacing, lengths and diameters. Interestingly, the nano-chimneys also act like thermal diodes, with heat flowing faster in one direction than the other,” he said.

Here’s a link to and a citation for the paper,

Nanochimneys: Topology and Thermal Conductance of 3D Nanotube–Graphene Cone Junctions by Ziang Zhang, Alex Kutana, Ajit Roy, and Boris I. Yakobson. J. Phys. Chem. C, Article ASAP DOI: 10.1021/acs.jpcc.6b11350 Publication Date (Web): December 21, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

‘Brewing up’ conductive inks for printable electronics

Scientists from Duke University aren’t exactly ‘brewing’ or ‘cooking up’ the inks but they do come close according to a Jan. 3, 2017 news item on ScienceDaily,

By suspending tiny metal nanoparticles in liquids, Duke University scientists are brewing up conductive ink-jet printer “inks” to print inexpensive, customizable circuit patterns on just about any surface.

A Jan. 3, 2017 Duke University news release (also on EurekAlert), which originated the news item, explains why this technique could lead to more accessible printed electronics,

Printed electronics, which are already being used on a wide scale in devices such as the anti-theft radio frequency identification (RFID) tags you might find on the back of new DVDs, currently have one major drawback: for the circuits to work, they first have to be heated to melt all the nanoparticles together into a single conductive wire, making it impossible to print circuits on inexpensive plastics or paper.

A new study by Duke researchers shows that tweaking the shape of the nanoparticles in the ink might just eliminate the need for heat.

By comparing the conductivity of films made from different shapes of silver nanostructures, the researchers found that electrons zip through films made of silver nanowires much easier than films made from other shapes, like nanospheres or microflakes. In fact, electrons flowed so easily through the nanowire films that they could function in printed circuits without the need to melt them all together.

“The nanowires had a 4,000 times higher conductivity than the more commonly used silver nanoparticles that you would find in printed antennas for RFID tags,” said Benjamin Wiley, assistant professor of chemistry at Duke. “So if you use nanowires, then you don’t have to heat the printed circuits up to such high temperature and you can use cheaper plastics or paper.”

“There is really nothing else I can think of besides these silver nanowires that you can just print and it’s simply conductive, without any post-processing,” Wiley added.

These types of printed electronics could have applications far beyond smart packaging; researchers envision using the technology to make solar cells, printed displays, LEDS, touchscreens, amplifiers, batteries and even some implantable bio-electronic devices. The results appeared online Dec. 16 [2016] in ACS Applied Materials and Interfaces.

Silver has become a go-to material for making printed electronics, Wiley said, and a number of studies have recently appeared measuring the conductivity of films with different shapes of silver nanostructures. However, experimental variations make direct comparisons between the shapes difficult, and few reports have linked the conductivity of the films to the total mass of silver used, an important factor when working with a costly material.

“We wanted to eliminate any extra materials from the inks and simply hone in on the amount of silver in the films and the contacts between the nanostructures as the only source of variability,” said Ian Stewart, a recent graduate student in Wiley’s lab and first author on the ACS paper.

Stewart used known recipes to cook up silver nanostructures with different shapes, including nanoparticles, microflakes, and short and long nanowires, and mixed these nanostructures with distilled water to make simple “inks.” He then invented a quick and easy way to make thin films using equipment available in just about any lab — glass slides and double-sided tape.

“We used a hole punch to cut out wells from double-sided tape and stuck these to glass slides,” Stewart said. By adding a precise volume of ink into each tape “well” and then heating the wells — either to relatively low temperature to simply evaporate the water or to higher temperatures to begin melting the structures together — he created a variety of films to test.

The team say they weren’t surprised that the long nanowire films had the highest conductivity. Electrons usually flow easily through individual nanostructures but get stuck when they have to jump from one structure to the next, Wiley explained, and long nanowires greatly reduce the number of times the electrons have to make this “jump”.

But they were surprised at just how drastic the change was. “The resistivity of the long silver nanowire films is several orders of magnitude lower than silver nanoparticles and only 10 times greater than pure silver,” Stewart said.

The team is now experimenting with using aerosol jets to print silver nanowire inks in usable circuits. Wiley says they also want to explore whether silver-coated copper nanowires, which are significantly cheaper to produce than pure silver nanowires, will give the same effect.

Here’s a link to and a citation for the paper,

Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films by Ian E. Stewart, Myung Jun Kim, and Benjamin J. Wiley. ACS Appl. Mater. Interfaces, Article ASAP
DOI: 10.1021/acsami.6b12289 Publication Date (Web): December 16, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall but there is an image of the silver nanowires, which is not exactly compensation but is interesting,

Caption: Duke University chemists have found that silver nanowire films like these conduct electricity well enough to form functioning circuits without applying high temperatures, enabling printable electronics on heat-sensitive materials like paper or plastic.
Credit: Ian Stewart and Benjamin Wiley

Spintronics-based artificial intelligence

Courtesy: Tohoku University

Japanese researchers have managed to mimic a synapse (artificial neural network) with a spintronics-based device according to a Dec. 19, 2016 Tohoku University press release (also on EurekAlert but dated Dec. 20, 2016),

Researchers at Tohoku University have, for the first time, successfully demonstrated the basic operation of spintronics-based artificial intelligence.

Artificial intelligence, which emulates the information processing function of the brain that can quickly execute complex and complicated tasks such as image recognition and weather prediction, has attracted growing attention and has already been partly put to practical use.

The currently-used artificial intelligence works on the conventional framework of semiconductor-based integrated circuit technology. However, this lacks the compactness and low-power feature of the human brain. To overcome this challenge, the implementation of a single solid-state device that plays the role of a synapse is highly promising.

The Tohoku University research group of Professor Hideo Ohno, Professor Shigeo Sato, Professor Yoshihiko Horio, Associate Professor Shunsuke Fukami and Assistant Professor Hisanao Akima developed an artificial neural network in which their recently-developed spintronic devices, comprising micro-scale magnetic material, are employed (Fig. 1). The used spintronic device is capable of memorizing arbitral values between 0 and 1 in an analogue manner unlike the conventional magnetic devices, and thus perform the learning function, which is served by synapses in the brain.

Using the developed network (Fig. 2), the researchers examined an associative memory operation, which is not readily executed by conventional computers. Through the multiple trials, they confirmed that the spintronic devices have a learning ability with which the developed artificial neural network can successfully associate memorized patterns (Fig. 3) from their input noisy versions just like the human brain can.

The proof-of-concept demonstration in this research is expected to open new horizons in artificial intelligence technology – one which is of a compact size, and which simultaneously achieves fast-processing capabilities and ultralow-power consumption. These features should enable the artificial intelligence to be used in a broad range of societal applications such as image/voice recognition, wearable terminals, sensor networks and nursing-care robots.

Here are Fig. 1 and Fig. 2, as mentioned in the press release,

Fig. 1. (a) Optical photograph of a fabricated spintronic device that serves as artificial synapse in the present demonstration. Measurement circuit for the resistance switching is also shown. (b) Measured relation between the resistance of the device and applied current, showing analogue-like resistance variation. (c) Photograph of spintronic device array mounted on a ceramic package, which is used for the developed artificial neural network. Courtesy: Tohoku University

Fig. 2. Block diagram of developed artificial neural network, consisting of PC, FPGA, and array of spintronics (spin-orbit torque; SOT) devices. Courtesy: Tohoku University

Here`s a link to and a citation for the paper,

Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation by William A. Borders, Hisanao Akima1, Shunsuke Fukami, Satoshi Moriya, Shouta Kurihara, Yoshihiko Horio, Shigeo Sato, and Hideo Ohno. Applied Physics Express, Volume 10, Number 1 https://doi.org/10.7567/APEX.10.013007. Published 20 December 2016

© 2017 The Japan Society of Applied Physics

This is an open access paper.

For anyone interested in my other posts on memristors, artificial brains, and artificial intelligence, you can search this blog for those terms  and/or Neuromorphic Engineering in the Categories section.

Phagocytosis for a bioelectronic future

The process by which a cell engulfs matter is known as phagocytosis. One of the best known examples of failed phagocytosis is that of asbestos fibres in the lungs where lung cells have attempted to engulf a fibre that’s just too big and ends up piercing the cell. When enough of the cells are pierced, the person is diagnosed with mesothelioma.

This particular example of phagocytosis is a happier one according to a Dec. 16, 2016 article by Meghan Rosen for ScienceNews,

Human cells can snack on silicon.

Cells grown in the lab devour nano-sized wires of silicon through an engulfing process known as phagocytosis, scientists report December 16 in Science Advances.

Silicon-infused cells could merge electronics with biology, says John Zimmerman, a biophysicist now at Harvard University. “It’s still very early days,” he adds, but “the idea is to get traditional electronic devices working inside of cells.” Such hybrid devices could one day help control cellular behavior, or even replace electronics used for deep brain stimulation, he says.

Scientists have been trying to load electronic parts inside cells for years. One way is to zap holes in cells with electricity, which lets big stuff, like silicon nanowires linked to bulky materials, slip in. Zimmerman, then at the University of Chicago, and colleagues were looking for a simpler technique, something that would let tiny nanowires in easily and could potentially allow them to travel through a person’s bloodstream — like a drug.

A Dec. 22, 2016 University of Chicago news release by Matt Wood provides more detail,

“You can treat it as a non-genetic, synthetic biology platform,” said Bozhi Tian, PhD, assistant professor of chemistry and senior author of the new study. “Traditionally in biology we use genetic engineering and modify genetic parts. Now we can use silicon parts, and silicon can be internalized. You can target those silicon parts to specific parts of the cell and modulate that behavior with light.”

In the new study, Tian and his team show how cells consume or internalize the nanowires through phagocytosis, the same process they use to engulf and ingest nutrients and other particles in their environment. The nanowires are simply added to cell media, the liquid solution the cells live in, the same way you might administer a drug, and the cells take it from there. Eventually, the goal would be to inject them into the bloodstream or package them into a pill.

Once inside, the nanowires can interact directly with individual parts of the cell, organelles like the mitochondria, nucleus and cytoskeletal filaments. Researchers can then stimulate the nanowires with light to see how individual components of the cell respond, or even change the behavior of the cell. They can last up to two weeks inside the cell before biodegrading.

Seeing how individual parts of a cell respond to stimulation could give researchers insight into how medical treatments that use electrical stimulation work at a more detailed level. For instance, deep brain stimulation helps treat tremors from movement disorders like Parkinson’s disease by sending electrical signals to areas of the brain. Doctors know it works at the level of tissues and brain structures, but seeing how individual components of nerve cells react to these signals could help fine tune and improve the treatment.

The experiments in the study used umbilical vascular endothelial cells, which make up blood vessel linings in the umbilical cord. These cells readily took up the nanowires, but others, like cardiac muscle cells, did not. Knowing that some cells consume the wires and some don’t could also prove useful in experimental settings and give researchers more ways to target specific cell types.

Tian and his team manufactures the nanowires in their lab with a chemical vapor deposition system that grows the silicon structures to different specifications. They can adjust size, shape, and electrical properties as needed, or even add defects on purpose for testing. They can also make wires with porous surfaces that could deliver drugs or genetic material to the cells. The process gives them a variety of ways to manipulate the properties of the nanowires for research.

Seeing how individual parts of a cell respond to stimulation could give researchers insight into how medical treatments that use electrical stimulation work at a more detailed level. For instance, deep brain stimulation helps treat tremors from movement disorders like Parkinson’s disease by sending electrical signals to areas of the brain. Doctors know it works at the level of tissues and brain structures, but seeing how individual components of nerve cells react to these signals could help fine tune and improve the treatment.

The experiments in the study used umbilical vascular endothelial cells, which make up blood vessel linings in the umbilical cord. These cells readily took up the nanowires, but others, like cardiac muscle cells, did not. Knowing that some cells consume the wires and some don’t could also prove useful in experimental settings and give researchers more ways to target specific cell types.

Tian and his team manufactures the nanowires in their lab with a chemical vapor deposition system that grows the silicon structures to different specifications. They can adjust size, shape, and electrical properties as needed, or even add defects on purpose for testing. They can also make wires with porous surfaces that could deliver drugs or genetic material to the cells. The process gives them a variety of ways to manipulate the properties of the nanowires for research.

Here’s a link to and a citation for the paper,

Cellular uptake and dynamics of unlabeled freestanding silicon nanowires by John F. Zimmerman, Ramya Parameswaran, Graeme Murray, Yucai Wang, Michael Burke, and Bozhi Tian. Science Advances  16 Dec 2016: Vol. 2, no. 12, e1601039 DOI: 10.1126/sciadv.1601039

This paper appears to be open access.