Category Archives: nanotechnology

Neurons and graphene carpets

I don’t entirely grasp the carpet analogy. Actually, I have no why they used a carpet analogy but here’s the June 12, 2018 ScienceDaily news item about the research,

A work led by SISSA [Scuola Internazionale Superiore di Studi Avanzati] and published on Nature Nanotechnology reports for the first time experimentally the phenomenon of ion ‘trapping’ by graphene carpets and its effect on the communication between neurons. The researchers have observed an increase in the activity of nerve cells grown on a single layer of graphene. Combining theoretical and experimental approaches they have shown that the phenomenon is due to the ability of the material to ‘trap’ several ions present in the surrounding environment on its surface, modulating its composition. Graphene is the thinnest bi-dimensional material available today, characterised by incredible properties of conductivity, flexibility and transparency. Although there are great expectations for its applications in the biomedical field, only very few works have analysed its interactions with neuronal tissue.

A June 12, 2018 SISSA press release (also on EurekAlert), which originated the news item, provides more detail,

A study conducted by SISSA – Scuola Internazionale Superiore di Studi Avanzati, in association with the University of Antwerp (Belgium), the University of Trieste and the Institute of Science and Technology of Barcelona (Spain), has analysed the behaviour of neurons grown on a single layer of graphene, observing a strengthening in their activity. Through theoretical and experimental approaches the researchers have shown that such behaviour is due to reduced ion mobility, in particular of potassium, to the neuron-graphene interface. This phenomenon is commonly called ‘ion trapping’, already known at theoretical level, but observed experimentally for the first time only now. “It is as if graphene behaves as an ultra-thin magnet on whose surface some of the potassium ions present in the extra cellular solution between the cells and the graphene remain trapped. It is this small variation that determines the increase in neuronal excitability” comments Denis Scaini, researcher at SISSA who has led the research alongside Laura Ballerini.

The study has also shown that this strengthening occurs when the graphene itself is supported by an insulator, like glass, or suspended in solution, while it disappears when lying on a conductor. “Graphene is a highly conductive material which could potentially be used to coat any surface. Understanding how its behaviour varies according to the substratum on which it is laid is essential for its future applications, above all in the neurological field” continues Scaini, “considering the unique properties of graphene it is natural to think for example about the development of innovative electrodes of cerebral stimulation or visual devices”.

It is a study with a double outcome. Laura Ballerini comments as follows: “This ‘ion trap’ effect was described only in theory. Studying the impact of the ‘technology of materials’ on biological systems, we have documented a mechanism to regulate membrane excitability, but at the same time we have also experimentally described a property of the material through the biology of neurons.”

Dexter Johnson in a June 13, 2018 posting, on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website), provides more context for the work (Note: Links have been removed),

While graphene has been tapped to deliver on everything from electronics to optoelectronics, it’s a bit harder to picture how it may offer a key tool for addressing neurological damage and disorders. But that’s exactly what researchers have been looking at lately because of the wonder material’s conductivity and transparency.

In the most recent development, a team from Europe has offered a deeper understanding of how graphene can be combined with neurological tissue and, in so doing, may have not only given us an additional tool for neurological medicine, but also provided a tool for gaining insights into other biological processes.

“The results demonstrate that, depending on how the interface with [single-layer graphene] is engineered, the material may tune neuronal activities by altering the ion mobility, in particular potassium, at the cell/substrate interface,” said Laura Ballerini, a researcher in neurons and nanomaterials at SISSA.

Ballerini provided some context for this most recent development by explaining that graphene-based nanomaterials have come to represent potential tools in neurology and neurosurgery.

“These materials are increasingly engineered as components of a variety of applications such as biosensors, interfaces, or drug-delivery platforms,” said Ballerini. “In particular, in neural electrode or interfaces, a precise requirement is the stable device/neuronal electrical coupling, which requires governing the interactions between the electrode surface and the cell membrane.”

This neuro-electrode hybrid is at the core of numerous studies, she explained, and graphene, thanks to its electrical properties, transparency, and flexibility represents an ideal material candidate.

In all of this work, the real challenge has been to investigate the ability of a single atomic layer to tune neuronal excitability and to demonstrate unequivocally that graphene selectively modifies membrane-associated neuronal functions.

I encourage you to read Dexter’s posting as it clarifies the work described in the SISSA press release for those of us (me) who may fail to grasp the implications.

Here’s a link to and a citation for the paper,

Single-layer graphene modulates neuronal communication and augments membrane ion currents by Niccolò Paolo Pampaloni, Martin Lottner, Michele Giugliano, Alessia Matruglio, Francesco D’Amico, Maurizio Prato, Josè Antonio Garrido, Laura Ballerini, & Denis Scaini. Nature Nanotechnology (2018) DOI: https://doi.org/10.1038/s41565-018-0163-6 Published online June 13, 2018

This paper is behind a paywall.

All this brings to mind a prediction made about the Graphene Flagship and the Human Brain Project shortly after the European Commission announced in January 2013 that each project had won funding of 1B Euros to be paid out over a period of 10 years. The prediction was that scientists would work on graphene/human brain research.

Chinese scientists strike gold in plant tissues

I have heard of phytomining in soil remediation efforts (reclaiming nanoscale metals in plants near mining operations; you can find a more detailed definition here at Wiktionary) but, in this case, scientists have discovered plant tissues with nanoscale gold in an area which has no known deposits of gold. From a June 14, 2018 news item on Nanowwerk (Note: A link has been removed),

Plants containing the element gold are already widely known. The flowering perennial plant alfafa, for example, has been cultivated by scientists to contain pure gold in its plant tissue. Now researchers from the Sun Yat-sen University in China have identified and investigated the characteristics of gold nanoparticles in two plant species growing in their natural environments.

The study, led by Xiaoen Luo, is published in Environmental Chemistry Letters (“Discovery of nano-sized gold particles in natural plant tissues”) and has implications for the way gold nanoparticles are produced and absorbed from the environment.

A June 14, 2018 Springer Publications press release, which originated the news item, delves further and proposes a solution to the mystery,

Xiaoen Luo and her colleagues investigated the perennial shrub B. nivea and the annual or biennial weed Erigeron Canadensis. The researchers collected and prepared samples of both plants so that they could be examined using the specialist analytical tool called field-emission transmission electron microscope (TEM).

Gold-bearing nanoparticles – tiny gold particles fused with another element such as oxygen or copper – were found in both types of plant. In E. Canadensis these particles were around 20-50 nm in diameter and had an irregular form. The gold-bearing particles in B. nivea were circular, elliptical or bone-rod shaped with smooth edges and were 5-15 nm.

“The abundance of gold in the crust is very low and there was no metal deposit in the sampling area so we speculate that the source of these gold nanoparticles is a nearby electroplating plant that uses gold in its operations, “ explains Jianjin Cao who is a co-author of the study.

Most of the characteristics of the nanoparticles matched those of artificial particles rather than naturally occurring nanoparticles, which would support this theory. The researchers believe that the gold-bearing particles were absorbed through the pores of the plants directly, indicating that gold could be accumulated from the soil, water or air.

“Discovering gold-bearing nanoparticles in natural plant tissues is of great significance and allows new possibilities to clean up areas contaminated with nanoparticles, and also to enrich gold nanoparticles using plants,” says Xiaoen Luo.

The researchers plan to further study the migration mechanism, storage locations and growth patterns of gold nanoparticles in plants and also verify the absorbing capacity of different plants for gold nanoparticles in polluted areas.

For anyone who’d like to find out more about electroplating, there’s this January 25, 2018 article by Anne Marie Helmenstine for ThoughtCo.

Here’s a link to and a citation for the paper,

Discovery of nano-sized gold particles in natural plant tissues by Xiaoen Luo (Luo, X.) and Jianjin Cao (Cao, J.). Environ Chem Lett (2018) pp 1–8 https://doi.org/10.1007/s10311-018-0749-0 First published online 14 June 2018

This paper appears to be open access.

The secret lives of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated) proteins

This research isn’t quite as exciting as the title promises but it is important as it attempts to answer some fundamental questions about Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated (Cas).proteins. From a June 13, 2018 news item on phys.org,

Recently published research from the University of Georgia and UConn Health [University of Connecticu Health Center] provides new insight about the basic biological mechanisms of the RNA-based viral immune system known as CRISPR-Cas.

CRISPR-Cas, short for Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated, is a defense mechanism that has evolved in bacteria and archaea that these single celled organisms use to ward off attacks from viruses and other invaders. When a bacterium is attacked by a virus, it makes a record of the virus’s DNA by chopping it up into pieces and incorporating a small segment of the invader’s DNA into its own genome. It then uses this DNA to make RNAs that bind with a bacterial protein that then kills the viral DNA.

The system has been studied worldwide in hopes that it can be used to edit genes that predispose humans to countless diseases, such as diabetes and cancer. However, to reach this end goal, scientists must gain further understanding of the basic biological process that leads to successful immunity against the invading virus.

A June 12, 2018 University of Georgia news release by Jessica Luton and Jessica McBride, which originated the news item, provides more detail,

Distinguished Research Professor of Biochemistry and Molecular Biology in UGA’s Franklin College of Arts and Sciences and principal investigator for the project Michael Terns and UGA postdoctoral fellow Masami Shiimori collaborated with Brenton Graveley and Sandra Garrett at UConn Health to sequence millions of genomes to learn more about the process. Graveley is professor and chair of the Department of Genetics and Genome Sciences and associate director of the Institute for Systems Genomics at UConn Health, and Garrett is a postdoctoral fellow in his laboratory.

“This research is more fundamental and basic than studies that are trying to determine how to use CRISPR for therapeutic or biomedical application,” said Terns. “Our study is about the unique first step in the process, known as adaptation, where fragments of DNA are recognized and integrated into the host genome and provide immunity for future generations.”

Previously, researchers did not understand how the cell recognized the virus as an invader, nor which bacterial proteins were necessary for successful integration and immunity.

“In this project we were able to determine how the bacterial immune system creates a molecular memory to remove harmful viral DNA sequences and how this is passed down to the bacterial progeny,” said Graveley.

By looking at patterns in the data, the researchers discovered several new findings about how two previously poorly characterized Cas4 proteins function in tandem with Cas1 and Cas2 proteins found in all CRISPR-Cas systems.

In this initial adaptation phase, one of two different Cas4 proteins recognizes a signaling placeholder in the sequence that occurs adjacent to the snippet of DNA that is excised.

When the Cas1 and Cas2 proteins are present in the cell with either of two Cas4 protein nucleases, Cas4-1 and Cas4-2, they act like the generals of this army-based immune system, communicating uniform sized clipped DNA fragments, directions on where to go next and ultimately instructions that destroy the lethal DNA fragment.

In order for a cell to successfully recognize and excise strands of DNA, incorporate them into its own genome and achieve immunity, the Cas4 proteins must be present in conjunction with the Cas1 and Cas2 proteins.

“Cas4 is present in many CRISPR-Cas systems, but the roles of the proteins were mysterious,” said Terns. “In our system, there are two Cas4 proteins that are essential for governing this process so that functional RNAs are made and immunity is conferred”

To achieve these findings, the research team from the University of Georgia created strains of archaeal organisms with key genetic deletions.

Hundreds of millions of DNA fragments captured in the CRISPR loci were sent to the Graveley lab in Farmington, Connecticut, where they were sequenced with the Illumina MiSeq system. The researchers then used supercomputing for bioinformatics analysis and data interpretation.

While there is still much to learn about the biological mechanisms involved in CRISPR-Cas systems, this research tells scientists more about the way these proteins work together to save the cell and achieve immunity.

“The data are so clear. We sequenced millions and millions of DNA fragments captured in CRISPR loci in different genetic strains and found the same results consistently,” he said.

Here’s a link to and a citation for the paper,

Cas4 Nucleases Define the PAM, Length, and Orientation of DNA Fragments Integrated at CRISPR Loci by Masami Shiimori, Sandra C. Garrett, Brenton R. Graveley, Michael P. Terns.Molecular Cell Volume 70, Issue 5, p814–824.e6, 7 June 2018 DOI: https://doi.org/10.1016/j.molcel.2018.05.002

This paper is behind a paywall.

Seeing ghosts: recovering images from dageurreotypes with help from the Canadian Light Source (synchrotron)

A daguerreotype plate with the photograph hidden by the tarnish (left) yet visible when imaged with synchrotron X-rays (right). Courtesy of Madalena Kozachuk.

Amazing, yes? Especially when you consider how devastating the inadvertent destruction of important daguerreotypes in an exhibition of US Civil War photography must have been to the curators and owners of the images. The ‘destruction’ occurred in 2005 and inspired research into the cause of the destruction, which was first covered here in a January 10, 2013 posting and followed up in a November 17, 2015 posting about an exhibit showcasing the results of the research.

A daguerreotype plate with the photograph hidden by the tarnish (left) yet visible when imaged with synchrotron X-rays (right). Courtesy of Madalena Kozachuk.

This latest research into daguerreotypes was performed at the Canadian Light Source (CLS; Saskatoon, Saskatchewan, Canada). Unlike my previous postings, this research was an attempt to retrieve the original image rather than research the reasons for its ‘destruction’. From a June 22, 2018 CLS news release (also on EurekAlert) by Lana Haight and Jeffrey Renaud (Note: Links have been removed),

Art curators will be able to recover images on daguerreotypes, the earliest form of photography that used silver plates, after scientists learned how to use light to see through degradation that has occurred over time.

Research published today [June 22, 2018] in Scientific Reports includes two images from the National Gallery of Canada’s photography research unit that show photographs that were taken, perhaps as early as 1850, but were no longer visible because of tarnish and other damage. The retrieved images, one of a woman and the other of a man, were beyond recognition.

“It’s somewhat haunting because they are anonymous and yet it is striking at the same time,” said Madalena Kozachuk, a PhD student in the Department of Chemistry at Western University [formerly University of Western Ontario] and lead author of the scientific paper.

“The image is totally unexpected because you don’t see it on the plate at all. It’s hidden behind time. But then we see it and we can see such fine details: the eyes, the folds of the clothing, the detailed embroidered patterns of the table cloth.”

The identities of the woman and the man are not known. It’s possible that the plates were produced in the United States, but they could be from Europe.

For the past three years, Kozachuk and an interdisciplinary team of scientists have been exploring how to use synchrotron technology to learn more about chemical changes that damage daguerreotypes.

Invented in 1839, daguerreotype images were created using a highly polished silver-coated copper plate that was sensitive to light when exposed to an iodine vapour. Subjects had to pose without moving for two to three minutes for the image to imprint on the plate, which was then developed as a photograph using a mercury vapour that was heated.

Kozachuk conducts much of her research at the Canadian Light Source and previously published results in scientific journals in 2017 and earlier this year. In those articles, the team members identified the chemical composition of the tarnish and how it changed from one point to another on a daguerreotype.

“We compared degradation that looked like corrosion versus a cloudiness from the residue from products used during the rinsing of the photographs versus degradation from the cover glass. When you look at these degraded photographs, you don’t see one type of degradation,” said Ian Coulthard, a senior scientist at the CLS and one of Kozachuk’s supervisors. He is also a co- author on the research papers.

This preliminary research at the CLS led to today’s [June 22, 2018] paper and the images Kozachuk collected at the Cornell High Energy Synchrotron Source where she was able to analyze the daguerreotypes in their entirety.

Kozachuk used rapid-scanning micro-X-ray fluorescence imaging to analyze the plates, which are about 7.5 cm wide, and identified where mercury was distributed on the plates. With an X-ray beam as small as 10 by 10 microns (a human scalp hair averages 75 microns across) and at an energy most sensitive to mercury absorption, the scan of each daguerreotype took about eight hours.

“Mercury is the major element that contributes to the imagery captured in these photographs. Even though the surface is tarnished, those image particles remain intact. By looking at the mercury, we can retrieve the image in great detail,” said Tsun-Kong (T.K.) Sham, Canada Research Chair in Materials and Synchrotron Radiation at Western University. He also is a co-author of the research and one of Kozachuk’s supervisors.

This is one of the many examples of successful research collaboration between Western University and CLS scientists.

Kozachuk’s research, which is ongoing, will contribute to improving how daguerreotype images are recovered when cleaning is possible and will provide a way to see what’s below the tarnish when cleaning is not possible. She will be back at the CLS this fall to continue her work.

The prospect of improved conservation methods intrigues John P. McElhone, recently retired as the chief of the Conservation and Technical Research branch at the Canadian Photography Institute of the National Gallery of Canada. He provided the daguerreotypes from the institute’s research collection.

“There are a lot of interesting questions that at this stage of our knowledge can only be answered by a sophisticated scientific approach,” said McElhone, another of the co-authors of today’s paper.

“A conservator’s first step is to have a full and complete understanding of what the material isand how it is assembled on a microscopic and even nanoscale level. We want to find out how the chemicals are arranged on the surface and that understanding gives us access to theories about how degradation happens and how that degradation can possibly or possibly not be reversed.”

As the first commercialized photographic process, the daguerreotype is thought to be the first “true” visual representation of history. Unlike painters who could use “poetic licence” in their work, the daguerreotype reflected precisely what was photographed.

Thousands and perhaps millions of daguerreotypes were created over 20 years in the 19th century before the process was replaced. The Canadian Photography Institute collection numbers more than 2,700, not including the daguerreotypes in the institute’s research collection.

By improving the process of restoring these centuries-old images, the scientists are contributing to the historical record. What was thought to be lost that showed the life and times of people from the 19th century can now be found. [emphases mine]

That last sentence seems to be borrowing from a line in the song, Amazing Grace, “I once was lost, but now am found,” from the song’s Wikipedia entry.

Here’s a link to and a citation for the paper,

Recovery of Degraded-Beyond-Recognition 19th Century Daguerreotypes with Rapid High Dynamic Range Elemental X-ray Fluorescence Imaging of Mercury L Emission by Madalena S. Kozachuk, Tsun-Kong Sham, Ronald R. Martin, Andrew J. Nelson, Ian Coulthard, & John P. McElhone. Scientific Reports volume 8, Article number: 9565 (2018) DOI:10.1038/s41598-018-27714 Published online June 22, 2018

This paper is open access. By the way, the research into the ‘destruction’ of the daguerreotypes in the 2005 exhibition? It’s cited in this paper.

Colo(u)r-changing nanolaser inspired by chameleons

Caption: Novel nanolaser leverages the same color-changing mechanism that a chameleon uses to camouflage its skin. Credit: Egor Kamelev Courtesy: Northwestern University

I wish there was some detail included about how those colo(u)rs were achieved in that photograph. Strangely, Northwestern University (Chicago, Illinois, US) is more interested in describing the technology that chameleons have inspired. A June 20, 2018 news item on ScienceDaily announces the research,

As a chameleon shifts its color from turquoise to pink to orange to green, nature’s design principles are at play. Complex nano-mechanics are quietly and effortlessly working to camouflage the lizard’s skin to match its environment.

Inspired by nature, a Northwestern University team has developed a novel nanolaser that changes colors using the same mechanism as chameleons. The work could open the door for advances in flexible optical displays in smartphones and televisions, wearable photonic devices and ultra-sensitive sensors that measure strain.

A June 20, 2018 Northwestern University news release (also on EurekAlert) by Amanda Morris, which originated the news item, expands on the theme,

“Chameleons can easily change their colors by controlling the spacing among the nanocrystals on their skin, which determines the color we observe,” said Teri W. Odom, Charles E. and Emma H. Morrison Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences. “This coloring based on surface structure is chemically stable and robust.”

The research was published online yesterday [June 19, 2018] in the journal Nano Letters. Odom, who is the associate director of Northwestern’s International Institute of Nanotechnology, and George C. Schatz, Charles E. and Emma H. Morrison Professor of Chemistry in Weinberg, served as the paper’s co-corresponding authors.

The same way a chameleon controls the spacing of nanocrystals on its skin, the Northwestern team’s laser exploits periodic arrays of metal nanoparticles on a stretchable, polymer matrix. As the matrix either stretches to pull the nanoparticles farther apart or contracts to push them closer together, the wavelength emitted from the laser changes wavelength, which also changes its color.

“Hence, by stretching and releasing the elastomer substrate, we could select the emission color at will,” Odom said.

The resulting laser is robust, tunable, reversible and has a high sensitivity to strain. These properties are critical for applications in responsive optical displays, on-chip photonic circuits and multiplexed optical communication.

Here’s a link to and a citation for the paper,

Stretchable Nanolasing from Hybrid Quadrupole Plasmons by Danqing Wang, Marc R. Bourgeois, Won-Kyu Lee, Ran Li, Dhara Trivedi, Michael P. Knudson, Weijia Wang, George C. Schatz, and Teri W. Odom. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.8b01774 Publication Date (Web): June 18, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Shape-conforming hydrogel and the body’s own healing mechanisms

A June 11, 2018 news item on ScienceDaily announces a development of interest to people with diabetes or those who treat them,

A simple scrape or sore might not cause alarm for most people. But for diabetic patients, an untreated scratch can turn into an open wound that could potentially lead to a limb amputation or even death.

A Northwestern University team has developed a new device, called a regenerative bandage, that quickly heals these painful, hard-to-treat sores without using drugs. During head-to-head tests, Northwestern’s bandage healed diabetic wounds 33 percent faster than one of the most popular bandages currently on the market.

A June 11, 2018 Northwestern University news release by Amanda Morris, which originated the news item, provides more detail,

“The novelty is that we identified a segment of a protein in skin that is important to wound healing, made the segment and incorporated it into an antioxidant molecule that self-aggregates at body temperature to create a scaffold that facilitates the body’s ability to regenerate tissue at the wound site,” said Northwestern’s Guillermo Ameer, who led the study. “With this newer approach, we’re not releasing drugs or outside factors to accelerate healing. And it works very well.”

Because the bandage leverages the body’s own healing power without releasing drugs or biologics, it faces fewer regulatory hurdles. This means patients could see it on the market much sooner.

The research was published today, June 11 [2018], in the Proceedings of the National Academy of Sciences. Although Ameer’s laboratory is specifically interested in diabetes applications, the bandage can be used to heal all types of open wounds.

An expert in biomaterials and regenerative engineering, Ameer is the Daniel Hale Williams Professor of Biomedical Engineering in the McCormick School of Engineering, professor of surgery in the Feinberg School of Medicine and director of Northwestern’s new Center for Advanced Regenerative Engineering (CARE).

The difference between a sore in a physically healthy person versus a diabetic patient? Diabetes can cause nerve damage that leads to numbness in the extremities. People with diabetes, therefore, might experience something as simple as a blister or small scratch that goes unnoticed and untreated because they cannot feel it to know it’s there. As high glucose levels also thicken capillary walls, blood circulation slows, making it more difficult for these wounds to heal. It’s a perfect storm for a small nick to become a limb-threatening — or life-threatening — wound.

The secret behind Ameer’s regenerative bandage is laminin, a protein found in most of the body’s tissues including the skin. Laminin sends signals to cells, encouraging them to differentiate, migrate and adhere to one another. Ameer’s team identified a segment of laminin — 12 amino acids in length — called A5G81 that is critical for the wound-healing process.

“This particular sequence caught our eye because it activates cellular receptors to get cells to adhere, migrate and proliferate,” Ameer said. “Then we cut up the sequence to find the minimum size that we needed for it to work.”

By using such a small fragment of laminin rather than the entire protein, it can be easily synthesized in the laboratory — making it more reproducible while keeping manufacturing costs low. Ameer’s team incorporated A5G81 into an antioxidant hydrogel bandage that it previously developed in the laboratory.

The bandage’s antioxidant nature counters inflammation. And the hydrogel is thermally responsive: It is a liquid when applied to the wound bed, then rapidly solidifies into a gel when exposed to body temperature. This phase change allows it to conform to the exact shape of the wound — a property that helped it out-perform other bandages on the market.

“Wounds have irregular shapes and depths. Our liquid can fill any shape and then stay in place,” Ameer said. “Other bandages are mostly based on collagen films or sponges that can move around and shift away from the wound site.”

Patients also must change bandages often, which can rip off the healing tissue and re-injure the site. Ameer’s bandage, however, can be rinsed off with cool saline, so the regenerating tissue remains undisturbed.

Not only will the lack of drugs or biologics make the bandage move to market faster, it also increases the bandage’s safety. So far, Ameer’s team has not noticed any adverse side effects in animal models. This is a stark difference from another product on the market, which contains a growth factor linked to cancer.

“It is not acceptable for patients who are trying to heal an open sore to have to deal with an increased risk of cancer,” Ameer said.

Next, Ameer’s team will continue to investigate the bandage in a larger pre-clinical model.

Here’s a link to and a citation for the paper,

Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes by Yunxiao Zhu, Zdravka Cankova, Marta Iwanaszko, Sheridan Lichtor, Milan Mrksich, and Guillermo A. Ameer. PNAS [Proceedings of the National Academy of Science] June 11, 2018. 201804262; published ahead of print June 11, 2018. https://doi.org/10.1073/pnas.1804262115

This paper is behind a paywall.

Australian scientists say that sunscreens with zinc oxide nanoparticles aren’t toxic to you

The Australians have had quite the struggle over whether or not to use nanotechnology-enabled sunscreens (see my Feb. 9, 2012 posting about an Australian nanosunscreen debacle and I believe the reverberations continue even ’til today). This latest research will hopefully help calm the waters. From a Dec. 4, 2018 news item on ScienceDaily,

Zinc oxide (ZnO) has long been recognized as an effective sunscreen agent. However, there have been calls for sunscreens containing ZnO nanoparticles to be banned because of potential toxicity and the need for caution in the absence of safety data in humans. An important new study provides the first direct evidence that intact ZnO nanoparticles neither penetrate the human skin barrier nor cause cellular toxicity after repeated application to human volunteers under in-use conditions. This confirms that the known benefits of using ZnO nanoparticles in sunscreens clearly outweigh the perceived risks, reports the Journal of Investigative Dermatology.

A December 4, 2018 Elsevier (Publishing) press release (also on EurekAlert), which originated the news item, provides international context for the safety discussion while providing more details about this latest research,

The safety of nanoparticles used in sunscreens has been a highly controversial international issue in recent years, as previous animal exposure studies found much higher skin absorption of zinc from application of ZnO sunscreens to the skin than in human studies. Some public advocacy groups have voiced concern that penetration of the upper layer of the skin by sunscreens containing ZnO nanoparticles could gain access to the living cells in the viable epidermis with toxic consequences, including DNA damage. A potential danger, therefore, is that this concern may also result in an undesirable downturn in sunscreen use. A 2017 National Sun Protection Survey by the Cancer Council Australia found only 55 percent of Australians believed it was safe to use sunscreen every day, down from 61 per cent in 2014.

Investigators in Australia studied the safety of repeated application of agglomerated ZnO nanoparticles applied to five human volunteers (aged 20 to 30 years) over five days. This mimics normal product use by consumers. They applied ZnO nanoparticles suspended in a commercial sunscreen base to the skin of volunteers hourly for six hours and daily for five days. Using multiphoton tomography with fluorescence lifetime imaging microscopy, they showed that the nanoparticles remained within the superficial layers of the stratum corneum and in the skin furrows. The fate of ZnO nanoparticles was also characterized in excised human skin in vitro. They did not penetrate the viable epidermis and no cellular toxicity was seen, even after repeated hourly or daily applications typically used for sunscreens.

“The terrible consequences of skin cancer and photoaging are much greater than any toxicity risk posed by approved sunscreens,” stated lead investigator Michael S. Roberts, PhD, of the Therapeutics Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, and School of Pharmacy and Medical Sciences, University of South Australia, Sansom Institute, Adelaide, QLD, Australia.

“This study has shown that sunscreens containing nano ZnO can be repeatedly applied to the skin with minimal risk of any toxicity. We hope that these findings will help improve consumer confidence in these products, and in turn lead to better sun protection and reduction in ultraviolet-induced skin aging and cancer cases,” he concluded.

“This study reinforces the important public health message that the known benefits of using ZnO nano sunscreens clearly outweigh the perceived risks of using nano sunscreens that are not supported by the scientific evidence,” commented Paul F.A. Wright, PhD, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia, in an accompanying editorial. “Of great significance is the investigators’ finding that the slight increase in zinc ion concentrations in viable epidermis was not associated with cellular toxicity under conditions of realistic ZnO nano sunscreen use.

A November 21, 2018 University of South Australia press release (also on EurekAlert) provides some additional insight into the Australian situation,, Note: Links have been removed,

It’s safe to slap on the sunscreen this summer – in repeated doses – despite what you have read about the potential toxicity of sunscreens.

A new study led by the University of Queensland (UQ) and University of South Australia (UniSA) provides the first direct evidence that zinc oxide nanoparticles used in sunscreen neither penetrate the skin nor cause cellular toxicity after repeated applications.

The research, published this week in the Journal of Investigative Dermatology, refutes widespread claims among some public advocacy groups – and a growing belief among consumers – about the safety of nanoparticulate-based sunscreens.

UQ and UniSA lead investigator, Professor Michael Roberts, says the myth about sunscreen toxicity took hold after previous animal studies found much higher skin absorption of zinc-containing sunscreens than in human studies.

“There were concerns that these zinc oxide nanoparticles could be absorbed into the epidermis, with toxic consequences, including DNA damage,” Professor Roberts says.

The toxicity link was picked up by consumers, sparking fears that Australians could reduce their sunscreen use, echoed by a Cancer Council 2017 National Sun Protection Survey showing a drop in the number of people who believed it was safe to use sunscreens every day.

Professor Roberts and his co-researchers in Brisbane, Adelaide, Perth and Germany studied the safety of repeated applications of zinc oxide nanoparticles applied to five volunteers aged 20-30 years.

Volunteers applied the ZnO nanoparticles every hour for six hours on five consecutive days.

“Using superior imaging methods, we established that the nanoparticles remained within the superficial layers of the skin and did not cause any cellular damage,” Professor Roberts says.

“We hope that these findings help improve consumer confidence in these products and in turn lead to better sun protection. The terrible consequences of skin cancer and skin damage caused by prolonged sun exposure are much greater than any toxicity posed by approved sunscreens.”

Here’s a link to and a citation for the paper,

Support for the Safe Use of Zinc Oxide Nanoparticle Sunscreens: Lack of Skin Penetration or Cellular Toxicity after Repeated Application in Volunteers by Yousuf H. Mohammed, Amy Holmes, Isha N. Haridass, Washington Y. Sanchez, Hauke Studier, Jeffrey E. Grice, Heather A.E. Benson, Michael S. Roberts. Jurnal of Investigative Dermatology. DOI: https://doi.org/10.1016/j.jid.2018.08.024 Article in Press Published online (Dec. 4, 2018?)

As of Dec. 11, 2018, this article is open access.

Nanostructured materials and radiation

If you’re planning on using nanostructured materials in a nuclear facility, you might want to check out this work (from a June 8, 2018 Purdue University (Indiana, US) news release by Brian L. Huchel,

A professor in the Purdue College of Engineering examined the potential use of various materials in nuclear reactors in an extensive review article in the journal Progress in Materials Science.

The article, titled “Radiation Damage in Nanostructured Materials,” was led by Xinghang Zhang, a professor of materials engineering. It will be published in the July issue of the journal.

Zhang said there is a significant demand for advanced materials that can survive high temperature and high doses of radiation. These materials contain significant amount of internal changes, called defect sinks, which are too small to be seen with the naked eye, but may form the next generation of materials used in nuclear reactors.

“Nanostructured materials with abundant internal defect sinks are promising as these materials have shown significantly improved radiation tolerance,” he said. “However, there are many challenges and fundamental science questions that remain to be solved before these materials can have applications in advanced nuclear reactors.”

The 100-page article, which took two years to write, focuses on metallic materials and metal-ceramic compounds and reviews types of internal material defects on the reduction of radiation damage in nanostructured materials.

Under the extreme radiation conditions, a large number of defects and their clusters are generated inside materials, and such significant microstructure damage often leads to degradation of the mechanical and physical properties of the materials

The article discusses the usage of a combination of defect sink networks to collaboratively improve the radiation tolerance of nanomaterials, while pointing out the need to improve the thermal and radiation stabilities of the defect sinks.

“The field of radiation damage in nanostructured materials is an exciting and rapidly evolving arena, enriched with challenges and opportunities,” Zhang said. “The integration of extensive research effort, resources and expertise in various fields may eventually lead to the design of advanced nanomaterials with unprecedented radiation tolerance.”

Jin Li, co-author of the review article and a postdoctoral fellow in the School of Materials Engineering, said researchers with different expertise worked collaboratively on the article, which contains more than 100 pages, 100 figures and 700 references.

The team involved in the research article included researchers from Purdue, Texas A&M University, Drexel University, the University of Nebraska-Lincoln and China University of Petroleum-Beijing, as well as Sandia National Laboratory, Los Alamos National Laboratory and Idaho National Laboratory.

Here’s an image illustrating the work,

Various imperfections in nanostructures, call defect sinks, can enhance the material’s tolerance to radiation. (Photo/Xinghang Zhang)

Here’s a link to and a citation for the paper,

Radiation damage in nanostructured materials by Xinghang Zhang, Khalid Hattar, Youxing Chen, Lin Shao, Jin Li, Cheng Sun, Kaiyuan Yu, Nan Li, Mitra L.Taheri, Haiyan Wang, Jian Wang, Michael Nastasi. Progress in Materials Science Volume 96, July 2018, Pages 217-321 https://doi.org/10.1016/j.pmatsci.2018.03.002

This paper is behind a paywall.

ht/ to June 8, 2018 Nanowerk news item.

Nano-saturn

It’s a bit of a stretch but I really appreciate how the nanoscale (specifically a fullerene) is being paired with the second largest planet (the largest is Jupiter) in our solar system. (See Nola Taylor Redd’s November 14, 2012 article on space.com for more about the planet Saturn.)

From a June 8, 2018 news item on ScienceDaily,

Saturn is the second largest planet in our solar system and has a characteristic ring. Japanese researchers have now synthesized a molecular “nano-Saturn.” As the scientists report in the journal Angewandte Chemie, it consists of a spherical C(60) fullerene as the planet and a flat macrocycle made of six anthracene units as the ring. The structure is confirmed by spectroscopic and X-ray analyses.

A June 8, 2018  Wiley Publications press release (also on EurekAlert), which originated the news item, fills in some details,

Nano-Saturn systems with a spherical molecule and a macrocyclic ring have been a fascinating structural motif for researchers. The ring must have a rigid, circular form, and must hold the molecular sphere firmly in its midst. Fullerenes are ideal candidates for the nano-sphere. They are made of carbon atoms linked into a network of rings that form a hollow sphere. The most famous fullerene, C60, consists of 60 carbon atoms arranged into 5- and 6-membered rings like the leather patches of a classic soccer ball. The electrons in their double bonds, knows as the π-electrons, are in a kind of “electron cloud”, able to freely move about and have binding interactions with other molecules, such as a macrocycle that also has a “cloud” of π-electrons. The attractive interactions between the electron clouds allow fullerenes to lodge in the cavities of such macrocycles.

A series of such complexes has previously been synthesized. Because of the positions of the electron clouds around the macrocycles, it was previously only possible to make rings that surround the fullerene like a belt or a tire. The ring around Saturn, however, is not like a “belt” or “tire”, it is a very flat disc. Researchers working at the Tokyo Institute of Technology and Okayama University of Science (Japan) wanted to properly imitate this at nanoscale.

Their success resulted from a different type of bonding between the “nano-planet” and its “nano-ring”. Instead of using the attraction between the π-electron clouds of the fullerene and macrocycle, the team working with Shinji Toyota used the weak attractive interactions between the π-electron cloud of the fullerene and non- π-electron of the carbon-hydrogen groups of the macrocycle.

To construct their “Saturn ring”, the researchers chose to use anthracene units, molecules made of three aromatic six-membered carbon rings linked along their edges. They linked six of these units into a macrocycle whose cavity was the perfect size and shape for a C60 fullerene. Eighteen hydrogen atoms of the macrocycle project into the middle of the cavity. In total, their interactions with the fullerene are enough to give the complex enough stability, as shown by computer simulations. By using X-ray analysis and NMR spectroscopy, the team was able to prove experimentally that they had produced Saturn-shaped complexes.

Here’s an illustration of the ‘nano-saturn’,

Courtesy: Wiley Publications

Here’s a link to and a citation for the paper,

Nano‐Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60 by Yuta Yamamoto, Dr. Eiji Tsurumaki, Prof. Dr. Kan Wakamatsu, Prof. Dr. Shinji Toyota. Angewandte Chemie https://doi.org/10.1002/anie.201804430 First published: 30 May 2018

This paper is behind a paywall.

Therapeutic nanoparticles for agricultural crops

Nanoscale drug delivery systems developed by the biomedical community may prove useful to farmers. The Canadian Broadcasting Corporation (CBC) featured the story in a May 26, 2018 online news item (with audio file; Note: A link has been removed),

Thanks to a fortuitous conversation between an Israeli chemical engineer who works on medical nanotechnology and his farmer friend, there’s a new way to deliver nourishment to nutrient-starved crops.

Avi Schroeder, the chemical engineer and cancer researcher from Technion — Israel Institute of Technology asked his friend what are the major problems facing agriculture today. “He said, ‘You know Avi, one of the major issues we’re facing is that in some of the crops we try to grow, we actually have a lack of nutrients. And then we end up not growing those crops even though they’re very valuable or very important crops.'”

This problem is only going to become more acute in many regions of the world as global population approaches eight billion people.

“Feeding them with healthy food and nutritious food is becoming a major limiting factor. And … the land we can actually grow crops on are also becoming smaller and smaller in every country because people need to build houses too. So what we want is to get actually more crops per hectare.”

The way farmers currently deliver nutrients to malnourished agricultural crops is very inefficient. Much of what is added to the leaves of the plant is wasted. Most of it washes away or isn’t taken up by the plants.

If plants don’t get the nutrients they need, their leaves start to yellow, their growth becomes stunted and they don’t produce as much food as nutrient-rich crops.

“We work primarily in the field of medicine,” says Schroeder. “What we do many times is we’ll load minuscule doses of medicine into nanoparticles — we’ll inject them into the patient. And those nanoparticles will actually be able to detect the disease site inside the body. That sounded very, very similar to the problem the farmers were actually facing — how do you get a medicine into a crop or a nutrient into a crop and get it to the right region within the crop where it’s actually necessary.”

The nanoparticles Schroeder developed are tiny packages that can deliver nutrients — any nutrients — that are placed inside.

A June 6, 2018 news item on Nanowerk offers a few more details,

An innovative technology developed at the Technion [Israel Institute of Technology] could lead to significant increases in agricultural yields. Using a nanometric transport platform on plants that was previously utilized for targeted drug delivery, researchers increased the penetration rate of nutrients into the plants, from 1% to approximately 33%.

A May 27,2018 Technion press release, which originated the news item, fleshes out the details,

The technology exploits nanoscale delivery platforms which until now were used to transport drugs to specific targets in the patient’s body. The work was published in Scientific Reports and will be presented in Nature Press.

The use of the nanotechnology for targeted drug delivery has been the focus of research activity conducted at the Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies at the Wolfson Faculty of Chemical Engineering. The present research repurposes this technology for agricultural use; and is being pursued by laboratory director Prof. Avi Schroeder and graduate student Avishai Karny.

“The constant growth in the world population demands more efficient agricultural technologies, which will produce greater supplies of healthier foods and reduce environmental damage,” said Prof. Schroeder. “The present work provides a new means of delivering essential nutrients without harming the environment.”

The researchers loaded the nutrients into liposomes which are small spheres generated in the laboratory, comprised of a fatty outer layer enveloping the required nutrients. The particles are stable in the plant’s aqueous environment and can penetrate the cells. In addition, the Technion researchers can ‘program’ them to disintegrate and release the load at precisely the location and time of interest, namely, in the roots and leaves. Disintegration occurs in acidic environments or in response to an external signal, such as light waves or heat. The molecules comprising the particles are derived from soy plants and are therefore approved and safe for consumption by both humans and animals.

In the present experiment, the researchers used 100-nanometer liposomes to deliver the nutrients iron and magnesium into both young and adult tomato crops. They demonstrated that the liposomes, which were sprayed in the form of a solution onto the leaves, penetrated the leaves and reached other leaves and roots. Only when reaching the root cells did they disintegrate and release the nutrients. As said, the technology greatly increased the nutrient penetration rate.

In addition to demonstrating the effectivity of this approach as compared to the standard spray method, the researchers also assessed the regulatory limitations associated with the spread of volatile particles.

”Our engineered liposomes are only stable within a short spraying range of up to 2 meters,” explained Prof. Schroeder. “If they travel in the air beyond that distance, they break down into safe materials (phospholipids). We hope that the success of this study will expand the research and development of similar agricultural products, to increase the yield and quality of food crops.”

This is an illustration of the work,

Each liposome (light blue bubble) was loaded with iron and magnesium particles. The liposomes sprayed on the leaves, penetrated and then spread throughout the various parts of the plant and released their load within the cells. Courtesy: Technion

Here’s a link to and a citation for the paper,

Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops by Avishai Karny, Assaf Zinger, Ashima Kajal, Janna Shainsky-Roitman, & Avi Schroeder. Scientific Reportsvolume 8, Article number: 7589 (2018) DOI: https://doi.org/10.1038/s41598-018-25197-y Published 17 May 2018

This paper is open access.