Category Archives: environment

Noise pollution in the ocean and the Canadian military

A December 1, 2023 news item on phys.org highlights noise pollution research from Simon Fraser University (SFU) based in Vancouver, British Columbia, Canada,

A new study from Simon Fraser University researchers examines the Canadian military’s efforts to reduce the impacts of underwater noise pollution on species during training exercises in the Pacific Ocean but caveat that more can still be done.

Kieran Cox, Liber Ero and NSERC Fellow from Simon Fraser University, prepares to dive into kelp forests. Photo by Kiara Kattler

A December 11, 2023 SFU news release (also on EurekAlert but published December 1, 2023), which originated the news item, delves further into the research,

The paper, published today [online December 1 or 11, 2023] in Marine Policy, takes aim at a report commissioned by the Canadian Department of National Defence (DND) to reduce the effects of noise pollution from military small-arms munitions training within “Whiskey Hotel”, a 330-square-kilometre area in the Strait of Juan de Fuca off the British Columbia coast.

The military commissioned the report after it committed to pausing exercises in the area for three years to examine the risk in-air and underwater training noises pose to marine mammals, such as the endangered Southern Resident Killer Whales.

With the report complete, the military has indicated it plans to resume training activities in Whiskey Hotel and will implement measures to reduce the impact of noise pollution, such as mitigation avoidance zones, cease-fire procedures, and marine species awareness training.

While researchers acknowledge the report and the mitigation measures as a positive step forward, the SFU-led paper analyzing the original report found several limitations.

For example, the report only looked at the noise pollution created by small arms fire and didn’t consider the significant noise created by the military vessels themselves. The report also focused on marine mammals and didn’t take into account the impact noise pollution also has on local populations of fish, such as salmon, and invertebrates in the area.  

Researchers say more can be done in the future to protect fish and invertebrates from noise pollution, especially as the federal government continues to develop a national plan to manage and mitigate the impacts of underwater vessel noise on marine species and their ecosystems.

“It’s important to be clear: this report is a step in the right direction. The government is developing an ocean noise strategy, so legislation on this topic is currently lacking, and activities that pertain to national security will be largely exempt from regulations. Commissioning an investigation and implementing mitigation measures is a conservation success story, one that I’m keen to see this improved upon and used in the future,” says SFU biological sciences postdoctoral fellow Kieran Cox, the lead author of the study. 

“I am hopeful that this framework can be adapted to consider all marine life and sources of noise pollution noise, which is needed as we move towards an Ocean Noise Strategy that can inform the coming decades.”

Here’s a link to and a citation for the paper,

Military training in the Canadian Pacific: Taking aim at critical habitat or sufficient mitigation of noise pollution impacts? by Kieran D. Cox, Audrey Looby, Hailey L. Davies, Kelsie A. Murchy, Brittnie Spriel, Aaron N. Rice, Francis Juanes, Isabelle M. Côté. Marine Policy Volume 160, February 2024, 105945 DOI: https://doi.org/10.1016/j.marpol.2023.105945

This paper is behind a paywall.

March 6, 2024 Simon Fraser University (SFU) event “The Planetary Politics of AI: Past, Present, and Future” in Vancouver, Canada

*Unsurprisingly, this event has been cancelled. More details at the end of this posting.* This is not a free event; they’ve changed the information about fees/no fees and how the fees are being assessed enough times for me to lose track; check the eventbrite registration page for the latest. Also, there will not be a publicly available recording of the event. (For folks who can’t afford the fees, there’s a contact listed later in this posting.)

First, here’s the “The Planetary Politics of AI: Past, Present, and Future” event information (from a January 10, 2024 Simon Fraser University (SFU) Public Square notice received via email),

The Planetary Politics of AI: Past, Present, and Future

Wednesday, March 6 [2024] | 7:00pm | In-person | Free [Note: This was an error.]

Generative AI has dominated headlines in 2023, but these new technologies rely on a dramatic increase in the extraction of data, human labor, and natural resources. With increasing media manipulation, polarizing discourse, and deep fakes, regulators are struggling to manage new AI.

On March 6th [2024], join renowned author and digital scholar Kate Crawford, as she sits in conversation with SFU’s Wendy Hui Kyong Chun. Together, they will discuss the planetary politics of AI, how we got here, and where it might be going.

A January 11, 2024 SFU Public Square notice (received via email) updates the information about how this isn’t a free event and offers an option for folks who can’t afford the price of a ticket, Note Links have been removed,

The Planetary Politics of AI: Past, Present, and Future

Wednesday, March 6 | 7:00pm | In-person | Paid

Good morning,

We’ve been made aware that yesterday’s newsletter had a mistake, and we thank those who brought it to our attention. The March 6th [2024] event, The Planetary Politics of AI: Past, Present, and Future, is not a free event and has an admission fee for attendance. We apologize for the confusion.

Whenever possible, SFU Public Square’s events are free and open to all, to ensure that the event is as accessible as possible. For this event, there is a paid admission, with a General and Student/Senior Admission option. That being said, if the admission fees are a barrier to access, please email us at psqevent@sfu.ca. Exceptions can be made. [emphasis mine]

Thank you for your understanding!

“The Planetary Politics of AI: Past, Present, and Future” registration webpage on eventbrite offers more information about the speakers and logistics,

Date and time

Starts on Wed, Mar 6, 2024 7:00 PM PST

Location

Djavad Mowafaghian Cinema (SFU Vancouver — Woodward’s Building) 149 W Hastings Street Vancouver, BC V6B 1H7

[See registration page for link to map]

Refund Policy

Refunds up to 7 days before event

About the speakers

Kate Crawfordis a leading international scholar of the social implications of artificial intelligence. She is a Research Professor at USC Annenberg in Los Angeles, a Senior Principal Researcher at MSR in New York, an Honorary Professor at the University of Sydney, and the inaugural Visiting Chair for AI and Justice at the École Normale Supérieure in Paris. Her latest book, Atlas of AI (Yale, 2021), won the Sally Hacker Prize from the Society for the History of Technology, the ASSI&T Best Information Science Book Award, and was named one of the best books in 2021 by New Scientist and the Financial Times.

Over her twenty-year research career, she has also produced groundbreaking creative collaborations and visual investigations. Her project Anatomy of an AI System with Vladan Joler is in the permanent collection of the Museum of Modern Art in New York and the V&A in London, and was awarded with the Design of the Year Award in 2019 and included in the Design of the Decades by the Design Museum of London. Her collaboration with the artist Trevor Paglen, Excavating AI, won the Ayrton Prize from the British Society for the History of Science. She has advised policy makers in the United Nations, the White House, and the European Parliament, and she currently leads the Knowing Machines Project, an international research collaboration that investigates the foundations of machine learning. And in 2023, Kate Crawford was named on of the TIME100 list as one of the most influential people in AI.

Wendy Hui Kyong Chun is Simon Fraser University’s Canada 150 Research Chair in New Media, Professor in the School of Communication, and Director of the Digital Democracies Institute. At the Institute, she leads the Mellon-funded Data Fluencies Project, which combines the interpretative traditions of the arts and humanities with critical work in the data sciences to express, imagine, and create innovative engagements with (and resistances to) our data-filled world.

She has studied both Systems Design Engineering and English Literature, which she combines and mutates in her research on digital media. She is author many books, including: Control and Freedom: Power and Paranoia in the Age of Fiber Optics (MIT, 2006), Programmed Visions: Software and Memory (MIT 2011), Updating to Remain the Same: Habitual New Media (MIT 2016), and Discriminating Data: Correlation, Neighborhoods, and the New Politics of Recognition (2021, MIT Press). She has been Professor and Chair of the Department of Modern Culture and Media at Brown University, where she worked for almost two decades and is currently a Visiting Professor. She is a Fellow of the Royal Society of Canada, and has also held fellowships from: the Guggenheim, ACLS, American Academy of Berlin, Radcliffe Institute for Advanced Study at Harvard.

I’m wondering if the speakers will be discussing how visual and other arts impact their views on AI and vice versa. Both academics have an interest in the arts as you can see in Crawford’s event bio. As for Wendy Hui Kyong Chun, in my April 23, 2021 posting where if you scroll down to her name, (about 30% of the way down), you’ll see she was involved with “Multimedia & Electronic Music Experiments (MEME),” History of Art and Architecture,” and “Theatre Arts and Performance Studies” at Brown University.

A February 12, 2024 SFU Public Square announcement (received via email), which includes a link to this Speaker’s Spotlight webpage (scroll down), suggests my speculation is incorrect,

For over two decades, Kate Crawford’s work has focused on understanding large scale data systems, machine learning and AI in the wider contexts of history, politics, labor, and the environment.

Her latest book,  Atlas of AI (2021) explores artificial intelligence as the extractive industry of the 21st century, relying on vast amounts of data, human labour, and natural resources. …

One more biographical note about Crawford, she was mentioned here in an April 17, 2015 posting, scroll down to the National Film Board of Canada subhead, then down to Episode 5 ‘Big Data and its Algorithms’ of the Do Not Track documentary; she is one of the interviewees. I’m not sure if that documentary is still accessible online.

Back to the event, to get more details and/or buy a ticket, go to: “The Planetary Politics of AI: Past, Present, and Future” registration webpage.

Or, SFU is hosting its free 2023 Nobel Prize-themed lecture at Science World on March 6, 2024 (see my January 16, 2024 posting and scroll down about 30% of the way for more details).

*March 4, 2024: I found a cancellation notice on the SFU’s The Planetary Politics of AI: Past, Present, and Future event page,,

Unfortunately, this event has been cancelled due to extenuating circumstances. If you have questions or concerns, please email us at psqevent@sfu.ca. We apologize for any inconvenience this may cause and we thank you for your understanding.

My guess? They didn’t sell enough tickets. My assessment? Poor organization (e.g., the confusion over pricing), and poor marketing (e.g., no compelling reason to buy a ticket, (e.g.,, neither participant is currently a celebrity or a hot property, the presentation was nothing unique or special, it was just a talk; the title was mildly interesting but not exciting or provocative, etc.).

A nanozyme that is organic, non-toxic, environmentally friendly, cost effective, and can detect the presence of glyphosate

An October 16, 2023 University of Illinois news release (also on EurekAlert), describes research into developing a tool to detect the presence of the agricultural herbicide, glyphosate, Note: Links have been removed,

Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. They are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers from the University of Illinois Urbana-Champaign have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective. In a newly published paper, they describe its features and its capacity to detect the presence of glyphosate, a common agricultural herbicide. Their goal is to eventually create a user-friendly test kit for consumers and agricultural producers.

“The word nanozyme is derived from nanomaterial and enzyme. Nanozymes were first developed about 15 years ago, when researchers found that iron oxide nanoparticles may perform catalytic activity similar to natural enzymes (peroxidase),” explained Dong Hoon Lee, a doctoral student in the Department of Agricultural and Biological Engineering (ABE), part of the College of Agricultural, Consumer and Environmental Sciences (ACES) and The Grainger College of Engineering at U. of I.

These nanozymes mimic the activity of peroxidase, an enzyme that catalyzes the oxidation of a substrate by using hydrogen peroxide as an oxidizing agent. They provide higher stability and lower cost than natural peroxidase, and they are widely used in biomedical research, including biosensors for detection of target molecules in disease diagnostics.

“Traditional nanozymes are created from inorganic, metal-based materials, making them too toxic and expensive to be directly applied on food and agriculture,” Lee said.

“Our research group is pioneering the development of fully organic compound-based nanozymes (OC nanozymes) which exhibit peroxidase-like activities. The OC nanozyme follows the catalytic activity of the natural enzyme but is predominantly based on agriculture-friendly organic compounds, such as urea acting as a chelating-like agent and polyvinyl alcohol as a particle stabilizer.”

The researchers also implemented a colorimetric sensing system integrated with the OC nanozyme for target molecule detection. Colorimetric assays, an optical sensing method, use color intensity to provide an estimated concentration of the presence of specific molecules in a substance, such that darker or lighter color indicates lower or higher quantity of target molecules. The organic-compound nanozyme performed on par with nanozymes typically used in biosensing applications within their kinetic profile with molecule detection performance.

“Traditional nanozymes come with a host of issues: toxicity, lengthy degradation, and a complex production process. In contrast, our nanozyme is quicker to produce, cost-effective, non-toxic, and environmentally friendly,” said Mohammed Kamruzzaman, assistant professor in ABE and co-author on the study.

Lee and Kamruzzaman applied the OC nanozyme-based, colorimetric sensing platform to detect the presence of glyphosate, a widely used herbicide in the agricultural industry. They performed colorimetric assays in solutions containing varying concentrations of glyphosate, finding the organic nanozyme was able to successfully detect glyphosate with adequate accuracy.

“There is an increasing demand for testing pesticide or herbicide presence in agricultural products to protect human and crop health. We want to develop an OC nanozyme-based, point-of-use testing platform for farmers or consumers that they can apply in the field or at home,” Kamruzzaman stated. “People would obtain a test kit with a substance to mix with their sample, then take a picture and use an app on their phone to identify the color intensity and interpret if there is any glyphosate present. The ultimate goal is to make the test portable and applicable anywhere.”

The researchers are also working on developing additional nanozymes, envisioning these environmental-friendly materials hold great potential for a wide range of applications.

Here’s a link to and a citation for the paper,

Organic compound-based nanozymes for agricultural herbicide detection by Dong Hoon Lee and Mohammed Kamruzzaman. Nanoscale, 2023,15, 12954-12960 First published July 28, 2023

This paper is open access once you have created your free account.

Simon Fraser University’s (SFU; Vancouver, Canada) Café Scientifique Winter/Spring 2024 events + a 2023 Nobel-themed lecture

There are three upcoming Simon Fraser University (SFU) Café Scientifique events (Zoom) and one upcoming Nobel=themed lecture (in person) according to a January 15, 2024 notice (received via email), Note: All the events are free,

Hello SFU Cafe Scientifique friends!

We are back with a brand new line up for our Cafe Scientifique discussion series.  Zoom invites will be sent closer to the event dates [emphasis mine].  We hope you can join us.

All event information and registration links on this page: https://www.sfu.ca/science/community.html

Café Scientifique: Why Do Babies Get Sick? A Systems Biology Approach to Developing Diagnostics and Therapeutics for Neonatal Sepsis. 

Tuesday, January 30, 5:00-6:30pm over Zoom 

Around the world five newborn babies die each second from life-threatening infections. Unfortunately there is no fast or easy way to tell which microbes are involved. Molecular Biology and Biochemistry assistant professor Amy Lee will share how we can use genomics and machine learning approaches to tackle this challenge.
Register here. https://events.sfu.ca/event/38235-cafe-scientifique-january-why-do-babies-get-sick?

Cafe Scientifique: From data to dollars: A journey through financial modelling
Tuesday, February 27, 5:00-6:30 pm over Zoom 

Financial modelling involves using mathematical and statistical techniques to understand future financial scenarios, helping individuals and businesses make informed decisions about their investments. Join Dr. Jean-François Bégin as he explores how these models can empower us to navigate the complexities of financial markets.

Register here: https://www.eventbrite.ca/e/763521010897

Cafe Scientifique: Overtraining and the Everyday Athlete
Tuesday, April 30, 5:00-6:30 pm over Zoom 

What happens when we train too hard, don’t take enough time to recover, or underfuel while exercising, and how that applies to both elite athletes and just your “everyday athlete.” Join Dr. Alexandra Coates from our Biomedical Physiology and Kinesiology Department in this interesting discussion.

Register here: https://www.eventbrite.ca/e/763521010897

Missed our last Café Scientifique talk [Decoding how life senses and responds to carbon dioxide gas] with Dustin King? [SFU Molecular Biology and Biochemistry Assistant Professor Dustin King’s Indigenous background is central to his work and relationship with the biochemical research he conducts. He brings Indigenous ways of knowing and a two-eye seeing approach to critical questions about humanity’s impact upon the natural world …] Watch it on YouTube: https://www.youtube.com/watch?v=xCHTSbF3RVs&list=PLTMt9gbqLurAMfSHQqVAHu7YbyOFq81Ix&index=10

The ‘2023 Nobel Prize Lectures’ being presented by SFU do not feature the 2023 winners but rather, SFU experts in the relevant field, from the January 15, 2024 SFU Café Scientifique notice (received via email),

BACK IN-PERSON AT THE SCIENCE WORLD THEATRE!

Location: Science World Theatre 1455 Quebec Street Vancouver, BC V6A 3Z7

NOBEL PRIZE LECTURES  

Wednesday, March 6, 2024 

6:30-7:30 pm Refreshments, 7:30-9:30 pm Lectures 

Celebrate the 2023 Nobel awardees in Chemistry, Physics, Physiology or Medicine!

SFU experts will explain Nobel laureates’ award-winning research and its significance to our everyday lives. 

Featured presenters are

*Mark Brockman from Molecular Biology and Biochemistry for the Nobel Prize in Medicine and Physiology;

*Byron Gates from Chemistry for the Nobel Prize in Chemistry; and

*Shawn Sederberg from the School of Engineering Science for the Nobel Prize in Physics.

Register here: https://www.eventbrite.ca/e/nobel-prize-lectures-tickets-773387301237

For anyone who has trouble remembering who and why the winners were awarded a 2023 Nobel Prize, here’s a nobleprize.org webpage devoted to the 2023 winners.

FrogHeart’s 2023 comes to an end as 2024 comes into view

My personal theme for this last year (2023) and for the coming year was and is: catching up. On the plus side, my 2023 backlog (roughly six months) to be published was whittled down considerably. On the minus side, I start 2024 with a backlog of two to three months.

2023 on this blog had a lot in common with 2022 (see my December 31, 2022 posting), which may be due to what’s going on in the world of emerging science and technology or to my personal interests or possibly a bit of both. On to 2023 and a further blurring of boundaries:

Energy, computing and the environment

The argument against paper is that it uses up resources, it’s polluting, it’s affecting the environment, etc. Somehow the part where electricity which underpins so much of our ‘smart’ society does the same thing is left out of the discussion.

Neuromorphic (brainlike) computing and lower energy

Before launching into the stories about lowering energy usage, here’s an October 16, 2023 posting “The cost of building ChatGPT” that gives you some idea of the consequences of our insatiable desire for more computing and more ‘smart’ devices,

In its latest environmental report, Microsoft disclosed that its global water consumption spiked 34% from 2021 to 2022 (to nearly 1.7 billion gallons , or more than 2,500 Olympic-sized swimming pools), a sharp increase compared to previous years that outside researchers tie to its AI research. [emphases mine]

“It’s fair to say the majority of the growth is due to AI,” including “its heavy investment in generative AI and partnership with OpenAI,” said Shaolei Ren, [emphasis mine] a researcher at the University of California, Riverside who has been trying to calculate the environmental impact of generative AI products such as ChatGPT.

Why it matters: Microsoft’s five WDM [West Des Moines in Iowa] data centers — the “epicenter for advancing AI” — represent more than $5 billion in investments in the last 15 years.

Yes, but: They consumed as much as 11.5 million gallons of water a month for cooling, or about 6% of WDM’s total usage during peak summer usage during the last two years, according to information from West Des Moines Water Works.

The focus is AI but it doesn’t take long to realize that all computing has energy and environmental costs. I have more about Ren’s work and about water shortages in the “The cost of building ChatGPT” posting.

This next posting would usually be included with my other art/sci postings but it touches on the issues. My October 13, 2023 posting about Toronto’s Art/Sci Salon events, in particular, there’s the Streaming Carbon Footprint event (just scroll down to the appropriate subhead). For the interested, I also found this 2022 paper “The Carbon Footprint of Streaming Media:; Problems, Calculations, Solutions” co-authored by one of the artist/researchers (Laura U. Marks, philosopher and scholar of new media and film at Simon Fraser University) who presented at the Toronto event.

I’m late to the party; Thomas Daigle posted a January 2, 2020 article about energy use and our appetite for computing and ‘smart’ devices for the Canadian Broadcasting Corporation’s online news,

For those of us binge-watching TV shows, installing new smartphone apps or sharing family photos on social media over the holidays, it may seem like an abstract predicament.

The gigabytes of data we’re using — although invisible — come at a significant cost to the environment. Some experts say it rivals that of the airline industry. 

And as more smart devices rely on data to operate (think internet-connected refrigerators or self-driving cars), their electricity demands are set to skyrocket.

“We are using an immense amount of energy to drive this data revolution,” said Jane Kearns, an environment and technology expert at MaRS Discovery District, an innovation hub in Toronto.

“It has real implications for our climate.”

Some good news

Researchers are working on ways to lower the energy and environmental costs, here’s a sampling of 2023 posts with an emphasis on brainlike computing that attest to it,

If there’s an industry that can make neuromorphic computing and energy savings sexy, it’s the automotive indusry,

On the energy front,

Most people are familiar with nuclear fission and some its attendant issues. There is an alternative nuclear energy, fusion, which is considered ‘green’ or greener anyway. General Fusion is a local (Vancouver area) company focused on developing fusion energy, alongside competitors from all over the planet.

Part of what makes fusion energy attractive is that salt water or sea water can be used in its production and, according to that December posting, there are other applications for salt water power,

More encouraging developments in environmental science

Again, this is a selection. You’ll find a number of nano cellulose research projects and a couple of seaweed projects (seaweed research seems to be of increasing interest).

All by myself (neuromorphic engineering)

Neuromorphic computing is a subset of neuromorphic engineering and I stumbled across an article that outlines the similarities and differences. My ‘summary’ of the main points and a link to the original article can be found here,

Oops! I did it again. More AI panic

I included an overview of the various ‘recent’ panics (in my May 25, 2023 posting below) along with a few other posts about concerning developments but it’s not all doom and gloom..

Governments have realized that regulation might be a good idea. The European Union has a n AI act, the UK held an AI Safety Summit in November 2023, the US has been discussing AI regulation with its various hearings, and there’s impending legislation in Canada (see professor and lawyer Michael Geist’s blog for more).

A long time coming, a nanomedicine comeuppance

Paolo Macchiarini is now infamous for his untested, dangerous approach to medicine. Like a lot of people, I was fooled too as you can see in my August 2, 2011 posting, “Body parts nano style,”

In early July 2011, there were reports of a new kind of transplant involving a body part made of a biocomposite. Andemariam Teklesenbet Beyene underwent a trachea transplant that required an artificial windpipe crafted by UK experts then flown to Sweden where Beyene’s stem cells were used to coat the windpipe before being transplanted into his body.

It is an extraordinary story not least because Beyene, a patient in a Swedish hospital planning to return to Eritrea after his PhD studies in Iceland, illustrates the international cooperation that made the transplant possible.

The scaffolding material for the artificial windpipe was developed by Professor Alex Seifalian at the University College London in a landmark piece of nanotechnology-enabled tissue engineering. …

Five years later I stumbled across problems with Macchiarini’s work as outlined in my April 19, 2016 posting, “Macchiarini controversy and synthetic trachea transplants (part 1 of 2)” and my other April 19, 2016 posting, “Macchiarini controversy and synthetic trachea transplants (part 2 of 2)“.

This year, Gretchen Vogel (whose work was featured in my 2016 posts) has written a June 21, 2023 update about the Macchiarini affair for Science magazine, Note: Links have been removed,

Surgeon Paolo Macchiarini, who was once hailed as a pioneer of stem cell medicine, was found guilty of gross assault against three of his patients today and sentenced to 2 years and 6 months in prison by an appeals court in Stockholm. The ruling comes a year after a Swedish district court found Macchiarini guilty of bodily harm in two of the cases and gave him a suspended sentence. After both the prosecution and Macchiarini appealed that ruling, the Svea Court of Appeal heard the case in April and May. Today’s ruling from the five-judge panel is largely a win for the prosecution—it had asked for a 5-year sentence whereas Macchiarini’s lawyer urged the appeals court to acquit him of all charges.

Macchiarini performed experimental surgeries on the three patients in 2011 and 2012 while working at the renowned Karolinska Institute. He implanted synthetic windpipes seeded with stem cells from the patients’ own bone marrow, with the hope the cells would multiply over time and provide an enduring replacement. All three patients died when the implants failed. One patient died suddenly when the implant caused massive bleeding just 4 months after it was implanted; the two others survived for 2.5 and nearly 5 years, respectively, but suffered painful and debilitating complications before their deaths.

In the ruling released today, the appeals judges disagreed with the district court’s decision that the first two patients were treated under “emergency” conditions. Both patients could have survived for a significant length of time without the surgeries, they said. The third case was an “emergency,” the court ruled, but the treatment was still indefensible because by then Macchiarini was well aware of the problems with the technique. (One patient had already died and the other had suffered severe complications.)

A fictionalized tv series ( part of the Dr. Death anthology series) based on Macchiarini’s deceptions and a Dr. Death documentary are being broadcast/streamed in the US during January 2024. These come on the heels of a November 2023 Macchiarini documentary also broadcast/streamed on US television.

Dr. Death (anthology), based on the previews I’ve seen, is heavily US-centric, which is to be expected since Adam Ciralsky is involved in the production. Ciralsky wrote an exposé about Macchiarini for Vanity Fair published in 2016 (also featured in my 2016 postings). From a December 20, 2023 article by Julie Miller for Vanity Fair, Note: A link has been removed,

Seven years ago [2016], world-renowned surgeon Paolo Macchiarini was the subject of an ongoing Vanity Fair investigation. He had seduced award-winning NBC producer Benita Alexander while she was making a special about him, proposed, and promised her a wedding officiated by Pope Francis and attended by political A-listers. It was only after her designer wedding gown was made that Alexander learned Macchiarini was still married to his wife, and seemingly had no association with the famous names on their guest list.

Vanity Fair contributor Adam Ciralsky was in the midst of reporting the story for this magazine in the fall of 2015 when he turned to Dr. Ronald Schouten, a Harvard psychiatry professor. Ciralsky sought expert insight into the kind of fabulist who would invent and engage in such an audacious lie.

“I laid out the story to him, and he said, ‘Anybody who does this in their private life engages in the same conduct in their professional life,” recalls Ciralsky, in a phone call with Vanity Fair. “I think you ought to take a hard look at his CVs.”

That was the turning point in the story for Ciralsky, a former CIA lawyer who soon learned that Macchiarini was more dangerous as a surgeon than a suitor. …

Here’s a link to Ciralsky’s original article, which I described this way, from my April 19, 2016 posting (part 2 of the Macchiarini controversy),

For some bizarre frosting on this disturbing cake (see part 1 of the Macchiarini controversy and synthetic trachea transplants for the medical science aspects), a January 5, 2016 Vanity Fair article by Adam Ciralsky documents Macchiarini’s courtship of an NBC ([US] National Broadcasting Corporation) news producer who was preparing a documentary about him and his work.

[from Ciralsky’s article]

“Macchiarini, 57, is a magnet for superlatives. He is commonly referred to as “world-renowned” and a “super-surgeon.” He is credited with medical miracles, including the world’s first synthetic organ transplant, which involved fashioning a trachea, or windpipe, out of plastic and then coating it with a patient’s own stem cells. That feat, in 2011, appeared to solve two of medicine’s more intractable problems—organ rejection and the lack of donor organs—and brought with it major media exposure for Macchiarini and his employer, Stockholm’s Karolinska Institute, home of the Nobel Prize in Physiology or Medicine. Macchiarini was now planning another first: a synthetic-trachea transplant on a child, a two-year-old Korean-Canadian girl named Hannah Warren, who had spent her entire life in a Seoul hospital. … “

Other players in the Macchiarini story

Pierre Delaere, a trachea expert and professor of head and neck surgery at KU Leuven (a university in Belgium) was one of the first to draw attention to Macchiarini’s dangerous and unethical practices. To give you an idea of how difficult it was to get attention for this issue, there’s a September 1, 2017 article by John Rasko and Carl Power for the Guardian illustrating the issue. Here’s what they had to say about Delaere and other early critics of the work, Note: Links have been removed,

Delaere was one of the earliest and harshest critics of Macchiarini’s engineered airways. Reports of their success always seemed like “hot air” to him. He could see no real evidence that the windpipe scaffolds were becoming living, functioning airways – in which case, they were destined to fail. The only question was how long it would take – weeks, months or a few years.

Delaere’s damning criticisms appeared in major medical journals, including the Lancet, but weren’t taken seriously by Karolinska’s leadership. Nor did they impress the institute’s ethics council when Delaere lodged a formal complaint. [emphases mine]

Support for Macchiarini remained strong, even as his patients began to die. In part, this is because the field of windpipe repair is a niche area. Few people at Karolinska, especially among those in power, knew enough about it to appreciate Delaere’s claims. Also, in such a highly competitive environment, people are keen to show allegiance to their superiors and wary of criticising them. The official report into the matter dubbed this the “bandwagon effect”.

With Macchiarini’s exploits endorsed by management and breathlessly reported in the media, it was all too easy to jump on that bandwagon.

And difficult to jump off. In early 2014, four Karolinska doctors defied the reigning culture of silence [emphasis mine] by complaining about Macchiarini. In their view, he was grossly misrepresenting his results and the health of his patients. An independent investigator agreed. But the vice-chancellor of Karolinska Institute, Anders Hamsten, wasn’t bound by this judgement. He officially cleared Macchiarini of scientific misconduct, allowing merely that he’d sometimes acted “without due care”.

For their efforts, the whistleblowers were punished. [emphasis mine] When Macchiarini accused one of them, Karl-Henrik Grinnemo, of stealing his work in a grant application, Hamsten found him guilty. As Grinnemo recalls, it nearly destroyed his career: “I didn’t receive any new grants. No one wanted to collaborate with me. We were doing good research, but it didn’t matter … I thought I was going to lose my lab, my staff – everything.”

This went on for three years until, just recently [2017], Grinnemo was cleared of all wrongdoing.

It is fitting that Macchiarini’s career unravelled at the Karolinska Institute. As the home of the Nobel prize in physiology or medicine, one of its ambitions is to create scientific celebrities. Every year, it gives science a show-business makeover, picking out from the mass of medical researchers those individuals deserving of superstardom. The idea is that scientific progress is driven by the genius of a few.

It’s a problematic idea with unfortunate side effects. A genius is a revolutionary by definition, a risk-taker and a law-breaker. Wasn’t something of this idea behind the special treatment Karolinska gave Macchiarini? Surely, he got away with so much because he was considered an exception to the rules with more than a whiff of the Nobel about him. At any rate, some of his most powerful friends were themselves Nobel judges until, with his fall from grace, they fell too.

The September 1, 2017 article by Rasko and Power is worth the read if you have the interest and the time. And, Delaere has written up a comprehensive analysis, which includes basic information about tracheas and more, “The Biggest Lie in Medical History” 2020, PDF, 164 pp., Creative Commons Licence).

I also want to mention Leonid Schneider, science journalist and molecular cell biologist, whose work the Macchiarini scandal on his ‘For Better Science’ website was also featured in my 2016 pieces. Schneider’s site has a page titled, ‘Macchiarini’s trachea transplant patients: the full list‘ started in 2017 and which he continues to update with new information about the patients. The latest update was made on December 20, 2023.

Promising nanomedicine research but no promises and a caveat

Most of the research mentioned here is still in the laboratory. i don’t often come across work that has made its way to clinical trials since the focus of this blog is emerging science and technology,

*If you’re interested in the business of neurotechnology, the July 17, 2023 posting highlights a very good UNESCO report on the topic.

Funky music (sound and noise)

I have couple of stories about using sound for wound healing, bioinspiration for soundproofing applications, detecting seismic activity, more data sonification, etc.

Same old, same old CRISPR

2023 was relatively quiet (no panics) where CRISPR developments are concerned but still quite active.

Art/Sci: a pretty active year

I didn’t realize how active the year was art/sciwise including events and other projects until I reviewed this year’s postings. This is a selection from 2023 but there’s a lot more on the blog, just use the search term, “art/sci,” or “art/science,” or “sciart.”

While I often feature events and projects from these groups (e.g., June 2, 2023 posting, “Metacreation Lab’s greatest hits of Summer 2023“), it’s possible for me to miss a few. So, you can check out Toronto’s Art/Sci Salon’s website (strong focus on visual art) and Simon Fraser University’s Metacreation Lab for Creative Artificial Intelligence website (strong focus on music).

My selection of this year’s postings is more heavily weighted to the ‘writing’ end of things.

Boundaries: life/nonlife

Last year I subtitled this section, ‘Aliens on earth: machinic biology and/or biological machinery?” Here’s this year’s selection,

Canada’s 2023 budget … military

2023 featured an unusual budget where military expenditures were going to be increased, something which could have implications for our science and technology research.

Then things changed as Murray Brewster’s November 21, 2023 article for the Canadian Broadcasting Corporation’s (CBC) news online website comments, Note: A link has been removed,

There was a revelatory moment on the weekend as Defence Minister Bill Blair attempted to bridge the gap between rhetoric and reality in the Liberal government’s spending plans for his department and the Canadian military.

Asked about an anticipated (and long overdue) update to the country’s defence policy (supposedly made urgent two years ago by Russia’s full-on invasion of Ukraine), Blair acknowledged that the reset is now being viewed through a fiscal lens.

“We said we’re going to bring forward a new defence policy update. We’ve been working through that,” Blair told CBC’s Rosemary Barton Live on Sunday.

“The current fiscal environment that the country faces itself does require (that) that defence policy update … recognize (the) fiscal challenges. And so it’ll be part of … our future budget processes.”

One policy goal of the existing defence plan, Strong, Secure and Engaged, was to require that the military be able to concurrently deliver “two sustained deployments of 500 [to] 1,500 personnel in two different theaters of operation, including one as a lead nation.”

In a footnote, the recent estimates said the Canadian military is “currently unable to conduct multiple operations concurrently per the requirements laid out in the 2017 Defence Policy. Readiness of CAF force elements has continued to decrease over the course of the last year, aggravated by decreasing number of personnel and issues with equipment and vehicles.”

Some analysts say they believe that even if the federal government hits its overall budget reduction targets, what has been taken away from defence — and what’s about to be taken away — won’t be coming back, the minister’s public assurances notwithstanding.

10 years: Graphene Flagship Project and Human Brain Project

Graphene and Human Brain Project win biggest research award in history (& this is the 2000th post)” on January 28, 2013 was how I announced the results of what had been a a European Union (EU) competition that stretched out over several years and many stages as projects were evaluated and fell to the wayside or were allowed onto the next stage. The two finalists received €1B each to be paid out over ten years.

Future or not

As you can see, there was plenty of interesting stuff going on in 2023 but no watershed moments in the areas I follow. (Please do let me know in the Comments should you disagree with this or any other part of this posting.) Nanotechnology seems less and less an emerging science/technology in itself and more like a foundational element of our science and technology sectors. On that note, you may find my upcoming (in 2024) post about a report concerning the economic impact of its National Nanotechnology Initiative (NNI) from 2002 to 2022 of interest.

Following on the commercialization theme, I have noticed an increase of interest in commercializing brain and brainlike engineering technologies, as well as, more discussion about ethics.

Colonizing the brain?

UNESCO held events such as, this noted in my July 17, 2023 posting, “Unveiling the Neurotechnology Landscape: Scientific Advancements, Innovations and Major Trends—a UNESCO report” and this noted in my July 7, 2023 posting “Global dialogue on the ethics of neurotechnology on July 13, 2023 led by UNESCO.” An August 21, 2023 posting, “Ethical nanobiotechnology” adds to the discussion.

Meanwhile, Australia has been producing some very interesting mind/robot research, my June 13, 2023 posting, “Mind-controlled robots based on graphene: an Australian research story.” I have more of this kind of research (mind control or mind reading) from Australia to be published in early 2024. The Australians are not alone, there’s also this April 12, 2023 posting, “Mind-reading prosthetic limbs” from Germany.

My May 12, 2023 posting, “Virtual panel discussion: Canadian Strategies for Responsible Neurotechnology Innovation on May 16, 2023” shows Canada is entering the discussion. Unfortunately, the Canadian Science Policy Centre (CSPC), which held the event, has not posted a video online even though they have a youtube channel featuring other of their events.

As for neurmorphic engineering, China has produced a roadmap for its research in this area as noted in my March 20, 2023 posting, “A nontraditional artificial synaptic device and roadmap for Chinese research into neuromorphic devices.”

Quantum anybody?

I haven’t singled it out in this end-of-year posting but there is a great deal of interest in quantum computer both here in Canada and elsewhere. There is a 2023 report from the Council of Canadian Academies on the topic of quantum computing in Canada, which I hope to comment on soon.

Final words

I have a shout out for the Canadian Science Policy Centre, which celebrated its 15th anniversary in 2023. Congratulations!

For everyone, I wish peace on earth and all the best for you and yours in 2024!

Poinsettia frogs and a Merry 2023 Christmas

I stumbled across this image in a December 20, 2023 article by Dorothy Woodend for The Tyee where she is the culture editor,

Instead of new material goods this holiday season, I’m searching for something more elusive and ultimately sustaining. And it may help us grow our appreciation for the natural world and its mysteries. Illustrations for The Tyee by Dorothy Woodend.

À propos given the name for this blog and the time of year. Thank you, Ms. Woodend!

I try not to do too many of these stories since the focus for this blog is new and emerging science and technology but I can’t resist including these frog stories (and one dog story). Plus, there may be some tap dancing.

A new (!) fanged frog in Indonesia

This is not the tiny Indonesian fanged frog but it does show you what a fanged frog looks like, from the December 21, 2023 “What Are Fanged Frogs?” posting on the Vajiram and Ravi IAS Study Center website,

Not an Indonesian fanged frog. h/t Vajiram and Ravi IAS Study Center [downloaded from https://vajiramias.com/current-affairs/what-are-fanged-frogs/658416a9f0e178517404afda/]

If you don’t have much time and are interested in the latest fanged frog, check out the December 21, 2023 “What Are Fanged Frogs?” posting as they have relevant information in bullet point form.

On to the specifics about the ‘new’ fanged frog from a December 21, 2023 news item on ScienceDaily,

In general, frogs’ teeth aren’t anything to write home about — they look like pointy little pinpricks lining the upper jaw. But one group of stream-dwelling frogs in Southeast Asia has a strange adaptation: two bony “fangs” jutting out of their lower jawbone. They use these fangs to battle with each other over territory and mates, and sometimes even to hunt tough-shelled prey like giant centipedes and crabs. In a new study, published in the journal PLOS [Public Library of Science] ONE, researchers have described a new species of fanged frog: the smallest one ever discovered.

“This new species is tiny compared to other fanged frogs on the island where it was found, about the size of a quarter,” says Jeff Frederick, a postdoctoral researcher at the Field Museum in Chicago and the study’s lead author, who conducted the research as a doctoral candidate at the University of California, Berkeley.

A December 20, 2023 Field Museum news release (also on EurrekAlert), which originated the news item, adds more detail,

“Many frogs in this genus are giant, weighing up to two pounds. At the large end, this new species weighs about the same as a dime.”

In collaboration with the Bogor Zoology Museum, a team from the McGuire Lab at Berkeley   found the frogs on Sulawesi, a rugged, mountainous island that makes up part of Indonesia. “It’s a giant island with a vast network of mountains, volcanoes, lowland rainforest, and cloud forests up in the mountains. The presence of all these different habitats mean that the magnitude of biodiversity across many plants and animals we find there is unreal – rivaling places like the Amazon,” says Frederick.

While trekking through the jungle, members of the joint US-Indonesia amphibian and reptile research team noticed something unexpected on the leaves of tree saplings and moss-covered boulders: nests of frog eggs.

Frogs are amphibians, and they lay eggs that are encapsulated by jelly, rather than a hard, protective shell. To keep their eggs from drying out, most amphibians lay their eggs in water. To the research team’s surprise, they kept spotting the terrestrial egg masses on leaves and mossy boulders several feet above the ground. Shortly after, they began to see the small, brown frogs themselves.

“Normally when we’re looking for frogs, we’re scanning the margins of stream banks or wading through streams to spot them directly in the water,” Frederick says. “After repeatedly monitoring the nests though, the team started to find attending frogs sitting on leaves hugging their little nests.” This close contact with their eggs allows the frog parents to coat the eggs with compounds that keep them moist and free from bacterial and fungal contamination.

Closer examination of the amphibian parents revealed not only that they were tiny members of the fanged frog family, complete with barely-visible fangs, but that the frogs caring for the clutches of eggs were all male. “Male egg guarding behavior isn’t totally unknown across all frogs, but it’s rather uncommon,” says Frederick.

Frederick and his colleagues hypothesize that the frogs’ unusual reproductive behaviors might also relate to their smaller-than-usual fangs. Some of the frogs’ relatives have bigger fangs, which help them ward off competition for spots along the river to lay their eggs in the water. Since these frogs evolved a way to lay their eggs away from the water, they may have lost the need for such big imposing fangs. (The scientific name for the new species is Limnonectes phyllofolia; phyllofolia means “leaf-nester.”)

“It’s fascinating that on every subsequent expedition to Sulawesi, we’re still discovering new and diverse reproductive modes,” says Frederick. “Our findings also underscore the importance of conserving these very special tropical habitats. Most of the animals that live in places like Sulawesi are quite unique, and habitat destruction is an ever-looming conservation issue for preserving the hyper-diversity of species we find there. Learning about animals like these frogs that are found nowhere else on Earth helps make the case for protecting these valuable ecosystems.”

Here’s a link to and a citation for the paper,

A new species of terrestrially-nesting fanged frog (Anura: Dicroglossidae) from Sulawesi Island, Indonesia by Jeffrey H. Frederick, Djoko T. Iskanda, Awal Riyanto, Amir Hamidy, Sean B. Reilly, Alexander L. Stubbs, Luke M. Bloch, Bryan Bach, Jimmy A. McGuire. PLOS ONE 18(12): e0292598 DOI: https://doi.org/10.1371/journal.pone.0292598 Published: December 20, 2023

This paper is open access and online only.

Fatal attraction to … frog noses?

Bob Yirka in a November 28, 2023 article published on phys.org describes research into some unusual mosquito behaviour, Note: Links have been removed,

A pair of environmental and life scientists, one with the University of Newcastle, in Australia, the other the German Center for Integrative Biodiversity Research, has found that one species of mosquito native to Australia targets only the noses of frogs for feeding. In their paper published in the journal Ethology, John Gould and Jose Valdez describe their three-year study of frogs and Mimomyia elegans, a species of mosquito native to Australia

As part of their study of frogs living in a pond on Kooragang Island, the pair took a lot of photographs of the amphibians in their native environment. It was upon returning to their lab and laying out the photographs that they noticed something unique—any mosquito feeding on a frog’s blood was always atop its nose. This spot, they noted, seemed precarious, as mosquitos are part of the frog diet.

A mosquito perches on the nose of a green and yellow frog perched on a branch.
A species of Australian mosquito, Mimomyia elegans, appears to have a predilection for the nostrils of tree frogs, according to new observations published in the journal Ethology. (John Gould) [downloaded from https://www.cbc.ca/radio/asithappens/mosquitoes-on-frog-noses-1.7058168]

Sheena Goodyear posted a December 13, 2023 article containing an embedded Canadian Broadcasting Corporation (CBC) As It Happens radio programme audio file of an interview with researcher John Gould, Note: A link has been removed,

So why risk landing on the nose of something that wants to eat you, when there are so many other targets walking around full of delicious blood?

“In all of the occasions that we observed, it seems as if the frog didn’t realize that it had a mosquito on top of it…. They were actually quite happy, just sitting idly, while these mosquitoes were feeding on them,” Gould said.

“So it might be that the area between the eyes is a bit of a blind spot for the frogs.”

It’s also something of a sneak attack by the mosquitoes.

“Some of the mosquitoes first initially landed on the backs of the frogs,” Gould said. “They might avoid being eaten by the frogs by landing away from the head and then walking up to the nostrils to feed.

It’s a plausible theory, says amphibian expert Lea Randall, a Calgary Zoo and Wilder Institute ecologist who wasn’t involved in the research. 

“Frogs have amazing vision, and any mosquito that approached from the front would likely end up as a tasty snack for a frog,” she said.

“Landing on the back and making your way undetected to the nostrils is a good strategy.”

And the reward may just be worth the risk. 

“I could also see the nostrils as being a good place to feed as the skin is very thin and highly vascularized, and thus provides a ready source of blood for a hungry mosquito,” Randall said.

Gould admits his friends and loved ones have likely grown weary of hearing him “talking about frogs and nostrils.” But for him, it’s more than a highly specific scientific obsession; it’s about protecting frogs.

His earlier research has suggested that mosquitoes may be a vector for transmitting amphibian chytrid fungus, which is responsible for declines in frog populations worldwide. 

That’s why he had been amassing photos of frogs and mosquitoes in the first place.

“Now that we know where the mosquito is more likely to land, it might give us a better impression about how the infection spreads along the skin of the frog,” he said.

But more work needs to be done. His frog nostril research, while it encompasses three years’ of fieldwork, is a natural history observation, not a laboratory study with controlled variables.

“It would be quite interesting to know whether this particular type of mosquito is transferring the chytrid fungus, and also how the fungus spreads once the mosquito has landed,” Gould said.

A man in a bright yellow jacket and a light strapped to his forehead poses outside at night with a tiny frog perched on his hand.
Gould describes himself as a ‘vampire scientist’ who stays up all night studying nocturnal tree frogs in Australia. ‘They’re so soft and timid a lot of the times,’ he said. ‘They’re quite a special little, little animal.’ (Submitted by John Gould)

Vampire scientist, eh? You can find the embedded 6 mins. 28 secs. audio file in the December 13, 2023 article on the CBC website.

Here’s a link to and a citation for the research paper,

A little on the nose: A mosquito targets the nostrils of tree frogs for a blood meal by John Gould, Jose W. Valdez. Ethology DOI: https://doi.org/10.1111/eth.13424 First published: 21 November 2023

This paper is open access.

Gifted dogs

Caption: Shira, 6 -year-old, female, Border Collie mix, that was rescued at a young age. She lives in New Jersey, and knows the names of 125 toys. Credit Photo: Tres Hanley-Millman

A December 14, 2023 news item on phys.org describes some intriguing research from Hungary,

All dog owners think that their pups are special. Science now has documented that some rare dogs are even more special. They have a talent for learning hundreds of names of dog toys. Due to the extreme rarity of this phenomenon, until recently, very little was known about these dogs, as most of the studies that documented this ability included only a small sample of one or two dogs.

A December 18,2023 Eötvös Loránd University (ELTE) press release (also on EurekAlert but published December 14, 2023), which originated the news item, delves further into the research,

In a previous study, the scientists found that only very few dogs could learn the names of object, mostly dog toys. The researchers wanted to understand this phenomenon better and, so they needed to find more dogs with this ability. But finding dogs with this rare talent was a challenge! For five years, the researchers tirelessly searched across the world for these unique Gifted Word Learner (GWL) dogs. As part of this search, in 2020, they launched a social media campaign and broadcasted their experiments with GWL dogs, in the hope of finding more GWL dogs.

“This was a citizen science project” explains Dr. Claudia Fugazza, team leader. “When a dog owner told us they thought their dog knew toy names, we gave them instructions on how to self-test their dog and asked them to send us the video of the test”. The researchers then held an online meeting with the owners to test the dog’s vocabulary under controlled conditions and, if the dog showed he knew the names of his toys, the researchers asked the owners to fill out a questionnaire. “In the questionnaire, we asked the owners about their dog’s life experience, their own experience in raising and training dogs, and about the process by which the dog came to learn the names of his/her toys” explains Dr. Andrea Sommese, co-author.

VIDEO ABSTRACT ABOUT THE RESEARCH

The researchers found 41 dogs from 9 different countries: the US, the UK, Brazil, Canada, Norway, Netherlands, Spain, Portugal and Hungary. Most of the previous studies on this topic included Border collies. So, while object label learning is very rare even in Border collies, it was not surprising that many of the dogs participating in the current study (56%) belonged to this breed. However, the study documented the ability to learn toy names in a few dogs from non-working breeds, such as two Pomeranians, one Pekingese, one Shih Tzu, a Corgi, a Poodle, and a few mixed breeds.

“Surprisingly, most owners reported that they did not intentionally teach their dogs toy names, but rather that the dogs just seemed to spontaneously pick up the toy names during unstructured play sessions,” says Shany Dror, lead researcher. In addition, the vast majority of owners participating in the study had no professional background in dog training and the researchers found no correlations between the owners’ level of experience in handling and training dogs, and the dogs’ ability to select the correct toys when hearing its names.

“In our previous studies we have shown that GWL dogs learn new object names very fast” explains Dror. “So, it is not surprising that when we conducted the test with the dogs, the average number of toys known by the dogs was 29, but when we published the results, more than 50% of the owners reported that their dogs had already acquired a vocabulary of over 100 toy names”.

“Because GWL dogs are so rare, until now there were only anecdotes about their background” explains Prof. Adam Miklósi, Head of the Ethology Department at ELTE and co-author. “The rare ability to learn object names is the first documented case of talent in a non-human species. The relatively large sample of dogs documented in this study, helps us to identify the common characteristics that are shared among these dogs, and brings us one step closer in the quest of understanding their unique ability”.

This research is part of the Genius Dog Challenge research project which aims to understand the unique talent that Gifted Word Learner dogs have. The researchers encourage dog owners who believe their dogs know multiple toy names, to contact them via the Genius Dog Challenge website.

Here’s a link to and a citation for the research paper,

A citizen science model turns anecdotes into evidence by revealing similar characteristics among Gifted Word Learner dogs by Shany Dror, Ádám Miklósi, Andrea Sommese & Claudia Fugazza. Scientific Reports volume 13, Article number: 21747 (2023) DOI: https://doi.org/10.1038/s41598-023-47864-5 Published: 14 December 2023

This paper is open access.

The End with an origin story NORAD’s Santa Tracker and some tap dancing

At the height of Cold War tensions between the US and Russia, the red phone (to be used only by the US president or a four star genera) rang at the North American Aerospace Defense Command (NORAD). Before the conversation ended, the colonel in charge had driven a child to tears and put in motion the start of a beloved Christmas tradition.

There’s a short version and a long version and if you want all the details read both,

As for the tap dancing, I have three links:

  1. Irish Dancers Face Off Against American Tap Dancers To Deliver EPIC Performance!” is an embedded 8 mins. dance off video (scroll down past a few paragraphs) in Erin Perri’s September 1, 2017 posting for themix.net. And, if you scroll further down to the bottom of Perri’s post, you’ll see an embedded video of Sammy Davis Jr.

In the video …, along with his dad and uncle, Sammy performs at an unbelievable pace. In the last 30 seconds of this routine, Sammy demonstrates more talent than other dancers are able to cram into a lifelong career! You can see these three were breakdancing long before it became a thing in the 1980s and they did it wearing tap shoes!

..

2. “Legendary Nicholas Brothers Dance Routine Was Unrehearsed and Filmed in One Take” embedded at the end of Emma Taggart’s October 4, 2019 posting on mymodernmet.com

3. Finally, there’s “Jill Biden releases extravagant dance video to celebrate Christmas at the White House” with a video file embedded (wait for it to finish loading and scroll down a few paragraphs) in Kate Fowler’s December 15, (?) 2023 article for MSN. It’s a little jazz, a little tap, and a little Christmas joy.

Joyeux Noël!

AI for salmon recovery

Hopefully you won’t be subjected to a commercial prior to this 3 mins. 49 secs. video about the salmon and how artificial intelligence (AI) could make a difference in theirs and our continued survival,

Video caption: Wild Salmon Center is partnering with First Nations to pilot the Salmon Vision technology. (Credit: Olivia Leigh Nowak/Le Colibri Studio.)

An October 19, 2023 news item on phys.org announces this research, Note: Links have been removed,

Scientists and natural resource managers from Canadian First Nations, governments, academic institutions, and conservation organizations published the first results of a unique salmon population monitoring tool in Frontiers in Marine Science.

This groundbreaking new technology, dubbed “Salmon Vision,” combines artificial intelligence with age-old fishing weir technology. Early assessments show it to be remarkably adept at identifying and counting fish species, potentially enabling real-time salmon population monitoring for fisheries managers.

An October 19, 2023 Wild Salmon Center news release on EurekAlert, which originated the news item, provides more detail about the work,

“In recent years, we’ve seen the promise of underwater video technology to help us literally see salmon return to rivers,” says lead author Dr. Will Atlas, Senior Watershed Scientist with the Portland-based Wild Salmon Center. “That dovetails with what many of our First Nations partners are telling us: that we need to automate fish counting to make informed decisions while salmon are still running.” 

The Salmon Vision pilot study annotates more than 500,000 individual video frames captured at two Indigenous-run fish counting weirs on the Kitwanga and Bear Rivers of B.C.’s Central Coast. 

The first-of-its-kind deep learning computer model, developed in data partnership with the Gitanyow Fisheries Authority and Skeena Fisheries Commission, shows promising accuracy in identifying salmon species. It yielded mean average precision rates of 67.6 percent in tracking 12 different fish species passing through custom fish-counting boxes at the two weirs, with scores surpassing 90 and 80 percent for coho and sockeye salmon: two of the principal fish species targeted by First Nations, commercial, and recreational fishers. 

“When we envisioned providing fast grants for projects focused on Indigenous futurism and climate resilience, this is the type of project that we hoped would come our way,” says Dr. Keolu Fox, a professor at the University of California-San Diego, and one of several reviewers in an early crowdfunding round for the development of Salmon Vision. 

Collaborators on the model, funded by the British Columbia Salmon Recovery and Innovation Fund, include researchers and fisheries managers with Simon Fraser University and Douglas College computing sciences, the Pacific Salmon Foundation, Gitanyow Fisheries Authority, and the Skeena Fisheries Commission. Following these exciting early results, the next step is to expand the model with partner First Nations into a half-dozen new watersheds on B.C.’s North and Central Coast.

Real-time data on salmon returns is critical on several fronts. According to Dr. Atlas, many fisheries in British Columbia have been data-poor for decades. That leaves fisheries managers to base harvest numbers on early-season catch data, rather than the true number of salmon returning. Meanwhile, changing weather patterns, stream flows, and ocean conditions are creating more variable salmon returns: uncertainty that compounds the ongoing risks of overfishing already-vulnerable populations.

“Without real-time data on salmon returns, it’s extremely difficult to build climate-smart, responsive fisheries,” says Dr. Atlas. “Salmon Vision data collection and analysis can fill that information gap.” 

It’s a tool that he says will be invaluable to First Nation fisheries managers and other organizations both at the decision-making table—in providing better information to manage conservation risks and fishing opportunities—and in remote rivers across salmon country, where on-the-ground data collection is challenging and costly. 

The Salmon Vision team is implementing automated counting on a trial basis in several rivers around the B.C. North and Central Coasts in 2023. The goal is to provide reliable real-time count data by 2024.

This October 18, 2023 article by Ramona DeNies for the Wild Salmon Center (WSC) is nicely written although it does cover some of the same material seen in the news release, Note: A link has been removed,

Right now, in rivers across British Columbia’s Central Coast, we don’t know how many salmon are actually returning. At least, not until fishing seasons are over.

And yet, fisheries managers still have to make decisions. They have to make forecasts, modeled on data from the past. They have to set harvest targets for commercial and recreational fisheries. And increasingly, they have to make the call on emergency closures, when things start looking grim.

“On the north and central coast of BC, we’ve seen really wildly variable returns of salmon over the last decade,” says Dr. Will Atlas, Wild Salmon Center Senior Watershed Scientist. “With accelerating climate change, every year is unprecedented now. Yet from a fisheries management perspective, we’re still going into most seasons assuming that this year will look like the past.”

One answer, Dr. Atlas says, is “Salmon Vision.” Results from this first-of-its-kind technology—developed by WSC in data partnership with the Gitanyow Fisheries Authority and Skeena Fisheries Commission—were recently published in Frontiers in Marine Science.

There are embedded images in DeNies’ October 18, 2023 article; it’s where I found the video.

Here’s a link to and a citation for the paper,

Wild salmon enumeration and monitoring using deep learning empowered detection and tracking by William I. Atlas, Sami Ma, Yi Ching Chou, Katrina Connors, Daniel Scurfield, Brandon Nam, Xiaoqiang Ma, Mark Cleveland, Janvier Doire, Jonathan W. Moore, Ryan Shea, Jiangchuan Liu. Front. Mar. Sci., 20 September 2023 Volume 10 – 2023 DOI: https://doi.org/10.3389/fmars.2023.1200408

This paper appears to be open access.

Using carbon dots (organic nanosensors) to detect pesticides

Before getting to the latest about carbon dots, there’s something to be clarified (and it was news to me), a carbon dot is not a quantum dot. So says this 2020 paper, “Advances in carbon dots: from the perspective of traditional quantum dots” by Yanhong Liu, Hui Huang, Weijing Cao, Baodong Mao, Yang Liu, and Zhenhui Kang. Mater. Chem. Front., 2020,4, 1586-1613 First published March 17, 2020.

Abstract

Quantum dots (QDs) have been the core concept of nanoscience and nanotechnology since their inception, and play a dominant role in the development of the nano-field. Carbon dots (CDots), defined by a feature size of <10 nm, have become a rising star in the crossover field of carbon materials and traditional QDs (TQDs). CDots possess many unique structural, physicochemical and photochemical properties that render them a promising platform for biology, devices, catalysis and other applications. …

This story is about carbon dots but you can find out more about quantum dots in my October 6, 2023 posting concerning the 2023 Nobel prizes; scroll down to the ‘Chemistry’ subhead.

An August 30, 2023 news item on phys.org describes work from Concordia University (Montréal, Canada) on carbon dots,

Researchers at Concordia have developed a new system using tiny nanosensors called carbon dots to detect the presence of the widely used chemical glyphosate. Their research, titled “Ratiometric Sensing of Glyphosate in Water Using Dual Fluorescent Carbon Dots,” is published in Sensors.

An August 30, 2023 Concordia University news release (also on EurekAlert) by Patrick Lejtenyi, which originated the news item, explains the importance of the work and provides more technical details, Note: Links have been removed,

Glyphosate is a pesticide found in more than 750 agricultural, forestry, urban and home products, including Monsanto’s popular weed-killer Roundup. It is also controversial: studies have linked its overuse to environmental pollution and cancer in humans. Its sale is banned or restricted in dozens of countries and jurisdictions, including Canada.

The researchers’ system relies on the carbon dots’ chemical interaction with glyphosate to detect its presence. Carbon dots are exceedingly small fluorescent particles, usually no more than 10 or 15 nanometres in size (a human hair is between 80,000 and 100,000 nanometres). But when they are added to water solutions, these nanomaterials emit blue and red fluorescence.

The researchers employed an analysis technique called a ratiometric self-referencing assay to determine glyphosate levels in a solution. The red fluorescence emitted by the carbon dots when exposed to varying concentrations of the chemical and different pH levels is compared with a control in which no glyphosate is present. In all the tests, the blue fluorescence remained unchanged, giving the researchers a common reference point across the different tests.

They observed that higher levels of glyphosate quenched the red fluorescence, which they accredited to the interaction of the pesticide with the carbon dots’ surface.

“Our system differs from others because we are measuring the area between two peaks—two fluorescent signatures—on the visible spectrum,” says Adryanne Clermont-Paquette, a PhD candidate in biology and the paper’s lead author. “This is the integrated area between the two curves. Ratiometric measurement allows us to ignore variables such as temperature, pH levels or other environmental factors. That allows us to just only look at the levels of glyphosate and carbon dots that are in the system.”

“By understanding the chemistry at the surface of these very small dots and by knowing their optical properties, we can use them to our advantage for many different applications,” says Rafik Naccache, an associate professor of chemistry and biochemistry and the paper’s supervising author.

Research assistants Diego-Andrés Mendoza and Amir Sadeghi, along with associate professor of biology Alisa Piekny, are co-authors.

Starting small

Naccache says the technique is designed to detect minute amounts of the pesticide. The technique they developed is sensitive enough to be able to detect the presence of pesticide at levels as low as 0.03 parts per million.

“The challenge is always in the other direction, to see how low we can go in terms of sensitivity and selectivity,” he says.

There remains much work to be done before this technology can be used widely. But as Clermont-Paquette notes, this paper represents an important beginning.

“Understanding the interaction between glyphosate and carbon dots is a first step. If we are to move this along further, and develop it into a real-life application, we have to start with the fundamentals.”

The researchers are supported by funding from the Natural Sciences and Engineering Research Council of Canada.

Here’s a link to and a citation for the paper,

Ratiometric Sensing of Glyphosate in Water Using Dual Fluorescent Carbon Dots
by Adryanne Clermont-Paquette, Diego-Andrés Mendoza, Amir Sadeghi, Alisa Piekny, and Rafik Naccache. Sensors 2023, 23(11), 5200; DOI: https://doi.org/10.3390/s23115200 Published: 30 May 2023

This paper is open access.

The cost of building ChatGPT

After seeing the description for Laura U. Marks’s recent work ‘Streaming Carbon Footprint’ (in my October 13, 2023 posting about upcoming ArtSci Salon events in Toronto), where she focuses on the environmental impact of streaming media and digital art, I was reminded of some September 2023 news.

A September 9, 2023 news item (an Associated Press article by Matt O’Brien and Hannah Fingerhut) on phys.org and also published September 12, 2023 on the Iowa Public Radio website, describe an unexpected cost for building ChatGPT and other AI agents, Note: Links have been removed,

The cost of building an artificial intelligence product like ChatGPT can be hard to measure.

But one thing Microsoft-backed OpenAI needed for its technology was plenty of water [emphases mine], pulled from the watershed of the Raccoon and Des Moines rivers in central Iowa to cool a powerful supercomputer as it helped teach its AI systems how to mimic human writing.

As they race to capitalize on a craze for generative AI, leading tech developers including Microsoft, OpenAI and Google have acknowledged that growing demand for their AI tools carries hefty costs, from expensive semiconductors to an increase in water consumption.

But they’re often secretive about the specifics. Few people in Iowa knew about its status as a birthplace of OpenAI’s most advanced large language model, GPT-4, before a top Microsoft executive said in a speech it “was literally made next to cornfields west of Des Moines.”

In its latest environmental report, Microsoft disclosed that its global water consumption spiked 34% from 2021 to 2022 (to nearly 1.7 billion gallons , or more than 2,500 Olympic-sized swimming pools), a sharp increase compared to previous years that outside researchers tie to its AI research. [emphases mine]

“It’s fair to say the majority of the growth is due to AI,” including “its heavy investment in generative AI and partnership with OpenAI,” said Shaolei Ren, [emphasis mine] a researcher at the University of California, Riverside who has been trying to calculate the environmental impact of generative AI products such as ChatGPT.

If you have the time, do read the O’Brien and Fingerhut article in it entirety. (Later in this post, I have a citation for and a link to a paper by Ren.)

Jason Clayworth’s September 18, 2023 article for AXIOS describes the issue from the Iowan perspective, Note: Links have been removed,

Future data center projects in West Des Moines will only be considered if Microsoft can implement technology that can “significantly reduce peak water usage,” the Associated Press reports.

Why it matters: Microsoft’s five WDM data centers — the “epicenter for advancing AI” — represent more than $5 billion in investments in the last 15 years.

Yes, but: They consumed as much as 11.5 million gallons of water a month for cooling, or about 6% of WDM’s total usage during peak summer usage during the last two years, according to information from West Des Moines Water Works.

This information becomes more intriguing (and disturbing) after reading a February 10, 2023 article for the World Economic Forum titled ‘This is why we can’t dismiss water scarcity in the US‘ by James Rees and/or an August 11, 2020 article ‘Why is America running out of water?‘ by Jon Heggie published by the National Geographic, which is a piece of paid content. Note: Despite the fact that it’s sponsored by Finish Dish Detergent, the research in Heggie’s article looks solid.

From Heggie’s article, Note: Links have been removed,

In March 2019, storm clouds rolled across Oklahoma; rain swept down the gutters of New York; hail pummeled northern Florida; floodwaters forced evacuations in Missouri; and a blizzard brought travel to a stop in South Dakota. Across much of America, it can be easy to assume that we have more than enough water. But that same a month, as storms battered the country, a government-backed report issued a stark warning: America is running out of water.

As the U.S. water supply decreases, demand is set to increase. On average, each American uses 80 to 100 gallons of water every day, with the nation’s estimated total daily usage topping 345 billion gallons—enough to sink the state of Rhode Island under a foot of water. By 2100 the U.S. population will have increased by nearly 200 million, with a total population of some 514 million people. Given that we use water for everything, the simple math is that more people mean more water stress across the country.

And we are already tapping into our reserves. Aquifers, porous rocks and sediment that store vast volumes of water underground, are being drained. Nearly 165 million Americans rely on groundwater for drinking water, farmers use it for irrigation―37 percent of our total water usage is for agriculture—and industry needs it for manufacturing. Groundwater is being pumped faster than it can be naturally replenished. The Central Valley Aquifer in California underlies one of the nation’s most agriculturally productive regions, but it is in drastic decline and has lost about ten cubic miles of water in just four years.

Decreasing supply and increasing demand are creating a perfect water storm, the effects of which are already being felt. The Colorado River carved its way 1,450 miles from the Rockies to the Gulf of California for millions of years, but now no longer reaches the sea. In 2018, parts of the Rio Grande recorded their lowest water levels ever; Arizona essentially lives under permanent drought conditions; and in South Florida’s freshwater aquifers are increasingly susceptible to salt water intrusion due to over-extraction.

The focus is on individual use of water and Heggie ends his article by suggesting we use less,

… And every American can save more water at home in multiple ways, from taking shorter showers to not rinsing dishes under a running faucet before loading them into a dishwasher, a practice that wastes around 20 gallons of water for each load. …

As an advertising pitch goes, this is fairly subtle as there’s no branding in the article itself and it is almost wholly informational.

Attempts to stave off water shortages as noted in Heggie’s and other articles include groundwater pumping both for individual use and industrial use. This practice has had an unexpected impact according to a June 16, 2023 article by Warren Cornwall for Science (magazine),

While spinning on its axis, Earth wobbles like an off-kilter top. Sloshing molten iron in Earth’s core, melting ice, ocean currents, and even hurricanes can all cause the poles to wander. Now, scientists have found that a significant amount of the polar drift results from human activity: pumping groundwater for drinking and irrigation.

“The very way the planet wobbles is impacted by our activities,” says Surendra Adhikari, a geophysicist at NASA’s Jet Propulsion Laboratory and an expert on Earth’s rotation who was not involved in the study. “It is, in a way, mind boggling.”

Clark R. Wilson, a geophysicist at the University of Texas at Austin, and his colleagues thought the removal of tens of gigatons of groundwater each year might affect the drift. But they knew it could not be the only factor. “There’s a lot of pieces that go into the final budget for causing polar drift,” Wilson says.

The scientists built a model of the polar wander, accounting for factors such as reservoirs filling because of new dams and ice sheets melting, to see how well they explained the polar movements observed between 1993 and 2010. During that time, satellite measurements were precise enough to detect a shift in the poles as small as a few millimeters.

Dams and ice changes were not enough to match the observed polar motion. But when the researchers also put in 2150 gigatons of groundwater that hydrologic models estimate were pumped between 1993 and 2010, the predicted polar motion aligned much more closely with observations. Wilson and his colleagues conclude that the redistribution of that water weight to the world’s oceans has caused Earth’s poles to shift nearly 80 centimeters during that time. In fact, groundwater removal appears to have played a bigger role in that period than the release of meltwater from ice in either Greenland or Antarctica, the scientists reported Thursday [June 15, 2023] in Geophysical Research Letters.

The new paper helps confirm that groundwater depletion added approximately 6 millimeters to global sea level rise between 1993 and 2010. “I was very happy” that this new method matched other estimates, Seo [Ki-Weon Seo geophysicist at Seoul National University and the study’s lead author] says. Because detailed astronomical measurements of the polar axis location go back to the end of the 19th century, polar drift could enable Seo to trace the human impact on the planet’s water over the past century.

Two papers: environmental impact from AI and groundwater pumping wobbles poles

I have two links and citations for Ren’s paper on AI and its environmental impact,

Towards Environmentally Equitable AI via Geographical Load Balancing by Pengfei Li, Jianyi Yang, Adam Wierman, Shaolei Ren. Subjects: Artificial Intelligence (cs.AI); Computers and Society (cs.CY) Cite as: arXiv:2307.05494 [cs.AI] (or arXiv:2307.05494v1 [cs.AI] for this version) DOI: https://doi.org/10.48550/arXiv.2307.05494 Submitted June 20, 2023

Towards Environmentally Equitable AI via Geographical Load Balancing by Li, Pengfei; Yang, Jianyi; Wierman, Adam; Ren, Shaolei. UC Riverside. Retrieved from https://escholarship.org/uc/item/79c880vf Publication date: 2023-06-27

Both links offer open access to the paper. Should you be interested in more, you can find Shaolei Ren’s website here.

Now for the wobbling poles,

Drift of Earth’s Pole Confirms Groundwater Depletion as a Significant Contributor to Global Sea Level Rise 1993–2010 by Ki-Weon Seo, Dongryeol Ryu, Jooyoung Eom, Taewhan Jeon, Jae-Seung Kim, Kookhyoun Youm, Jianli Chen, Clark R. Wilson. Geophysical Research Letters Volume 50, Issue 12, 28 June 2023 e2023GL103509 DOI: https://doi.org/10.1029/2023GL103509 First published online: 15 June 2023

This paper too is open access.

Toronto’s ArtSci Salon hosts October 16, 2023 and October 27, 2023 events and the Fourth Annual Small File Media Festival in Vancouver (Canada) Oct. 20 – 21, 2023

An October 5, 2023 announcement (received via email) from Toronto’s ArtSci Salon lists two events coming up in October 2023,

These two Events are part of the international Leonardo LASER series
LASER Toronto is hosted by Nina Czegledy and Roberta Buiani

The Anthropocene Cookbook on October 16, 2023

[downloaded from: https://artscisalon.com/coms4208/]

From the Toronto ArtSci Salon October 5, 2023 announcement,

Oct 16 [2023], 3:30 PM [ET] 
The Anthropocene cookbook

with authors 
Zane Cerpina & Stahl Stenslie
Cerpina and Stenslie are the authors of
The Anthropocene Cookbook. How to survive in the age of catastrophes 

Join us to welcome Cerpina and Stenslie as they introduce us to their
book and discuss the future cuisine of humanity. To sustain the
soon-to-be 9 billion global population we cannot count on Mother
Earth’s resources anymore. The project explores innovative and
speculative ideas about new foods in the field of arts, design, science
& technology, rethinking eating traditions and food taboos, and
proposing new recipes for survival in times of ecological catastrophes.

To match the topic of their talk, attendees will be presented with
“anthropocene snacks” and will be encouraged to discuss food
alternatives and new networks of solidarity to fight food deserts,
waste, and unsustainable consumption.

This is a Hybrid event: our guests will join us virtually on zoom.
Join us in person at Glendon Campus, rm YH190 (the studio next to the
Glendon Theatre) for a more intimate community experience and some
anthropocene snacks. If you wish to join us on Zoom, please

register here

This event is part of a series on Emergent Practices in Communication,
featuring explorations on interspecies communication and digital
networks; land-based justice and collective care. The full program can be found here

This initiative is supported by York University’s Teaching Commons Academic Innovation Fund

Zane Cerpina is a multicultural and interdisciplinary female author,
curator, artist, and designer working with the complexity of
socio-political and environmental issues in contemporary society and in
the age of the Anthropocene. Cerpina earned her master’s degree in
design from AHO – The Oslo School of Architecture and Design and a
bachelor’s degree in Art and Technology from Aalborg University. She
resides in Oslo and is a project manager/curator at TEKS (Trondheim
Electronic Arts Centre). She is also a co-founder and editor of EE:
Experimental Emerging Art Journal. From 2015 to 2019, Cerpina was a
creative manager and editor at PNEK (Production Network for Electronic
Art, Norway).

Stahl Stenslie works as an artist, curator and researcher specializing
in experimental media art and interaction experiences. His aesthetic
focus is on art and artistic expressions that challenge ordinary ways of
perceiving the world. Through his practice he asks the questions we tend
to avoid – or where the answers lie in the shadows of existence.
Keywords of his practice are somaesthetics, unstable media,
transgression and numinousness. The technological focus in his works is
on the art of the recently possible – such as i) panhaptic
communication on Smartphones, ii) somatic and immersive soundspaces, and
iii) design of functional and lethal artguns, 3D printed in low-cost
plastic material.He has a PhD on Touch and Technologies from The School
of Architecture and Design, Oslo, Norway. Currently he heads the R&D
department at Arts for Young Audiences Norway.

If you’re interested in the book, there’s the anthropocenecookbook.com, which has more about the book and purchase information,

The Anthropocene Cookbook is by far the most comprehensive collection of ideas about future food from the perspective of art, design, and science. It is a thought-provoking book about art, food, and eating in the Anthropocene –The Age of Man– and the age of catastrophes.

Published by The MIT Press [MIT = Massachusetts Institute of Technology]
| mitpress.mit.edu

Supported by TEKS
Trondheim Electronic Arts Centre
| www.teks.no

*Date changed* Streaming Carbon Footprint on October 27, 2023

Keep scrolling down to Date & location changed for Streaming Carbon Footprint subhead.

From the Toronto ArtSci Salon October 5, 2023 announcement,

Oct 27, [2023] 5:00-7:00 PM  [ET]
Streaming Carbon Footprint

with 
Laura U. Marks
and
David Rokeby

Room 230
The Fields Institute for Research in Mathematical Sciences
222 College Street, Toronto

We are thrilled to announce this dialogue between media Theorist Laura U. Marks and Media Artist David Rokeby. Together, they will discuss a well known elephant in the room of media and digital technologies: their carbon footprint. As social media and streaming media usage increases exponentially, what can be done to mitigate their impact? are there alternatives?

This is a live event: our guests will join us in person.

if you wish to join us on Zoom instead, a link will be circulated on our website and on social media a few days before the event. The event will be recorded

Laura U. Marks works on media art and philosophy with an intercultural focus, and on small-footprint media. She programs experimental media for venues around the world. As Grant Strate University Professor, she teaches in the School for the Contemporary Arts at Simon Fraser University in Vancouver, Canada. Her upcoming book The Fold: From Your Body to the Cosmos will be published I March 2024 by Duke University Press. 

David Rokeby is an installation artist based in Toronto, Canada. He has been creating and exhibiting since 1982. For the first part of his career he focussed on interactive pieces that directly engage the human body, or that involve artificial perception systems. In the last decade, his practice has expanded to included video, kinetic and static sculpture. His work has been performed / exhibited in shows across Canada, the United States, Europe and Asia.

Awards include the first BAFTA (British Academy of Film and Television Arts) award for Interactive Art in 2000, a 2002 Governor General’s award in Visual and Media Arts and the Prix Ars Electronica Golden Nica for Interactive Art 2002. He was awarded the first Petro-Canada Award for Media Arts in 1988, the Prix Ars Electronica Award of Distinction for Interactive Art (Austria) in 1991 and 1997.

I haven’t been able to dig up any information about registration but it will be added here should I stumble across any in the next few weeks. I did, however, find more information about Marks’s work and a festival in Vancouver (Canada).

Fourth Annual Small File Media Festival (October 20 -21, 2023) and the Streaming Carbon Footprint

First, let’s flip back in time to a July 27, 2021 Simon Fraser University (SFU) news release (also published as a July 27, 2021 news item on phys.org) by Tessa Perkins Deneault,

When was the last time you watched a DVD? If you’re like most people, your DVD collection has been gathering dust as you stream movies and TV from a variety of on-demand services. But have you ever considered the impact of streaming video on the environment?

School for the Contemporary Arts professor Laura Marks and engineering professor Stephen Makonin, with engineering student Alejandro Rodriguez-Silva and media scholar Radek Przedpełski, worked together for over a year to investigate the carbon footprint of streaming media supported by a grant from the Social Sciences and Humanities Research Council of Canada.

“Stephen and Alejandro were there to give us a reality check and to increase our engineering literacy, and Radek and I brought the critical reading to it,” says Marks. “It was really a beautiful meeting of critical media studies and engineering.”

After combing through studies on Information and Communication Technologies (ICT) and making their own calculations, they confirmed that streaming media (including video on demand, YouTube, video embedded in social media and websites, video conferences, video calls and games) is responsible for more than one per cent of greenhouse gas emissions worldwide. And this number is only projected to rise as video conferencing and streaming proliferate.

“One per cent doesn’t sound like a lot, but it’s significant if you think that the airline industry is estimated to be 1.9 per cent,” says Marks. “ICT’s carbon footprint is growing fast, and I’m concerned that because we’re all turning our energy to other obvious carbon polluters, like fossil fuels, cars, the airline industry, people are not going to pay attention to this silent, invisible carbon polluter.”

One thing that Marks found surprising during their research is how politicized this topic is.

Their full report includes a section detailing the International Energy Association’s attack on French think tank The Shift Project after they published a report on streaming media’s carbon footprint in 2019. They found that some ICT engineers state that the carbon footprint of streaming is not a concern because data centres and networks are very efficient, while others say the fast-rising footprint is a serious problem that needs to be addressed. Their report includes comparisons of the divergent figures in engineering studies in order to get a better understanding of the scope of this problem.

The No. 1 thing Marks and Makonin recommend to reduce streaming’s carbon footprint is to ensure that our electricity comes from renewable sources. At an individual level, they offer a list of recommendations to reduce energy consumption and demand for new ICT infrastructure including: stream less, watch physical media including DVDs, decrease video resolution, use audio-only mode when possible, and keep your devices longer—since production of devices is very carbon-intensive.    

Promoting small files and low resolution, Marks founded the Small File Media Festival [link leads to 2023 programme], which will present its second annual program [2021] of 5-megabyte films Aug. 10 – 20. As the organizers say, movies don’t have to be big to be binge-worthy.

Learn more about Marks’ research and the Small File Media Festival: https://www.sfu.ca/sca/projects—activities/streaming-carbon-footprint.html

And now for 2023, here’s a video promoting the upcoming fourth annual festival,

The Streaming Carbon Footprint webpage on the SFU website includes information about the final report and the latest Small File Media Festival. Although I found the Small File Media Festival website also included a link for purchasing tickets,

The Small File Media Festival returns for its fourth iteration! We are delighted to partner with The Cinematheque to present over sixty jewel-like works from across the globe. These movies are small in file size, but huge in impact: by embracing the aesthetics of compression and low resolution (glitchiness, noise, pixelation), they lay the groundwork for a new experimental film movement in the digital age. This year, six lovingly curated programs traverse brooding pixelated landscapes, textural paradises, and crystalline infinities.

TICKETS AND FESTIVAL INFO

Join us Friday, October 20 [2023] for the opening-night program followed by a drinks reception in the lobby and a dance party in the cinema, featuring music by Vancouver electronic artist SAN. We’ll announce the winner of the coveted Small-File Golden Mini Bear during Saturday’s [October 21, 2023] award ceremony! As always, the festival will stream online at small​file​.ca after the live events.

We’re most grateful to our future-forward friends at the Social Sciences and Humanities Research Council of Canada, Canada Council for the Arts, and SFU Contemporary Arts. Thanks to VIVO Media Arts, Cairo Video Festival, and The Hmm for generous distribution and exhibition awards, and to UKRAïNATV, a partner in small-file activism.

Cosmically healthy, community-building, and punk AF, small-file ecomedia will heal the world, one pixel at a time.

TICKETS

There we have it. And then, we didn’t

*Date & location change* for Streaming Carbon Footprint event

From an October 27, 2023 ArtSci Salon notice,

Nov 7, [2023] 5:00-7:00 PM 
Streaming Carbon Footprint

with 
Laura U. Marks
and
David Rokeby
 

Tuesday, November 7 [2023]
5:00-7:00 pm
The BMO Lab
15 King’s College Circle, room H-12
Toronto, Ontario M5S 3H7

Good luck to the organizers. It must have been nervewracking to change the date so late in the game.