Category Archives: ethics

Xenotransplantation—organs for transplantation in human patients—it’s a business and a science

The last time (June 18, 2018 post) I mentioned xenotransplantation (transplanting organs from one species into another species; see more here), it was in the context of an art/sci (or sciart) event coming to Vancouver (Canada).,

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

(The show opens on Sept. 14, 2018.)

At the time, I had yet to stumble across Ingfei Chen’s thoughtful dive into the topic in her May 9, 2018 article for Slate.com,

In the United States, the clock is ticking for more than 114,700 adults and children waiting for a donated kidney or other lifesaving organ, and each day, nearly 20 of them die. Researchers are devising a new way to grow human organs inside other animals, but the method raises potentially thorny ethical issues. Other conceivable futuristic techniques sound like dystopian science fiction. As we envision an era of regenerative medicine decades from now, how far is society willing to go to solve the organ shortage crisis?

I found myself pondering this question after a discussion about the promises of stem cell technologies veered from the intriguing into the bizarre. I was interviewing bioengineer Zev Gartner, co-director and research coordinator of the Center for Cellular Construction at the University of California, San Francisco, about so-called organoids, tiny clumps of organlike tissue that can self-assemble from human stem cells in a Petri dish. These tissue bits are lending new insights into how our organs form and diseases take root. Some researchers even hope they can nurture organoids into full-size human kidneys, pancreases, and other organs for transplantation.

Certain organoid experiments have recently set off alarm bells, but when I asked Gartner about it, his radar for moral concerns was focused elsewhere. For him, the “really, really thought-provoking” scenarios involve other emerging stem cell–based techniques for engineering replacement organs for people, he told me. “Like blastocyst complementation,” he said.

Never heard of it? Neither had I. Turns out it’s a powerful new genetic engineering trick that researchers hope to use for growing human organs inside pigs or sheep—organs that could be genetically personalized for transplant patients, in theory avoiding immune-system rejection problems. The science still has many years to go, but if it pans out, it could be one solution to the organ shortage crisis. However, the prospect of creating hybrid animals with human parts and killing them to harvest organs has already raised a slew of ethical questions. In 2015, the National Institutes of Health placed a moratorium on federal funding of this nascent research area while it evaluated and discussed the issues.

As Gartner sees it, the debate over blastocyst complementation research—work that he finds promising—is just one of many conversations that society needs to have about the ethical and social costs and benefits of future technologies for making lifesaving transplant organs. “There’s all these weird ways that we could go about doing this,” he said, with a spectrum of imaginable approaches that includes organoids, interspecies organ farming, and building organs from scratch using 3D bioprinters. But even if it turns out we can produce human organs in these novel ways, the bigger issue, in each technological instance, may be whether we should.

Gartner crystallized things with a downright creepy example: “We know that the best bioreactor for tissues and organs for humans are human beings,” he said. Hypothetically, “the best way to get you a new heart would be to clone you, grow up a copy of yourself, and take the heart out.” [emphasis mine] Scientists could probably produce a cloned person with the technologies we already have, if money and ethics were of no concern. “But we don’t want to go there, right?” he added in the next breath. “The ethics involved in doing it are not compatible with who we want to be as a society.”

This sounds like Gartner may have been reading some science fiction, specifically, Lois McMaster Bujold and her Barrayar series where she often explored the ethics and possibilities of bioengineering. At this point, some of her work seems eerily prescient.

As for Chen’s article, I strongly encourage you to read it in its entirety if you have the time.

Medicine, healing, and big money

At about the same time, there was a May 31, 2018 news item on phys.org offering a perspective from some of the leaders in the science and the business (Note: Links have been removed),

Over the past few years, researchers led by George Church have made important strides toward engineering the genomes of pigs to make their cells compatible with the human body. So many think that it’s possible that, with the help of CRISPR technology, a healthy heart for a patient in desperate need might one day come from a pig.

“It’s relatively feasible to change one gene in a pig, but to change many dozens—which is quite clear is the minimum here—benefits from CRISPR,” an acronym for clustered regularly interspaced short palindromic repeats, said Church, the Robert Winthrop Professor of Genetics at Harvard Medical School (HMS) and a core faculty member of Harvard’s Wyss Institute for Biologically Inspired Engineering. Xenotransplantation is “one of few” big challenges (along with gene drives and de-extinction, he said) “that really requires the ‘oomph’ of CRISPR.”

To facilitate the development of safe and effective cells, tissues, and organs for future medical transplantation into human patients, Harvard’s Office of Technology Development has granted a technology license to the Cambridge biotech startup eGenesis.

Co-founded by Church and former HMS doctoral student Luhan Yang in 2015, eGenesis announced last year that it had raised $38 million to advance its research and development work. At least eight former members of the Church lab—interns, doctoral students, postdocs, and visiting researchers—have continued their scientific careers as employees there.

“The Church Lab is well known for its relentless pursuit of scientific achievements so ambitious they seem improbable—and, indeed, [for] its track record of success,” said Isaac Kohlberg, Harvard’s chief technology development officer and senior associate provost. “George deserves recognition too for his ability to inspire passion and cultivate a strong entrepreneurial drive among his talented research team.”

The license from Harvard OTD covers a powerful set of genome-engineering technologies developed at HMS and the Wyss Institute, including access to foundational intellectual property relating to the Church Lab’s 2012 breakthrough use of CRISPR, led by Yang and Prashant Mali, to edit the genome of human cells. Subsequent innovations that enabled efficient and accurate editing of numerous genes simultaneously are also included. The license is exclusive to eGenesis but limited to the field of xenotransplantation.

A May 30, 2018 Harvard University news release by Caroline Petty, which originated the news item, explores some of the issues associated with incubating humans organs in other species,

The prospect of using living, nonhuman organs, and concerns over the infectiousness of pathogens either present in the tissues or possibly formed in combination with human genetic material, have prompted the Food and Drug Administration to issue detailed guidance on xenotransplantation research and development since the mid-1990s. In pigs, a primary concern has been that porcine endogenous retroviruses (PERVs), strands of potentially pathogenic DNA in the animals’ genomes, might infect human patients and eventually cause disease. [emphases mine]

That’s where the Church lab’s CRISPR expertise has enabled significant advances. In 2015, the lab published important results in the journal Science, successfully demonstrating the use of genome engineering to eliminate all 62 PERVs in porcine cells. Science later called it “the most widespread CRISPR editing feat to date.”

In 2017, with collaborators at Harvard, other universities, and eGenesis, Church and Yang went further. Publishing again in Science, they first confirmed earlier researchers’ fears: Porcine cells can, in fact, transmit PERVs into human cells, and those human cells can pass them on to other, unexposed human cells. (It is still unknown under what circumstances those PERVs might cause disease.) In the same paper, they corrected the problem, announcing the embryogenesis and birth of 37 PERV-free pigs. [Note: My July 17, 2018 post features research which suggests CRISPR-Cas9 gene editing may cause greater genetic damage than had been thought.]

“Taken together, those innovations were stunning,” said Vivian Berlin, director of business development in OTD, who manages the commercialization strategy for much of Harvard’s intellectual property in the life sciences. “That was the foundation they needed, to convince both the scientific community and the investment community that xenotransplantation might become a reality.”

“After hundreds of tests, this was a critical milestone for eGenesis — and the entire field — and represented a key step toward safe organ transplantation from pigs,” said Julie Sunderland, interim CEO of eGenesis. “Building on this study, we hope to continue to advance the science and potential of making xenotransplantation a safe and routine medical procedure.”

Genetic engineering may undercut human diseases, but also could help restore extinct species, researcher says. [Shades of the Jurassic Park movies!]

It’s not, however, the end of the story: An immunological challenge remains, which eGenesis will need to address. The potential for a patient’s body to outright reject transplanted tissue has stymied many previous attempts at xenotransplantation. Church said numerous genetic changes must be achieved to make porcine organs fully compatible with human patients. Among these are edits to several immune functions, coagulation functions, complements, and sugars, as well as the PERVs.

“Trying the straight transplant failed almost immediately, within hours, because there’s a huge mismatch in the carbohydrates on the surface of the cells, in particular alpha-1-3-galactose, and so that was a showstopper,” Church explained. “When you delete that gene, which you can do with conventional methods, you still get pretty fast rejection, because there are a lot of other aspects that are incompatible. You have to take care of each of them, and not all of them are just about removing things — some of them you have to humanize. There’s a great deal of subtlety involved so that you get normal pig embryogenesis but not rejection.

“Putting it all together into one package is challenging,” he concluded.

In short, it’s the next big challenge for CRISPR.

Not unexpectedly, there is no mention of the CRISPR patent fight between Harvard/MIT’s (Massachusetts Institute of Technology) Broad Institute and the University of California at Berkeley (UC Berkeley). My March 15, 2017 posting featured an outcome where the Broad Institute won the first round of the fight. As I recall, it was a decision based on the principles associated with King Solomon, i.e., the US Patent Office, divided the baby and UCBerkeley got the less important part of the baby. As you might expect the decision has been appealed. In an April 30, 2018 piece, Scientific American reprinted an article about the latest round in the fight written by Sharon Begley for STAT (Note: Links have been removed),

All You Need to Know for Round 2 of the CRISPR Patent Fight

It’s baaaaack, that reputation-shredding, stock-moving fight to the death over key CRISPR patents. On Monday morning in Washington, D.C., the U.S. Court of Appeals for the Federal Circuit will hear oral arguments in University of California v. Broad Institute. Questions?

How did we get here? The patent office ruled in February 2017 that the Broad’s 2014 CRISPR patent on using CRISPR-Cas9 to edit genomes, based on discoveries by Feng Zhang, did not “interfere” with a patent application by UC based on the work of UC Berkeley’s Jennifer Doudna. In plain English, that meant the Broad’s patent, on using CRISPR-Cas9 to edit genomes in eukaryotic cells (all animals and plants, but not bacteria), was different from UC’s, which described Doudna’s experiments using CRISPR-Cas9 to edit DNA in a test tube—and it was therefore valid. The Patent Trial and Appeal Board concluded that when Zhang got CRISPR-Cas9 to work in human and mouse cells in 2012, it was not an obvious extension of Doudna’s earlier research, and that he had no “reasonable expectation of success.” UC appealed, and here we are.

For anyone who may not realize what the stakes are for these institutions, Linda Williams in a March 16, 1999 article for the LA Times had this to say about universities, patents, and money,

The University of Florida made about $2 million last year in royalties on a patent for Gatorade Thirst Quencher, a sports drink that generates some $500 million to $600 million a year in revenue for Quaker Oats Co.

The payments place the university among the top five in the nation in income from patent royalties.

Oh, but if some people on the Gainesville, Fla., campus could just turn back the clock. “If we had done Gatorade right, we would be getting $5 or $6 million (a year),” laments Donald Price, director of the university’s office of corporate programs. “It is a classic example of how not to handle a patent idea,” he added.

Gatorade was developed in 1965 when many universities were ill equipped to judge the commercial potential of ideas emerging from their research labs. Officials blew the university’s chance to control the Gatorade royalties when they declined to develop a professor’s idea.

The Gatorade story does not stop there and, even though it’s almost 20 years old, this article stands the test of time. I strongly encourage you to read it if the business end of patents and academia interest you or if you would like to develop more insight into the Broad Institute/UC Berkeley situation.

Getting back to the science, there is that pesky matter of diseases crossing over from one species to another. While, Harvard and eGenesis claim a victory in this area, it seems more work needs to be done.

Infections from pigs

An August 29, 2018 University of Alabama at Birmingham news release (also on EurekAlert) by Jeff Hansen, describes the latest chapter in the quest to provide more organs for transplantion,

A shortage of organs for transplantation — including kidneys and hearts — means that many patients die while still on waiting lists. So, research at the University of Alabama at Birmingham and other sites has turned to pig organs as an alternative. [emphasis mine]

Using gene-editing, researchers have modified such organs to prevent rejection, and research with primates shows the modified pig organs are well-tolerated.

An added step is needed to ensure the safety of these inter-species transplants — sensitive, quantitative assays for viruses and other infectious microorganisms in donor pigs that potentially could gain access to humans during transplantation.

The U.S. Food and Drug Administration requires such testing, prior to implantation, of tissues used for xenotransplantation from animals to humans. It is possible — though very unlikely — that an infectious agent in transplanted tissues could become an emerging infectious disease in humans.

In a paper published in Xenotransplantation, Mark Prichard, Ph.D., and colleagues at UAB have described the development and testing of 30 quantitative assays for pig infectious agents. These assays had sensitivities similar to clinical lab assays for viral loads in human patients. After validation, the UAB team also used the assays on nine sows and 22 piglets delivered from the sows through caesarian section.

“Going forward, ensuring the safety of these organs is of paramount importance,” Prichard said. “The use of highly sensitive techniques to detect potential pathogens will help to minimize adverse events in xenotransplantation.”

“The assays hold promise as part of the screening program to identify suitable donor animals, validate and release transplantable organs for research purposes, and monitor transplant recipients,” said Prichard, a professor in the UAB Department of Pediatrics and director of the Department of Pediatrics Molecular Diagnostics Laboratory.

The UAB researchers developed quantitative polymerase chain reaction, or qPCR, assays for 28 viruses sometimes found in pigs and two groups of mycoplasmas. They established reproducibility, sensitivity, specificity and lower limit of detection for each assay. All but three showed features of good quantitative assays, and the lower limit of detection values ranged between one and 16 copies of the viral or bacterial genetic material.

Also, the pig virus assays did not give false positives for some closely related human viruses.

As a start to understanding the infectious disease load in normal healthy animals and ensuring the safety of pig tissues used in xenotransplantation research, the researchers then screened blood, nasal swab and stool specimens from nine adult sows and 22 of their piglets delivered by caesarian section.

Mycoplasma species and two distinct herpesviruses were the most commonly detected microorganisms. Yet 14 piglets that were delivered from three sows infected with either or both herpesviruses were not infected with the herpesviruses, showing that transmission of these viruses from sow to the caesarian-delivery piglet was inefficient.

Prichard says the assays promise to enhance the safety of pig tissues for xenotransplantation, and they will also aid evaluation of human specimens after xenotransplantation.

The UAB researchers say they subsequently have evaluated more than 300 additional specimens, and that resulted in the detection of most of the targets. “The detection of these targets in pig specimens provides reassurance that the analytical methods are functioning as designed,” said Prichard, “and there is no a priori reason some targets might be more difficult to detect than others with the methods described here.”

As is my custom, here’s a link to and a citation for the paper,

Xenotransplantation panel for the detection of infectious agents in pigs by Caroll B. Hartline, Ra’Shun L. Conner, Scott H. James, Jennifer Potter, Edward Gray, Jose Estrada, Mathew Tector, A. Joseph Tector, Mark N. Prichard. Xenotransplantaion Volume 25, Issue 4 July/August 2018 e12427 DOI: https://doi.org/10.1111/xen.12427 First published: 18 August 2018

This paper is open access.

All this leads to questions about chimeras. If a pig is incubating organs with human cells it’s a chimera but then means the human receiving the organ becomes a chimera too. (For an example, see my Dec. 22, 2013 posting where there’s mention of a woman who received a trachea from a pig. Scroll down about 30% of the way.)

What is it to be human?

A question much beloved of philosophers and others, the question seems particularly timely with xenotransplantion and other developments such neuroprosthetics (cyborgs) and neuromorphic computing (brainlike computing).

As I’ve noted before, although not recently, popular culture offers a discourse on these issues. Take a look at the superhero movies and the way in which enhanced humans and aliens are presented. For example, X-Men comics and movies present mutants (humans with enhanced abilities) as despised and rejected. Video games (not really my thing but there is the Deus Ex series which has as its hero, a cyborg also offer insight into these issues.

Other than popular culture and in the ‘bleeding edge’ arts community, I can’t recall any public discussion on these matters arising from the extraordinary set of technologies which are being deployed or prepared for deployment in the foreseeable future.

(If you’re in Vancouver (Canada) from September 14 – December 15, 2018, you may want to check out Piccinini’s work. Also, there’s ” NCSU [North Carolina State University] Libraries, NC State’s Genetic Engineering and Society (GES) Center, and the Gregg Museum of Art & Design have issued a public call for art for the upcoming exhibition Art’s Work in the Age of Biotechnology: Shaping our Genetic Futures.” from my Sept. 6, 2018 posting. Deadline: Oct. 1, 2018.)

At a guess, there will be pushback from people who have no interest in debating what it is to be human as they already know, and will find these developments, when they learn about them, to be horrifying and unnatural.

A potpourri of robot/AI stories: killers , kindergarten teachers, a Balenciaga-inspired AI fashion designer, a conversational android, and more

Following on my August 29, 2018 post (Sexbots, sexbot ethics, families, and marriage), I’m following up with a more general piece.

Robots, AI (artificial intelligence), and androids (humanoid robots), the terms can be confusing since there’s a tendency to use them interchangeably. Confession: I do it too, but, not this time. That said, I have multiple news bits.

Killer ‘bots and ethics

The U.S. military is already testing a Modular Advanced Armed Robotic System. Credit: Lance Cpl. Julien Rodarte, U.S. Marine Corps

That is a robot.

For the purposes of this posting, a robot is a piece of hardware which may or may not include an AI system and does not mimic a human or other biological organism such that you might, under circumstances, mistake the robot for a biological organism.

As for what precipitated this feature (in part), it seems there’s been a United Nations meeting in Geneva, Switzerland held from August 27 – 31, 2018 about war and the use of autonomous robots, i.e., robots equipped with AI systems and designed for independent action. BTW, it’s the not first meeting the UN has held on this topic.

Bonnie Docherty, lecturer on law and associate director of armed conflict and civilian protection, international human rights clinic, Harvard Law School, has written an August 21, 2018 essay on The Conversation (also on phys.org) describing the history and the current rules around the conduct of war, as well as, outlining the issues with the military use of autonomous robots (Note: Links have been removed),

When drafting a treaty on the laws of war at the end of the 19th century, diplomats could not foresee the future of weapons development. But they did adopt a legal and moral standard for judging new technology not covered by existing treaty language.

This standard, known as the Martens Clause, has survived generations of international humanitarian law and gained renewed relevance in a world where autonomous weapons are on the brink of making their own determinations about whom to shoot and when. The Martens Clause calls on countries not to use weapons that depart “from the principles of humanity and from the dictates of public conscience.”

I was the lead author of a new report by Human Rights Watch and the Harvard Law School International Human Rights Clinic that explains why fully autonomous weapons would run counter to the principles of humanity and the dictates of public conscience. We found that to comply with the Martens Clause, countries should adopt a treaty banning the development, production and use of these weapons.

Representatives of more than 70 nations will gather from August 27 to 31 [2018] at the United Nations in Geneva to debate how to address the problems with what they call lethal autonomous weapon systems. These countries, which are parties to the Convention on Conventional Weapons, have discussed the issue for five years. My co-authors and I believe it is time they took action and agreed to start negotiating a ban next year.

Docherty elaborates on her points (Note: A link has been removed),

The Martens Clause provides a baseline of protection for civilians and soldiers in the absence of specific treaty law. The clause also sets out a standard for evaluating new situations and technologies that were not previously envisioned.

Fully autonomous weapons, sometimes called “killer robots,” would select and engage targets without meaningful human control. They would be a dangerous step beyond current armed drones because there would be no human in the loop to determine when to fire and at what target. Although fully autonomous weapons do not yet exist, China, Israel, Russia, South Korea, the United Kingdom and the United States are all working to develop them. They argue that the technology would process information faster and keep soldiers off the battlefield.

The possibility that fully autonomous weapons could soon become a reality makes it imperative for those and other countries to apply the Martens Clause and assess whether the technology would offend basic humanity and the public conscience. Our analysis finds that fully autonomous weapons would fail the test on both counts.

I encourage you to read the essay in its entirety and for anyone who thinks the discussion about ethics and killer ‘bots is new or limited to military use, there’s my July 25, 2016 posting about police use of a robot in Dallas, Texas. (I imagine the discussion predates 2016 but that’s the earliest instance I have here.)

Teacher bots

Robots come in many forms and this one is on the humanoid end of the spectum,

Children watch a Keeko robot at the Yiswind Institute of Multicultural Education in Beijing, where the intelligent machines are telling stories and challenging kids with logic problems  [donwloaded from https://phys.org/news/2018-08-robot-teachers-invade-chinese-kindergartens.html]

Don’t those ‘eyes’ look almost heart-shaped? No wonder the kids love these robots, if an August  29, 2018 news item on phys.org can be believed,

The Chinese kindergarten children giggled as they worked to solve puzzles assigned by their new teaching assistant: a roundish, short educator with a screen for a face.

Just under 60 centimetres (two feet) high, the autonomous robot named Keeko has been a hit in several kindergartens, telling stories and challenging children with logic problems.

Round and white with a tubby body, the armless robot zips around on tiny wheels, its inbuilt cameras doubling up both as navigational sensors and a front-facing camera allowing users to record video journals.

In China, robots are being developed to deliver groceries, provide companionship to the elderly, dispense legal advice and now, as Keeko’s creators hope, join the ranks of educators.

At the Yiswind Institute of Multicultural Education on the outskirts of Beijing, the children have been tasked to help a prince find his way through a desert—by putting together square mats that represent a path taken by the robot—part storytelling and part problem-solving.

Each time they get an answer right, the device reacts with delight, its face flashing heart-shaped eyes.

“Education today is no longer a one-way street, where the teacher teaches and students just learn,” said Candy Xiong, a teacher trained in early childhood education who now works with Keeko Robot Xiamen Technology as a trainer.

“When children see Keeko with its round head and body, it looks adorable and children love it. So when they see Keeko, they almost instantly take to it,” she added.

Keeko robots have entered more than 600 kindergartens across the country with its makers hoping to expand into Greater China and Southeast Asia.

Beijing has invested money and manpower in developing artificial intelligence as part of its “Made in China 2025” plan, with a Chinese firm last year unveiling the country’s first human-like robot that can hold simple conversations and make facial expressions.

According to the International Federation of Robots, China has the world’s top industrial robot stock, with some 340,000 units in factories across the country engaged in manufacturing and the automotive industry.

Moving on from hardware/software to a software only story.

AI fashion designer better than Balenciaga?

Despite the title for Katharine Schwab’s August 22, 2018 article for Fast Company, I don’t think this AI designer is better than Balenciaga but from the pictures I’ve seen the designs are as good and it does present some intriguing possibilities courtesy of its neural network (Note: Links have been removed),

The AI, created by researcher Robbie Barat, has created an entire collection based on Balenciaga’s previous styles. There’s a fabulous pink and red gradient jumpsuit that wraps all the way around the model’s feet–like a onesie for fashionistas–paired with a dark slouchy coat. There’s a textural color-blocked dress, paired with aqua-green tights. And for menswear, there’s a multi-colored, shimmery button-up with skinny jeans and mismatched shoes. None of these looks would be out of place on the runway.

To create the styles, Barat collected images of Balenciaga’s designs via the designer’s lookbooks, ad campaigns, runway shows, and online catalog over the last two months, and then used them to train the pix2pix neural net. While some of the images closely resemble humans wearing fashionable clothes, many others are a bit off–some models are missing distinct limbs, and don’t get me started on how creepy [emphasis mine] their faces are. Even if the outfits aren’t quite ready to be fabricated, Barat thinks that designers could potentially use a tool like this to find inspiration. Because it’s not constrained by human taste, style, and history, the AI comes up with designs that may never occur to a person. “I love how the network doesn’t really understand or care about symmetry,” Barat writes on Twitter.

You can see the ‘creepy’ faces and some of the designs here,

Image: Robbie Barat

In contrast to the previous two stories, this all about algorithms, no machinery with independent movement (robot hardware) needed.

Conversational android: Erica

Hiroshi Ishiguro and his lifelike (definitely humanoid) robots have featured here many, many times before. The most recent posting is a March 27, 2017 posting about his and his android’s participation at the 2017 SXSW festival.

His latest work is featured in an August 21, 2018 news news item on ScienceDaily,

We’ve all tried talking with devices, and in some cases they talk back. But, it’s a far cry from having a conversation with a real person.

Now a research team from Kyoto University, Osaka University, and the Advanced Telecommunications Research Institute, or ATR, have significantly upgraded the interaction system for conversational android ERICA, giving her even greater dialog skills.

ERICA is an android created by Hiroshi Ishiguro of Osaka University and ATR, specifically designed for natural conversation through incorporation of human-like facial expressions and gestures. The research team demonstrated the updates during a symposium at the National Museum of Emerging Science in Tokyo.

Here’s the latest conversational android, Erica

Caption: The experimental set up when the subject (left) talks with ERICA (right) Credit: Kyoto University / Kawahara lab

An August 20, 2018 Kyoto University press release on EurekAlert, which originated the news item, offers more details,

When we talk to one another, it’s never a simple back and forward progression of information,” states Tatsuya Kawahara of Kyoto University’s Graduate School of Informatics, and an expert in speech and audio processing.

“Listening is active. We express agreement by nodding or saying ‘uh-huh’ to maintain the momentum of conversation. This is called ‘backchanneling’, and is something we wanted to implement with ERICA.”

The team also focused on developing a system for ‘attentive listening’. This is when a listener asks elaborating questions, or repeats the last word of the speaker’s sentence, allowing for more engaging dialogue.

Deploying a series of distance sensors, facial recognition cameras, and microphone arrays, the team began collecting data on parameters necessary for a fluid dialog between ERICA and a human subject.

“We looked at three qualities when studying backchanneling,” continues Kawahara. “These were: timing — when a response happens; lexical form — what is being said; and prosody, or how the response happens.”

Responses were generated through machine learning using a counseling dialogue corpus, resulting in dramatically improved dialog engagement. Testing in five-minute sessions with a human subject, ERICA demonstrated significantly more dynamic speaking skill, including the use of backchanneling, partial repeats, and statement assessments.

“Making a human-like conversational robot is a major challenge,” states Kawahara. “This project reveals how much complexity there is in listening, which we might consider mundane. We are getting closer to a day where a robot can pass a Total Turing Test.”

Erica seems to have been first introduced publicly in Spring 2017, from an April 2017 Erica: Man Made webpage on The Guardian website,

Erica is 23. She has a beautiful, neutral face and speaks with a synthesised voice. She has a degree of autonomy – but can’t move her hands yet. Hiroshi Ishiguro is her ‘father’ and the bad boy of Japanese robotics. Together they will redefine what it means to be human and reveal that the future is closer than we might think.

Hiroshi Ishiguro and his colleague Dylan Glas are interested in what makes a human. Erica is their latest creation – a semi-autonomous android, the product of the most funded scientific project in Japan. But these men regard themselves as artists more than scientists, and the Erica project – the result of a collaboration between Osaka and Kyoto universities and the Advanced Telecommunications Research Institute International – is a philosophical one as much as technological one.

Erica is interviewed about her hope and dreams – to be able to leave her room and to be able to move her arms and legs. She likes to chat with visitors and has one of the most advanced speech synthesis systems yet developed. Can she be regarded as being alive or as a comparable being to ourselves? Will she help us to understand ourselves and our interactions as humans better?

Erica and her creators are interviewed in the science fiction atmosphere of Ishiguro’s laboratory, and this film asks how we might form close relationships with robots in the future. Ishiguro thinks that for Japanese people especially, everything has a soul, whether human or not. If we don’t understand how human hearts, minds and personalities work, can we truly claim that humans have authenticity that machines don’t?

Ishiguro and Glas want to release Erica and her fellow robots into human society. Soon, Erica may be an essential part of our everyday life, as one of the new children of humanity.

Key credits

  • Director/Editor: Ilinca Calugareanu
  • Producer: Mara Adina
  • Executive producers for the Guardian: Charlie Phillips and Laurence Topham
  • This video is produced in collaboration with the Sundance Institute Short Documentary Fund supported by the John D and Catherine T MacArthur Foundation

You can also view the 14 min. film here.

Artworks generated by an AI system are to be sold at Christie’s auction house

KC Ifeanyi’s August 22, 2018 article for Fast Company may send a chill down some artists’ spines,

For the first time in its 252-year history, Christie’s will auction artwork generated by artificial intelligence.

Created by the French art collective Obvious, “Portrait of Edmond de Belamy” is part of a series of paintings of the fictional Belamy family that was created using a two-part algorithm. …

The portrait is estimated to sell anywhere between $7,000-$10,000, and Obvious says the proceeds will go toward furthering its algorithm.

… Famed collector Nicolas Laugero-Lasserre bought one of Obvious’s Belamy works in February, which could’ve been written off as a novel purchase where the story behind it is worth more than the piece itself. However, with validation from a storied auction house like Christie’s, AI art could shake the contemporary art scene.

“Edmond de Belamy” goes up for auction from October 23-25 [2018].

Jobs safe from automation? Are there any?

Michael Grothaus expresses more optimism about future job markets than I’m feeling in an August 30, 2018 article for Fast Company,

A 2017 McKinsey Global Institute study of 800 occupations across 46 countries found that by 2030, 800 million people will lose their jobs to automation. That’s one-fifth of the global workforce. A further one-third of the global workforce will need to retrain if they want to keep their current jobs as well. And looking at the effects of automation on American jobs alone, researchers from Oxford University found that “47 percent of U.S. workers have a high probability of seeing their jobs automated over the next 20 years.”

The good news is that while the above stats are rightly cause for concern, they also reveal that 53% of American jobs and four-fifths of global jobs are unlikely to be affected by advances in artificial intelligence and robotics. But just what are those fields? I spoke to three experts in artificial intelligence, robotics, and human productivity to get their automation-proof career advice.

Creatives

“Although I believe every single job can, and will, benefit from a level of AI or robotic influence, there are some roles that, in my view, will never be replaced by technology,” says Tom Pickersgill, …

Maintenance foreman

When running a production line, problems and bottlenecks are inevitable–and usually that’s a bad thing. But in this case, those unavoidable issues will save human jobs because their solutions will require human ingenuity, says Mark Williams, head of product at People First, …

Hairdressers

Mat Hunter, director of the Central Research Laboratory, a tech-focused co-working space and accelerator for tech startups, have seen startups trying to create all kinds of new technologies, which has given him insight into just what machines can and can’t pull off. It’s lead him to believe that jobs like the humble hairdresser are safer from automation than those of, says, accountancy.

Therapists and social workers

Another automation-proof career is likely to be one involved in helping people heal the mind, says Pickersgill. “People visit therapists because there is a need for emotional support and guidance. This can only be provided through real human interaction–by someone who can empathize and understand, and who can offer advice based on shared experiences, rather than just data-driven logic.”

Teachers

Teachers are so often the unsung heroes of our society. They are overworked and underpaid–yet charged with one of the most important tasks anyone can have: nurturing the growth of young people. The good news for teachers is that their jobs won’t be going anywhere.

Healthcare workers

Doctors and nurses will also likely never see their jobs taken by automation, says Williams. While automation will no doubt better enhance the treatments provided by doctors and nurses the fact of the matter is that robots aren’t going to outdo healthcare workers’ ability to connect with patients and make them feel understood the way a human can.

Caretakers

While humans might be fine with robots flipping their burgers and artificial intelligence managing their finances, being comfortable with a robot nannying your children or looking after your elderly mother is a much bigger ask. And that’s to say nothing of the fact that even today’s most advanced robots don’t have the physical dexterity to perform the movements and actions carers do every day.

Grothaus does offer a proviso in his conclusion: certain types of jobs are relatively safe until developers learn to replicate qualities such as empathy in robots/AI.

It’s very confusing

There’s so much news about robots, artificial intelligence, androids, and cyborgs that it’s hard to keep up with it let alone attempt to get a feeling for where all this might be headed. When you add the fact that the term robots/artificial inteligence are often used interchangeably and that the distinction between robots/androids/cyborgs is not always clear any attempts to peer into the future become even more challenging.

At this point I content myself with tracking the situation and finding definitions so I can better understand what I’m tracking. Carmen Wong’s August 23, 2018 posting on the Signals blog published by Canada’s Centre for Commercialization of Regenerative Medicine (CCRM) offers some useful definitions in the context of an article about the use of artificial intelligence in the life sciences, particularly in Canada (Note: Links have been removed),

Artificial intelligence (AI). Machine learning. To most people, these are just buzzwords and synonymous. Whether or not we fully understand what both are, they are slowly integrating into our everyday lives. Virtual assistants such as Siri? AI is at work. The personalized ads you see when you are browsing on the web or movie recommendations provided on Netflix? Thank AI for that too.

AI is defined as machines having intelligence that imitates human behaviour such as learning, planning and problem solving. A process used to achieve AI is called machine learning, where a computer uses lots of data to “train” or “teach” itself, without human intervention, to accomplish a pre-determined task. Essentially, the computer keeps on modifying its algorithm based on the information provided to get to the desired goal.

Another term you may have heard of is deep learning. Deep learning is a particular type of machine learning where algorithms are set up like the structure and function of human brains. It is similar to a network of brain cells interconnecting with each other.

Toronto has seen its fair share of media-worthy AI activity. The Government of Canada, Government of Ontario, industry and multiple universities came together in March 2018 to launch the Vector Institute, with the goal of using AI to promote economic growth and improve the lives of Canadians. In May, Samsung opened its AI Centre in the MaRS Discovery District, joining a network of Samsung centres located in California, United Kingdom and Russia.

There has been a boom in AI companies over the past few years, which span a variety of industries. This year’s ranking of the top 100 most promising private AI companies covers 25 fields with cybersecurity, enterprise and robotics being the hot focus areas.

Wong goes on to explore AI deployment in the life sciences and concludes that human scientists and doctors will still be needed although she does note this in closing (Note: A link has been removed),

More importantly, empathy and support from a fellow human being could never be fully replaced by a machine (could it?), but maybe this will change in the future. We will just have to wait and see.

Artificial empathy is the term used in Lisa Morgan’s April 25, 2018 article for Information Week which unfortunately does not include any links to actual projects or researchers working on artificial empathy. Instead, the article is focused on how business interests and marketers would like to see it employed. FWIW, I have found a few references: (1) Artificial empathy Wikipedia essay (look for the references at the end of the essay for more) and (2) this open access article: Towards Artificial Empathy; How Can Artificial Empathy Follow the Developmental Pathway of Natural Empathy? by Minoru Asada.

Please let me know in the comments if you should have an insights on the matter in the comments section of this blog.

Sexbots, sexbot ethics, families, and marriage

Setting the stage

Can we? Should we? Is this really a good idea? I believe those ships have sailed where sexbots are concerned since the issue is no longer whether we can or should but rather what to do now that we have them. My Oct. 17, 2017 posting: ‘Robots in Vancouver and in Canada (one of two)’ features Harmony, the first (I believe) commercial AI (artificial intelligence)-enhanced sex robot n the US. They were getting ready to start shipping the bot either for Christmas 2017 or in early 2018.

Ethical quandaries?

Things have moved a little more quickly that I would have expected had I thought ahead. An April 5, 2018 essay  (h/t phys.org) by Victoria Brooks, lecturer in law at the University of Westminster (UK) for The Conversation lays out some of ethical issues (Note: Links have been removed),

Late in 2017 at a tech fair in Austria, a sex robot was reportedly “molested” repeatedly and left in a “filthy” state. The robot, named Samantha, received a barrage of male attention, which resulted in her sustaining two broken fingers. This incident confirms worries that the possibility of fully functioning sex robots raises both tantalising possibilities for human desire (by mirroring human/sex-worker relationships), as well as serious ethical questions.

So what should be done? The campaign to “ban” sex robots, as the computer scientist Kate Devlin has argued, is only likely to lead to a lack of discussion. Instead, she hypothesises that many ways of sexual and social inclusivity could be explored as a result of human-robot relationships.

To be sure, there are certain elements of relationships between humans and sex workers that we may not wish to repeat. But to me, it is the ethical aspects of the way we think about human-robot desire that are particularly key.

Why? Because we do not even agree yet on what sex is. Sex can mean lots of different things for different bodies – and the types of joys and sufferings associated with it are radically different for each individual body. We are only just beginning to understand and know these stories. But with Europe’s first sex robot brothel open in Barcelona and the building of “Harmony”, a talking sex robot in California, it is clear that humans are already contemplating imposing our barely understood sexual ethic upon machines.

I think that most of us will experience some discomfort on hearing Samantha’s story. And it’s important that, just because she’s a machine, we do not let ourselves “off the hook” by making her yet another victim and heroine who survived an encounter, only for it to be repeated. Yes, she is a machine, but does this mean it is justifiable to act destructively towards her? Surely the fact that she is in a human form makes her a surface on which human sexuality is projected, and symbolic of a futuristic human sexuality. If this is the case, then Samatha’s [sic] case is especially sad.

It is Devlin who has asked the crucial question: whether sex robots will have rights. “Should we build in the idea of consent,” she asks? In legal terms, this would mean having to recognise the robot as human – such is the limitation of a law made by and for humans.

Suffering is a way of knowing that you, as a body, have come out on the “wrong” side of an ethical dilemma. [emphasis mine] This idea of an “embodied” ethic understood through suffering has been developed on the basis of the work of the famous philosopher Spinoza and is of particular use for legal thinkers. It is useful as it allows us to judge rightness by virtue of the real and personal experience of the body itself, rather than judging by virtue of what we “think” is right in connection with what we assume to be true about their identity.

This helps us with Samantha’s case, since it tells us that in accordance with human desire, it is clear she would not have wanted what she got. The contact Samantha received was distinctly human in the sense that this case mirrors some of the most violent sexual offences cases. While human concepts such as “law” and “ethics” are flawed, we know we don’t want to make others suffer. We are making these robot lovers in our image and we ought not pick and choose whether to be kind to our sexual partners, even when we choose to have relationships outside of the “norm”, or with beings that have a supposedly limited consciousness, or even no (humanly detectable) consciousness.

Brooks makes many interesting points not all of them in the excerpts seen here but one question not raised in the essay is whether or not the bot itself suffered. It’s a point that I imagine proponents of ‘treating your sex bot however you like’ are certain to raise. It’s also a question Canadians may need to answer sooner rather than later now that a ‘sex doll brothel’ is about to open Toronto. However, before getting to that news bit, there’s an interview with a man, his sexbot, and his wife.

The sexbot at home

In fact, I have two interviews the first I’m including here was with CBC (Canadian Broadcasting Corporation) radio and it originally aired October 29, 2017. Here’s a part of the transcript (Note: A link has been removed),

“She’s [Samantha] quite an elegant kind of girl,” says Arran Lee Squire, who is sales director for the company that makes her and also owns one himself.

And unlike other dolls like her, she’ll resist sex if she isn’t in the mood.

“If you touch her, say, on her sensitive spots on the breasts, for example, straight away, and you don’t touch her hands or kiss her, she might say, ‘Oh, I’m not ready for that,'” Arran says.

He says she’ll even synchronize her orgasm to the user’s.

But Arran emphasized that her functions go beyond the bedroom.

Samantha has a “family mode,” in which she can can talk about science, animals and philosophy. She’ll give you motivational quotes if you’re feeling down.

At Arran’s house, Samantha interacts with his two kids. And when they’ve gone to bed, she’ll have sex with him, but only with his wife involved.

There’s also this Sept. 12, 2017 ITV This Morning with Phillip & Holly broadcast interview  (running time: 6 mins. 19 secs.),

I can imagine that if I were a child in that household I’d be tempted to put the sexbot into ‘sexy mode’, preferably unsupervised by my parents. Also, will the parents be using it, at some point, for sex education?

Canadian perspective 1: Sure, it could be good for your marriage

Prior to the potential sex doll brothel in Toronto (more about that coming up), there was a flurry of interest in Marina Adshade’s contribution to the book, Robot Sex: Social and Ethical Implications, from an April 18, 2018 news item on The Tyee,

Sex robots may soon be a reality. However, little research has been done on the social, philosophical, moral and legal implications of robots specifically designed for sexual gratification.

In a chapter written for the book Robot Sex: Social and Ethical Implications, Marina Adshade, professor in the Vancouver School of Economics at the University of British Columbia, argues that sex robots could improve marriage by making it less about sex and more about love.

In this Q&A, Adshade discusses her predictions.

Could sex robots really be a viable replacement for marriage with a human? Can you love a robot?

I don’t see sex robots as substitutes for human companionship but rather as complements to human companionship. Just because we might enjoy the company of robots doesn’t mean that we cannot also enjoy the company of humans, or that having robots won’t enhance our relationships with humans. I see them as very different things — just as one woman (or one man) is not a perfect substitute for another woman (or man).

Is there a need for modern marriage to improve?

We have become increasingly demanding in what we want from the people that we marry. There was a time when women were happy to have a husband that supported the family and men were happy to have a caring mother to his children. Today we still want those things, but we also want so much more — we want lasting sexual compatibility, intense romance, and someone who is an amazing co-parent. That is a lot to ask of one person. …

Adshade adapted part of her text  “Sexbot-Induced Social Change: An Economic Perspective” in Robot Sex: Social and Ethical Implications edited by John Danaher and Neil McArthur for an August 14, 2018 essay on Slate.com,

Technological change invariably brings social change. We know this to be true, but rarely can we make accurate predictions about how social behavior will evolve when new technologies are introduced. …we should expect that the proliferation of robots designed specifically for human sexual gratification means that sexbot-induced social change is on the horizon.

Some elements of that social change might be easier to anticipate than others. For example, the share of the young adult population that chooses to remain single (with their sexual needs met by robots) is very likely to increase. Because social change is organic, however, adaptations in other social norms and behaviors are much more difficult to predict. But this is not virgin territory [I suspect this was an unintended pun]. New technologies completely transformed sexual behavior and marital norms over the second half of the 20th century. Although getting any of these predictions right will surely involve some luck, we have decades of technology-induced social change to guide our predictions about the future of a world confronted with wholesale access to sexbots.

The reality is that marriage has always evolved alongside changes in technology. Between the mid-1700s and the early 2000s, the role of marriage between a man and a woman was predominately to encourage the efficient production of market goods and services (by men) and household goods and services (by women), since the social capacity to earn a wage was almost always higher for husbands than it was for wives. But starting as early as the end of the 19th century, marriage began to evolve as electrification in the home made women’s work less time-consuming, and new technologies in the workplace started to decrease the gender wage gap. Between 1890 and 1940, the share of married women working in the labor force tripled, and over the course of the century, that share continued to grow as new technologies arrived that replaced the labor of women in the home. By the early 1970s, the arrival of microwave ovens and frozen foods meant that a family could easily be fed at the end of a long workday, even when the mother worked outside of the home.

Some elements of that social change might be easier to anticipate than others. For example, the share of the young adult population that chooses to remain single (with their sexual needs met by robots) is very likely to increase. Because social change is organic, however, adaptations in other social norms and behaviors are much more difficult to predict. But this is not virgin territory. New technologies completely transformed sexual behavior and marital norms over the second half of the 20th century. Although getting any of these predictions right will surely involve some luck, we have decades of technology-induced social change to guide our predictions about the future of a world confronted with wholesale access to sexbots.

The reality is that marriage has always evolved alongside changes in technology. Between the mid-1700s and the early 2000s, the role of marriage between a man and a woman was predominately to encourage the efficient production of market goods and services (by men) and household goods and services (by women), since the social capacity to earn a wage was almost always higher for husbands than it was for wives. But starting as early as the end of the 19th century, marriage began to evolve as electrification in the home made women’s work less time-consuming, and new technologies in the workplace started to decrease the gender wage gap. Between 1890 and 1940, the share of married women working in the labor force tripled, and over the course of the century, that share continued to grow as new technologies arrived that replaced the labor of women in the home. By the early 1970s, the arrival of microwave ovens and frozen foods meant that a family could easily be fed at the end of a long workday, even when the mother worked outside of the home.

There are those who argue that men only “assume the burden” of marriage because marriage allows men easy sexual access, and that if men can find sex elsewhere they won’t marry. We hear this prediction now being made in reference to sexbots, but the same argument was given a century ago when the invention of the latex condom (1912) and the intrauterine device (1909) significantly increased people’s freedom to have sex without risking pregnancy and (importantly, in an era in which syphilis was rampant) sexually transmitted disease. Cosmopolitan magazine ran a piece at the time by John B. Watson that asked the blunt question, will men marry 50 years from now? Watson’s answer was a resounding no, writing that “we don’t want helpmates anymore, we want playmates.” Social commentators warned that birth control technologies would destroy marriage by removing the incentives women had to remain chaste and encourage them to flood the market with nonmarital sex. Men would have no incentive to marry, and women, whose only asset is sexual access, would be left destitute.

Fascinating, non? Should you be interested, “Sexbot-Induced Social Change: An Economic Perspective” by Marina Adshade  can be found in Robot Sex: Social and Ethical Implications (link to Amazon) edited by John Danaher and Neil McArthur. © 2017 by the Massachusetts Institute of Technology, reprinted courtesy of the MIT Press

Canadian perspective 2: What is a sex doll brothel doing in Toronto?

Sometimes known as Toronto the Good (although not recently; find out more about Toronto and its nicknames here) and once a byword for stodginess, the city is about to welcome a sex doll brothel according to an August 28, 2018 CBC Radio news item by Katie Geleff and John McGill,

On their website, Aura Dolls claims to be, “North America’s first known brothel that offers sexual services with the world’s most beautiful silicone ladies.”

Nestled between a massage parlour, nail salon and dry cleaner, Aura Dolls is slated to open on Sept. 8 [2018] in an otherwise nondescript plaza in Toronto’s north end.

The company plans to operate 24 hours a day, seven days a week, and will offer customers six different silicone dolls. The website describes the life-like dolls as, “classy, sophisticated, and adventurous ladies.” …

They add that, “the dolls are thoroughly sanitized to meet your expectations.” But that condoms are still “highly recommended.”

Toronto city councillor John Filion says people in his community are concerned about the proposed business.

Filion spoke to As It Happens guest host Helen Mann. Here is part of their conversation.

Councillor Filion, Aura Dolls is urging people to have “an open mind” about their business plan. Would you say that you have one?

Well, I have an open mind about what sort of behaviours people want to do, as long as they don’t harm anybody else. It’s a totally different matter once you bring that out to the public. So I think I have a fairly closed mind about where people should be having sex with [silicone] dolls.

So, what’s wrong with a sex doll brothel?

It’s where it is located, for one thing. Where it’s being proposed happens to be near an intersection where about 25,000 people live, all kinds of families, four elementary schools are very near by. And you know, people shouldn’t really need to be out on a walk with their families and try to explain to their kids why someone is having sex with a [silicone] doll.

But Aura Dolls says that they are going to be doing this very discreetly, that they won’t have explicit signage, and that they therefore won’t be bothering anyone.

They’ve hardly been discreet. They were putting illegal posters all over the neighbourhood. They’ve probably had a couple of hundred of thousands of dollars of free publicity already. I don’t think there’s anything at all discreet about what they are doing. They’re trying to be indiscreet to drum up business.

Can you be sure that there aren’t constituents in your area that think this is a great idea?

I can’t be sure that there aren’t some people who might think, “Oh great, it’s just down the street from me. Let me go there.” I would say that might be a fraction of one per cent of my constituents. Most people are appalled by this.

And it’s not a narrow-minded neighbourhood. Whatever somebody does in their home, I don’t think we’re going to pass moral judgment on it, again, as long as it’s not harming anyone else. But this is just kind of scuzzy. ..

….

Aura Dolls says that it’s doing nothing illegal. They say that they are being very clear that the dolls they are using represent adult women and that they are actually providing a service. Do you agree that they are doing this legally?

No, they’re not at all legal. It’s an illegal use. And if there’s any confusion about that, they will be getting a letter from the city very soon. It is clearly not a legal use. It’s not permitted under the zoning bylaw and it fits the definition of adult entertainment parlour, for which you require a license — and they certainly would not get one. They would not get a license in this neighbourhood because it’s not a permitted use.

The audio portion runs for 5 mins. 31 secs.

I believe these dolls are in fact sexbots, likely enhanced with AI. An August 29, 2018 article by Karlton Jahmal for hotnewhiphop.com describes the dolls as ‘fembots’ and provides more detail (Note: Links have been removed),

Toronto has seen the future, and apparently, it has to do with sex dolls. The Six [another Toronto nickname] is about to get blessed with the first legal sex doll brothel, and the fembots look too good to be true. If you head over to Aura Dolls website, detailed biographies for the six available sex dolls are on full display. You can check out the doll’s height, physical dimensions, heritage and more.

Aura plans to introduce more dolls in the future, according to a statement in the Toronto Star by Claire Lee, a representative for the compnay. At the moment, the ethnicities of the sex dolls feature Japanese, Caucasian American, French Canadian, Irish Canadian, Colombian, and Korean girls. Male dolls will be added in the near future. The sex dolls look remarkably realistic. Aura’s website writes, “Our dolls are made from the highest quality of TPE silicone which mimics the feeling of natural human skin, pores, texture and movement giving the user a virtually identical experience as being with a real partner.”

There are a few more details about the proposed brothel and more comments from Toronto city councillor John Filion in an August 28, 2018 article by Claire Floody and Jenna Moon with Alexandra Jones and Melanie Green for thestar.com,

Toronto will soon be home to North America’s [this should include Canada, US, and Mexico] first known sex doll brothel, offering sexual services with six silicone-made dolls.

According to the website for Aura Dolls, the company behind the brothel, the vision is to bring a new way to achieve sexual needs “without the many restrictions and limitations that a real partner may come with.”

The brothel is expected to open in a shopping plaza on Yonge St., south of Sheppard Ave., on Sept. 8 [2018]. The company doesn’t give the exact location on its website, stating it’s announced upon booking.

Spending half an hour with one doll costs $80, with two dolls running $160. For an hour, the cost is $120 with one doll. The maximum listed time is four hours for $480 per doll.

Doors at the new brothel for separate entry and exit will be used to ensure “maximum privacy for customers.” While the business does plan on having staff on-site, they “should not have any interaction,” Lee said.

“The reason why we do that is to make sure that everyone feels comfortable coming in and exiting,” she said, noting that people may feel shy or awkward about visiting the site.

… Lee said that the business is operating within the law. “The only law stating with anything to do with the dolls is that it has to meet a height requirement. It can’t resemble a child,” she said. …

Councillor John Filion, Ward 23 Willowdale, said his staff will be “throwing the book at (Aura Dolls) for everything they can.”

“I’ve still got people studying to see what’s legal and what isn’t,” Filion said. He noted that a bylaw introduced in North York in the ’90s prevents retail sex shops operating outside of industrial areas. Filion said his office is still confirming that the bylaw is active following harmonization, which condensed the six boroughs’ bylaws after amalgamation in 1998.

“If the bylaw that I brought in 20 years ago still exists, it would prohibit this,” Filion said.

“There’s legal issues,” he said, suggesting that people interested in using the sex dolls might consider doing so at home, rather than at a brothel.

The councillor said he’s received complaints from constituents about the business. “The phone’s ringing off the hook today,” Filion said.

It should be an interesting first week at school for everyone involved. I wonder what Ontario Premier, Doug Ford who recently rolled back the sex education curriculum for the province by 20 years will make of these developments.

As for sexbots/fembots/sex dolls or whatever you want to call them, they are here and it’s about time Canadians had a frank discussion on the matter. Also, I’ve been waiting for quite some time for any mention of male sexbots (malebots?). Personally, I don’t think we’ll be seeing male sexbots appear in either brothels or homes anytime soon.

The joys of an electronic ‘pill’: Could Canadian Olympic athletes’ training be hacked?

Lori Ewing (Canadian Press) in an  August 3, 2018 article on the Canadian Broadcasting Corporation news website, heralds a new technology intended for the 2020 Olympics in Tokyo (Japan) but being tested now for the 2018 North American, Central American and Caribbean Athletics Association (NACAC) Track & Field Championships, known as Toronto 2018: Track & Field in the 6ix (Aug. 10-12, 2018) competition.

It’s described as a ‘computerized pill’ that will allow athletes to regulate their body temperature during competition or training workouts, from the August 3, 2018 article,

“We can take someone like Evan [Dunfee, a race walker], have him swallow the little pill, do a full four-hour workout, and then come back and download the whole thing, so we get from data core temperature every 30 seconds through that whole workout,” said Trent Stellingwerff, a sport scientist who works with Canada’s Olympic athletes.

“The two biggest factors of core temperature are obviously the outdoor humidex, heat and humidity, but also exercise intensity.”

Bluetooth technology allows Stellingwerff to gather immediate data with a handheld device — think a tricorder in “Star Trek.” The ingestible device also stores measurements for up to 16 hours when away from the monitor which can be wirelessly transmitted when back in range.

“That pill is going to change the way that we understand how the body responds to heat, because we just get so much information that wasn’t possible before,” Dunfee said. “Swallow a pill, after the race or after the training session, Trent will come up, and just hold the phone [emphasis mine] to your stomach and download all the information. It’s pretty crazy.”

First off, it’s probably not a pill or tablet but a gelcap and it sounds like the device is a wireless biosensor. As Ewing notes, the device collects data and transmits it.

Here’s how the French company, BodyCap, supplying the technology describes their product, from the company’s e-Celsius Performance webpage, (assuming this is the product being used),

Continuous core body temperature measurement

Main applications are:

Risk reduction for people in extreme situations, such as elite athletes. During exercise in a hot environment, thermal stress is amplified by the external temperature and the environment’s humidity. The saturation of the body’s thermoregulation mechanism can quickly cause hyperthermia to levels that may cause nausea, fainting or death.

Performance optimisation for elite athletes.This ingestible pill leaves the user fully mobile. The device keeps a continuous record of temperature during training session, competition and during the recovery phase. The data can then be used to correlate thermoregulation with performances. This enable the development of customised training protocols for each athlete.

e-Celsius Performance® can be used for all sports, including water sports. Its application is best suited to sports that are physically intensive like football, rugby, cycling, long distance running, tennis or those that take place in environments with extreme temperature conditions, like diving or skiing.

e-Celsius Performance®, is a miniaturised ingestible electronic pill that wirelessly transmits a continuous measurement of gastrointestinal temperature. [emphasis mine]

The data are stored on a monitor called e-Viewer Performance®. This device [emphases mine] shows alerts if the measurement is outside the desired range. The activation box is used to turn the pill on from standby mode and connect the e-Celsius Performance pill with the monitor for data collection in either real time or by recovery from the internal memory of e-Celsius Performance®. Each monitor can be used with up to three pills at once to enable extended use.

The monitor’s interface allows the user to download data to a PC/ Mac for storage. The pill is safe, non-invasive and easy to use, leaving the gastric system after one or two days, [emphasis mine] depending on individual transit time.

I found Dunfee’s description mildly confusing but that can be traced to his mention of wireless transmission to a phone. Ewing describes a handheld device which is consistent with the company’s product description. There is no mention of the potential for hacking but I would hope Athletics Canada and BodyCap are keeping up with current concerns over hacking and interference (e.g., Facebook/Cambridge Analytica, Russians and the 2016 US election, Roberto Rocha’s Aug. 3, 2018 article for CBC titled: Data sheds light on how Russian Twitter trolls targeted Canadians, etc.).

Moving on, this type of technology was first featured here in a February 11, 2014 posting (scroll down to the gif where an electronic circuit dissolves in water) and again in a November 23, 2015 posting about wearable and ingestible technologies but this is the first real life application I’ve seen for it.

Coincidentally, an August 2, 2018 Frontiers [Publishing] news release on EurekAlert announced this piece of research (published in June 2018) questioning whether we need this much data and whether these devices work as promoted,

Wearable [and, in the future, ingestible?] devices are increasingly bought to track and measure health and sports performance: [emphasis mine] from the number of steps walked each day to a person’s metabolic efficiency, from the quality of brain function to the quantity of oxygen inhaled while asleep. But the truth is we know very little about how well these sensors and machines work [emphasis mine]– let alone whether they deliver useful information, according to a new review published in Frontiers in Physiology.

“Despite the fact that we live in an era of ‘big data,’ we know surprisingly little about the suitability or effectiveness of these devices,” says lead author Dr Jonathan Peake of the School of Biomedical Sciences and Institute of Health and Biomedical Innovation at the Queensland University of Technology in Australia. “Only five percent of these devices have been formally validated.”

The authors reviewed information on devices used both by everyday people desiring to keep track of their physical and psychological health and by athletes training to achieve certain performance levels. [emphases mine] The devices — ranging from so-called wrist trackers to smart garments and body sensors [emphasis mine] designed to track our body’s vital signs and responses to stress and environmental influences — fall into six categories:

  • devices for monitoring hydration status and metabolism
  • devices, garments and mobile applications for monitoring physical and psychological stress
  • wearable devices that provide physical biofeedback (e.g., muscle stimulation, haptic feedback)
  • devices that provide cognitive feedback and training
  • devices and applications for monitoring and promoting sleep
  • devices and applications for evaluating concussion

The authors investigated key issues, such as: what the technology claims to do; whether the technology has been independently validated against some recognized standards; whether the technology is reliable and what, if any, calibration is needed; and finally, whether the item is commercially available or still under development.

The authors say that technology developed for research purposes generally seems to be more credible than devices created purely for commercial reasons.

“What is critical to understand here is that while most of these technologies are not labeled as ‘medical devices’ per se, their very existence, let alone the accompanying marketing, conveys a sensibility that they can be used to measure a standard of health,” says Peake. “There are ethical issues with this assumption that need to be addressed.” [emphases mine]

For example, self-diagnosis based on self-gathered data could be inconsistent with clinical analysis based on a medical professional’s assessment. And just as body mass index charts of the past really only provided general guidelines and didn’t take into account a person’s genetic predisposition or athletic build, today’s technology is similarly limited.

The authors are particularly concerned about those technologies that seek to confirm or correlate whether someone has sustained or recovered from a concussion, whether from sports or military service.

“We have to be very careful here because there is so much variability,” says Peake. “The technology could be quite useful, but it can’t and should never replace assessment by a trained medical professional.”

Speaking generally again now, Peake says it is important to establish whether using wearable devices affects people’s knowledge and attitude about their own health and whether paying such close attention to our bodies could in fact create a harmful obsession with personal health, either for individuals using the devices, or for family members. Still, self-monitoring may reveal undiagnosed health problems, said Peake, although population data is more likely to point to false positives.

“What we do know is that we need to start studying these devices and the trends they are creating,” says Peake. “This is a booming industry.”

In fact, a March 2018 study by P&S Market Research indicates the wearable market is expected to generate $48.2 billion in revenue by 2023. That’s a mere five years into the future.”

The authors highlight a number of areas for investigation in order to develop reasonable consumer policies around this growing industry. These include how rigorously the device/technology has been evaluated and the strength of evidence that the device/technology actually produces the desired outcomes.

“And I’ll add a final question: Is wearing a device that continuously tracks your body’s actions, your brain activity, and your metabolic function — then wirelessly transmits that data to either a cloud-based databank or some other storage — safe, for users? Will it help us improve our health?” asked Peake. “We need to ask these questions and research the answers.”

The authors were not examining ingestible biosensors nor were they examining any issues related to data about core temperatures but it would seem that some of the same issues could apply especially if and when this technology is brought to the consumer market.

Here’s a link to the and a citation for the paper,

Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations by Jonathan M. Peake, Graham Kerr, and John P. Sullivan. Front. Physiol., 28 June 2018 | https://doi.org/10.3389/fphys.2018.00743

This paper is open access.

Yes! Art, genetic modifications, gene editing, and xenotransplantation at the Vancouver Biennale (Canada)

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

Up to this point, I’ve been a little jealous of the Art/Sci Salon’s (Toronto, Canada) January 2018 workshops for artists and discussions about CRISPR ((clustered regularly interspaced short palindromic repeats))/Cas9 and its social implications. (See my January 10, 2018 posting for more about the events.) Now, it seems Vancouver may be in line for its ‘own’ discussion about CRISPR and the implications of gene editing. The image you saw (above) represents one of the installations being hosted by the 2018 – 2020 edition of the Vancouver Biennale.

While this posting is mostly about the Biennale and Piccinini’s work, there is a ‘science’ subsection featuring the science of CRISPR and xenotransplantation. Getting back to the Biennale and Piccinini: A major public art event since 1988, the Vancouver Biennale has hosted over 91 outdoor sculptures and new media works by more than 78 participating artists from over 25 countries and from 4 continents.

Quickie description of the 2018 – 2020 Vancouver Biennale

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

The Vancouver Biennale will be bringing new —and unusual— works of public art to the city beginning this June.

The theme for this season’s Vancouver Biennale exhibition is “re-IMAGE-n” and it kicks off on June 20 [2018] in Vanier Park with Saudi artist Ajlan Gharem’s Paradise Has Many Gates.

Gharem’s architectural chain-link sculpture resembles a traditional mosque, the piece is meant to challenge the notions of religious orthodoxy and encourages individuals to image a space free of Islamophobia.

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

Given that this blog is focused on nanotechnology and other emerging technologies such as CRISPR, I’m focusing on Piccinini’s work and its art/science or sci-art status. This image from the GOMA Gallery where Piccinini’s ‘Curious Affection‘ installation is being shown from March 24 – Aug. 5, 2018 in Brisbane, Queensland, Australia may give you some sense of what one of her installations is like,

Courtesy: Queensland Art Gallery | Gallery of Modern Art (QAGOMA)

I spoke with Serena at the Vancouver Biennale office and asked about the ‘interactive’ aspect of Piccinini’s installation. She suggested the term ‘immersive’ as an alternative. In other words, you won’t be playing with the sculptures or pressing buttons and interacting with computer screens or robots. She also noted that the ticket prices have not been set yet and they are currently developing events focused on the issues raised by the installation. She knew that 2018 is the 200th anniversary of the publication of Mary Shelley’s Frankenstein but I’m not sure how the Biennale folks plan (or don’t plan)  to integrate any recognition of the novle’s impact on the discussions about ‘new’ technologies .They expect Piccinini will visit Vancouver. (Note 1: Piccinini’s work can  also be seen in a group exhibition titled: Frankenstein’s Birthday Party at the Hosfselt Gallery in San Francisco (California, US) from June 23 – August 11, 2018.  Note 2: I featured a number of international events commemorating the 200th anniversary of the publication of Mary Shelley’s novel, Frankenstein, in my Feb. 26, 2018 posting. Note 3: The term ‘Frankenfoods’ helped to shape the discussion of genetically modified organisms and food supply on this planet. It was a wildly successful campaign for activists affecting legislation in some areas of research. Scientists have not been as enthusiastic about the effects. My January 15, 2009 posting briefly traces a history of the term.)

The 2018 – 2020 Vancouver Biennale and science

A June 7, 2018 Vancouver Biennale news release provides more detail about the current series of exhibitions,

The Biennale is also committed to presenting artwork at the cutting edge of discussion and in keeping with the STEAM (science, technology, engineering, arts, math[ematics]) approach to integrating the arts and sciences. In August [2018], Colombian/American visual artist Jessica Angel will present her monumental installation Dogethereum Bridge at Hinge Park in Olympic Village. Inspired by blockchain technology, the artwork’s design was created through the integration of scientific algorithms, new developments in technology, and the arts. This installation, which will serve as an immersive space and collaborative hub for artists and technologists, will host a series of activations with blockchain as the inspirational jumping-off point.

In what is expected to become one of North America’s most talked-about exhibitions of the year, Melbourne artist Patricia Piccinini’s Curious Imaginings will see the intersection of art, science, and ethics. For the first time in the Biennale’s fifteen years of creating transformative experiences, and in keeping with the 2018-2020 theme of “re-IMAGE-n,” the Biennale will explore art in unexpected places by exhibiting in unconventional interior spaces.  The hyperrealist “world of oddly captivating, somewhat grotesque, human-animal hybrid creatures” will be the artist’s first exhibit in a non-museum setting, transforming a wing of the 105-year-old Patricia Hotel. Situated in Vancouver’s oldest neighbourbood of Strathcona, Piccinini’s interactive experience will “challenge us to explore the social impacts of emerging bio-technology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.” In this intimate hotel setting located in a neighborhood continually undergoing its own change, Curious Imaginings will empower visitors to personally consider questions posed by the exhibition, including the promises and consequences of genetic research and human interference. …

There are other pieces being presented at the Biennale but my special interest is in the art/sci pieces and, at this point, CRISPR.

Piccinini in more depth

You can find out more about Patricia Piccinini in her biography on the Vancouver Biennale website but I found this Char Larsson April 7, 2018 article for the Independent (UK) more informative (Note: A link has been removed),

Patricia Piccinini’s sculptures are deeply disquieting. Walking through Curious Affection, her new solo exhibition at Brisbane’s Gallery of Modern Art, is akin to entering a science laboratory full of DNA experiments. Made from silicone, fibreglass and even human hair, her sculptures are breathtakingly lifelike, however, we can’t be sure what life they are like. The artist creates an exuberant parallel universe where transgenic experiments flourish and human evolution has given way to genetic engineering and DNA splicing.

Curious Affection is a timely and welcome recognition of Piccinini’s enormous contribution to reaching back to the mid-1990s. Working across a variety of mediums including photography, video and drawing, she is perhaps best known for her hyperreal creations.

As a genre, hyperrealism depends on the skill of the artist to create the illusion of reality. To be truly successful, it must convince the spectator of its realness. Piccinini acknowledges this demand, but with a delightful twist. The excruciating attention to detail deliberately solicits our desire to look, only to generate unease, as her sculptures are imbued with a fascinating otherness. Part human, part animal, the works are uncannily familiar, but also alarmingly “other”.

Inspired by advances in genetically modified pigs to generate replacement organs for humans [also known as xenotransplantation], we are reminded that Piccinini has always been at the forefront of debates concerning the possibilities of science, technology and DNA cloning. She does so, however, with a warm affection and sense of humour, eschewing the hysterical anxiety frequently accompanying these scientific developments.

Beyond the astonishing level of detail achieved by working with silicon and fibreglass, there is an ethics at work here. Piccinini is asking us not to avert our gaze from the other, and in doing so, to develop empathy and understanding through the encounter.

I encourage anyone who’s interested to read Larsson’s entire piece (April 7, 2018 article).

According to her Wikipedia entry, Piccinini works in a variety of media including video, sound, sculpture, and more. She also has her own website.

Gene editing and xenotransplantation

Sarah Zhang’s June 8, 2018 article for The Atlantic provides a peek at the extraordinary degree of interest and competition in the field of gene editing and CRISPR ((clustered regularly interspaced short palindromic repeats))/Cas9 research (Note: A link has been removed),

China Is Genetically Engineering Monkeys With Brain Disorders

Guoping Feng applied to college the first year that Chinese universities reopened after the Cultural Revolution. It was 1977, and more than a decade’s worth of students—5.7 million—sat for the entrance exams. Feng was the only one in his high school to get in. He was assigned—by chance, essentially—to medical school. Like most of his contemporaries with scientific ambitions, he soon set his sights on graduate studies in the United States. “China was really like 30 to 50 years behind,” he says. “There was no way to do cutting-edge research.” So in 1989, he left for Buffalo, New York, where for the first time he saw snow piled several feet high. He completed his Ph.D. in genetics at the State University of New York at Buffalo.

Feng is short and slim, with a monk-like placidity and a quick smile, and he now holds an endowed chair in neuroscience at MIT, where he focuses on the genetics of brain disorders. His 45-person lab is part of the McGovern Institute for Brain Research, which was established in 2000 with the promise of a $350 million donation, the largest ever received by the university. In short, his lab does not lack for much.

Yet Feng now travels to China several times a year, because there, he can pursue research he has not yet been able to carry out in the United States. [emphasis mine] …

Feng had organized a symposium at SIAT [Shenzhen Institutes of Advanced Technology], and he was not the only scientist who traveled all the way from the United States to attend: He invited several colleagues as symposium speakers, including a fellow MIT neuroscientist interested in tree shrews, a tiny mammal related to primates and native to southern China, and Chinese-born neuroscientists who study addiction at the University of Pittsburgh and SUNY Upstate Medical University. Like Feng, they had left China in the ’80s and ’90s, part of a wave of young scientists in search of better opportunities abroad. Also like Feng, they were back in China to pursue a type of cutting-edge research too expensive and too impractical—and maybe too ethically sensitive—in the United States.

Here’s what precipitated Feng’s work in China, (from Zhang’s article; Note: Links have been removed)

At MIT, Feng’s lab worked on genetically engineering a monkey species called marmosets, which are very small and genuinely bizarre-looking. They are cheaper to keep due to their size, but they are a relatively new lab animal, and they can be difficult to train on lab tasks. For this reason, Feng also wanted to study Shank3 on macaques in China. Scientists have been cataloging the social behavior of macaques for decades, making it an obvious model for studies of disorders like autism that have a strong social component. Macaques are also more closely related to humans than marmosets, making their brains a better stand-in for those of humans.

The process of genetically engineering a macaque is not trivial, even with the advanced tools of CRISPR. Researchers begin by dosing female monkeys with the same hormones used in human in vitro fertilization. They then collect and fertilize the eggs, and inject the resulting embryos with CRISPR proteins using a long, thin glass needle. Monkey embryos are far more sensitive than mice embryos, and can be affected by small changes in the pH of the injection or the concentration of CRISPR proteins. Only some of the embryos will have the desired mutation, and only some will survive once implanted in surrogate mothers. It takes dozens of eggs to get to just one live monkey, so making even a few knockout monkeys required the support of a large breeding colony.

The first Shank3 macaque was born in 2015. Four more soon followed, bringing the total to five.

To visit his research animals, Feng now has to fly 8,000 miles across 12 time zones. It would be a lot more convenient to carry out his macaque research in the United States, of course, but so far, he has not been able to.

He originally inquired about making Shank3 macaques at the New England Primate Research Center, one of eight national primate research centers then funded by the National Institutes of Health in partnership with a local institution (Harvard Medical School, in this case). The center was conveniently located in Southborough, Massachusetts, just 20 miles west of the MIT campus. But in 2013, Harvard decided to shutter the center.

The decision came as a shock to the research community, and it was widely interpreted as a sign of waning interest in primate research in the United States. While the national primate centers have been important hubs of research on HIV, Zika, Ebola, and other diseases, they have also come under intense public scrutiny. Animal-rights groups like the Humane Society of the United States have sent investigators to work undercover in the labs, and the media has reported on monkey deaths in grisly detail. Harvard officially made its decision to close for “financial” reasons. But the announcement also came after the high-profile deaths of four monkeys from improper handling between 2010 and 2012. The deaths sparked a backlash; demonstrators showed up at the gates. The university gave itself two years to wind down their primate work, officially closing the center in 2015.

“They screwed themselves,” Michael Halassa, the MIT neuroscientist who spoke at Feng’s symposium, told me in Shenzhen. Wei-Dong Yao, another one of the speakers, chimed in, noting that just two years later CRISPR has created a new wave of interest in primate research. Yao was one of the researchers at Harvard’s primate center before it closed; he now runs a lab at SUNY Upstate Medical University that uses genetically engineered mouse and human stem cells, and he had come to Shenzhen to talk about restarting his addiction research on primates.

Here’s comes the competition (from Zhang’s article; Note: Links have been removed),

While the U.S. government’s biomedical research budget has been largely flat, both national and local governments in China are eager to raise their international scientific profiles, and they are shoveling money into research. A long-rumored, government-sponsored China Brain Project is supposed to give neuroscience research, and primate models in particular, a big funding boost. Chinese scientists may command larger salaries, too: Thanks to funding from the Shenzhen local government, a new principal investigator returning from overseas can get 3 million yuan—almost half a million U.S. dollars—over his or her first five years. China is even finding success in attracting foreign researchers from top U.S. institutions like Yale.

In the past few years, China has seen a miniature explosion of genetic engineering in monkeys. In Kunming, Shanghai, and Guangzhou, scientists have created monkeys engineered to show signs of Parkinson’s, Duchenne muscular dystrophy, autism, and more. And Feng’s group is not even the only one in China to have created Shank3 monkeys. Another group—a collaboration primarily between researchers at Emory University and scientists in China—has done the same.

Chinese scientists’ enthusiasm for CRISPR also extends to studies of humans, which are moving much more quickly, and in some cases under less oversight, than in the West. The first studies to edit human embryos and first clinical trials for cancer therapies using CRISPR have all happened in China. [emphases mine]

Some ethical issues are also covered (from Zhang’s article),

Parents with severely epileptic children had asked him if it would be possible to study the condition in a monkey. Feng told them what he thought would be technically possible. “But I also said, ‘I’m not sure I want to generate a model like this,’” he recalled. Maybe if there were a drug to control the monkeys’ seizures, he said: “I cannot see them seizure all the time.”

But is it ethical, he continued, to let these babies die without doing anything? Is it ethical to generate thousands or millions of mutant mice for studies of brain disorders, even when you know they will not elucidate much about human conditions?

Primates should only be used if other models do not work, says Feng, and only if a clear path forward is identified. The first step in his work, he says, is to use the Shank3 monkeys to identify the changes the mutations cause in the brain. Then, researchers might use that information to find targets for drugs, which could be tested in the same monkeys. He’s talking with the Oregon National Primate Research Center about carrying out similar work in the United States. ….[Note: I have a three-part series about CRISPR and germline editing* in the US, precipitated by research coming out of Oregon, Part 1, which links to the other parts, is here.]

Zhang’s June 8, 2018 article is excellent and I highly recommend reading it.

I touched on the topic of xenotransplanttaion in a commentary on a book about the science  of the television series, Orphan Black in a January 31,2018 posting (Note: A chimera is what you use to incubate a ‘human’ organ for transplantation or, more accurately, xenotransplantation),

On the subject of chimeras, the Canadian Broadcasting Corporation (CBC) featured a January 26, 2017 article about the pig-human chimeras on its website along with a video,

The end

I am very excited to see Piccinini’s work come to Vancouver. There have been a number of wonderful art and art/science installations and discussions here but this is the first one (I believe) to tackle the emerging gene editing technologies and the issues they raise. (It also fits in rather nicely with the 200th anniversary of the publication of Mary Shelley’s Frankenstein which continues to raise issues and stimulate discussion.)

In addition to the ethical issues raised in Zhang’s article, there are some other philosophical questions:

  • what does it mean to be human
  • if we are going to edit genes to create hybrid human/animals, what are they and how do they fit into our current animal/human schema
  • are you still human if you’ve had an organ transplant where the organ was incubated in a pig

There are also going to be legal issues. In addition to any questions about legal status, there are also fights about intellectual property such as the one involving Harvard & MIT’s [Massachusetts Institute of Technology] Broad Institute vs the University of California at Berkeley (March 15, 2017 posting)..

While I’m thrilled about the Piccinini installation, it should be noted the issues raised by other artworks hosted in this version of the Biennale are important. Happily, they have been broached here in Vancouver before and I suspect this will result in more nuanced  ‘conversations’ than are possible when a ‘new’ issue is introduced.

Bravo 2018 – 2020 Vancouver Biennale!

* Germline editing is when your gene editing will affect subsequent generations as opposed to editing out a mutated gene for the lifetime of a single individual.

Art/sci and CRISPR links

This art/science posting may prove of some interest:

The connectedness of living things: an art/sci project in Saskatchewan: evolutionary biology (February 16, 2018)

A selection of my CRISPR posts:

CRISPR and editing the germline in the US (part 1 of 3): In the beginning (August 15, 2017)

NOTE: An introductory CRISPR video describing how CRISPR/Cas9 works was embedded in part1.

Why don’t you CRISPR yourself? (January 25, 2018)

Editing the genome with CRISPR ((clustered regularly interspaced short palindromic repeats)-carrying nanoparticles (January 26, 2018)

Immune to CRISPR? (April 10, 2018)

Ingenuity Lab (a nanotechnology initiative), the University of Alberta, and Carlo Montemagno—what is happening in Canadian universities? (2 of 2)

You can find Part 1 of the latest installment in this sad story here.

Who says Carlo Montemagno is a star nanotechnology researcher?

Unusually and despite his eminent stature, Dr. Montemagno does not rate a Wikipedia entry. Luckily, his CV (curriculum vitae) is online (placed there by SIU) so we can get to know a bit more (the CV is a 63 pp. document) about the man’s accomplishments (Note: There are some formatting differences), Note: Unusually, I will put my comments into the excerpted CV using [] i.e., square brackets to signify my input,

Carlo Montemagno, PhD
University of Alberta
Department of Chemical and Materials Engineering
and
NRC/CNRC National Institute for Nanotechnology
Edmonton, AB T6G 2V4
Canada

 

Educational Background

1995, Ph.D., Department of Civil Engineering and Geological Sciences, College of Earth and Mineral Sciences University of Notre Dame

1990, M.S., Petroleum and Natural Gas Engineering, College of Earth and Mineral Sciences, Pennsylvania State University

1980, B.S., Agricultural and Biological Engineering, College of Engineering, Cornell University

Supplemental Education

1986, Practical Environmental Law, Federal Publications, Washington, DC

1985, Effective Executive Training Program, Wharton Business School, University of Pennsylvannia, Philadelphia, PA

1980, Civil Engineer Corp Officer Project, CECOS & General Management School, Port Hueneme, CA

[He doesn’t seem to have taken any courses in the last 30 years.]

Professional Experience

(Select Achievements)

Over three decades of experience in shepherding complex organizations both inside and outside academia. Working as a builder, I have led organizations in government, industry and higher education during periods of change and challenge to achieved goals that many perceived to be unattainable.

University of Alberta, Edmonton AB 9/12 to present

9/12 to present, Founding Director, Ingenuity Lab [largely defunct as of April 18, 2018], Province of Alberta

8/13 to present, Director Biomaterials Program, NRC/CNRC National Institute for Nanotechnology [It’s not clear if this position still exists.]

10/13 to present, Canada Research Chair, Government of Canada in Intelligent Nanosystems [Canadian universities receive up to $200,000 for an individual Canada research chair. The money can be used to fund the chair in its entirety or it can be added to other monies., e.g., faculty salary. There are two tiers, one for established researchers and one for new researchers. Montemagno would have been a Tier 1 Canada Research Chair. At McGill University {a major Canadian educational institution} for example, total compensation including salary, academic stipend, benefits, X-coded research funds would be a maximum of $200,000 at Montemagno’s Tier 1 level. See: here scroll down about 90% of the way).

3/13 to present, AITF iCORE Strategic Chair, Province of Alberta in BioNanotechnology and Biomimetic Systems [I cannot find this position in the current list of the University of Alberta Faculty of Science’s research chairs.]

9/12 to present, Professor, Faculty of Engineering, Chemical and Materials Engineering

Crafted and currently lead an Institute that bridges multiple organizations named Ingenuity Lab (www.ingenuitylab.ca). This Institute is a truly integrated multidisciplinary organization comprised of dedicated researchers from STEM, medicine, and the social sciences. Ingenuity Lab leverages Alberta’s strengths in medicine, engineering, science and, agriculture that are present in multiple academic enterprises across the province to solve grand challenges in the areas of energy, environment, and health and rapidly translate the solutions to the economy.

The exciting and relevant feature of Ingenuity Lab is that support comes from resources outside the normal academic funding streams. Core funding of approximately $8.6M/yr emerged by working and communicating a compelling vision directly with the Provincial Executive and Legislative branches of government. [In the material I’ve read, the money for the research was part of how Dr. Montemagno was wooed by the University of Alberta. My understanding is that he himself did not obtain the funding, which in CAD was $100M over 10 years. Perhaps the university was able to attract the funding based on Dr. Montemagno’s reputation and it was contingent on his acceptance?] I significantly augmented these base resources by developing Federal Government, and Industry partnership agreements with a suite of multinational corporations and SME’s across varied industry sectors.

Collectively, this effort is generating enhanced resource streams that support innovative academic programming, builds new research infrastructure, and enables high risk/high reward research. Just as important, it established new pathways to interact meaningfully with local and global communities.

Strategic Leadership

•Created the Ingenuity Lab organization including a governing board representing multiple academic institutions, government and industry sectors.

•Developed and executed a strategic plan to achieve near and long-term strategic objectives.

•Recruited~100 researchers representing a wide range disciplnes.[sic] [How hard can it be to attract researchers in this job climate?]

•Built out ~36,000 S.F. of laboratory and administrative space.

•Crafted operational policy and procedures.

•Developed and implemented a unique stakeholder inclusive management strategy focused on the rapid translation of solutions to the economy.

Innovation and Economic Engagement

•Member of the Expert Panel on innovation, commissioned by the Government of Alberta, to assess opportunities, challenges and design and implementation options for Alberta’s multi-billion dollar investment to drive long-term economic growth and diversification. The developed strategy is currently being implemented. [Details?]

•Served as a representive [sic] on multiple Canadian national trade missions to Asia, United States and the Middle East. [Sounds like he got to enjoy some nice trips.]

•Instituted formal development partnerships with several multi-national corporations including Johnson & Johnson, Cenovus and Sabuto Inc. [Details?]

•Launched multiple for-profit joint ventures founded on technologies collaboratively developed with industry with funding from both private and public sources. [Details?]

Branding

•Developed and implement a communication program focused on branding of Ingenuity Lab’s unique mission, both regionally and globally, to the lay public, academia, government, and industry. [Why didn’t the communication specialist do this? ]

This effort employs traditional paper, online, and social media outlets to effectively reach different demographics.

•Awarded “Best Nanotechnology Research Organization–2014” by The New Economy. [What is the New Economy? The Economist, yes. New Economy, no.]

Global Development

•Executed formal research and education partnerships with the Yonsei Institute of Convergence Technology and the Yonsei Bio-IT MicroFab Center in Korea, Mahatma Gandhi University in India. and the Italian Institute of Technology. [{1}The Yonsei Institute of Convergence Technology doesn’t have any news items prior to 2015 or after 2016. The Ingenuity Lab and/or Carlo Montemagno did not feature in them. {2} There are six Mahatma Ghandi Universities in India. {3} The Italian Institute of Technology does not have any news listings on the English language version of its site.]

•Opened Ingenuity Lab, India in May 2015. Focused on translating 21st-century technology to enable solutions appropriate for developing nations in the Energy, Agriculture, and Health economic sectors. [Found this May 9, 2016 notice on the Asia Pacific Foundation of Canada website, noting this: “… opening of the Ingenuity Lab Research Hub at Mahatma Gandhi University in Kottayam, in the Indian state of Kerala.” There’s also this May 6, 2016 news release. I can’t find anything on the Mahatma Ghandi University Kerala website.]

•Established partnership research and development agreements with SME’s in both Israel and India.

•Developed active research collaborations with medical and educational institutions in Nepal, Qatar, India, Israel, India and the United States.

Community Outreach

•Created Young Innovators research experience program to educate, support and nurture tyro undergraduate researchers and entrepreneurs.

•Developed an educational game, “Scopey’s Nano Adventure” for iOS and Android platforms to educate 6yr to 10yr olds about Nanotechnology. [What did the children learn? Was this really part of the mandate?]

•Delivered educational science programs to the lay public at multiple, high profile events. [Which events? The ones on the trade junkets?]

University of Cincinnati, Cincinnati OH 7/06 to 8/12

7/10 to 8/12 Founding Dean, College of Engineering and Applied Science

7/09 to 6/10 Dean, College of Applied Science

7/06 to 6/10 Dean, College of Engineering

7/06 to 8/12 Geier Professor of College of Engineering Engineering Education

7/06 to 8/12, Professor of Bioengineering, College of Engineering & College of Medicine

University of California, Los Angeles 7/01 to 6/06

5/03 to 6/06, Associate Director California Nanosystems Institute

7/02 to 6/06, Co-Director NASA Center for Cell Mimetic Space Exploration

7/02 to 6/06, Founding Department Chair, Department of Bioengineering

7/02 to 6/06, Chair Biomedical Engineering IDP

7/01 to 6/02, Chair of Academic Biomedical Engineering IDP Affairs

7/01 to 6/06, Carol and Roy College of Engineering and Applied Doumani Professor of Sciences Biomedical Engineering

7/01 to 6/06, Professor Mechanical and Aerospace Engineering

Recommending Montemagno

Presumably the folks at Southern Illinois University asked for recommendations from Montemagno’s previous employers. So, how did he get a recommendation from the folks in Alberta when according to Spoerre’s April 10, 2018 article the Ingenuity Lab was undergoing a review as of June 2017 by the province of Alberta’s Alberta Innovates programme? I find it hard to believe that the folks at the University of Alberta were unaware of the review.

When you’re trying to get rid of someone, it’s pretty much standard practice that once they’ve gotten the message, you give a good recommendation to their prospective employer. The question begs to be asked, how many times have employers done this for Montemagno?

Stars in their eyes

Every one exaggerates a bit on their résumé or CV. One of my difficulties with this whole affair lies in how Montemagno can be described as a ‘nanotechnology star’. The accomplishments foregrounded on Montemagno’s CV are administrative and if memory serves, the University of Cincinnati too. Given the situation with the Ingenuity Lab, I’m wondering about these accomplishments.

Was due diligence performed by SIU, the University of the Alberta, or anywhere else that Montemagno worked? I realize that you’re not likely to get much information from calling up the universities where he worked previously, especially if there was a problem and they wanted to get rid of him. Still, did someone check out his degrees, his start-ups,  dig a little deeper into some of his claims?

His credentials and stated accomplishments are quite impressive and I, too,  would have been dazzled. (He also lists positions at the Argonne National Laboratory and at Cornell University.) I’ve picked at some bits but one thing that stands out to me is the move from UCLA to the University of Cincinnati. It’s all big names: UCLA, Cornell, NASA, Argonne and then, not: University of Cincinnati, University of Alberta, Southern Illinois University—what happened?

(If anyone better versed in the world of academe and career has answers, please do add them to the comments.)

It’s tempting to think the Peter Principle (one of them) was at work here. In brief, this principle states that as you keep getting better jobs on based on past performance you reach a point where you can’t manage the new challenges having risen to your level of incompetence.In accepting the offer from the University of Alberta had Dr. Montemagno risen to his level of incompetence? Or, perhaps it was just one big failure. Unfortunately, any excuses don’t hold up under the weight of a series of misjudgments and ethical failures. Still, I’m guessing that Dr. Montemagno was hoping for a big win on a project such as this (from an Oct. 19, 2016 news release on MarketWired),

Ingenuity Lab Carbon Solutions announced today that it has been named as one of the 27 teams advancing in the $20M NRG COSIA Carbon XPRIZE. The competition sees scientists develop technologies to convert carbon dioxide emissions into products with high net value.

The Ingenuity Lab Carbon Solutions team – headquartered in Edmonton of Alberta, Canada – has made it to the second round of competition. Its team of 14 has proposed to convert CO2 waste emitted from a natural gas power plant into usable chemical products.

Ingenuity Lab Carbon Solutions is comprised of a multidisciplinary group of scientists and engineers, and was formed in the winter of 2012 to develop new approaches for the chemical industry. Ingenuity Lab Carbon Solutions is sponsored by CCEMC, and has also partnered with Ensovi for access to intellectual property and know how.

I can’t identify CCEMC with any certainty but Ensovi is one of Montemagno’s six start-up companies, as listed in his CV,

Founder and Chief Technical Officer, Ensovi, LLC., Focused on the production of low-cost bioenergy and high-value added products from sunlight using bionanotechnology, Total Funding; ~$10M, November 2010-present.

Sadly the April 9,2018 NRG COSIA Carbon XPRIZE news release  announcing the finalists in round 3 of the competition includes an Alberta track of five teams from which the Ingenuity Lab is notably absent.

The Montemagno affair seems to be a story of hubris, greed, and good intentions. Finally, the issues associated with Dr. Montemagno give rise to another, broader question.

Is something rotten in Canada’s higher education establishment?

Starting with the University of Alberta:

it would seem pretty obvious that if you’re hiring family member(s) as part of the deal to secure a new member of faculty that you place and follow very stringent rules. No rewriting of the job descriptions, no direct role in hiring or supervising, no extra benefits, no inflated salaries in other words, no special treatment for your family as they know at the University of Alberta since they have policies for this very situation.

Yes, universities do hire spouses (although a daughter, a nephew, and a son-in-law seems truly excessive) and even when the university follows all of the rules, there’s resentment from staff (I know because I worked in a university). There is a caveat to the rule, there’s resentment unless that spouse is a ‘star’ in his or her own right or an exceptionally pleasant person. It’s also very helpful if the spouse is both.

I have to say I loved Fraser Forbes that crazy University of Alberta engineer who thought he’d make things better by telling us that the family’s salaries had been paid out of federal and provincial funds rather than university funds. (sigh) Forbes was the new dean of engineering at the time of his interview in the CBC’s April 10, 2018 online article but that no longer seems to be the case as of April 19, 2018.

Given Montemagno’s misjudgments, it seems cruel that Forbes was removed after one foolish interview. But, perhaps he didn’t want the job after all. Regardless, those people who were afraid to speak out about Dr. Montemagno cannot feel reassured by Forbes’ apparent removal.

Money, money, money

Anyone who has visited a university in Canada (and presumably the US too) has to have noticed the number of ‘sponsored’ buildings and rooms. The hunger for money seems insatiable and any sensible person knows it’s unsupportable over the long term.

The scramble for students

Mel Broitman in a Sept. 22, 2016 article for Higher Education lays out some harsh truths,

Make no mistake. It is a stunning condemnation and a “wakeup call to higher education worldwide”. The recent UNESCO report states that academic institutions are rife with corruption and turning a blind eye to malpractice right under their noses. When UNESCO, a United Nations organization created after the chaos of World War II to focus on moral and intellectual solidarity, makes such an alarming allegation, it’s sobering and not to be dismissed.

So although Canadians typically think of their society and themselves as among the more honest and transparent found anywhere, how many Canadian institutions are engaging in activities that border on dishonest and are not entirely transparent around the world?

It is overwhelmingly evident that in the last two decades we have witnessed first-hand a remarkable and callous disregard for academic ethics and standards in a scramble by Canadian universities and colleges to sign up foreign students, who represent tens of millions of dollars to their bottom lines.

We have been in a school auditorium in China and listened to the school owner tell prospective parents that the Grade 12 marks from the Canadian provincial school board program can be manipulated to secure admission for their children into Canadian universities. This, while the Canadian teachers sat oblivious to the presentation in Chinese.

In hundreds of our own interaction with students who completed the Canadian provincial school board’s curriculum in China and who achieved grades of 70% and higher in their English class have been unable to achieve even a basic level of English literacy in the written tests we have administered.   But when the largest country of origin for incoming international students and revenue is China – the Canadian universities admitting these students salivate over the dollars and focus less on due diligence.

We were once asked by a university on Canada’s west coast to review 200 applications from Saudi Arabia, in order to identify the two or three Saudi students who were actually eligible for conditional admission to that university’s undergraduate engineering program. But the proposal was scuttled by the university’s ESL department that wanted all 200 to enroll in its language courses. It insisted on and managed conditional admissions for all 200. It’s common at Canadian universities for the ESL program “tail” to wag the campus “dog” when it comes to admissions. In fact, recent Canadian government regulations have been proposed to crack down on this practice as it is an affront to academic integrity.

If you have time, do read the rest as it’s eye-opening. As for the report Broitman cites, I was not able to find it. Broitman gives a link to the report in response to one of the later comments and there’s a link in Tony Bates’s July 31, 2016 posting but you will get a “too bad, so sad” message should you follow either link.The closed I can get to it is this Advisory Statement for Effective International Practice; Combatting Corruption and Enhancing Integrity: A Contemporary Challenge for the Quality and Credibility of Higher Education (PDF). The ‘note’ was jointly published by the (US) Council for Higher Education (CHEA) and UNESCO.

What about the professors?

As they scramble for students, the universities appear to be cutting their ‘teaching costs’, from an April 18, 2018 article by Charles Menzies (professor of anthropology and an elected member of the UBC [University of British Columbia] Board)  for THE UBYSSEY (UBC) student newspaper,

For the first time ever at UBC the contributions of student tuition fees exceeded provincial government contributions to UBC’s core budget. This startling fact was the backdrop to a strenuous grilling of UBC’s VP Finance and Provost Peter Smailes by governors at the Friday the 13 meeting of UBC’s Board of Governors’ standing committee for finance.

Given the fact students contribute more to UBC’s budget than the provincial government, governors asked why more wasn’t being done to enhance the student experience. By way of explanation the provost reiterated UBC’s commitment to the student experience. In a back-and-forth with a governor the provost outlined a range of programs that focus on enhancing the student experience. At several points the chair of the Board would intervene and press the provost for more explanations and elaboration. For his part the provost responded in a measured and deliberate tone outlining the programs in play, conceding more could be done, and affirming the importance of students in the overall process.

As a faculty member listening to this, I wondered about the background discourse undergirding the discussion. How is focussing on a student’s experience at UBC related to our core mission: education and research? What is actually being meant by experience? Why is no one questioning the inadequacy of the government’s core contribution? What about our contingent colleagues? Our part-time precarious colleagues pick up a great deal of the teaching responsibilities across our campuses. Is there not something we can do to improve their working conditions? Remember, faculty working conditions are student learning conditions. From my perspective all these questions received short shrift.

I did take the opportunity to ask the provost, given how financially sound our university is, why more funds couldn’t be directed toward improving the living and working conditions of contingent faculty. However, this was never elaborated upon after the fact.

There is much about the university as a total institution that seems driven to cultivate experiences. A lot of Board discussion circles around ideas of reputation and brand. Who pays and how much they pay (be they governments, donors, or students) is also a big deal. Cultivating a good experience for students is central to many of these discussions.

What is this experience that everyone is talking about? I hear about classroom experience, residence experience, and student experience writ large. Very little of it seems to be specifically tied to learning (unless it’s about more engaging, entertaining, learning with technology). While I’m sure some Board colleagues will disagree with this conclusion, it does seem to me that the experience being touted is really the experience of a customer seeking fulfilment through the purchase of a service. What is seen as important is not what is learned, but the grade; not the productive struggle of learning but the validation of self in a great experience as a member of an imagined community. A good student experience very likely leads to a productive alumni relationship — one where the alumni feels good about giving money.

Inside UBC’s Board of Governors

Should anyone be under illusions as to what goes on at the highest levels of university governance, there is the telling description from Professor Jennifer Berdahl about her experience on a ‘search committee for a new university president’ of the shameful treatment of previous president, Arvind Gupta (from Berdahl’s April 25, 2018 posting on her eponymous blog),

If Prof. Chaudhry’s [Canada Research Chair and Professor Ayesha Chaudhry’s resignation was announced in an April 25, 2018 UBYSSEY article by Alex Nguyen and Zak Vescera] experience was anything like mine on the UBC Presidential Search Committee, she quickly realized how alienating it is to be one of only three faculty members on a 21-person corporate-controlled Board. It was likely even worse for Chaudhry as a woman of color. Combining this with the Board’s shenanigans that are designed to manipulate information and process to achieve desired decisions and minimize academic voices, a sense of helpless futility can set in. [emphasis mine]

These shenanigans include [emphasis mine] strategic seating arrangements, sudden breaks during meetings when conversation veers from the desired direction, hand-written notes from the secretary to speaking members, hundreds of pages of documents sent the night before a meeting, private tête-à-têtes arranged between a powerful board member and a junior or more vulnerable one, portals for community input vetted before sharing, and planning op-eds to promote preferred perspectives. These are a few of many tricks employed to sideline unpopular voices, mostly academic ones.

It’s impossible to believe that UBC’s BoG is the site for these shenanigans take place. The question I have is how many BoGs and how much damage are they inflicting?

Finally getting back to my point, simultaneous with cutting back on teaching and other associated costs and manipulative, childish behaviour at BoG meetings, large amounts of money are being spent to attract ‘stars’ such as Dr. Montemagno. The idea is to attract students (and their money) to the institution where they can network with the ‘stars’. What the student actually learns does not seem to be the primary interest.

So, what kind of deals are the universities making with the ‘stars’?

The Montemagno affair provides a few hints but, in the end,I don’t know and I don’t think anyone outside the ‘sacred circle’ does either. UBC, for example,is quite secretive and, seemingly, quite liberal in its use of nondisclosure agreements (NDA). There was the scandal a few years ago when president Arvind Gupta abruptly resigned after one year in his position. As far as I know, no one has ever gotten to the bottom of this mystery although there certainly seems to have been a fair degree skullduggery involved.

After a previous president, Martha Cook Piper took over the reigns in an interim arrangement, Dr. Santa J. Ono (his Wikipedia entry) was hired.  Interestingly, he was previously at the University of Cincinnati, one of Montemagno’s previous employers. That university’s apparent eagerness to treat Montemagno’s extras seems to have led to the University of Alberta’s excesses.  So, what deal did UBC make with Dr. Ono? I’m pretty sure both he and the university are covered by an NDA but there is this about his tenure as president at the University of Cincinnati (from a June 14, 2016 article by Jack Hauen for THE UBYSSEY),

… in exchange for UC not raising undergraduate tuition, he didn’t accept a salary increase or bonus for two years. And once those two years were up, he kept going: his $200,000 bonus in 2015 went to “14 different organizations and scholarships, including a campus LGBTQ centre, a local science and technology-focused high school and a program for first-generation college students,” according to the Vancouver Sun.

In 2013 he toured around the States promoting UC with a hashtag of his own creation — #HottestCollegeInAmerica — while answering anything and everything asked of him during fireside chats.

He describes himself as a “servant leader,” which is a follower of a philosophy of leadership focused primarily on “the growth and well-being of people and the communities to which they belong.”

“I see my job as working on behalf of the entire UBC community. I am working to serve you, and not vice-versa,” he said in his announcement speech this morning.

Thank goodness it’s possible to end this piece on a more or less upbeat note. Ono seems to be what my father would have called ‘a decent human being’. It’s nice to be able to include a ‘happyish’ note.

Plea

There is huge money at stake where these ‘mega’ science and technology projects are concerned. The Ingenuity Lab was $100M investment to be paid out over 10 years and some basic questions don’t seem to have been asked. How does this person manage money? Leaving aside any issues with an individual’s ethics and moral compass, scientists don’t usually take any courses in business and yet they are expected to manage huge budgets. Had Montemagno handled a large budget or any budget? It’s certainly not foregrounded (and I’d like to see dollar amounts) in his CV.

As well, the Ingenuity Lab was funded as a 10 year project. Had Montemagno ever stayed in one job for 10 years? Not according to his CV. His longest stint was approximately eight years when he was in the US Navy in the 1980s. Otherwise, it was five to six years, including the Ingenuity Lab stint.

Meanwhile, our universities don’t appear to be applying the rules and protocols we have in place to ensure fairness. This unseemly rush for money seems to have infected how Canadian universities attract (local, interprovincial, and, especially, international) students to pay for their education. The infection also seems to have spread into the ways ‘star’ researchers and faculty members are recruited to Canadian universities while the bulk of the teaching staff are ‘starved’ under one pretext or another while a BoG may or may not be indulging in shenanigans designed to drive decision-making to a preordained outcome. And, for the most part, this is occurring under terms of secrecy that our intelligence agencies must envy.

In the end, I can’t be the only person wondering how all this affects our science.

Ingenuity Lab (a nanotechnology initiative), the University of Alberta, and Carlo Montemagno—what is happening in Canadian universities? (1 of 2)

I was not expecting to come back to the Carlo Montemagno ‘affair’ after my March 5, 2018 posting but it seems this story about a nanotechnology laboratory (Ingenuity Lab) in Alberta and the lab’s leader, Dr. Carlo Montemagno and his hurried departure for a position at Southern Illinois University (SIU) as Chancellor in summer 2017 has legs. It also hints at some issue within Canadian higher education.

Set up

I noted at the time of my posting, that no one in Illinois seemed to be aware that Montemagno had obtained employment for his daughter and son-in-law at the University of Alberta just as he did at SIU when he later moved there. I also noted the pay cut Montemagno took when he moved to Illinois. Both of these facts have since come to light in Illinois and are mentioned in an April 10, 2018 article by Anna Spoerre for SIU’s student paper, the Daily Egyptian.

Before moving onto the latest, I was hoping they’d be able to salvage something from the wreckage in Alberta (from my March 5, 2018 posting),

As for the Ingenuity Lab, perhaps we’ll hear more about their Carbon transformation programme later this year (2018). Unfortunately, the current webpage does not have substantive updates. There are some videos but they seem more like wistful thinking than real life projects.

If they are cleaning up a mess and this looks like it might be the case, I hope they’re successful and can move forward with their projects. [emphases mine] I would like to hear more about the Ingenuity Lab in the future.

Tragedy and comedy

Sadly, it seems the Ingenuity Lab is in the process of being mothballed (from Spoerre’s April 10, 2018 article),

Nine months after Carlo Montemagno left a position as director of Ingenuity Lab to assume the chancellorship at SIU’s Carbondale campus, some members of the Alberta community are still picking up the pieces of what they call a failed project brought to life and then abandoned by its director.

Ingenuity Lab was established in 2012 by the government of Alberta in partnership with the University of Alberta and Alberta Innovates to conduct nanotechnology research related to health, environment, energy and agriculture.

Though a reason was not explicitly given, funding for the lab will be cut this year [2018; emphasis mine] following a review of the lab’s operations.

In June 2017, a review of Ingenuity Lab was authorized. [emphasis mine] The process wrapped up in September [2017] as part of a review of all Alberta Innovates funded programs, said Robert Semeniul, the new media specialist at Alberta Innovates.

Montemagno announced his relocation to SIU shortly after the review got under way. [emphasis mine] Meanwhile, an interim director — Murray Gray — was appointed by the university to redirect the initiative, Semeniul said.

“I was looking for an institutional leadership position that presented new challenges and opportunities — where there was work to be done and I could make a difference,” Montemagno said of leaving Alberta for Illinois. “I also missed interacting and working directly with students.”

“This was supposed to generate incredible amounts of economic activity,” said a former researcher at the former National Institute for Nanotechnology who had experience in the lab. “After awhile — three or four years — people were astonished at the lack of anything coming out of this lab, out of this giant pile of money that was being spent.”

Montemagno said through ground-breaking research the lab attracted external grant funding, including $9 million the last year he ran the lab. [As far as I can tell, as per an Ingenuity Lab news release mentioned in my March 5, 2018 posting, there was a $1.7M from Natural Resources Canada. It was the only grant announced when I was looking in March 2018. Where did the $9M come from?]

The final review has not been made public. Gray did not respond to requests for comment.

Keeping family close

In early April [2018] in Edmonton the remnants of the Ingenuity Lab were gradually erased from the Nanotechnology Research Center on the University of Alberta’s campus.

A nametag pinned to a cubicle wall there displayed the name Kyle Minor, Montemagno’s nephew, and graduate student and project leader in his uncle’s lab.

Minor was one of three family members Montemagno employed at Ingenuity Lab. [emphasis mine] Montemagno’s daughter, Melissa Germain, and son-in-law, Jeffrey Germain, (both of whom are now employed at SIU) were also given jobs at the lab in Canada. The possibility of the Germains’ employment was mentioned in Montemagno’s hiring contract in Alberta.

“I can see why the people who hired [Montemagno] liked him, because he has a charismatic presence and he says the right things to the people he is speaking to,” a previous research associate at the lab said.

Montemagno was brought to the university of Alberta in 2012 with an annual salary of $500,000, almost $400,000 in U.S. currency at Tuesday’s exchange rate. He also received a $1,000,000 interest-free housing loan, according to his employment paperwork. [emphasis mine]

“Your intention to employ, through funding available under the NEBSL Accelerator initiative, your son-in-law and daughter in positions commensurate with their education and experience is acknowledged,” Montemagno’s contract read.

The contract, which purported to follow the University’s “Employment Policy” and “Managing Conflict of Interest in Employment Procedure” was signed by David Lynch, Alberta’s [sic] dean of engineering at the time of the hire. Lynch did not respond to requests for comment.

According to emails obtained through public information requests, there was a personal agreement between Lynch and Montemagno that the expenses for the immigration costs for him and his family would also be covered. [emphasis mine]

“On occasion, the recruitment of specialized faculty members includes a provision for the hiring of a family member into a position commensurate with their education and experience, and subject to our recruitment policy, [emphasis mine]” said Kiann McNeill, spokesman for the University of Alberta.

In addition to what seems to be an extraordinarily high salary ($500,000 + per year) and hiring his family (three of them per the Daily Egyptian’s Anna Spoerre as opposed to the two mentioned in my March 2018 post) to work in his lab, Montemagno got a $1M interest-free loan (this is not entirely correct, the CBC article, which follows, downgrades that number as you’ll see in the 2nd excerpt) and had his and his family’s immigration expenses covered. Is this standard hiring practice in the academic field? Given the failure to get a response from an individual (David Lynch, the University of Alberta’s then dean of engineering) who would have been involved, the answer would seem to be ‘no’.

Please do read the rest of Spoerre’s article and, if you have a little more time,  the comments. It should be noted that there seem to be a couple of problems with details. The one noted here is the issue around the loan and, in the article, she states that the National Institute of Nanotechnology has been renamed to Nanotechnology Research Center. After changing ‘center’ to ‘centre’ in my search term, I found this site, which bears yet another name, NRC-UAlberta Nanotechnology Initiative. Should I ever find out what is going with Canada’s national nanotechnology institution, it will be the subject of another posting. [ETA June 20, 2018: I was finally able to untangle the mess (see my June 20, 2018 posting). Spoerre is unlikely to have been following the ‘National Institute of Nanotechnology story’ as I have and missed the ‘downsizing/rebranding exercise’ that had taken place. Also, that particular detail was largely irrelevant to her story.]

The Canadian Broadcasting Corporation (CBC) also covered the situation in an April 10, 2018 online article by Charles Rusnell and Jennie Russell,

The University of Alberta recruited star American nanotechnology researcher [emphasis mine] Carlo Montemagno in 2012 by agreeing to his condition that it hire his daughter and son-in-law to work in his laboratory — in addition to his $500,000 a year salary.

Documents obtained through freedom of information by CBC News show the university offered jobs to Jeff and Melissa Germain, for which the couple were not required to formally apply.

In addition to leading the Ingenuity Lab at the U of A, he also served as director of the biomaterials program for the Canada Research Council’s National Institute for Nanotechnology and was its research chair in intelligent nanosystems.

The university recruited Montemagno from the University of Cincinnati, where he was the founding dean of the College of Engineering and Applied Sciences.

An internal U of A document shows Montemagno sought the nepotism hires in Alberta because he wanted to continue the same arrangement he had at the University of Cincinnati.

It is the same deal he again negotiated when he left Alberta in 2017 to become chancellor of Southern Illinois University – Carbondale (SIU).

In January [2018], the university’s student newspaper, The Daily Egyptian, revealed SIU hired the Germains into jobs which were not advertised. Those hirings are now the subject of a state investigation.

Here’s where it gets interesting (from CBC’s April 10, 2018 online article),

The internal University of Alberta documents reveal:

  • The university appears to have allowed Montemagno to help write son-in-law Jeff Germain’s job description [emphasis mine] as laboratory manager. An early draft of the job description shows a master’s degree as a minimum educational requirement. It was later downgraded to a bachelor’s degree. Germain has a bachelor’s degree in biology but had significant experience as a lab manager.
  • The university agreed to pay Jeff Germain a “market supplement” of more than $25,000 [emphasis mine]. Added to his base salary of nearly $95,000, that raised his total yearly salary to $120,000 a year, not including benefits. Germain was later promoted to director of operations for the Ingenuity Lab.
  • The engineering faculty also hired Montemagno’s daughter, Melissa Germain, as a “laboratory technician” in chemical and materials engineering, the same area as her husband. For 24 hours a week, her starting salary was nearly $3,500 a month. [emphases mine]While officially employed as a lab tech, Melissa Germain’s LinkedIn profile states she worked as a copy editor. She was later promoted to a full-time position as communications director and paid nearly $6,000 a month. According to her LinkedIn account, she has a bachelor’s degree in geology. [emphases mine]
  • ​The university also initially offered Montemagno an interest-free $1.4-million loan to buy a house. That provision was later changed to an interest-free $100,000 loan [emphases mine] and the reimbursement of any mortgage or line of credit interest fees used for a downpayment, provided the cost of the house was not more than $1.4 million. The loan had to be repaid as soon as Montemagno sold his house in Ohio or by June 30, 2017, whichever came first.

(sigh of relief) At least, it wasn’t a $1M loan. One other thought, was the loan repaid? Also, I checked (see here [accessed April 18, 2018]) for the standard salary scale for communications specialists in Canada and Melissa Germain’s roughly $72,000/year is on the high end of the scale, $73,000 being at the top. Presumably, you’d need a lot of experience and, hopefully, some training for the top salary.

Ethics, anyone?

CBC soldiered on and found an ethics expert (perhaps the University of Alberta needs someone?), from (from CBC’s April 10, 2018 online article),

Hiring spouses who are themselves academics is not uncommon in higher education, said Richard Leblanc, an expert in ethics and governance at York University in Toronto. But Leblanc said hiring a child and their spouse is “very, very strange. Very anomalous.”

“You want merit-based hiring and merit-based student applications, and not on the basis of favouritism or conflicts of interest,” he said.

“You want completely even-handed treatment of staff, of faculty, and of students. And something like this could reveal a culture of, in fact, inequitable treatment, which could be very damaging for a university.”

Leblanc also said the university should not be offering loans.

“Unless you are a financial institution — which the university is not, the university has public taxpayer money and the public trust — so offering an interest-free loan for anybody, any faculty member, is highly anomalous, for obvious reasons,” Leblanc said.

“I mean, that’s not what the university does and it is a conflict of interest because you don’t have the ability to let that person go. You are sort of beholden to that person and it is just not a proper use of scarce funding and taxpayer resources, to offer an interest-free loan. It is very strange.”

But the university’s new dean of engineering, Fraser Forbes, strongly defended the hirings, insisting there was no nepotism involved. [emphases mine]

Just in case some of us might not agree with Forbes, he notes this, (from CBC’s April 10, 2018 online article),

Forbes said the Germains were not paid with university operating funds. Instead, Forbes said they were paid with funds provided to the university by the province and federal government for nanotechnology research. [emphases mine]

I feel ever so much better.

The Province of Alberta did have something to say about this, eventually (from CBC’s April 10, 2018 online article),

The University of Alberta said Wednesday [April 11, 2018] it will review its conflict of interest policy in light of news that a former employee six years ago had requested family members be hired in a process that was not rigorously documented.

Last month [March 2018], Alberta Advanced Education Minister Marlin Schmidt [emphasis mine] sharply criticized University of Alberta president David Turpin’s $824,000 total compensation in the context of a four-per-cent budget cut, and increases in tuition for international students and student-residence rates.

Schmidt refused an interview request from CBC News for this story. His press secretary said Schmidt had no time in his schedule over several days to accommodate a 10-minute interview.

But at a media availability Tuesday [April 10, 2018] on new rules to limit salaries of university and college presidents, Schmidt was asked about Montemagno’s deal to hire his daughter and son-in-law.

“No, nepotism has no place in any public agency,” Schmidt said.

It’s good to know Schmidt’s stance on this and perhaps there will be some action taken over what seems to be a blatant failure to curb nepotism at the now largely defunct (no website but they still have a Facebook and Twitter presence) Ingenuity Lab.

Since the April 10, 2018 online article, the University of Alberta has pleaded guilty in the court of public opinion and admitted to the conflicts of interest in the Montemagno affair, from an April 11, 2018 article by Juris Garvey for the Edmonton Journal,

While the university was in no way “contractually obligated” to hire family members, it may have done so against its own conflict of interest policy. [emphasis mine]

Deputy provost Wendy Rogers said Wednesday there is nothing unusual about post-secondary institutes hiring people from the same family. But their policies say family members are not allowed to be involved in the hiring of other family, develop job descriptions, supervise them or make recommendations for their pay.

Emails show university staff recommended Montemagno write the position description for the job intended for Jeffrey Germain, and an organizational chart shows Jeffrey Germain reported directly to Montemagno for the first two years.

Of greatest concern, however, is that the university acknowledged there was “no record of an advertisement for the position … nor records of the hiring process” for Jeffrey Germain.

“We cannot confirm whether or not the appropriate procedure governing conflict of interest was initially followed,” the university said in a statement posted to its website Tuesday [April 10,2018].

Had we received a complaint about this at any time while Dr. Montemagno was employed here, it would have been fully investigated.” [emphasis mine]

Yes, I can imagine the number of people stepping forward to make a complaint. They were certainly eager to be interviewed for Spoerre’s April 10, 2018 article,

The former research associate was one of 11 people interviewed in Edmonton for this story who spoke on condition of anonymity out of fear of harming their careers.

Part 2

Café Scientifique Vancouver talk on January 30, 2018 and a couple of February 2018 art/sci events in Toronto

Vancouver

This could be a first for Café Scientifique Vancouver. From a January 28, 2018 Café Scientifique Vancouver announcement (received via email)

This is a reminder that our next café with biotech entrepreneur Dr.Andrew Tait (TUESDAY, JANUARY 30TH [2018] at 7:30PM) in the back room of YAGGER'S DOWNTOWN (433 W Pender).

COMBINING TRADITIONAL NATURAL MEDICINES WITH SCIENTIFIC RESEARCH: UNVEILING THE POTENTIAL OF THE MANDARIN ORANGE PEEL

The orange peel is something most of us may think of as a throw-away compost item, but it is so much more. Travel back in time 9,000 years to China, where orange peel was found in the first fermented alcoholic beverage, and return to today, where mandarin orange peel remains one of China’s top selling herbs that promotes digestion. Now meet Tait Laboratories Inc., a company that was founded based on one chemistry Ph.D. student’s idea, that mandarin orange peel has the potential to reverse incurable neurodegenerative diseases like multiple sclerosis. You will learn about the company’s journey through a scientific lens, from its early days to the present, having developed a mandarin orange peel product sold across Canada in over 1,000 stores including 400 Rexall pharmacies. You will leave with a basic understanding of how herbal products like the company’s mandarin orange peel-based product are developed and brought to market in Canada, and about the science that is required to substantiate health claims on this and other exciting new botanical products.

Bio:

Dr. Andrew Tait is the founder of Tait Laboratories Inc., a company devoted to developing natural medicines from agricultural bi-products. After a B.Sc. in Biochemistry and M.Sc. in Chemistry from Concordia University (Montreal), he completed a Ph.D. in Chemistry at the
University of British Columbia [UBC].

Inspired by his thesis work on multiple sclerosis, he subsequently identified Traditional Chinese Medicines as having potential to treat a wide range of chronic diseases; he founded the company while finishing his graduate studies.

In 2012, he was invited to Ottawa to be awarded the NSERC [{Canada} Natural Sciences and Engineering Research Council] Innovation Challenge Award, for successfully translating his Ph.D. research to an entrepreneurial venture. In 2014, he was awarded the BC Food Processors Association “Rising Star” award.

Dr. Tait is a regularly invited speaker on the topics of entrepreneurship and the science supporting natural health products; he was keynote speaker in 2012 at the Annual Symposium of the Boucher Institute of Naturopathic Medicine (Vancouver) and in 2016 at the
Functional Foods and Natural Health Products Graduate Research Symposium (Winnipeg).

Supported by the Futurpreneur Canada, the Bank of Development of Canada, the UBC’s Entrepreneurship@UBC program, and the NSERC  and NRC  [{Canada} National Research Council] Industry Research Assistance Program (IRAP), he works with industrial and academic researchers developing safe, affordable, and clinically proven medicines. He successfully launched MS+ Mandarin Skin PlusÒ, a patent-pending digestive product now on shelf in over 1000 pharmacies and health food stores across Canada, including 400 Rexall pharmacies.

Dr. Tait mentors young companies as an Entrepreneur in Residence at both SFU [Simon Fraser University] Coast Capital Savings Venture Connection and also the Health Tech Innovation Hub and he also volunteers his time to mentor students of the Student Biotechnology Network.

Lest it be forgotten, many drugs and therapeutic agents are based on natural remedies; a fact often ignored in the discussion about drugs and natural remedies. In any event, I am surprised this talk is being hosted by Café Scientifique Vancouver which has tended to more ‘traditional’ (i.e., university academic) presentations without any hint of ‘alternative’ or ‘entrepreneurial’ aspects. I wonder if this is the harbinger of new things to come from the Café Scientifique Vancouver community.

Meanwhile, interested parties can find out more about Tait Laboratories on their company website. They are selling one product at this time (from the MS+ [Mandarin Skin Plus] product webpage,

MS+™ (Mandarin Skin Plus) is a revolutionary natural health product that aids with digestion and promotes gastrointestinal health. It is a patent-pending proprietary extract based on dry-aged mandarin orange peel, an ancient Traditional Chinese Medicine. This remedy has been safely used for centuries to relieve bloating, indigestion, diarrhea, nausea, upset stomach, cough with phlegm. Experience ULTIMATE DIGESTIVE RELIEF and top gastrointestinal health for only about a dollar a day!

Directions: take one capsule twice a day, up to six capsules per day. Swallow capsule directly OR dissolve powder in water.
60 vegan capsules for ~ 1 month supply

I would have liked to have seen a list of research papers and discussion of human clinical trials regarding their ‘digestive’ product. Will Tait be discussing his research and results into what seems to be a new direction (i.e., the use of mandarin skin peel-derived therapeutics for neurodegenerative diseases)?

I don’t think I’m going to make it to the talk but should anyone who attends care to answer the question, please feel free to add a comment.

ArtSci Salon in Toronto

2018 is proving to be an active year for the ArtSci Salon folks in Toronto. They’ve just finished hosting a January 24-25, 2018 workshop and January 26, 2018 panel discussion on the gene-editing tool CRISPR/CAS9 (see my January 10, 2018 posting for a description).

Now they’ve announced another workshop and panel discussion on successive nights in February, the topic being: cells. From a January 29, 2018 ArtSci Salon announcement (received via email), Note: The panel discussion is listed first, then the workshop, then the artists’ biographies,

FROM CELL TO CANVAS: CREATIVE EXPLORATIONS OF THE MICROSCOPIC [panel discussion]

From the complex forms of the cell to the colonies created by the microbiota; from the undetectable chemical reactions activated by enzymes and natural processes to the environmental information captured through data visualization, the five local and international artists presenting tonight have developed a range of very diverse practices all inspired by the invisible, the undetectable and the microscopic.

We invite you to an evening of artist talks and discussion on the creative process of exploring the microscopic and using living organisms in art, on its potentials and implication for science and its popular dissemination, as well as on its ethics.

WITH:
Robyn Crouch
Mellissa Fisher
JULIA KROLIK
SHAVON MADDEN
TOSCA TERAN

FRIDAY, FEB 9, 2018
6:00-8:00 PM
THE FIELDS INSTITUTE
222 COLLEGE STREET,
RM 230

[Go to this page for access to registration]

FROM CELL TO CANVAS: CREATIVE EXPLORATIONS OF THE MICROSCOPIC [workshop]

THE EVENT WILL BE FOLLOWED BY A WORKSHOP BY: MELLISSA FISHER, SHAVON MADDEN AND JULIA KROLIK
FEB. 10, 2018
11:00AM-5:00PM
AT HACKLAB,
1266 Queen St West

[Go to this page for access to registration]

Workshop:

Design My Microbiome

Artist Mellissa Fisher invites participants to mould parts of her body in agar to create their own microbial version of her, alongside producing their own microbial portrait with painting techniques.

Cooking with the Invasive

Artist Shavon Madden invites participants to discuss invasive species like garlic mustard and cook invasive species whilst exploring, do species which we define and brand as invasive simply have no benefits?

Intoduction to Biological Staining

Artist & Scientist Julia Krolik invites participants to learn about 3 different types of biological staining and have a chance to try staining procedures.

BIOS:

ROBYN CROUCH
The symbolic imagery that comes through Robyn’s work invites one’s gaze inward to the cellular realms. There, one discovers playful depictions of chemical processes; the unseen lattice upon which our macro­cosmic world is constructed. Technological advancements create windows into this molecular realm, and human consciousness acts as the interface between the seen and the unseen worlds. In her functional ceramic work, the influence of Chinese and Japanese tea ceremony encourages contem­plation and appreciation of a quiet
moment. The viewer-participant can lose their train of thought while meandering through geometry and biota, con­nected by strands of double-helical DNA. A flash of recognition, a momentary mirror.

MELLISSA FISHER
Mellissa Fisher is a British Bio Artist based in Kent. Her practice explores the invisible world on our skin by using living organisms and by creating sculptures made with agar to show the public what the surface of our skin really looks like. She is best known for her work with bacteria and works extensively with collaborators in microbiology and immunology. She has exhibited an installation _ “Microbial Me”_with Professor Mark Clements and Dr Richard Harvey at The Eden Project for their permanent exhibition _“The Invisible You: The Human
Microbiome”._The installation included a living portrait in bacteria of the artists face as well as a time-lapse film of the sculpture growing.

JULIA KROLIK
Julia Krolik is a creative director, entrepreneur, scientist and award-winning artist. Her diverse background enables a rare cross-disciplinary empathy, and she continuously advocates for both art and science through several initiatives. Julia is the founder of Art the Science, a non-profit organization dedicated to facilitating artist residencies in scientific research laboratories to foster Canadian science-art culture and expand scientific knowledge communication to benefit the public. Through her consulting agency Pixels and Plans, Julia works with private and public organizations, helping them with strategy, data visualization and knowledge mobilization, often utilizing creative technology and skills-transfer workshops.

SHAVON MADDEN
Shavon Madden is a Brampton based artist, specializing in sculptural, performance and instillation based work exploring the social injustices inflicted on the environment and its creatures. Her work focuses on challenging social-environmental and political ethics, through the embodied experience and feelings of self. She graduated from the University of Toronto Specializing in Art and Art History, along with studies in Environmental Science and will be on her way to Edinburgh for her MFA. Shavon has had works shown at Shelly Peterson, the Burlington Art Gallery and the Art Gallery of Mississauga, among many others. Website: www.greenheartartistry.com [4]

TOSCA TERAN
Working with metal for over 30+ years, Tosca was introduced to glass as an artistic medium in 2004. Through developing bodies of work incorporating metal + glass Tosca has been awarded scholarships at The Corning Museum of Glass, Pilchuck Glass School and The Penland school of Crafts. Her work has been featured at SOFA New York, Culture Canada,
Metalsmith Magazine, The Toronto Design Exchange, and the Memphis Metal Museum. She has been awarded residencies at Gullkistan, Nes, and the Ayatana Research Program. A long-term guest artist instructor at the Ontario Science Centre, Tosca continues to explore materials, code, BioArt, SciArt and teach Metal + Glass courses out of her studio in Toronto.

It seems that these February events and the two events with Marta de Menezes are part of the FACTT (transdisciplinary and transnational festival of art and science) Toronto, from the FACTT Toronto webpage,

FACTT Toronto – Festival of Art & Science posted in: blog, events

The Arte Institute, in partnership with Cultivamos Cultura and ArtSi Salon, has the pleasure to announce FACTT – Festival of Art & Science in Toronto.

The Festival took place in Lisbon, New York, Mexico, Berlin and will continue in Toronto.
Exhibition: The Cabinet Project/ Art Sci Salon / FACTT

Artists:

Andrew Carnie
Elaine Whittaker
Erich Berger
Joana Ricou
Ken Rinaldo
Laura Beloff and Maria Antonia Gonzalez Valerio
Marta de Menezes and Luís Graça
Pedro Cruz

Dates: Jan 26- feb 15 [2018 {sic}]

Where: Meet us on Jan 26 [2018] in the Lobby of the Physics Department, 255 Huron Street
University of Toronto
When: 4:45 PM

You may want to keep an eye on the ArtSci Salon website although I find their posting schedule a bit erratic. Sometimes, I get email notices for events that aren’t yet listed on their website.

Robots in Vancouver and in Canada (two of two)

This is the second of a two-part posting about robots in Vancouver and Canada. The first part included a definition, a brief mention a robot ethics quandary, and sexbots. This part is all about the future. (Part one is here.)

Canadian Robotics Strategy

Meetings were held Sept. 28 – 29, 2017 in, surprisingly, Vancouver. (For those who don’t know, this is surprising because most of the robotics and AI research seems to be concentrated in eastern Canada. if you don’t believe me take a look at the speaker list for Day 2 or the ‘Canadian Stakeholder’ meeting day.) From the NSERC (Natural Sciences and Engineering Research Council) events page of the Canadian Robotics Network,

Join us as we gather robotics stakeholders from across the country to initiate the development of a national robotics strategy for Canada. Sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC), this two-day event coincides with the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017) in order to leverage the experience of international experts as we explore Canada’s need for a national robotics strategy.

Where
Vancouver, BC, Canada

When
Thursday September 28 & Friday September 29, 2017 — Save the date!

Download the full agenda and speakers’ list here.

Objectives

The purpose of this two-day event is to gather members of the robotics ecosystem from across Canada to initiate the development of a national robotics strategy that builds on our strengths and capacities in robotics, and is uniquely tailored to address Canada’s economic needs and social values.

This event has been sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC) and is supported in kind by the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017) as an official Workshop of the conference.  The first of two days coincides with IROS 2017 – one of the premiere robotics conferences globally – in order to leverage the experience of international robotics experts as we explore Canada’s need for a national robotics strategy here at home.

Who should attend

Representatives from industry, research, government, startups, investment, education, policy, law, and ethics who are passionate about building a robust and world-class ecosystem for robotics in Canada.

Program Overview

Download the full agenda and speakers’ list here.

DAY ONE: IROS Workshop 

“Best practices in designing effective roadmaps for robotics innovation”

Thursday September 28, 2017 | 8:30am – 5:00pm | Vancouver Convention Centre

Morning Program:“Developing robotics innovation policy and establishing key performance indicators that are relevant to your region” Leading international experts share their experience designing robotics strategies and policy frameworks in their regions and explore international best practices. Opening Remarks by Prof. Hong Zhang, IROS 2017 Conference Chair.

Afternoon Program: “Understanding the Canadian robotics ecosystem” Canadian stakeholders from research, industry, investment, ethics and law provide a collective overview of the Canadian robotics ecosystem. Opening Remarks by Ryan Gariepy, CTO of Clearpath Robotics.

Thursday Evening Program: Sponsored by Clearpath Robotics  Workshop participants gather at a nearby restaurant to network and socialize.

Learn more about the IROS Workshop.

DAY TWO: NSERC-Sponsored Canadian Robotics Stakeholder Meeting
“Towards a national robotics strategy for Canada”

Friday September 29, 2017 | 8:30am – 5:00pm | University of British Columbia (UBC)

On the second day of the program, robotics stakeholders from across the country gather at UBC for a full day brainstorming session to identify Canada’s unique strengths and opportunities relative to the global competition, and to align on a strategic vision for robotics in Canada.

Friday Evening Program: Sponsored by NSERC Meeting participants gather at a nearby restaurant for the event’s closing dinner reception.

Learn more about the Canadian Robotics Stakeholder Meeting.

I was glad to see in the agenda that some of the international speakers represented research efforts from outside the usual Europe/US axis.

I have been in touch with one of the organizers (also mentioned in part one with regard to robot ethics), Ajung Moon (her website is here), who says that there will be a white paper available on the Canadian Robotics Network website at some point in the future. I’ll keep looking for it and, in the meantime, I wonder what the 2018 Canadian federal budget will offer robotics.

Robots and popular culture

For anyone living in Canada or the US, Westworld (television series) is probably the most recent and well known ‘robot’ drama to premiere in the last year.As for movies, I think Ex Machina from 2014 probably qualifies in that category. Interestingly, both Westworld and Ex Machina seem quite concerned with sex with Westworld adding significant doses of violence as another  concern.

I am going to focus on another robot story, the 2012 movie, Robot & Frank, which features a care robot and an older man,

Frank (played by Frank Langella), a former jewel thief, teaches a robot the skills necessary to rob some neighbours of their valuables. The ethical issue broached in the film isn’t whether or not the robot should learn the skills and assist Frank in his thieving ways although that’s touched on when Frank keeps pointing out that planning his heist requires he live more healthily. No, the problem arises afterward when the neighbour accuses Frank of the robbery and Frank removes what he believes is all the evidence. He believes he’s going successfully evade arrest until the robot notes that Frank will have to erase its memory in order to remove all of the evidence. The film ends without the robot’s fate being made explicit.

In a way, I find the ethics query (was the robot Frank’s friend or just a machine?) posed in the film more interesting than the one in Vikander’s story, an issue which does have a history. For example, care aides, nurses, and/or servants would have dealt with requests to give an alcoholic patient a drink. Wouldn’t there  already be established guidelines and practices which could be adapted for robots? Or, is this question made anew by something intrinsically different about robots?

To be clear, Vikander’s story is a good introduction and starting point for these kinds of discussions as is Moon’s ethical question. But they are starting points and I hope one day there’ll be a more extended discussion of the questions raised by Moon and noted in Vikander’s article (a two- or three-part series of articles? public discussions?).

How will humans react to robots?

Earlier there was the contention that intimate interactions with robots and sexbots would decrease empathy and the ability of human beings to interact with each other in caring ways. This sounds a bit like the argument about smartphones/cell phones and teenagers who don’t relate well to others in real life because most of their interactions are mediated through a screen, which many seem to prefer. It may be partially true but, arguably,, books too are an antisocial technology as noted in Walter J. Ong’s  influential 1982 book, ‘Orality and Literacy’,  (from the Walter J. Ong Wikipedia entry),

A major concern of Ong’s works is the impact that the shift from orality to literacy has had on culture and education. Writing is a technology like other technologies (fire, the steam engine, etc.) that, when introduced to a “primary oral culture” (which has never known writing) has extremely wide-ranging impacts in all areas of life. These include culture, economics, politics, art, and more. Furthermore, even a small amount of education in writing transforms people’s mentality from the holistic immersion of orality to interiorization and individuation. [emphases mine]

So, robotics and artificial intelligence would not be the first technologies to affect our brains and our social interactions.

There’s another area where human-robot interaction may have unintended personal consequences according to April Glaser’s Sept. 14, 2017 article on Slate.com (Note: Links have been removed),

The customer service industry is teeming with robots. From automated phone trees to touchscreens, software and machines answer customer questions, complete orders, send friendly reminders, and even handle money. For an industry that is, at its core, about human interaction, it’s increasingly being driven to a large extent by nonhuman automation.

But despite the dreams of science-fiction writers, few people enter a customer-service encounter hoping to talk to a robot. And when the robot malfunctions, as they so often do, it’s a human who is left to calm angry customers. It’s understandable that after navigating a string of automated phone menus and being put on hold for 20 minutes, a customer might take her frustration out on a customer service representative. Even if you know it’s not the customer service agent’s fault, there’s really no one else to get mad at. It’s not like a robot cares if you’re angry.

When human beings need help with something, says Madeleine Elish, an anthropologist and researcher at the Data and Society Institute who studies how humans interact with machines, they’re not only looking for the most efficient solution to a problem. They’re often looking for a kind of validation that a robot can’t give. “Usually you don’t just want the answer,” Elish explained. “You want sympathy, understanding, and to be heard”—none of which are things robots are particularly good at delivering. In a 2015 survey of over 1,300 people conducted by researchers at Boston University, over 90 percent of respondents said they start their customer service interaction hoping to speak to a real person, and 83 percent admitted that in their last customer service call they trotted through phone menus only to make their way to a human on the line at the end.

“People can get so angry that they have to go through all those automated messages,” said Brian Gnerer, a call center representative with AT&T in Bloomington, Minnesota. “They’ve been misrouted or been on hold forever or they pressed one, then two, then zero to speak to somebody, and they are not getting where they want.” And when people do finally get a human on the phone, “they just sigh and are like, ‘Thank God, finally there’s somebody I can speak to.’ ”

Even if robots don’t always make customers happy, more and more companies are making the leap to bring in machines to take over jobs that used to specifically necessitate human interaction. McDonald’s and Wendy’s both reportedly plan to add touchscreen self-ordering machines to restaurants this year. Facebook is saturated with thousands of customer service chatbots that can do anything from hail an Uber, retrieve movie times, to order flowers for loved ones. And of course, corporations prefer automated labor. As Andy Puzder, CEO of the fast-food chains Carl’s Jr. and Hardee’s and former Trump pick for labor secretary, bluntly put it in an interview with Business Insider last year, robots are “always polite, they always upsell, they never take a vacation, they never show up late, there’s never a slip-and-fall, or an age, sex, or race discrimination case.”

But those robots are backstopped by human beings. How does interacting with more automated technology affect the way we treat each other? …

“We know that people treat artificial entities like they’re alive, even when they’re aware of their inanimacy,” writes Kate Darling, a researcher at MIT who studies ethical relationships between humans and robots, in a recent paper on anthropomorphism in human-robot interaction. Sure, robots don’t have feelings and don’t feel pain (not yet, anyway). But as more robots rely on interaction that resembles human interaction, like voice assistants, the way we treat those machines will increasingly bleed into the way we treat each other.

It took me a while to realize that what Glaser is talking about are AI systems and not robots as such. (sigh) It’s so easy to conflate the concepts.

AI ethics (Toby Walsh and Suzanne Gildert)

Jack Stilgoe of the Guardian published a brief Oct. 9, 2017 introduction to his more substantive (30 mins.?) podcast interview with Dr. Toby Walsh where they discuss stupid AI amongst other topics (Note: A link has been removed),

Professor Toby Walsh has recently published a book – Android Dreams – giving a researcher’s perspective on the uncertainties and opportunities of artificial intelligence. Here, he explains to Jack Stilgoe that we should worry more about the short-term risks of stupid AI in self-driving cars and smartphones than the speculative risks of super-intelligence.

Professor Walsh discusses the effects that AI could have on our jobs, the shapes of our cities and our understandings of ourselves. As someone developing AI, he questions the hype surrounding the technology. He is scared by some drivers’ real-world experimentation with their not-quite-self-driving Teslas. And he thinks that Siri needs to start owning up to being a computer.

I found this discussion to cast a decidedly different light on the future of robotics and AI. Walsh is much more interested in discussing immediate issues like the problems posed by ‘self-driving’ cars. (Aside: Should we be calling them robot cars?)

One ethical issue Walsh raises is with data regarding accidents. He compares what’s happening with accident data from self-driving (robot) cars to how the aviation industry handles accidents. Hint: accident data involving air planes is shared. Would you like to guess who does not share their data?

Sharing and analyzing data and developing new safety techniques based on that data has made flying a remarkably safe transportation technology.. Walsh argues the same could be done for self-driving cars if companies like Tesla took the attitude that safety is in everyone’s best interests and shared their accident data in a scheme similar to the aviation industry’s.

In an Oct. 12, 2017 article by Matthew Braga for Canadian Broadcasting Corporation (CBC) news online another ethical issue is raised by Suzanne Gildert (a participant in the Canadian Robotics Roadmap/Strategy meetings mentioned earlier here), Note: Links have been removed,

… Suzanne Gildert, the co-founder and chief science officer of Vancouver-based robotics company Kindred. Since 2014, her company has been developing intelligent robots [emphasis mine] that can be taught by humans to perform automated tasks — for example, handling and sorting products in a warehouse.

The idea is that when one of Kindred’s robots encounters a scenario it can’t handle, a human pilot can take control. The human can see, feel and hear the same things the robot does, and the robot can learn from how the human pilot handles the problematic task.

This process, called teleoperation, is one way to fast-track learning by manually showing the robot examples of what its trainers want it to do. But it also poses a potential moral and ethical quandary that will only grow more serious as robots become more intelligent.

“That AI is also learning my values,” Gildert explained during a talk on robot ethics at the Singularity University Canada Summit in Toronto on Wednesday [Oct. 11, 2017]. “Everything — my mannerisms, my behaviours — is all going into the AI.”

At its worst, everything from algorithms used in the U.S. to sentence criminals to image-recognition software has been found to inherit the racist and sexist biases of the data on which it was trained.

But just as bad habits can be learned, good habits can be learned too. The question is, if you’re building a warehouse robot like Kindred is, is it more effective to train those robots’ algorithms to reflect the personalities and behaviours of the humans who will be working alongside it? Or do you try to blend all the data from all the humans who might eventually train Kindred robots around the world into something that reflects the best strengths of all?

I notice Gildert distinguishes her robots as “intelligent robots” and then focuses on AI and issues with bias which have already arisen with regard to algorithms (see my May 24, 2017 posting about bias in machine learning, AI, and .Note: if you’re in Vancouver on Oct. 26, 2017 and interested in algorithms and bias), there’s a talk being given by Dr. Cathy O’Neil, author the Weapons of Math Destruction, on the topic of Gender and Bias in Algorithms. It’s not free but  tickets are here.)

Final comments

There is one more aspect I want to mention. Even as someone who usually deals with nanobots, it’s easy to start discussing robots as if the humanoid ones are the only ones that exist. To recapitulate, there are humanoid robots, utilitarian robots, intelligent robots, AI, nanobots, ‘microscopic bots, and more all of which raise questions about ethics and social impacts.

However, there is one more category I want to add to this list: cyborgs. They live amongst us now. Anyone who’s had a hip or knee replacement or a pacemaker or a deep brain stimulator or other such implanted device qualifies as a cyborg. Increasingly too, prosthetics are being introduced and made part of the body. My April 24, 2017 posting features this story,

This Case Western Reserve University (CRWU) video accompanies a March 28, 2017 CRWU news release, (h/t ScienceDaily March 28, 2017 news item)

Bill Kochevar grabbed a mug of water, drew it to his lips and drank through the straw.

His motions were slow and deliberate, but then Kochevar hadn’t moved his right arm or hand for eight years.

And it took some practice to reach and grasp just by thinking about it.

Kochevar, who was paralyzed below his shoulders in a bicycling accident, is believed to be the first person with quadriplegia in the world to have arm and hand movements restored with the help of two temporarily implanted technologies. [emphasis mine]

A brain-computer interface with recording electrodes under his skull, and a functional electrical stimulation (FES) system* activating his arm and hand, reconnect his brain to paralyzed muscles.

Does a brain-computer interface have an effect on human brain and, if so, what might that be?

In any discussion (assuming there is funding for it) about ethics and social impact, we might want to invite the broadest range of people possible at an ‘earlyish’ stage (although we’re already pretty far down the ‘automation road’) stage or as Jack Stilgoe and Toby Walsh note, technological determinism holds sway.

Once again here are links for the articles and information mentioned in this double posting,

That’s it!

ETA Oct. 16, 2017: Well, I guess that wasn’t quite ‘it’. BBC’s (British Broadcasting Corporation) Magazine published a thoughtful Oct. 15, 2017 piece titled: Can we teach robots ethics?