Category Archives: food

Popping (nano)bubbles!

Who doesn’t love to pop bubbles? Well, there’s probably someone out there but it does seem to be a near universal delight (especially with the advent of bubble wrap which I’ve seen more than one person happily popping). Scientists are no more immune to that impulse than the rest of us although they approach the whole endeavour from a more technical perspective where popping bubbles becomes destabilization and bubble rupture. From a Sept. 28, 2017 American Institute of Physics (AIP) news release (also on EurekAlert),

Nanobubbles have recently gained popularity for their unique properties and expansive applications. Their large surface area and high stability in saturated liquids make nanobubbles ideal candidates for food science, medicine and environmental advancements. Nanobubbles also have long lifetimes of hours or days, and greater applicability than traditional macrobubbles, which typically only last for seconds.

The stability of nanobubbles is well understood, but the mechanisms causing their eventual destabilization are still in question. Using molecular dynamics simulations (MDS), researchers from the Beijing University of Chemical Technology explored the effect of surfactants — components that lower surface tension — on the stabilization of nanobubbles. They report their findings on the surprising mechanisms of destabilization [emphasis mine] for both soluble and insoluble surfactants this week [Sept. 25-29, 2017] in Applied Physics Letters, from AIP Publishing.

Researchers investigated the differences between soluble and insoluble surfactants and their varying influence on nanobubble stability using MDS software. They created a controled model system where the only variables that could be manipulated were the number of surfactants and the interaction between the surfactant and the substrate, the base of the model where the bubble is formed, to measure the direct influence of surfactants on nanobubble stability.

Analyzing both soluble and insoluble surfactants, the group focused on two possible mechanisms of destabilization: contact line depinning, where the surfactant flexibility reduces the forces responsible for stabilizing the bubble shape, causing it to rupture from lack of inner surface force; and surface tension reduction, causing a liquid to vapor phase transition.

The found soluble surfactants initiated nanobubble depinning when a large amount, roughly 80 percent, of the surfactant was adsorbed by the substrate, eventually causing the nanobubbles to burst.

“However, when small concentrations of soluble surfactant were introduced it remained dissolved, and adsorption onto the substrate was insignificant, generating a negligible effect on nanobubble stability,” said Xianren Zhang at Beijing University of Chemical Technology.

Simulations with insoluble surfactants showed comparable results to soluble surfactants when interacting heavily with substrates, but a new mechanism was discovered demonstrating a liquid-to-vapor transition model of bubble rupture [emphasis mine].

The transition is similar to how we traditionally envision bubbles popping, occurring when a surfactant significantly reduces the surface tension on the outside of the nanobubble. Nanobubbles destabilize in this fashion when a large amount of surfactant is present, but little — around 40 percent — surfactant-substrate interaction occurs.

These findings are critical to understanding nanobubble stability and have implications for nanobubble interaction with other molecules, including proteins and contaminants. Nanobubble applications could revolutionize aspects of modern medicine such as ultrasound techniques, expand functions in food science, and improve waste water treatment. But better characterizing basic properties like instability is essential to fully utilizing their potential in these applications.

There researchers have made this image illustrating their work available,

Several typical snapshots for nanobubbles losing their stability with various concentrations of surfactants and levels of interaction with substrates. In each picture, top panel shows evolution of the system with all involved particles, while in the bottom panel, solvent molecules are not shown to clarify the effect of surfactants. CREDIT: Qianxiang Xiao, Yawei Liu, Zhenjiang Guo, Zhiping Liu, and Xianren Zhang

Here’s a link to and a citation for the paper,

How nanobubbles lose stability: Effects of surfactants featured by Qianxiang Xiao, Yawei Liu, Zhenjiang Guo, Zhiping Liua, and Xianren Zhang. Appl. Phys. Lett. 111, 131601 (2017); doi:

This paper is open access.

A jellyfish chat on November 28, 2017 at Café Scientifique Vancouver get together

Café Scientifique Vancouver sent me an announcement (via email) about their upcoming event,

We are pleased to announce our next café which will happen on TUESDAY,
NOVEMBER 28TH at 7:30PM in the back room of YAGGER'S DOWNTOWN (433 W


Did you know that in addition to stinging swimmers, jellyfish also cause
extensive damage to fisheries and coastal power plants? As threats such
as overfishing, pollution, and climate change alter the marine
environment, recent media reports are proclaiming that jellyfish are
taking over the oceans. Should we hail to our new jellyfish overlords or
do we need to examine the evidence behind these claims? Join Café
Scientifique on Nov. 28, 2017 to learn everything you ever wanted to
know about jellyfish, and find out if jelly burgers are coming soon to a
menu near you.

Our speaker for the evening will be DR. LUCAS BROTZ, a Postdoctoral
Research Fellow with the Sea Around Us at UBC’s Institute for the
Oceans and Fisheries. Lucas has been studying jellyfish for more than a
decade, and has been called “Canada’s foremost jellyfish
researcher” by CBC Nature of Things host Dr. David Suzuki. Lucas has
participated in numerous international scientific collaborations, and
his research has been featured in more than 100 media outlets including
Nature News, The Washington Post, and The New York Times. He recently
received the Michael A. Bigg award for highly significant student
research as part of the Coastal Ocean Awards at the Vancouver Aquarium.

We hope to see you there!

You can find out more about Lucas Brotz here and about Sea Around Us here.

For anyone who’s curious about the jellyfish ‘issue’, there’s a November 8, 2017 Norwegian University of Science and Technology press release on AlphaGallileo or on EurekAlert, which provides insight into the problems and the possibilities,

Jellyfish could be a resource in producing microplastic filters, fertilizer or fish feed. A new 6 million euro project called GoJelly, funded by the EU and coordinated by the GEOMAR Helmholtz Centre for Ocean Research, Germany and including partners at the Norwegian University of Science and Technology (NTNNU) and SINTEF [headquartered in Trondheim, Norway, is the largest independent research organisation in Scandinavia; more about SINTEF in its Wikipedia entry], hopes to turn jellyfish from a nuisance into a useful product.

Global climate change and the human impact on marine ecosystems has led to dramatic decreases in the number of fish in the ocean. It has also had an unforseen side effect: because overfishing decreases the numbers of jellyfish competitors, their blooms are on the rise.

The GoJelly project, coordinated by the GEOMAR Helmholtz Centre for Ocean Research, Germany, would like to transform problematic jellyfish into a resource that can be used to produce microplastic filter, fertilizer or fish feed. The EU has just approved funding of EUR 6 million over 4 years to support the project through its Horizon 2020 programme.

Rising water temperatures, ocean acidification and overfishing seem to favour jellyfish blooms. More and more often, they appear in huge numbers that have already destroyed entire fish farms on European coasts and blocked cooling systems of power stations near the coast. A number of jellyfish species are poisonous, while some tropical species are even among the most toxic animals on earth.

“In Europe alone, the imported American comb jelly has a biomass of one billion tons. While we tend to ignore the jellyfish there must be other solutions,” says Jamileh Javidpour of GEOMAR, initiator and coordinator of the GoJelly project, which is a consortium of 15 scientific institutions from eight countries led by the GEOMAR Helmholtz Centre for Ocean Research in Kiel.

The project will first entail exploring the life cycle of a number of jellyfish species. A lack of knowledge about life cycles makes it is almost impossible to predict when and why a large jellyfish bloom will occur. “This is what we want to change so that large jellyfish swarms can be caught before they reach the coasts,” says Javidpour.

At the same time, the project partners will also try to answer the question of what to do with jellyfish once they have been caught. One idea is to use the jellyfish to battle another, man-made threat.

“Studies have shown that mucus of jellyfish can bind microplastic. Therefore, we want to test whether biofilters can be produced from jellyfish. These biofilters could then be used in sewage treatment plants or in factories where microplastic is produced,” the GoJelly researchers say.

Jellyfish can also be used as fertilizers for agriculture or as aquaculture feed. “Fish in fish farms are currently fed with captured wild fish, which does not reduce the problem of overfishing, but increases it. Jellyfish as feed would be much more sustainable and would protect natural fish stocks,” says the GoJelly team.

Another option is using jellyfish as food for humans. “In some cultures, jellyfish are already on the menu. As long as the end product is no longer slimy, it could also gain greater general acceptance,” said Javidpour. Finally yet importantly, jellyfish contain collagen, a substance very much sought after in the cosmetics industry.

Project partners from the Norwegian University of Science and Technology, led by Nicole Aberle-Malzahn, and SINTEF Ocean, led by Rachel Tiller, will analyse how abiotic (hydrography, temperature), biotic (abundance, biomass, ecology, reproduction) and biochemical parameters (stoichiometry, food quality) affect the initiation of jellyfish blooms.

Based on a comprehensive analysis of triggering mechanisms, origin of seed populations and ecological modelling, the researchers hope to be able to make more reliable predictions on jellyfish bloom formation of specific taxa in the GoJelly target areas. This knowledge will allow sustainable harvesting of jellyfish communities from various Northern and Southern European populations.

This harvest will provide a marine biomass of unknown potential that will be explored by researchers at SINTEF Ocean, among others, to explore the possible ways to use the material.

A team from SINTEF Ocean’s strategic program Clean Ocean will also work with European colleagues on developing a filter from the mucus of the jellyfish that will catch microplastics from household products (which have their source in fleece sweaters, breakdown of plastic products or from cosmetics, for example) and prevent these from entering the marine ecosystem.

Finally, SINTEF Ocean will examine the socio-ecological system and games, where they will explore the potentials of an emerging international management regime for a global effort to mitigate the negative effects of microplastics in the oceans.

“Jellyfish can be used for many purposes. We see this as an opportunity to use the potential of the huge biomass drifting right in front of our front door,” Javidpour said.

You can find out more about GoJelly on their Twitter account.

Cellulose- and chitin-based biomaterial to replace plastics?

Although the term is not actually used in the news release, one of the materials used to create a new biomaterial could safely be described as nanocellulose. From a Sept. 20, 2017 Pennsylvania State University (Penn State) news release (also on EurekAlert) by Jeff Mulhollem,

An inexpensive biomaterial that can be used to sustainably replace plastic barrier coatings in packaging and many other applications has been developed by Penn State researchers, who predict its adoption would greatly reduce pollution.

Completely compostable, the material — a polysaccharide polyelectrolyte complex — is comprised of nearly equal parts of treated cellulose pulp from wood or cotton, and chitosan, which is derived from chitin — the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is the mountains of leftover shells from lobsters, crabs and shrimp consumed by humans.

These environmentally friendly barrier coatings have numerous applications ranging from water-resistant paper, to coatings for ceiling tiles and wallboard, to food coatings to seal in freshness, according to lead researcher Jeffrey Catchmark, professor of agricultural and biological engineering, College of Agricultural Sciences.

“The material’s unexpected strong, insoluble adhesive properties are useful for packaging as well as other applications, such as better performing, fully natural wood-fiber composites for construction and even flooring,” he said. “And the technology has the potential to be incorporated into foods to reduce fat uptake during frying and maintain crispness. Since the coating is essentially fiber-based, it is a means of adding fiber to diets.”

The amazingly sturdy and durable bond between carboxymethyl cellulose and chitosan is the key, he explained. The two very inexpensive polysaccharides — already used in the food industry and in other industrial sectors — have different molecular charges and lock together in a complex that provides the foundation for impervious films, coatings, adhesives and more.

The potential reduction of pollution is immense if these barrier coatings replace millions of tons of petroleum-based plastic associated with food packaging used every year in the United States — and much more globally, Catchmark noted.

He pointed out that the global production of plastic is approaching 300 million tons per year. In a recent year, more than 29 million tons of plastic became municipal solid waste in the U.S. and almost half was plastic packaging. It is anticipated that 10 percent of all plastic produced globally will become ocean debris, representing a significant ecological and human health threat.

crab shells

The material is comprised of cellulose pulp from wood or cotton, and chitosan, derived from chitin, the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is shells from lobsters, crabs and shrimp. Image: © iStock Photo OKRAD

The polysaccharide polyelectrolyte complex coatings performed well in research, the findings of which were published recently in Green Chemistry. Paperboard coated with the biomaterial, comprised of nanostructured fibrous particles of carboxymethyl cellulose and chitosan, exhibited strong oil and water barrier properties. The coating also resisted toluene, heptane and salt solutions and exhibited improved wet and dry mechanical and water vapor barrier properties.

“These results show that polysaccharide polyelectrolyte complex-based materials may be competitive barrier alternatives to synthetic polymers for many commercial applications,” said Catchmark, who, in concert with Penn State, has applied for a patent on the coatings.

“In addition, this work demonstrates that new, unexpected properties emerge from multi-polysaccharide systems engaged in electrostatic complexation, enabling new high-performance applications.”

Catchmark began experimenting with biomaterials that might be used instead of plastics a decade or so ago out of concerns for sustainability. He became interested in cellulose, the main component in wood, because it is the largest volume sustainable, renewable material on earth. Catchmark studied its nanostructure — how it is assembled at the nanoscale.

He believed he could develop natural materials that are more robust and improve their properties, so that they could compete with synthetic materials that are not sustainable and generate pollution — such as the low-density polyethylene laminate applied to paper board, Styrofoam and solid plastic used in cups and bottles.

“The challenge is, to do that you’ve got to be able to do it in a way that is manufacturable, and it has to be less expensive than plastic,” Catchmark explained. “Because when you make a change to something that is greener or sustainable, you really have to pay for the switch. So it has to be less expensive in order for companies to actually gain something from it. This creates a problem for sustainable materials — an inertia that has to be overcome with a lower cost.”

lab vials

The amazingly sturdy and durable bond between carboxymethyl cellulose and chitosan is the key. The two very inexpensive polysaccharides, already used in the food industry and in other industrial sectors, have different molecular charges and lock together in a complex that provides the foundation for impervious films, coatings, adhesives and more. Image: Penn State

Funded by a Research Applications for Innovation grant from the College of Agricultural Sciences, Catchmark currently is working to develop commercialization partners in different industry sectors for a wide variety of products.

“We are trying to take the last step now and make a real impact on the world, and get industry people to stop using plastics and instead use these natural materials,” he said. “So they (consumers) have a choice — after the biomaterials are used, they can be recycled, buried in the ground or composted, and they will decompose. Or they can continue to use plastics that will end up in the oceans, where they will persist for thousands of years.”

Also involved in the research were Snehasish Basu, post-doctoral scholar, and Adam Plucinski, master’s degree student, now instructor of engineering at Penn State Altoona. Staff in Penn State’s Material Research Institute provided assistance with the project.

The U.S. Department of Agriculture supported this work. Southern Champion Tray, of Chattanooga, Tennessee, provided paperboard and information on its production for experiments.

Here’s a link to and a citation for the paper,

Sustainable barrier materials based on polysaccharide polyelectrolyte complexes by
Snehasish Basu, Adam Plucinski, and Jeffrey M. Catchmark. Green Chemistry 2017, 19, 4080-4092 DOI: 10.1039/C7GC00991G

This paper is behind a paywall. One comment, I found an anomaly on the page when I visited. At the top of the citation page, it states that this is issue 17 of Green Chemistry but the citation in the column on the right is “2017, 19 … “, which would be issue 19.

CRISPR corn to come to market in 2020

It seems most of the recent excitement around CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats) has focused on germline editing, specifically human embryos. Most people don’t realize that the first ‘CRISPR’ product is slated to enter the US market in 2020. A June 14, 2017 American Chemical Society news release (also on EurekAlert) provides a preview,

The gene-editing technique known as CRISPR/Cas9 made a huge splash in the news when it was initially announced. But the first commercial product, expected around 2020, could make it to the market without much fanfare: It’s a waxy corn destined to contribute to paper glue and food thickeners. The cover story of Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society, explores what else is in the works.

Melody M. Bomgardner, a senior editor at C&EN [Chemical & Engineering News], notes that compared to traditional biotechnology, CRISPR allows scientists to add and remove specific genes from organisms with greater speed, precision and oftentimes, at a lower cost. Among other things, it could potentially lead to higher quality cotton, non-browning mushrooms, drought-resistant corn and — finally — tasty, grocery store tomatoes.

Some hurdles remain, however, before more CRISPR products become available. Regulators are assessing how they should approach crops modified with the technique, which often (though not always) splices genes into a plant from within the species rather than introducing a foreign gene. And scientists still don’t understand all the genes in any given crop, much less know which ones might be good candidates for editing. Luckily, researchers can use CRISPR to find out.

Melody M. Bomgardner’s June 12, 2017 article for C&EN describes in detail how CRISPR could significantly change agriculture (Note: Links have been removed),

When the seed firm DuPont Pioneer first announced the new corn in early 2016, few people paid attention. Pharmaceutical companies using CRISPR for new drugs got the headlines instead.

But people should notice DuPont’s waxy corn because using CRISPR—an acronym for clustered regularly interspaced short palindromic repeats—to delete or alter traits in plants is changing the world of plant breeding, scientists say. Moreover, the technique’s application in agriculture is likely to reach the public years before CRISPR-aided drugs hit the market.

Until CRISPR tools were developed, the process of finding useful traits and getting them into reliable, productive plants took many years. It involved a lot of steps and was plagued by randomness.

“Now, because of basic research in the lab and in the field, we can go straight after the traits we want,” says Zachary Lippman, professor of biological sciences at Cold Spring Harbor Laboratory. CRISPR has been transformative, Lippman says. “It’s basically a freight train that’s not going to stop.”

Proponents hope consumers will embrace gene-edited crops in a way that they did not accept genetically engineered ones, especially because they needn’t involve the introduction of genes from other species—a process that gave rise to the specter of Frankenfood.

But it’s not clear how consumers will react or if gene editing will result in traits that consumers value. And the potential commercial uses of CRISPR may narrow if agriculture agencies in the U.S. and Europe decide to regulate gene-edited crops in the same way they do genetically engineered crops.

DuPont Pioneer expects the U.S. to treat its gene-edited waxy corn like a conventional crop because it does not contain any foreign genes, according to Neal Gutterson, the company’s vice president of R&D. In fact, the waxy trait already exists in some corn varieties. It gives the kernels a starch content of more than 97% amylopectin, compared with 75% amylopectin in regular feed corn. The rest of the kernel is amylose. Amylopectin is more soluble than amylose, making starch from waxy corn a better choice for paper adhesives and food thickeners.

Like most of today’s crops, DuPont’s current waxy corn varieties are the result of decades of effort by plant breeders using conventional breeding techniques.

Breeders identify new traits by examining unusual, or mutant, plants. Over many generations of breeding, they work to get a desired trait into high-performing (elite) varieties that lack the trait. They begin with a first-generation cross, or hybrid, of a mutant and an elite plant and then breed several generations of hybrids with the elite parent in a process called backcrossing. They aim to achieve a plant that best approximates the elite version with the new trait.

But it’s tough to grab only the desired trait from a mutant and make a clean getaway. DuPont’s plant scientists found that the waxy trait came with some genetic baggage; even after backcrossing, the waxy corn plant did not offer the same yield as elite versions without the trait. The disappointing outcome is common enough that it has its own term: yield drag.

Because the waxy trait is native to certain corn plants, DuPont did not have to rely on the genetic engineering techniques that breeders have used to make herbicide-tolerant and insect-resistant corn plants. Those commonly planted crops contain DNA from other species.

In addition to giving some consumers pause, that process does not precisely place the DNA into the host plant. So researchers must raise hundreds or thousands of modified plants to find the best ones with the desired trait and work to get that trait into each elite variety. Finally, plants modified with traditional genetic engineering need regulatory approval in the U.S. and other countries before they can be marketed.

Instead, DuPont plant scientists used CRISPR to zero in on, and partially knock out, a gene for an enzyme that produces amylose. By editing the gene directly, they created a waxy version of the elite corn without yield drag or foreign DNA.

Plant scientists who adopt gene editing may still need to breed, measure, and observe because traits might not work well together or bring a meaningful benefit. “It’s not a panacea,” Lippman says, “but it is one of the most powerful tools to come around, ever.”

It’s an interesting piece which answers the question of why tomatoes from the grocery store don’t taste good.

Korean researchers extend food shelf *life* with nanomicrobial coating

These Korean scientists have applied their new coating to food and to shoe insoles as they test various uses for their technology. From an Aug. 11, 2017 news item on Nanowerk,

The edible coating on produce has drawn a great deal of attention in the food and agricultural industry. It could not only prolong postharvest shelf life of produce against external changes in the environment but also provide additional nutrients to be useful for human health. However, most versions of the coating have had intrinsic limitations in their practical application.

First, highly specific interactions between coating materials and target surfaces are required for a stable and durable coating. Even further, the coating of bulk substrates, such as fruits, is time consuming or is not achievable in the conventional solution-based coating. In this respect, material-independent and rapid coating strategies are highly demanded.

The research team led by Professor Insung Choi of the Department of Chemistry developed a sprayable nanocoating technique using plant-derived polyphenol that can be applied to any surface.

An Aug. 10, 2017 KAIST (Korea Advanced Institute of Science and Technology) press release, which originated the news item, expands on the theme,

Polyphenols, a metabolite of photosynthesis, possess several hydroxyl groups and are found in a large number of plants showing excellent antioxidant properties. They have been widely used as a nontoxic food additive and are known to exhibit antibacterial, as well as potential anti-carcinogenic capabilities. Polyphenols can also be used with iron ions, which are naturally found in the body, to form an adhesive complex, which has been used in leather tanning, ink, etc.

The research team combined these chemical properties of polyphenol-iron complexes with spray techniques to develop their nanocoating technology. Compared to conventional immersion coating methods, which dip substrates in specialized coating solutions, this spray technique can coat the select areas more quickly. The spray also prevents cross contamination, which is a big concern for immersion methods. The research team has showcased the spray’s ability to coat a variety of different materials, including metals, plastics, glass, as well as textile fabrics. The polyphenol complex has been used to form antifogging films on corrective lenses, as well as antifungal treatments for shoe soles, demonstrating the versatility of their technique.

Furthermore, the spray has been used to coat produce with a naturally antibacterial, edible film. The coatings significantly improved the shelf life of tangerines and strawberries, preserving freshness beyond 28 days and 58 hours, respectively. (Uncoated fruit decomposed and became moldy under the same conditions). See the image below.


a –I, II: Uncoated and coated tangerines incubated for 14 and 28 days in daily-life settings

b –I: Uncoated and coated strawberries incubated for 58 hours in daily-life settings

b –II: Statistical investigation of the resulting edibility.

Professor Choi said, “Nanocoating technologies are still in their infancy, but they have untapped potential for exciting applications. As we have shown, nanocoatings can be easily adapted for several different uses, and the creative combination of existing nanomaterials and coating methods can synergize to unlock this potential.”

Here’s a link to and a citation for the paper,

Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits by Ji Park, Sohee Choi, Hee Moon, Hyelin Seo, Ji Kim, Seok-Pyo Hong, Bong Lee, Eunhye Kang, Jinho Lee, Dong Ryu, & Insung S. Choi. Scientific Reports 7, Article number: 6980 (2017) doi:10.1038/s41598-017-07257-x Published online: 01 August 2017

This paper is open access.

*’life’ added to correct headline on Sept. 4, 2017.

Bio-based standup pouches (food packaging) made from cellulose

CAPTION: VTT has developed lightweight 100% bio-based stand-up pouches with high technical performance. (Photo by VTT)

A March 14, 2017 news item on ScienceDaily describes a new nanocellulose-based product developed by the Technical Research Centre of Finland (VTT),

VTT Technical Research Centre of Finland Ltd has developed lightweight 100% bio-based stand-up pouches with high technical performance. High performance in both oxygen, grease and mineral oil barrier properties has been reached by using different biobased coatings on paper substrate. The pouches exploit VTT’s patent pending high consistency enzymatic fibrillation of cellulose (HefCel) technology.

A March 14, 2017 VTT press release (also on EurekAlert), which originated the news item, describes why the researchers want to change how food is packaged,

“One-third of food produced for human consumption is lost or wasted globally. Packaging with efficient barrier properties is a crucial factor in the reduction of the food loss. Our solution offers an environmentally friendly option for the global packaging industry”, says Senior Scientist Jari Vartiainen of VTT.

VTT’s HefCel technology provides a low-cost method for the production of nanocellulose resulting in a tenfold increase in the solids content of nanocellulose. Nanocellulose has been shown to be potentially very useful for a number of future technical applications. The densely packed structure of nanocellulose films and coatings enable their outstanding oxygen, grease and mineral oil barrier properties.

HefCel technology exploits industrial enzymes and simple mixing technology as tools to fibrillate cellulose into nanoscale fibrils without the need for high energy consuming process steps. The resulting nanocellulose is in the consistency of 15-25% when traditional nanocellulose production methods result in 1-3% consistency.

The stand-up pouch is the fastest growing type of packaging, growing at a rate of 6.5% per year from 2015-2020. Fossil-based plastic films still dominate the packaging market. However, the development of environmentally friendly new materials is of growing importance. Nanocellulose has been shown to be potentially very useful for a number of future technical applications.

VTT has solid expertise in various bio-based raw materials and their application technologies for producing bio-based coatings, films and even multilayered structures both at lab-scale and pilot-scale. A versatile set of piloting facilities are available from raw material sourcing through processing to application testing and demonstration.

I’m glad to hear they’re finding uses for nanocellulose and I keep wondering when Canadian scientists who at one point were leaders in developing crystal nanocellulose (CNC or sometimes known as nanocrystalline cellulose [NCC]) will be making announcements about potential products.

The Swiss come to a better understanding of nanomaterials

Just to keep things interesting, after the report suggesting most of the information that the OECD (Organization for Economic Cooperation and Development) has on nanomaterials is of little value for determining risk (see my April 5, 2017 posting for more) the Swiss government has released a report where they claim an improved understanding of nanomaterials than they previously had due to further research into the matter. From an April 6, 2017 news item on Nanowerk,

In the past six years, the [Swiss] National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64) intensively studied the development, use, behaviour and degradation of engineered nanomaterials, including their impact on humans and on the environment.

Twenty-three research projects on biomedicine, the environment, energy, construction materials and food demonstrated the enormous potential of engineered nanoparticles for numerous applications in industry and medicine. Thanks to these projects we now know a great deal more about the risks associated with nanomaterials and are therefore able to more accurately determine where and how they can be safely used.

An April 6, 2017 Swiss National Science Foundation press release, which originated the news item, expands on the theme,

“One of the specified criteria in the programme was that every project had to examine both the opportunities and the risks, and in some cases this was a major challenge for the researchers,” explains Peter Gehr, President of the NRP 64 Steering Committee.

One development that is nearing industrial application concerns a building material strengthened with nanocellulose that can be used to produce a strong but lightweight insulation material. Successful research was also carried out in the area of energy, where the aim was to find a way to make lithium-ion batteries safer and more efficient.

Promising outlook for nanomedicine

A great deal of potential is predicted for the field of nanomedicine. Nine of the 23 projects in NRP 64 focused on biomedical applications of nanoparticles. These include their use for drug delivery, for example in the fight against viruses, or as immune modulators in a vaccine against asthma. Another promising application concerns the use of nanomagnets for filtering out harmful metallic substances from the blood. One of the projects demonstrated that certain nanoparticles can penetrate the placenta barrier, which points to potential new therapy options. The potential of cartilage and bone substitute materials based on nanocellulose or nanofibres was also studied.

The examination of potential health risks was the focus of NRP 64. A number of projects examined what happens when nanoparticles are inhaled, while two focused on ingestion. One of these investigated whether the human gut is able to absorb iron more efficiently if it is administered in the form of iron nanoparticles in a food additive, while the other studied silicon nanoparticles as they occur in powdered condiments. It was ascertained that further studies will be required in order to determine the doses that can be used without risking an inflammatory reaction in the gut.

What happens to engineered nanomaterials in the environment?

The aim of the seven projects focusing on environmental impact was to gain a better understanding of the toxicity of nanomaterials and their degradability, stability and accumulation in the environment and in biological systems. Here, the research teams monitored how engineered nanoparticles disseminate along their lifecycle, and where they end up or how they can be discarded.

One of the projects established that 95 per cent of silver nanoparticles that are washed out of textiles are collected in sewage treatment plants, while the remaining particles end up in sewage sludge, which in Switzerland is incinerated. In another project a measurement device was developed to determine how aquatic microorganisms react when they come into contact with nanoparticles.

Applying results and making them available to industry

“The findings of the NRP 64 projects form the basis for a safe application of nanomaterials,” says Christoph Studer from the Federal Office of Public Health. “It has become apparent that regulatory instruments such as testing guidelines will have to be adapted at both national and international level.” Studer has been closely monitoring the research programme in his capacity as the Swiss government’s representative in NRP 64. In this context, the precautionary matrix developed by the government is an important instrument by means of which companies can systematically assess the risks associated with the use of nanomaterials in their production processes.

The importance of standardised characterisation and evaluation of engineered nanomaterials was highlighted by the close cooperation among researchers in the programme. “The research network that was built up in the framework of NRP 64 is functioning smoothly and needs to be further nurtured,” says Professor Bernd Nowack from Empa, who headed one of the 23 projects.

The results of NRP 64 show that new key technologies such as the use of nanomaterials need to be closely monitored through basic research due to the lack of data on its long-term effects. As Peter Gehr points out, “We now know a lot more about the risks of nanomaterials and how to keep them under control. However, we need to conduct additional research to learn what happens when humans and the environment are exposed to engineered nanoparticles over longer periods, or what happens a long time after a one-off exposure.”

You can find out more about the Opportunities and Risks of Nanomaterials; National Research Programme (NRP 64) here.

Findings on oral exposure to nanoscale titanium dioxide

It’s been a while since I’ve run a piece on health concerns and nanoparticles. The nanoparticles in question are titanium dioxide and the concerns centre on oral exposure to them according to a Jan. 24, 2017 news item on Nanowerk,

Researchers from INRA [French National Institute for Agricultural Research] and their partners have studied the effects of oral exposure to titanium dioxide, an additive (E171) commonly used in foodstuffs, especially confectionary. They have shown for the first time that E171 crosses the intestinal barrier in animals and reaches other parts of the body.

Immune system disorders linked to the absorption of the nanoscale fraction of E171 particles were observed. The researchers also showed that chronic oral exposure to the additive spontaneously induced preneoplastic lesions in the colon, a non-malignant stage of carcinogenesis, in 40% of exposed animals.

Moreover, E171 was found to accelerate the development of lesions previously induced for experimental purposes. While the findings show that the additive plays a role in initiating and promoting the early stages of colorectal carcinogenesis, they cannot be extrapolated to humans or more advanced stages of the disease. [emphasis mine]

A Jan. 20, 2017 IINRA press release, which originated the news item,  provides more detail about European use of titanium dioxide as a food additive and about the research,

Present in many products including cosmetics, sunscreens, paint and building materials, titanium dioxide (or TiO2), known as E171 in Europe, is also widely used as an additive in the food industry to whiten or give opacity to products. It is commonly found in sweets, chocolate products, biscuits, chewing gum and food supplements, as well as in toothpaste and pharmaceutical products. Composed of micro- and nanoparticles, E171 is nevertheless not labelled a “nanomaterial”, since it does not contain more than 50% of nanoparticles (in general it contains from 10-40%). The International Agency for Research on Cancer (IARC) evaluated the risk of exposure to titanium dioxide by inhalation (occupational exposure), resulting in a Group 2B classification, reserved for potential carcinogens for humans.

Today, oral exposure to E171 is a concern, especially in children who tend to eat a lot of sweets. INRA researchers studied the product as a whole (that is, its mixed composition of micro- and nanoparticules), and have also evaluated the effect of the nanoscale particle fraction alone, by comparing it to a model nanoparticle.

Titanium dioxide crosses the intestinal barrier and passes into the bloodstream

The researchers exposed rats orally to a dose of 10mg of E171 per kilogram of body weight per day, similar to the exposure humans experience through food consumption (data from European Food Safety Agency, September 20162). They showed for the first time in vivo that titanium dioxide is absorbed by the intestine and passes into the bloodstream. Indeed, the researchers found titanium dioxide particles in the animals’ livers.

Titanium dioxide alters intestinal and systemic immune response

Titanium dioxide nanoparticles were present in the lining of the small intestine and in the colon, and entered the nuclei of the immune cells of Peyer’s patches, which induce immune response in the intestine. The researchers showed an imbalance in immune response, ranging from a defect in the production of cytokines in Peyer’s patches to the development of micro-inflammation in colon mucosa. In the spleen, representative of systemic immunity, exposure to E171 increases the capacity of immune cells to produce pro-inflammatory cytokines when they are activated in vitro.

Chronic oral exposure to titanium dioxide plays a role in initiating and promoting early stages of colorectal carcinogenesis

The researchers exposed rats to regular oral doses of titanium dioxide through drinking water for 100 days. In a group of rats previously treated with an experimental carcinogen, exposure to TiO2 led to an increase in the size of preneoplastic lesions. In a group of healthy rats exposed to E171, four out of eleven spontaneously developed preneoplastic lesions in the intestinal epithelium. Non-exposed animals presented no anomalies at the end of the 100-day study. These results indicate that E171 both initiates and promotes the early stages of colorectal carcinogenesis in animals.

These studies show for the first time that the additive E171 is a source of titanium dioxide nanoparticles in the intestine and the entire body, with consequences for both immune function and the development of preneoplastic lesions in the colon. These first findings justify a carcinogenesis study carried out under OECD [Organization for Economic Cooperation and Development] guidelines to continue observations at a later stage of cancer. They provide new data for evaluating the risks of the E171 additive in humans.

These studies were carried out within the framework of the Nanogut project, financed by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) within the French national programme for research related to the environment, health and the workplace (PNR EST) and coordinated by INRA. Sarah Bettini’s university thesis contract was financed by the French laboratory of excellence LabEx SERENADE.

Here’s a link to and a citation for the paper,

Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon by Sarah Bettini, Elisa Boutet-Robinet, Christel Cartier, Christine Coméra, Eric Gaultier, Jacques Dupuy, Nathalie Naud, Sylviane Taché, Patrick Grysan, Solenn Reguer, Nathalie Thieriet, Matthieu Réfrégiers, Dominique Thiaudière, Jean-Pierre Cravedi, Marie Carrière, Jean-Nicolas Audinot, Fabrice H. Pierre, Laurence Guzylack-Piriou, & Eric Houdeau. Scientific Reports 7, Article number: 40373 (2017) doi:10.1038/srep40373 Published online: 20 January 2017

This paper is open access.

The research is concerning but they don’t want to draw any conclusions yet, which explains the recommendation for further research.

Clay nanosheets and world food security

This is some interesting agricultural research from Australia. From a Jan. 11, 2017 news item on,

A University of Queensland team has made a discovery that could help conquer the greatest threat to global food security – pests and diseases in plants.

Research leader Professor Neena Mitter said BioClay – an environmentally sustainable alternative to chemicals and pesticides – could be a game-changer for crop protection.

“In agriculture, the need for new control agents grows each year, driven by demand for greater production, the effects of climate change, community and regulatory demands, and toxicity and pesticide resistance,” she said.

“Our disruptive research involves a spray of nano-sized degradable clay used to release double-stranded RNA, that protects plants from specific disease-causing pathogens.”

The research, by scientists from the Queensland Alliance for Agriculture and Food Innovation (QAAFI) and UQ’s Australian Institute for Bioengineering and Nanotechnology (AIBN) is published in Nature Plants.

A Jan. 11, 2017 University of Queensland press release, which originated the news item, provides a bit more detail,

Professor Mitter said the technology reduced the use of pesticides without altering the genome of the plants.

“Once BioClay is applied, the plant ‘thinks’ it is being attacked by a disease or pest insect and responds by protecting itself from the targeted pest or disease.

“A single spray of BioClay protects the plant and then degrades, reducing the risk to the environment or human health.”

She said BioClay met consumer demands for sustainable crop protection and residue-free produce.

“The cleaner approach will value-add to the food and agri-business industry, contributing to global food security and to a cleaner, greener image of Queensland.”

AIBN’s Professor Zhiping Xu said BioClay combined nanotechnology and biotechnology.

“It will produce huge benefits for agriculture in the next several decades, and the applications will expand into a much wider field of primary agricultural production,” Professor Xu said.

Here’s a link to and a citation for the paper,

Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses by Neena Mitter, Elizabeth A. Worrall, Karl E. Robinson, Peng Li, Ritesh G. Jain, Christelle Taochy, Stephen J. Fletcher, Bernard J. Carroll, G. Q. (Max) Lu & Zhi Ping Xu. Nature Plants 3, Article number: 16207 (2017) doi:10.1038/nplants.2016.207 Published online: 09 January 2017

This paper is behind a paywall.

I don’t usually do this but here’s the abstract for the paper,

Topical application of pathogen-specific double-stranded RNA (dsRNA) for virus resistance in plants represents an attractive alternative to transgenic RNA interference (RNAi). However, the instability of naked dsRNA sprayed on plants has been a major challenge towards its practical application. We demonstrate that dsRNA can be loaded on designer, non-toxic, degradable, layered double hydroxide (LDH) clay nanosheets. Once loaded on LDH, the dsRNA does not wash off, shows sustained release and can be detected on sprayed leaves even 30 days after application. We provide evidence for the degradation of LDH, dsRNA uptake in plant cells and silencing of homologous RNA on topical application. Significantly, a single spray of dsRNA loaded on LDH (BioClay) afforded virus protection for at least 20 days when challenged on sprayed and newly emerged unsprayed leaves. This innovation translates nanotechnology developed for delivery of RNAi for human therapeutics to use in crop protection as an environmentally sustainable and easy to adopt topical spray.

It helps a bit but I’m puzzled by the description of BioClay as an alternative to RNAi in the first sentence because the last sentence has: “This innovation translates nanotechnology developed for delivery of RNAi … .” I believe what they’re saying is that LDH clay nanosheets were developed for delivery of RNAi but have now been adapted for delivery of dsRNA. Maybe?

At any rate this paper is behind a paywall.

Nanotech business news from Turkey and from Northern Ireland

I have two nanotech business news bits, one from Turkey and one from Northern Ireland.


A Turkish company has sold one of its microscopes to the US National Aeronautics and Space Administration (NASA), according to a Jan. 20, 2017 news item on,

Turkish nanotechnology company Nanomanyetik has begun selling a powerful microscope to the U.S. space agency NASA, the company’s general director told Anadolu Agency on Thursday [Jan. 19, 2017].

Dr. Ahmet Oral, who also teaches physics at Middle East Technical University, said Nanomanyetik developed a microscope that is able to map surfaces on the nanometric and atomic levels, or extremely small particles.

Nanomanyetik’s foreign customers are drawn to the microscope because of its higher quality yet cheaper price compared to its competitors.

“There are almost 30 firms doing this work,” according to Oral. “Ten of them are active and we are among these active firms. Our aim is to be in the top three,” he said, adding that Nanomanyetik jumps to the head of the line because of its after-sell service.

In addition to sales to NASA, the Ankara-based firm exports the microscope to Brazil, Chile, France, Iran, Israel, Italy, Japan, Poland, South Korea and Spain.

Electronics giant Samsung is also a customer.

“Where does Samsung use this product? There are pixels in the smartphones’ displays. These pixels are getting smaller each year. Now the smallest pixel is 15X10 microns,” he said. Human hair is between 10 and 100 microns in diameter.

“They are figuring inner sides of pixels so that these pixels can operate much better. These patterns are on the nanometer level. They are using these microscopes to see the results of their works,” Oral said.

Nanomanyetik’s microscopes produces good quality, high resolution images and can even display an object’s atoms and individual DNA fibers, according to Oral.

You can find the English language version of the Nanomanyetik (NanoMagnetics Instruments) website here . For those with the language skills there is the Turkish language version, here.

Northern Ireland

A Jan. 22, 2017 news article by Dominic Coyle for The Irish Times (Note: Links have been removed) shares this business news and mention of a world first,

MOF Technologies has raised £1.5 million (€1.73 million) from London-based venture capital group Excelsa Ventures and Queen’s University Belfast’s Qubis research commercialisation group.

MOF Technologies chief executive Paschal McCloskey welcomed the Excelsa investment.

Established in part by Qubis in 2012 in partnership with inventor Prof Stuart James, MOF Technologies began life in a lab at the School of Chemistry and Chemical Engineering at Queen’s.

Its metal organic framework (MOF) technology is seen as having significant potential in areas including gas storage, carbon capture, transport, drug delivery and heat transformation. Though still in its infancy, the market is forecast to grow to £2.2 billion by 2022, the company says.

MOF Technologies last year became the first company worldwide to successfully commercialise MOFs when it agreed a deal with US fruit and vegetable storage provider Decco Worldwide to commercialise MOFs for use in a food application.

TruPick, designed by Decco and using MOF Technologies’ environmentally friendly technology, enables nanomaterials control the effects of ethylene on fruit produce so it maintains freshness in storage or transport.

MOFs are crystalline, sponge-like materials composed of two components – metal ions and organic molecules known as linkers.

“We very quickly recognised the market potential of MOFs in terms of their unmatched ability for gas storage,” said Moritz Bolle from Excelsa Ventures. “This technology will revolutionise traditional applications and open countless new opportunities for industry. We are confident MOF Technologies is the company that will lead this seismic shift in materials science.

You can find MOF Technologies here.