Category Archives: food

FOE, nano, and food: part three of three (final guidance)

The first part of this food and nano ‘debate’ started off with the May 22, 2014 news item on Nanowerk announcing the Friends of the Earth (FOE) report ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘. Adding energy to FOE’s volley was a Mother Jones article written by Tom Philpott which had Dr. Andrew Maynard (Director of the University of Michigan’s Risk Science Center) replying decisively in an article published both on Nanowerk and on the Conversation.

The second part of this series focused largely on a couple of  research efforts (a June 11, 2014 news item on Nanowerk highlights a Franco-German research project, SolNanoTox) and in the US (a  June 19, 2014 news item on Azonano about research from the University of Arizona focusing on nanoscale additives for dietary supplement drinks) and noted another activist group’s (As You Sow) initiative with Dunkin’ Donuts (a July 11, 2014 article by Sarah Shemkus in a sponsored section in the UK’s Guardian newspaper0).

This final part in the series highlights the US Food and Drug Administration’s (FDA) final guidance document on nanomaterials and food issued some five weeks after the FOE’s report and an essay by a Canadian academic on the topic of nano and food.

A July 9, 2014 news item on Bloomberg BNA sums up the FDA situation,

The Food and Drug Administration June 24 [2014] announced new guidance to provide greater regulatory clarity for industry on the use of nanotechnology in FDA-regulated products, including drugs, devices, cosmetics and food.

In this final guidance, the agency said that nanotechnology “can be used in a broad array of FDA-regulated products, including medical products (e.g., to increase bioavailability of a drug), foods (e.g., to improve food packaging) and cosmetics (e.g., to affect the look and feel of cosmetics).”

Also on the agency website, the FDA said it “does not make a categorical judgment that nanotechnology is inherently safe or harmful. We intend our regulatory approach to be adaptive and flexible and to take into consideration the specific characteristics and the effects of nanomaterials in the particular biological context of each product and its intended use.”

This July 18, 2014 posting by Jeannie Perron, Miriam Guggenheimm and Allan J. Topol of Covington & Burling LLP on the National Law Review blog provides a better summary and additional insight,

On June 24, 2014, the Food and Drug Administration (FDA) released three final guidance documents addressing the agency’s general approach to nanotechnology and its use by the food and cosmetics industries, as well as a draft guidance on the use of nanomaterials in food for animals.

These guidance documents reflect FDA’s understanding of nanomaterials as an emerging technology of major importance with the potential to be used in novel ways across the entire spectrum of FDA- regulated products.

The documents suggest that FDA plans to approach nanotechnology-related issues cautiously, through an evolving regulatory structure that adapts to manufacturers’ changing uses of this technology. FDA has not established regulatory definitions of “nanotechnology,” “nanomaterial,” “nanoscale,” or other related terms. …

The notion of an “evolving regulatory structure” is very appealing in situations with emerging technologies with high levels of uncertainty. It’s surprising that more of the activist groups don’t see an opportunity with this approach. An organization that hasn’t devised a rigid regulatory structure has no investment in defending it. Activist groups can make the same arguments, albeit from a different perspective, about an emerging technology as the companies do and, theoretically, the FDA has become a neutral party with the power to require a company to prove its products’ safety.

You can find the FDA final guidance and other relevant documents here.

Finally, Sylvain Charlebois, associate dean at the College of Business and Economics at the University of Guelph, offers a rather provocative (and not from the perspective you might expect given his credentials) opinion on the topic of ‘nano and food’  in a July 18, 2014 article for TheRecord.com,

Nanotechnology and nanoparticles have been around for quite some time. In fact, consumers have been eating nanoparticles for years without being aware they are in their food.

Some varieties of Dentyne gum and Jell-O, M&M’s, Betty Crocker whipped cream frosting, Kool-Aid, Pop-Tarts, you name it, contain them. Even food packaging, such as plastic containers and beer bottles, have nanoparticles.

While consumers and interest groups alike are registering their concerns about genetically modified organisms, the growing role of nanotechnology in food and agriculture is impressive. When considering the socio-economic and ethical implications of nanotechnology, comparisons to the genetic modification debate are unavoidable.

The big picture is this. For years, capitalism has demonstrated its ability to create wealth while relying on consumers’ willingness to intrinsically trust what is being offered to them. With trans fats, genetically modified organisms and now nanoparticles, our food industry is literally playing with fire. [emphasis mine]

Most consumers may not have the knowledge to fully comprehend the essence of what nanotechnology is or what it can do. However, in an era where data access in almost constant real-time is king, the industry should at least give public education a shot.

In the end and despite their tactics, the activist groups do have a point. The food and agricultural industries need to be more frank about what they’re doing with our food. As Charlebois notes, they might want to invest in some public education, perhaps taking a leaf out of the Irish Food Board’s book and presenting the public with information both flattering and nonflattering about their efforts with our food.

Part one (an FOE report is published)

Part two (the problem with research)

ETA Aug. 22, 2014: Coincidentally, Michael Berger has written an Aug. 22, 2014 Nanowerk Spotlight article titled: How to identify nanomaterials in food.

ETA Sept. 1, 2014: Even more coincidentally, Michael Berger has written a 2nd Nanowerk Spotlight (dated Aug. 25, 2014) on the food and nano topic titled, ‘Nanotechnology in Agriculture’ based on the European Union’s Joint Research Centre’s ‘Workshop on Nanotechnology for the agricultural sector: from research to the field”, held on November 21-22 2013′.

FOE, nano, and food: part two of three (the problem with research)

The first part of this roughly six week food and nano ‘debate’ started off with the May 22, 2014 news item on Nanowerk announcing the Friends of the Earth (FOE) report ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘. Adding energy to FOE’s volley was a Mother Jones article written by Tom Philpott which had Dr. Andrew Maynard (Director of the University of Michigan’s Risk Science Center) replying decisively in an article published both on Nanowerk and on the Conversation.

Coincidentally or not, there were a couple of news items about ‘nano and food’ research efforts during the ‘debate’. A June 11, 2014 news item on Nanowerk highlights a Franco-German research project into the effects that nanomaterials have on the liver and the intestines while noting the scope of the task researchers face,

What mode of action do nanomaterials ingested via food have in liver and intestine? Which factors determine their toxicity? Due to the large number of different nanomaterials, it is hardly possible to test every one for its toxic properties. [emphasis mine] For this reason, specific properties for the classification of nanomaterials are to be examined within the scope of the Franco-German research project “SolNanoTox”, which began on 1 March 2014. The [German] Federal Institute for Risk Assessment (BfR) requires data on bioavailability for its assessment work, in particular on whether the solubility of nanomaterials has an influence on uptake and accumulation in certain organs, such as liver and intestine. “We want to find out in our tests whether the criterion ‘soluble or insoluble’ is a determining factor for uptake and toxicity of nanomaterials,” says BfR President Professor Dr. Andreas Hensel.

A June 13, 2014 German Federal Institute for Risk Assessment (BfR) press release, which originated the news item, details the research and the participating agencies,

A risk assessment of nanomaterials is hardly possible at the moment and involves a very high degree of uncertainty, as important toxicological data on their behaviour in tissue and cells are still missing. [emphasis mine] The German-French SolNanoTox research project examines which role the solubility of nanomaterials plays with regard to their accumulation and potential toxic properties. The project is to run for three and a half years during which the BfR will work closely with its French sister organisation ANSES. Other partners are the Institut des Sciences Chimiques de Rennes and Universität Leipzig. The German Research Foundation and French Agence Nationale de la Recherche (ANR) are funding the project.

The tasks of the BfR include in vitro tests (e.g. the investigation of the influence of the human gastrointestinal system) and analysis of biological samples with regard to the possible accumulation of nanomaterials. In addition to this, the BfR uses modern methods of mass spectrometry imaging to find out whether nanoparticles alter the structure of biomolecules, e.g. the structure of the lipids of the cellular membrane. So far, these important tests, which are necessary for assessing possible changes in DNA or cellular structures caused by nanomaterials in food, have not been conducted.

Metallic nanoparticles are to be studied (from the press release),

In the project, two fundamentally different types of nanoparticles are examined as representatives for others of their type: titanium dioxide as representative of water insoluble nanoparticles and aluminium as an example of nanomaterials which show a certain degree of water solubility after oxidation. [emphases mine] It is examined whether the degree of solubility influences the distribution of the nanomaterials in the body and whether soluble materials may possibly accumulate more in other organs than insoluble ones. The object is to establish whether there is a direct toxic effect of insoluble nanomaterials in general after oral uptake due to their small size.

Different innovative analytical methods are combined in the project with the aim to elucidate the behaviour of nanomaterials in tissue and their uptake into the cell. The main focus is on effects which can trigger genotoxic damage and inflammation. At first, the effects of both materials are examined in human cultures of intestinal and liver cells in an artificial environment (in vitro). In the following, it has to be verified by animal experimentation whether the observed effects can also occur in humans. This modus operandi allows to draw conclusions on effects and mode of action of orally ingested nanomaterials with different properties. The goal is to group nanomaterials on the basis of specific properties and to allocate the corresponding toxicological properties to these groups. Motivation for the project is the enormous number of nanomaterials with large differences in physicochemical properties. Toxicological tests cannot be conducted for all materials.

In the meantime, a June 19, 2014 news item on Azonano (also on EurekAlert but dated June 18, 2014) features some research into metallic nanoparticles in dietary supplement drinks,

Robert Reed [University of Arizona] and colleagues note that food and drink manufacturers use nanoparticles in and on their products for many reasons. In packaging, they can provide strength, control how much air gets in and out, and keep unwanted microbes at bay. As additives to food and drinks, they can prevent caking, deliver nutrients and prevent bacterial growth. But as nanoparticles increase in use, so do concerns over their health and environmental effects. Consumers might absorb some of these materials through their skin, and inhale and ingest them. What doesn’t get digested is passed in urine and feces to the sewage system. A handful of initial studies on nanomaterials suggest that they could be harmful, but Reed’s team wanted to take a closer look.

They tested the effects of eight commercial drinks containing nano-size metal or metal-like particles on human intestinal cells in the lab. The drinks changed the normal organization and decreased the number of microvilli, finger-like projections on the cells that help digest food. In humans, if such an effect occurs as the drinks pass through the gastrointestinal tract, these materials could lead to poor digestion or diarrhea, they say. The researchers’ analysis of sewage waste containing these particles suggests that much of the nanomaterials from these products are likely making their way back into surface water, where they could potentially cause health problems for aquatic life.

This piece is interesting for two reasons. First, the researchers don’t claim that metallic nanoparticles cause digestion or diarrhea due to any action in the gastrointestinal tract. They studied the impact that metallic nanoparticles in supplementary drinks had on cells (in vitro testing) from the gastrointestinal tract. Based on what they observed in the laboratory, “… these materials could lead to poor digestion or diarrhea… .” The researchers also suggest a problem could occur as these materials enter surface water in increasing quantities.

Here’s a link to and a citation for the paper,

Supplement Drinks and Assessment of Their Potential Interactions after Ingestion by Robert B. Reed, James J. Faust, Yu Yang, Kyle Doudrick, David G. Capco, Kiril Hristovski, and Paul Westerhoff. ACS Sustainable Chem. Eng., 2014, 2 (7), pp 1616–1624 DOI: 10.1021/sc500108m Publication Date (Web): June 2, 2014

Copyright © 2014 American Chemical Society

With Paul Westerhoff as one of the authors and the reference to metallic nanoparticles entering water supplies, I’m guessing that this research is associated with the LCnano (lifecycle nano) project headquartered at Arizona State university (April 8, 2014 posting).

Getting back to the Franco-German SolNanoTox project, scientists do not know what happens when the cells in your intestines, liver, etc. encounter metallic or other nanoparticles, some of which may be naturally occurring. It should also be noted that we have likely been ingesting metallic nanoparticles for quite some time. After all, anyone who has used silver cutlery has ingested some silver nanoparticles.

There are many, many questions to be asked and answered with regard to nanomaterials in our foods.  Here are a few of mine:

  • How many metallic and other nanoparticles did we ingest before the advent of ‘nanomaterials in food’?
  • What is the biopersistence of naturally occurring and engineered metallic and other nanoparticles in the body?
  • Is there an acceptable dose versus a fatal dose? (Note: There’s naturally occurring formaldehyde in pears as per my May 19, 2014 post about doses, poisons, and the Sense about Science group’s campaign/book, Making Sense of Chemical Stories.)
  • What happens as the metallic and other engineered nanoparticles are added to food and drink and eventually enter our water, air, and soil?

Returning to the ‘debate’, a July 11, 2014 article by Sarah Shemkus for a sponsored section in the UK’s Guardian newspaper highlights an initiative taken by an environmental organization, As You Sow, concerning titanium dioxide in Dunkin’ Donuts’ products (Note: A link has been removed),

The activists at environmental nonprofit As You Sow want you to take another look at your breakfast doughnut. The organization recently filed a shareholder resolution asking Dunkin’ Brands, the parent company of Dunkin’ Donuts, to identify products that may contain nanomaterials and to prepare a report assessing the risks of using these substances in foods.

Their resolution received a fair amount of support: at the company’s annual general meeting in May, 18.7% of shareholders, representing $547m in investment, voted for it. Danielle Fugere, As You Sow’s president, claims that it was the first such resolution to ever receive a vote. Though it did not pass, she says that she is encouraged by the support it received.

“That’s a substantial number of votes in favor, especially for a first-time resolution,” she says.

The measure was driven by recent testing sponsored by As You Sow, which found nanoparticles of titanium dioxide in the powdered sugar that coats some of the donut chain’s products. [emphasis mine] An additive widely used to boost whiteness in products from toothpaste to plastic, microscopic titanium dioxide has not been conclusively proven unsafe for human consumption. Then again, As You Sow contends, there also isn’t proof that it is harmless.

“Until a company can demonstrate the use of nanomaterials is safe, we’re asking companies either to not use them or to provide labels,” says Fugere. “It would make more sense to understand these materials before putting them in our food.”

As You Sow is currently having 16 more foods tested. The result should be available later this summer, Fugere says.

I wonder if As You Sow will address the question of whether the nanoscale titanium dioxide they find indicates that nanoscale particles are being deliberately added or whether the particles are the inadvertent consequence of the production process. That said, I find it hard to believe no one in the food industry is using engineered nanoscale additives as they claim  (the other strategy is to offer a nonanswer) in Shemkus’ article (Note: Links have been removed).,

In a statement, Dunkin’ Donuts argues that the titanium dioxide identified by As You Sow does not qualify as a nanomaterial according to European Union rules or draft US Food and Drug Administration regulations. The company also points out that there is no agreed-upon standard method for identifying nanoparticles in food.

In 2008, As You Sow filed nanomaterial labeling resolutions with McDonald’s and Kraft Foods. In response, McDonald’s released a statement declaring that it does not support the use of nanomaterials in its food, packaging or toys. Kraft responded that it would make sure to address health and safety concerns before ever using nanomaterials in its products.

While Shemkus’ article appears in the Guardian’s Food Hub which is sponsored by the Irish Food Board, this article manages to avoid the pitfalls found in Philpott’s nonsponsored article.

Coming next: the US Food and Drug Administration Guidance issued five weeks after the FOE kicks off the ‘nano and food’ debate in May 2014 with its ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘ report.

Part one (an FOE report is published)

Part three (final guidance)

FOE, nano, and food: part one of three (an FOE report is published)

It seems the food and nano debate of Spring/Summer 2014 has died down, for a while at least. The first volley (from my perspective) was the May 2014 release of ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture’ by the Friends of the Earth (FOE) Australia. Here’s how the report is described in a May 22, 2014 news item on Nanowerk,

Friends of the Earth’s new report, Way too little (pdf), looks at the now widespread presence of nanomaterials in our food chain and how little Food Standards Australia New Zealand (FSANZ) is doing to ensure our safety.

You can find the following passage on p. 6 of FOE’s report ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘,

This report will examine the changes since our 2008 report including the development of new food, food contact and agricultural products. It will review the current literature relating to the potential environmental, health and safety impacts associated with nanotechnology and summarise the Australian regulatory responses to date.

This updated report uncovers the:

•accelerating rate of commercialisation and rapidly increasing number of commercial products containing nanomaterials in the food and agricultural sectors;

•lack of information regarding which nanomaterials have been released and the likely exposure of humans and natural systems to these materials;

•lack of basic steps to allow us to track nanomaterials that have been released, such as
labelling and a register of products containing nanomaterials;

•growing gap between the pace of commercialisation and environmental, health and safety assessments;

•increasingly large body of peer reviewed evidence that certain nanomaterials may cause harm to human health or the environment;

•failure of regulators to respond to the growingevidence of risks;

•lack of basic knowledge that is critical in order to fully analyse the particular environmental, health and safety issues associated with nanotechnology.

Six years ago, inaction was based on a perceived lack of data. Inaction is still the norm but that is no longer an excuse our Government can use. Scientists and scientific bodies such as the US National Research Council have given us more than enough evidence to justify a pro-active regulatory regime and a properly funded R&D program that will effectively target those areas of greatest environmental and health concern.

Unfortunately, our Federal Government seems unwilling to provide the levels of funding required for such work or to adopt appropriate regulation. The notion of precaution has been replaced with an attitude that it is the obligation of industry to determine whether their products are safe and regulators will only act when harm is shown. While France, Belgium and Denmark are implementing a mandatory register for nanomaterials and the EU’s is in the process of implementing a nano food labelling regime, Australian consumers remain in the dark.

This needs to change.

One of the issues with increased regulation and labeling is whether the benefits outweigh disadvantages such as the increased difficulty of getting needed foodstuffs to the marketplace and, of course, cost.

Tom Philpott in a May 28, 2014 article for Mother Jones magazine titled ‘Big Dairy Is Putting Microscopic Pieces of Metal in Your Food’ is a strong proponent for FOE’s position, albeit his geographic focus is the US and he seems most concerned with metallic nanoparticles (Note: Links have been removed),

Examples include Silk Original Soy Milk, Rice Dream Rice Drink, Hershey’s Bliss Dark Chocolate, and Kraft’s iconic American Cheese Singles, all of which now contain nano-size titanium dioxide*. As recently as 2008, only eight US food products were known to contain nanoparticles, according to a recent analysis [May 2014 report] from Friends of the Earth—a more than tenfold increase in just six years.

Philpott goes on to mention the US Food and Drug Administration’s (FDA) 2012 draft guidance on nanomaterials and food,

Back in 2012, the FDA released a draft, pending public comment, of a proposed new framework for bringing nano materials into food. The document reveals plenty of reason for concern. For example: “so-called nano-engineered food substances can have significantly altered bioavailability and may, therefore, raise new safety issues that have not been seen in their traditionally manufactured counterparts.” The report went on to note that “particle size, surface area, aggregation/agglomeration, or shape may impact absorption, distribution, metabolism and excretion (ADME) and potentially the safety of the nano-engineered food substance.”

What FDA is saying here is obvious: If nanoparticles didn’t behave differently, the industry wouldn’t be using them in the first place.

So what’s the remedy? Rather than require rigorous safety studies before companies can lace food with nanoparticles, the FDA’s policy draft proposes “nonbinding recommendations” for such research. Even that rather porous safety net doesn’t yet exist—the agency still hasn’t implemented the draft proposal it released more than two years ago.[emphasis mine]

June 27, 2014, the FDA issued a final ‘food and nanotechnology’ guidance document (more on that later).

In the meantime, Dr. Andrew Maynard (Director of the University of Michigan’s Risk Science Center) strongly countered Philpott’s Mother Jones article with his own article published both on The Conversation (June 3, 2014) and on Nanowerk (June 4, 2014),

Recently the American publication Mother Jones published an article on the dangers of food laced with tiny metal oxide particles. The article, however, is laced with errors and misinformation.

The source material for the article came from a report by the environmental organisation Friends of the Earth, an online database of nanotechnology-based consumer products and a peer-reviewed paper published in 2012. However, the analysis of the information is flawed.

..

Bad journalism

The inventory Philpott cites is the Project on Emerging Nanotechnologies Consumer Products Inventory, which I helped establish in 2006 as a way better understand the increasing number of consumer products that were using engineered nanomaterials. It provides a useful but only qualitative sense of what was being used where, and relies on intermittent web searches and other sources of intelligence. The inventory was never meant to be comprehensive or authoritative.

Briefly, Andrew’s argument is that the FOE report (Way too little) which claims a tenfold increase since 2008 of food products with added nano titanium dioxide (and which Philpotts uses to build his case) is erroneous. In 2006, the inventory was voluntary and there was no oversight. At that time, eight food products had been added to the list. In 2013, the inventory was revived (Oct. 28, 2013 posting) and new information added from a 2012 academic paper. The products from the 2012 paper may have predated the 2006 inventory products, or not. There is no way to tell. Andrew notes this in his measured way,

As someone who works on the risks and benefits of nanotechnology, I can see how errors in translation crept into this story. The 2012 paper was addressing a legitimate concern that little is know about how much titanium dioxide is in the processed food chain. The Consumer Products Inventory provides important and unique insights into nanoparticles being used in products. Friends of the Earth have every right to ask what is known about the potential risks in what we’re eating. And reporters like Philpott have a professional obligation to highlight issues of concern and interest to their readers.

The problem with exaggerated and inflated claims is that FOE proves itself to be an unreliable source and Philpott’s failure to investigate adequately puts his own credibility into question. How can you trust either FOE’s materials or Philpott’s articles? The easiest way to begin rebuilding credibility is to admit one’s mistakes. To date, I have not seen any such attempts from FOE or Philpott.

Coming next: a research initiative into the health effects of nano and food and a research paper on nano in commercial drinks both of which help illustrate why there are concerns and why there is a reluctance to move too quickly.

Part two (the problem with research)

Part three (final guidance)

Inhibiting pathogens in meat with edible antimicrobial films

Food poisoning is, at best, unpleasant and, at worst, lethal, so anything which helps people and other animals to avoid that condition is to be lauded, assuming there are no significant shortcomings with the solution to avoiding bad meat. According to a May 4, 2014 news item on Nanowerk a team at Penn (Pennsylvania) State University has developed an antimicrobial, edible film which may help solve the problem,

Antimicrobial agents incorporated into edible films applied to foods to seal in flavor, freshness and color can improve the microbiological safety of meats, according to researchers in Penn State’s College of Agricultural Sciences.

Using films made of pullulan — an edible, mostly tasteless, transparent polymer produced by the fungus Aureobasidium pulluns — researchers evaluated the effectiveness of films containing essential oils derived from rosemary, oregano and nanoparticles against foodborne pathogens associated with meat and poultry.

A May 1, 2014 Penn State University news release by Jeff Mulhollem, which originated the news item, describes the research in further detail,

In the study, which was published online in the April issue of the Journal of Food Science, researchers determined survivability of bacterial pathogens after treatment with 2 percent oregano essential oil, 2 percent rosemary essential oil, zinc oxide nanoparticles or silver nanoparticles.

The compounds then were incorporated into edible films made from pullulan, and the researchers determined the antimicrobial activity of these films against bacterial pathogens inoculated onto petri dishes.

Finally, the researchers experimentally inoculated fresh and ready-to-eat meat and poultry products with bacterial pathogens, treated them with the pullulan films containing the essential oils and nanoparticles, vacuum packaged, and then evaluated for bacterial growth following refrigerated storage for up to three weeks.

“The results from this study demonstrated that edible films made frompullulan and incorporated with essential oils or nanoparticles have the potential to improve the safety of refrigerated, fresh or further-processed meat and poultry products,” said Cutter. “The research shows that we can apply these food-grade films and have them do double duty — releasing antimicrobials and imparting characteristics to protect and improve food we eat.”

The edible films are a novelbut effective way to deliver antimicrobial agents to meats, Cutter explained, because the bacteria-killing action is longer lasting. Liquid applications run off the surface, are not absorbed and are less effective. The pullulan films adhere to the meat, allowing the incorporated antimicrobials to slowly dissolve, providing immediate and sustained kill of bacteria. In addition, the microorganisms do not have the opportunity to regrow.

There’s at least one problem with the pullulan films and its not, as far as the researcher is concerned, the silver or zinc oxide nanoparticles (from the news release),

Cutter conceded that pullulan films are not as oxygen-impermeable as plastic packaging now used to package meats, so the edible films are not likely to replace that material.

“The meat industry likes the properties of the polyethylene vacuum packaging materials that they are using now,” she said. “However, the one thing I really want to be able to do in the next few years is to figure out a way to co-extrude antimicrobial, edible films with the polyethylene so we have the true oxygen barrier properties of the plastic with the antimicrobial properties of the edible film.”

Knowing that edible films can release antimicrobials slowly over time and keep bacteria in meat at bay, further research will be aimed at creating what Cutter referred to as “active packaging” — polyethylene film with antimicrobial properties.

“Right now, we have two different packaging materials that are not necessarily compatible, leading to a two-step process. I keep thinking there’s a way to extrude edible, antimicrobial film in one layer with polyethylene, creating all-in-one packaging.

“The chemistry of binding the two together is the challenge, but we need to find a way to do it because marrying the two materials together in packaging would make foods — especially meat and poultry — safer to eat.”

Here’s a link to and a citation for the paper,

Incorporation of Essential Oils and Nanoparticles in Pullulan Films to Control Foodborne Pathogens on Meat and Poultry Products by Mohamed K. Morsy, Hassan H. Khalaf, Ashraf M. Sharoba, Hassan H. El-Tanahi and Catherine N. Cutter. Journal of Food Science, April 2014, Volume 79, Issue 4, pages M675–M684. DOI: 10.1111/1750-3841.12400 Article first published online: 12 MAR 2014

© 2014 Institute of Food Technologists®

This is behind a paywall.

Nanocellulose from sugarcane?

Iran adds to this blog’s growing catalogue of plant materials from which nanocellulose can be derived. From an April 27, 2014 news item on Nanowerk,

Researchers from University of Tehran utilized sugarcane waste to produce nanocomposite film (“All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application”).

The product has unique physical and mechanical properties and has many applications in packaging, glue making, medicine and electronic industries.

An April 28, 2014 Iran Nanotechnology Initiative Council (INIC) news release, which originated the news item, describes the advantages of this potential product and the research that led to it,

These nanofibers have simpler, faster and more cost-effective production method in comparison with other production methods. The size of the produced cellulose nanofiber has been reported about 39±13 nm while tension resistant of the nanocomposite produced from the nanofibers has been reported about 140 MPa. The produced nanocomposite has higher strength in comparison with the majority of biodegradable and non-biodegradable films. It seems that the produced nanocomposite can be considered an appropriate option for the elimination of artificial polymers and oil derivatives from packaging materials.

In order to produce the product, cellulose fibers were produced through mechanical milling method after separation and purification of cellulose from sugarcane bagasse, and then nanopapers were produced. Next, full cellulose nanocomposite was produced through partial dissolving method, and its characteristics were evaluated.

Results showed that as the time of partial dissolving increases, the diffusivity of the nanocomposite into vapor decreases due to the increase in glassy part (amorphous) to crystalline part. However, thermal resistant decreases as the time of partial dissolving increases because a decrease is observed in the crystalline part.

In addition, when cellulose microfibers turn into nanofibers, resistance against the tension of the produced films increases. The researchers believe that the reason for the increase is the reduction in fault points (points that lead to the fracture in cellulose fibers), increase in specific area, and integrity of nanofibers. Transparency of samples significantly increases as the size of particles decreases to nanometric scale.

Here’s a link to and a citation for the paper,

All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application by Moein Ghaderi, Mohammad Mousavi, Hossein Yousefi, & Mohsen Labbafi. Carbohydrate Polymers, vol. 104, issue 1, January 2014, pp. 59-65 http://dx.doi.org/10.1016/j.carbpol.2014.01.013

This paper is behind a paywall.

How do you know that’s extra virgin olive oil?

Who guarantees that expensive olive oil isn’t counterfeit or adulterated? An invisible label, developed by ETH researchers, could perform this task. The tag consists of tiny magnetic DNA particles encapsulated in a silica casing and mixed with the oil.

So starts Barbara Vonarburg’s April 24, 2014 ETH Zurich (Swiss Federal Institute of Technology or Eidgenössische Technische Hochschule Zürich) news release (also on EurekAlert). She goes on to describe the scope of the situation regarding counterfeit foods,

The worldwide need for anti-counterfeiting labels for food is substantial. In a joint operation in December 2013 and January 2014, Interpol and Europol confiscated more than 1,200 tonnes of counterfeit or substandard food and almost 430,000 litres of counterfeit beverages. The illegal trade is run by organised criminal groups that generate millions in profits, say the authorities. The confiscated goods also included more than 131,000 litres of oil and vinegar.

Jon Henley’s Jan. 4, 2012 article for the UK’s Guardian provides more insight into the specifics of counterfeit olive oil (Note: A link has been removed),

Last month [December 2011], the Olive Oil Times reported that two Spanish businessmen had been sentenced to two years in prison in Cordoba for selling hundreds of thousands of litres of supposedly extra virgin olive oil that was, in fact, a mixture of 70-80% sunflower oil and 20-30% olive.

… So with a litre of supermarket extra virgin costing up to £4, and connoisseurs willing to pay 10 times that sum for a far smaller bottle of seasonal, first cold stone pressed, single estate, artisan-milled oil from Italy or Greece, can we be sure of getting what we’re paying for?

The answer, according to Tom Mueller in a book out this month [January 2012], is very often not. In Extra Virginity: the Sublime and Scandalous World of Olive Oil, Mueller, an American who lives in Italy, lays bare the workings of an industry prey, he argues, to hi-tech, industrial-scale fraud. The problem, he says, is that good olive oil is difficult, time-consuming and expensive to make, but easy, quick and cheap to doctor.

Most commonly, it seems, extra virgin oil is mixed with a lower grade olive oil, often not from the same country. Sometimes, another vegetable oil such as colza or canola is used. The resulting blend is then chemically coloured, flavoured and deodorised, and sold as extra-virgin to a producer. Almost any brand can, in theory, be susceptible: major names such as Bertolli (then owned by Unilever [see Henley's article for details about the 2008 Italian olive oil scandal]) have found themselves in court having to argue, successfully in this instance, that they had themselves been defrauded by their supplier.

Meanwhile, the chemical tests that should by law be performed by exporters of extra virgin oil before it can be labelled and sold as such can often fail to detect adulterated oil, particularly when it has been mixed with products such as deodorised, lower-grade olive oil in a sophisticated modern refinery.

Given the benefits claimed for olive oil, I imagine lower grade olive oil which is more highly processed or, worse yet, a completely different kind of oil would diminish or, possibly, eliminate any potential health benefit.

Getting back to the ETH Zurich news release, here’s more about the anti-counterfeiting ‘label’,

Just a few grams of the new substance are enough to tag [label] the entire olive oil production of Italy. If counterfeiting were suspected, the particles added at the place of origin could be extracted from the oil and analysed, enabling a definitive identification of the producer. “The method is equivalent to a label that cannot be removed,” says Robert Grass, lecturer in the Department of Chemistry and Applied Biosciences at ETH Zurich.

A forgery-proof label should not only be invisible but also safe, robust, cheap and easy to detect. To fulfil these criteria ETH researchers used nanotechnology and nature’s information storehouse, DNA. A piece of artificial genetic material is the heart of the mini-label. “With DNA, there are millions of options that can be used as codes,” says Grass. Moreover, the material has an extremely low detection limit, so tiny amounts are sufficient for labelling purposes.

However, DNA also has some disadvantages. If the material is used as an information carrier outside a living organism, it cannot repair itself and is susceptible to light, temperature fluctuations and chemicals. Thus, the researchers used a silica coating to protect the DNA, creating a kind of synthetic fossil. The casing represents a physical barrier that protects the DNA against chemical attacks and completely isolates it from the external environment – a situation that mimics that of natural fossils, write the researchers in their paper, which has been published in the journal ACS Nano. To ensure that the particles can be fished out of the oil as quickly and simply as possible, Grass and his team employed another trick: they magnetised the tag by attaching iron oxide nanoparticles.

Experiments in the lab showed that the tiny tags dispersed well in the oil and did not result in any visual changes. They also remained stable when heated and weathered an ageing trial unscathed. The magnetic iron oxide, meanwhile, made it easy to extract the particles from the oil. The DNA was recovered using a fluoride-based solution and analysed by PCR, a standard method that can be carried out today by any medical lab at minimal expense. “Unbelievably small quantities of particles down to a millionth of a gram per litre and a tiny volume of a thousandth of a litre were enough to carry out the authenticity tests for the oil products,” write the researchers. The method also made it possible to detect adulteration: if the concentration of nanoparticles does not match the original value, other oil – presumably substandard – must have been added. The cost of label manufacture should be approximately 0.02 cents per litre.

The researchers have plans for other products that could benefit from this technology and answers to questions about whether or not people would be willing to ingest a label/tag along with their olive oil,

Petrol could also be tagged using this method and the technology could be used in the cosmetics industry as well. In trials the researchers also successfully tagged expensive Bergamot essential oil, which is used as a raw material in perfumes. Nevertheless, Grass sees the greatest potential for the use of invisible labels in the food industry. But will consumers buy expensive ‘extra-virgin’ olive oil when synthetic DNA nanoparticles are floating around in it? “These are things that we already ingest today,” says Grass. Silica particles are present in ketchup and orange juice, among other products, and iron oxide is permitted as a food additive E172.

To promote acceptance, natural genetic material could be used in place of synthetic DNA; for instance, from exotic tomatoes or pineapples, of which there are a great variety – but also from any other fruit or vegetable that is a part of our diet. Of course, the new technology must yield benefits that far outweigh any risks, says Grass. He concedes that as the inventor of the method, he might not be entirely impartial. “But I need to know where food comes from and how pure it is.” In the case of adulterated goods, there is no way of knowing what’s inside. “So I prefer to know which particles have been intentionally added.”

Here’s a link to and a citation for the researchers’ paper,

Magnetically Recoverable, Thermostable, Hydrophobic DNA/Silica Encapsulates and Their Application as Invisible Oil Tags by Michela Puddu , Daniela Paunescu , Wendelin J. Stark , and Robert N. Grass. ACS Nano, 2014, 8 (3), pp 2677–2685 DOI: 10.1021/nn4063853 Publication Date (Web): February 25, 2014

Copyright © 2014 American Chemical Society

This article is behind a paywall.

The Swiss aren’t the only ones interested in tagging petrol (gas), they’re already tagging petrol with nanoparticles in Malaysia with as per my Oct. 7, 2011 posting on the topic.

Food and nanotechnology (as per Popular Mechanics) and zinc oxide nanoparticles in soil (as per North Dakota State University)

I wouldn’t expect to find an article about food in a magazine titled Popular Mechanics but there it is, a Feb. 19,2014 article by Christina Ortiz (Note: A link has been removed),

For a little more than a decade, the food industry has been using nanotechnology to change the way we grow and maintain our food. The grocery chain Albertsons currently has a list of nanotech-touched foods in its home brand, ranging from cookies to cheese blends.

Nanotechnology use in food has real advantages: The technology gives producers the power to control how food looks, tastes, and even how long it lasts.

Looks Good and Good for You?

The most commonly used nanoparticle in foods is titanium dioxide. It’s used to make foods such as yogurt and coconut flakes look as white as possible, provide opacity to other food colorings, and prevent ingredients from caking up. Nanotech isn’t just about aesthetics, however. The biggest potential use for this method involves improving the nutritional value of foods.

Nano additives can enhance or prevent the absorption of certain nutrients. In an email interview with Popular Mechanics, Jonathan Brown, a research fellow at the University of Minnesota, says this method could be used to make mayonnaise less fattening by replacing fat molecules with water droplets.

I did check out US grocer, Albertson’s list of ‘nanofoods’, which they provide and discovered that it’s an undated listing on the Project of Emerging Nanotechnologies’ Consumer Products Inventory (CPI). The inventory has been revived recently after lying moribund for a few years (my Oct. 28, 2013 posting describes the fall and rise) and I believe that this 2013 CPI incarnation includes some oversight and analysis of the claims made, which the earlier version did not include. Given that the Albertson’s list is undated it’s difficult to assess the accuracy of the claims regarding the foodstuffs.

If you haven’t read about nanotechnology and food before, the Ortiz article provides a relatively even-handed primer although it does end on a cautionary note. In any event, it was interesting to get a bit of information about the process of ‘nanofood’ regulation in the US and other jurisdictions (from the Ortiz article),

Aside from requiring manufacturers to provide proof that nanotechnology foods are safe, the FDA has yet to implement specific testing of its own. But many countries are researching ways to balance innovation and regulation in this market. In 2012 the European Food Safety Authority (EFSA) released an annual risk assessment report outlining how the European Union is addressing the issue of nanotech in food. In Canada the Food Directorate “is taking a case-by-case approach to the safety assessment of food products containing or using nanomaterials.”

I featured the FDA’s efforts regarding regulation and ‘nanofood’ in an April 23, 2012 posting,

It looks to me like this [FDA's draft guidance for 'nanofoods'] is an attempt to develop a relationship where the industry players in the food industry to police their nanotechnology initiatives with the onus being on industry to communicate with the regulators in a continuous process, if not at the research stage certainly at the production stage.

At least one of the primary issues with any emerging technology revolves around the question of risk. Do we stop all manufacturing and development of nanotechnology-enabled food products until we’ve done the research? That question assumes that taking any risks is not worth the currently perceived benefits. The corresponding question, do we move forward and hope for the best? does get expressed perhaps not quite so baldly; I have seen material which suggests that research into risks needlessly hampers progress.

After reading on this topic for five or so years, my sense is that most people are prepared to combine the two approaches, i.e., move forward while researching possible risks. The actual conflicts seem to centre around these questions, how quickly do we move forward; how much research do we need; and what is an acceptable level of risk?

On the topic of researching the impact that nanoparticles might have on plants (food or otherwise), a January 24, 2013 North Dakota State University (NDSU) news release highlights a student researcher’s work on soil, plants, and zinc oxide nanoparticles,

NDSU senior Hannah Passolt is working on a project that is venturing into a very young field of research. The study about how crops’ roots absorb a microscopic nutrient might be described as being ahead of the cutting-edge.

In a laboratory of NDSU’s Wet Ecosystem Research Group, in collaboration with plant sciences, Passolt is exploring how two varieties of wheat take up extremely tiny pieces of zinc, called nanoparticles, from the soil.

As a point of reference, the particles Passolt is examining are measured at below 30 nanometers. A nanometer is 1 billionth of a meter.

“It’s the mystery of nanoparticles that is fascinating to me,” explained the zoology major from Fargo. “The behavior of nanoparticles in the environment is largely unknown as it is a very new, exciting science. This type of project has never been done before.”

In Passolt’s research project, plants supplied by NDSU wheat breeders are grown in a hydroponic solution, with different amounts of zinc oxide nanoparticles introduced into the solution.

Compared to naturally occurring zinc, engineered zinc nanoparticles can have very different properties. They can be highly reactive, meaning they can injure cells and tissues, and may cause genetic damage. The plants are carefully observed for any changes in growth rate and appearance. When the plants are harvested, researchers will analyze them for actual zinc content.

“Zinc is essential for a plant’s development. However, in excess, it can be harmful,” Passolt said. “In one of my experiments, we are using low and high levels of zinc, and the high concentrations are showing detrimental effects. However, we will have to analyze the plants for zinc concentrations to see if there have been any effects from the zinc nanoparticles.”

Passolt has conducted undergraduate research with the Wet Ecosystem Research Group for the past two years. She said working side-by-side with Donna Jacob, research assistant professor of biological sciences; Marinus Otte; professor of biological sciences; and Mohamed Mergoum, professor of plant sciences, has proven to be challenging, invigorating and rewarding.

“I’ve gained an incredible skill set – my research experience has built upon itself. I’ve gotten to the point where I have a pretty big role in an important study. To me, that is invaluable,” Passolt said. “To put effort into something that goes for the greater good of science is a very important lesson to learn.”

According to Jacob, Passolt volunteered two years ago, and she has since become an important member of the group. She has assisted graduate students and worked on her own small project, the results of which she presented at regional and international scientific conferences. “We offered her this large, complex experiment, and she’s really taken charge,” Jacob said, noting Passolt assisted with the project’s design, handled care of the plants and applied the treatments. When the project is completed, Passolt will publish a peer-reviewed scientific article.

“There is nothing like working on your own experiment to fully understand science,” Jacob said. “Since coming to NDSU in 2006, the Wet Ecosystem Research Group has worked with more than 50 undergraduates, possible only because of significant support from the North Dakota IDeA Networks of Biomedical Research Excellence program, known as INBRE, of the NIH National Center for Research Resources.”

Jacob said seven undergraduate students from the lab have worked on their own research projects and presented their work at conferences. Two articles, so far, have been published by undergraduate co-authors. “I believe the students gain valuable experience and an understanding of what scientists really do during fieldwork and in the laboratory,” Jacob said. “They see it is vastly different from book learning, and that scientists use creativity and ingenuity daily. I hope they come away from their experience with some excitement about research, in addition to a better resume.”

Passolt anticipates the results of her work could be used in a broader view of our ecosystem. She notes zinc nanoparticles are an often-used ingredient in such products as lotions, sunscreens and certain drug delivery systems. “Zinc nanoparticles are being introduced into the environment,” she said. “It gets to plants at some point, so we want to see if zinc nanoparticles have a positive or negative effect, or no effect at all.”

Researching nanoparticles the effects they might have on the environment and on health is a complex process as there are many types of nanoparticles some of which have been engineered and some of which occur naturally, silver nanoparticles being a prime example of both engineered and naturally occurring nanoparticles. (As well, the risks may lie more with interactions between nanomaterials.) For an example of research, which seems similar to the NDSU effort, there’s this open access research article,

Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario by Benjamin P. Colman, Christina L. Arnaout, Sarah Anciaux, Claudia K. Gunsch, Michael F. Hochella Jr, Bojeong Kim, Gregory V. Lowry,  Bonnie M. McGill, Brian C. Reinsch, Curtis J. Richardson, Jason M. Unrine, Justin P. Wright, Liyan Yin, and Emily S. Bernhardt. PLoS ONE 2013; 8 (2): e57189 DOI: 10.1371/journal.pone.0057189

One last comment, the Wet Ecosystem Research Group (WERG) mentioned in the news release about Passolt has an interesting history (from the homepage; Note: Links have been removed),

Marinus Otte and Donna Jacob brought WERG to the Department of Biological Sciences in the Fall of 2006.  Prior to that, the research group had been going strong at University College Dublin, Ireland, since 1992.

The aims for the research group are to train graduate and undergraduate students in scientific research, particularly wetlands, plants, biogeochemistry, watershed ecology and metals in the environment.  WERG research  covers a wide range of scales, from microscopic (e.g. biogeochemical processes in the rhizosphere of plants) to landscape (e.g. chemical and ecological connectivity between prairie potholes across North Dakota).  Regardless of the scale, the central theme is biogeochemistry and the interactions between multiple elements in wet environments.

The group works to collaborate with a variety of researchers, including soil scientists, geologists, environmental engineers, microbiologists, as well as with groups underpinning management of natural resources, such the Minnesota Department of Natural Resources, the Department of Natural Resources of Red Lake Indian Reservation, and the North Dakota Department of Health, Division of Water Quality.

Currently, WERG has several projects, mostly in North Dakota and Minnesota.  Otte and Jacob are also Co-directors of the North Dakota INBRE Metal Analysis Core, providing laboratory facilities and mentoring for researchers in undergraduate colleges throughout the state. Otte and Jacob are also members of the Upper Midwest Aerospace Consortium.

Beer drinkers weep into their pints on hearing news of electronic tongue

First, it was the wine drinkers (my July 28, 2011 posting titled: Bio-inspired electronic tongue replaces sommelier? about research performed by Spanish researches at the UAB (Universitat Autònoma de Barcelona) now, these researchers have turned their attention to beer.  From a Jan. 30, 2014 news release on EurekAlert,

Beer is the oldest and most widely consumed alcoholic drink in the world. Now, scientists at the Autonomous University of Barcelona have led a study which analysed several brands of beer by applying a new concept in analysis systems, known as an electronic tongue, the idea for which is based on the human sense of taste.

As Manel del Valle, the main author of the study, explains to SINC [Spain's state public agency specialising in science, technology and innovation information]: “The concept of the electronic tongue consists in using a generic array of sensors, in other words with generic response to the various chemical compounds involved, which generate a varied spectrum of information with advanced tools for processing, pattern recognition and even artificial neural networks.”

In this case, the array of sensors was formed of 21 ion-selective electrodes, including some with response to cations (ammonium, sodium), others with response to anions (nitrate, chloride, etc.), as well as electrodes with generic (unspecified) response to the varieties considered.

The authors recorded the multidimensional response generated by the array of sensors and how this was influenced by the type of beer considered. An initial analysis enabled them to change coordinates to view the grouping better, although it was not effective for classifying the beers.

“Using more powerful tools – supervised learning – and linear discriminant analysis did enable us to distinguish between the main categories of beer we studied: Schwarzbier, lager, double malt, Pilsen, Alsatian and low-alcohol,” Del Valle continues, “and with a success rate of 81.9%.”

It seems the electronic tongue does have one drawback,

Furthermore, it is worth noting that varieties of beers that the tongue is not trained to recognise, such as beer/soft drink mixes or foreign makes, were not identified (discrepant samples), which, according to the experts, validates the system as it does not recognise brands for which it was not trained.

Future plans, according to the news release, include,

In view of the ordering of the varieties, which followed their declared alcohol content, the scientists estimated this content with a numerical model developed with an artificial neural network.

“This application could be considered a sensor by software, as the ethanol present does not respond directly to the sensors used, which only respond to the ions present in the solution,” outlines the researcher.

The study concludes that these tools could one day give robots a sense of taste, and even supplant panels of tasters in the food industry to improve the quality and reliability of products for consumption.

Here’s a link to and a citation for the paper,

Beer classification by means of a potentiometric electronic tongue by Xavier Cetó, Manuel Gutiérrez-Capitán, Daniel Calvo , and Manel del Vall. Food Chemistry Volume 141, Issue 3, 1 December 2013, Pages 2533–2540 DOI: 10.1016/j.foodchem.2013.05.091

I’d imagine that anyone who has dreams of becoming a beer taster might want to consider some future alternatives. As for folks like Canadian Kevin Brauch, “host of The Thirsty Traveler [on the Cooking Channel], …  about the world’s greatest beer, wine and cocktails,” he will no doubt claim that a robot is not likely to express like/dislikes or more nuanced opinions, should he become aware of his competitor. Besides, Brauch does have the cocktail to rely on; there’s no word of cocktails being test on an electronic tongue, not yer.

Historically, Canada has been a beer drinkers nation. According to data collected in 2010, we rank fifth in the world (following the Czech Republic, Germany, Austria, and Ireland, in that order)  found in the Wikipedia essay: List of countries by beer consumption per capita.  For anyone who’s curious about Canadian beer drinkers’ perspectives, I found this blog, The Great Canadian Beer Snob (as of 2012 the blog owner, Matt Williams lived in Victoria, BC), which I suspect was a name chosen with tongue-in-cheek.

Biochemical fate of nanoemulsion-based food delivery systems in the gastrointestinal tract

This is a story about nutraceuticals or, more specifically, about nanotechnology and food according to a Jan. 20, 2014 news item on Azonano,

Food scientist Hang Xiao of the University of Massachusetts Amherst recently received a four-year, $491,220 grant to study the biochemical fate of nanoemulsion-based food delivery systems in the gastrointestinal (GI) tract, hoping to re-shape them and enhance the absorption of beneficial food components encapsulated in delivery systems.

Food biochemists like Xiao believe that if taken up in appropriate amounts and forms, certain food components known as nutraceuticals might benefit human health by providing anti-inflammatory or anti-cancer effects. Nutraceuticals include flavonoids and carotenoids in fruits and vegetables, for example.

This project, supported by the U.S. Department of Agriculture’s National Institute of Food and Agriculture, will focus on manipulating the structure and composition of nano-emulsion delivery systems to modify the fate of encapsulated nutraceuticals in the GI tract to enhance their bioavailability.

A Jan. 17, 2014 news release on EurekAlert, which originated the news item, explains further,

“In the last decade, knowledge has been advancing about how to effectively deliver beneficial components in food. This research will allow us to direct the assembly of nano-emulsion droplets to create characteristics that will dictate how they are digested and absorbed,” Xiao explains. “This would be a model for nutraceutical delivery in a wide range of food products. Someday prepared foods may help lower our risk of cancer, for example.”

Specifically, using both cell culture and animal models, Xiao and colleagues will design lipid nanoparticles at three stages: From nano-emulsion droplets containing nutraceuticals, to mixed micelles and finally to chylomicrons. To start this process, digestion physiochemically disassembles nano-emulsion droplets. The resulting chemical components are then assembled into mixed micelles in the small intestine, where epithelial cells called enterocytes take them up. There they are reassembled into chylomicrons and absorbed into blood circulation through the lymph system.

The scientists want to influence the size and composition of chylomicrons, because these characteristics dictate the fate of nutraceuticals encapsulated in the chylomicrons. Certain sizes and compositions are better able to deliver nutraceuticals to the lymph system, which protects nutraceuticals from being cleared by the liver. This will enhance bioavailability of flavonoids and other beneficial compounds to the body, potentially offering health benefits.

“We’re basically utilizing what already happens in our bodies all the time, but introducing food-grade nano-emulsion systems that can influence the nature of mixed micelles as well as chylomicrons,” says Xiao. “It’s safe, it’s all digested and simply delivers beneficial food components to a greater extent than if the system was left alone.”

Given that this falls under my nanotechnology and food classification, I was reminded of a recent panel discussion on the topic held by the UK’s Guardian newspaper, from my Oct. 29, 2013 posting,

There’s no indication as to what the 25 audience members thought about the session although Hilary Sutcliffe of Matter was quoted,

Audience member Hilary Sutcliffe, director of the Matter think tank on responsible innovation, was keen to emphasise the limits of nanotechnology in food. “If we’re really lucky, we might get nanosalt and a couple of nano-encapsulated vitamins that go in products,” she told the panel, describing her disappointment in the progress of nanotechnology in food to date.

Sutcliffe explained that these limited applications are expensive and not that useful: manufacturers would rather just reduce salt content than pay for nanosalt, and vitamins and flavourings do not need to be nano-encapsulated because they can be added to foods at the microscale, rather than at the nano-level, which is one thousand times smaller.

She also suggested that, so far, the possible uses of nanotechnology have only been in Western diets and that people should be realistic about its use for tackling the impending global food crisis. “Nothing about nanotechnology is in relation to anything except Western, expensive foods that are slightly gratuitous and not particularly necessary,” she said, before adding that it is not currently helping to feed the world. “If you are going to talk about feeding the world, be brave, take on GM, let’s have that discussion.”

I was not able to find notice of any US public engagement sessions on the topic of ‘nano and food’. If you know of any such sessions, please do share in the comments section.

Nano info on food labels wanted by public in the US?

There’s some social science research about nanotechnology and food labeling in the US making its rounds on the internet. From an Oct. 28, 2013 news item on Nanowerk (Note: A link has been removed),

New research from North Carolina State University and the University of Minnesota finds that people in the United States want labels on food products that use nanotechnology – whether the nanotechnology is in the food or is used in food packaging. The research (“Hungry for Information: Public Attitudes Toward Food Nanotechnology and Labeling”) also shows that many people are willing to pay more for the labeling.

Study participants were particularly supportive of labeling for products in which nanotechnology had been added to the food itself, though they were also in favor of labeling products in which nanotechnology had only been incorporated into the food packaging.

The Oct. 28, 2013 North Carolina State University (NCSU) news release (also on EurekAlert), which originated the news item, has a title that can be viewed as misleading  especially in light of how other news media have interpreted it,

Public wants labels for food nanotech — and they’re willing to pay for it

Yes but it’s not exactly ‘the public’ (from the news release),

“We wanted to know whether people want nanotechnology in food to be labeled, and the vast majority of the participants in our study do,” says Dr. Jennifer Kuzma, senior author of a paper on the research and Goodnight-Glaxo Wellcome Distinguished Professor of Public Administration at NC State. “Our study is the first research in the U.S. to take an in-depth, focus group approach to understanding the public perception of nanotechnology in foods.” [emphasis mine]

The researchers convened six focus groups – three in Minnesota and three in North Carolina – and gave study participants some basic information about nanotechnology and its use in food products. Participants were then asked a series of questions addressing whether food nanotechnology should be labeled. Participants were also sent a follow-up survey within a week of their focus group meeting. [emphasis mine]

Since ‘focus group’ isn’t likely to grab attention in a headline whoever wrote the news release decided on a more dramatic approach citing the ‘public’ which resulted in this still more dramatic headline for an Oct. 29, 2013 news item on Red Orbit (Note: Links have been removed),

Most Americans Want To See Labels On Their Nanofoods

Americans overwhelmingly want to know when they are eating food products that use nanotechnology, and are happy to pay the additional labeling costs, according to a new study published this month in the journal Review of Policy Research.

“Our study is the first research in the United States to take an in-depth, focus group approach to understanding the public perception of nanotechnology in foods,” said Dr. Jennifer Kuzma of North Carolina State University, the study’ s senior author. [emphasis mine] “We wanted to know whether people want nanotechnology in food to be labeled, and the vast majority of the participants in our study do.”

Curious, I read the paper (which is open access),

Hungry for Information: Public Attitudes Toward Food Nanotechnology and Labeling by Jonathan Brown, University of Minnesota; Jennifer Kuzma, North Carolina State University. Published: Online Oct. 7 [2013] in Review of Policy Research DOI: 10.1111/ropr.12035

First off, this study is, by my standards, a well written piece of research. The writers have grounded their work in the literature,  explained their approach and methodology, and provided many appendices including one with the script used by the focus group moderators. Surprisingly, I’ve read more than one piece of ‘social science research’ which did not provide one or more of the previously mentioned aspects essential to a basic, solid research paper. In other words, there are a lot of sloppy social science research papers out there. Thankfully, this is not one of them. That said, I do have a comment about the paper’s title and a nit to pick regarding the methodology.

The paper’s title has a ‘look at me’ quality which has found its way into the news release and ultimately some of the headlines in various online publications (including this post). The paper’s title in the context of a publication called Review of Policy Research is less problematic due to its audience, i.e., policy wonks who are likely to discount the title as simply an attempt to get attention. The point is that the audience for Review of Policy Research is not likely to take that title at face value, i.e., uncritically. However, as this ‘look at me’ title is rewritten and makes its way through various media outlets, the audience changes to one that is much more likely to take it at face value.

Researchers are in a bind. They want attention for their work but can risk media coverage which distorts their findings. As for the level of distortion to be found, here’s information about the methodology and sample (participants), from the research paper,

Seven focus groups, 90 minutes in length and ranging in size from seven to ten participants, were conducted between September 2010 and January 2011 in the Minnesota cities of Minneapolis, Richfield, and Bloomington, and the North Carolina cities of Raleigh, Garner, and Cary. [emphasis mine’ Cities were selected based on the main city location, the largest suburb, and finally a randomly selected city between 30,000 and 60,000 residents, all within the counties of Hennepin, Minnesota, and Wake, North Carolina.

Participants were recruited using a stratified random sample, with the goal of having equal female and male numbers in each group, while matching a demographic county profile. Those who had a prior background in or extensive knowledge of nanotechnology were excluded from participation. The profiles were based on age, sex, race, education, family household income, and ideology (liberal, moderate, and conservative) criteria and generated by means of census data in conjunction with information supplied from select city community centers. Telephone and cell phone samples for each city were acquired and used to recruit 12 participants for each focus group, with the expectation of 75 percent attendance per group. Participants were given light dinner refreshments and $100 cash for their participation.

A total of 56 participants partook in one of the seven focus groups (n1 = 8, n2 = 10, n3 = 8, n4 = 7, n5 = 8, n6 = 7, and n7  = 8). The overall demographic distribution contained more males (64 percent, n = 36) versus females (36 percent, n = 20); whites/Caucasians (84 percent, n = 47) versus blacks/African Americans (11 percent, n = 6) and Asians/Pacific Islanders (4 percent, n = 2); and those with a postgraduate or professional degree (27 percent, n = 15) versus college graduate (23 percent, n = 13), some college (16 percent, n = 9), high school graduate (14 percent, n = 8), technical college graduate (7 percent, n = 4), some high school (5 percent, n = 3), some technical college (2 percent, n = 1), and “Other” education (2 percent, n = 1). Race/ethnicity and education had n = 1 and n = 2 “No Answer” responses, respectively. The most common age bracket was 50–60 (36 percent, n = 20) compared with “Over 60” (23 percent, n = 13), 41–49 (23 percent, n = 13), 31–39 (7 percent, n = 4), and “Under 30” (7 percent, n = 4). Additionally, two provided “No Answer” for their ages.

So, 56 people, at the most. from two different states are representing Americans. Under Study Limitations subhead, the researchers outline some of their own concerns regarding this research (from the paper),

Several limitations of our focus group study are worth noting. The small sample size (n = 56 for focus groups and worksheet responses; n = 34 for postsurvey) reduces inferential power for the quantitative worksheet and postsurvey results.  Additionally, a small sample size coupled with underrepresentation for multiple demographics (e.g., non-Caucasians, females, those under age 40, and so on) restricts generalizability of results, whether quantitative or qualitative. For focus groups, however, this is to be expected as the goal is in-depth and quality discussions that explore issues heretofore under-investigated. [all emphases mine]

The nature of focus group execution presents further challenges. For example, introverted individuals may not participate as readily, and this potential imbalance skews the discussion toward the extraverted participants’ ideas. A technique to mitigate this bias, which was employed by our moderators, is to directly ask quieter participants questions once a topic is generated. Although directed calling is effective at ensuring all views on a specific topic are eventually heard, more talkative participants nonetheless exert essential control as their initial contributions determine the topics to be covered. Extraverts will thus be overrepresented in the conversation flow.

Another challenge with employing focus groups relates to moderator-controlled variations. While one discussion guide (i.e., set of specific guiding questions) was used for all focus groups (see Appendix A), the moderator frequently had to ask various follow-up questions to maintain substantive dialog. Consequently, several impromptu questions stimulating important exchanges were not raised uniformly in all groups. Fortunately, such variability was not widely problematic, as all focus groups consisted of the same six phases with the same preliminary prompts. Below we present the results from our study that relate to food and nanotechnology products and their labeling.

The results from the research are suggestive but this work does not offer proof that Americans want nano information on their food labels and are will to pay more. However this research lays the groundwork for future queries as the researchers themselves note in their Discussion at the end of the paper,

This study is the first, to our knowledge, to concentrate on public attitudes toward nanofood labeling in the United States. As such, we took an exploratory and grounded theory approach to reveal insights that could be important for developing policies and programs. Focus group discussions, in-group response worksheets, and postsurvey results from this study begin to form a picture of what people view as important for nanofood governance and labeling more specifically. Future studies will be needed to further explore these results, as there were several limitations to this study including the small sample sizes for the postsurvey (n = 34) and focus groups (n = 56) in the context of applying inferential statistics, sample underrepresentation for some demographic variables, potential overrepresentation of extroverted opinions in focus group conversations, and intergroup moderator consistency (see also the “Study Limitations” section above). These limitations are often associated with focus group research.

The researchers also describe the various themes that emerged from the focus group discussions,

Labeling discussions activated numerous topics directly and indirectly related to nanofood product labeling. Skepticism and the influence of historical experiences were two themes that emerged in this study that have not been extensively covered in previous literature on public perception of nanotechnology. Participants were skeptical concerning actions, intentions, and promised outcomes, often without reference to particular organizations or their trust of them. In part, skepticism stemmed from historical experiences with other product domains like pesticides, nutritional and allergenicity labels, and prior food safety claims. Participants relied heavily on previous experiences related to nanofood labeling in order to form opinions on this new domain.

I encourage you to read the research yourself. As these things go, this study is quite readable. However, I do have one final nit to pick, household income. While the researchers used the data to develop their stratified, random sample, they don’t seem to have taken income into account when analyzing the results or considering problems in the methodology. It seems to me that household income might be a factor in how people feel about paying more for food labels that include nano information.

This is the second nanofood-themed post I’ve published recently, see my Oct. 23, 2013 posting for a report of a food and nano panel held at the Guardian’s (newspaper) offices in London, UK>