Category Archives: environment

NANoREG halfway through its project (Environment, Health & Safety) term

A March 18, 2015 news item on Nanowerk announces a third NANoReg newsletter marking the halfway point in the project’s term (Note: Links have been removed),

NANoREG is the first FP7 project to deliver the answers needed by regulators and legislators on EHS [Environment, Health & Safety] by linking them to a scientific evaluation of data and test methods.

Time wise, the NANoREG project is now halfway. After setting the basic conditions for its R&D work, the project now focuses on the generation of reliable and comparable experimental data on the EHS aspects of the selected NANoREG nanomaterials. These data will form the basis for the main “end products” of the NANoREG project: the Regulatory Framework and the NANoREG Toolbox. Highlights of this experimental work and results will be shared with you in this 3rd NANoREG Newsletter (pdf).

The editorial for the 3rd issue of the NANoREG newsletter, which seems to have originated the news item, describes upcoming initiatives,

The Regulatory Framework and the NANoREG Toolbox just mentioned will be developed in close cooperation with organisations involved in standardisation and in the regulatory aspects of nanomaterials like ECHA [European Chemicals Agency], OECD [Organization for Economic Cooperation and Development], CEN [European Committee for Standardization] and ISO [International Standards Organization]. The results of other EU FP7 [Framework Programme 7] and H2020 [Horizon 2020] [research funding] projects will also be taken into account when developing these products. One of these projects is the H2020 project NANoREG II that focuses on Safe by design and that will start in the 2nd or 3rd quarter of 2015.

The coordinated and integrated approach in developing the Framework and the NANoREG Toolbox is one of the main elements of the H2020 funded Coordination and Support Action (CSA) “ProSafe” that recently had its Kick-Off meeting in Aix-en-Provence, France. Just like NANoREG this CSA is coordinated by the Dutch Ministry of Infrastructure and the Environment and as such executed by me. Other elements of this CSA are – among others – the expansions of the involvement of EU and non-EU countries in the NANoREG project in order to broaden the platform of support for the NANoREG results world-wide (“NANoREG+”), the exploitation of synergies between the NANoREG project and other “nanosafety” projects and data management.

The outcome of the CSA will be a White Paper that can be used by policy makers, regulators and industry to establish methods for measuring and assessing the EHS aspects of nanomaterials and that will give guidance to industry how to implement “safe by design“. A forerunner of the White Paper will be subject of a three days scientific conference to be held at the end of 2016. It will include the results of the NANoREG project, the results of the evaluation of EHS data available at the OECD and results from other sources. After consulting Risk assessors and policymakers, the White Paper will be published in the first quarter of 2017.

This project has reached out beyond Europe for partners (from the editorial for the 3rd NANoREG newsletter),

It is quite a challenge we face. Given the expertise and scientific authority of our partners, including the Czech-,Brazilian- and South Korean parties that recently joined the NANoREG project, I am confident however that we will succeed in reaching our goal: creating a solid basis for a balanced combination of nanosafety and innovation that will be beneficial to society.

I hope NANoREG is successful with its goal of “creating a solid basis for a balanced combination of nanosafety and innovation that will be beneficial to society.”

I last wrote about NANoREG in a March 21, 2014 posting.

Removing titanium dioxide nanoparticles from water may not be that easy

A March 10, 2015 news item on Nanowerk highlights some research into the removal of nanoscale titanium dioxide particles from water supplies (Note: A link has been removed),

The increased use of engineered nanoparticles (ENMs) in commercial and industrial applications is raising concern over the environmental and health effects of nanoparticles released into the water supply. A timely study that analyzes the ability of typical water pretreatment methods to remove titanium dioxide, the most commonly used ENM, is published in Environmental Engineering Science (“Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry”). The article is available free on the Environmental Engineering Science website until April 10, 2015.

A March 10, 2015 Mary Ann Liebert, Inc., publishers news release (also on EurekAlert), which originated the news item, provides more details about the work (Note: A link has been removed),

Nichola Kinsinger, Ryan Honda, Valerie Keene, and Sharon Walker, University of California, Riverside, suggest that current methods of water prefiltration treatment cannot adequately remove titanium dioxide ENMs. They describe the results of scaled-down tests to evaluate the effectiveness of three traditional methods—coagulation, flocculation, and sedimentation—in the article “Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry.”

“As nanoscience and engineering allow us to develop new exciting products, we must be ever mindful of associated consequences of these advances,” says Domenico Grasso, PhD, PE, DEE, Editor-in-Chief of Environmental Engineering Science and Provost, University of Delaware. “Professor Walker and her team have presented an excellent report raising concerns that some engineered nanomaterials may find their ways into our water supplies.”

“While further optimization of such treatment processes may allow for improved removal efficiencies, this study illustrates the challenges that we must be prepared to face with the emergence of new engineered nanomaterials,” says Sharon Walker, PhD, Professor of Chemical and Environmental Engineering, University of California, Riverside.

Here’s a link to and a citation for the paper,

Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry by Nichola Kinsinger, Ryan Honda, Valerie Keene, and Sharon L. Walker. Environmental Engineering Science. doi:10.1089/ees.2014.0288.

This paper is freely available until April 10, 2015.

Interestingly Sharon Walker and Nichola Kinsinger recently co-authored a paper (mentioned in my March 9, 2015 post) about copper nanoparticles and water treatment which concluded this about copper nanoparticles in water supplies,

The researchers found that the copper nanoparticles, when studied outside the septic tank, impacted zebrafish embryo hatching rates at concentrations as low as 0.5 parts per million. However, when the copper nanoparticles were released into the replica septic tank, which included liquids that simulated human digested food and household wastewater, they were not bioavailable and didn’t impact hatching rates.

Taking these these two paper into account (and the many others I’ve read), there is no simple or universal answer to the question of whether or not ENPs or ENMs are going to pose environmental problems.

Do-it-yourself sensors possible with biocatalytic pen technology

The engineers at the University of California at San Diego (UCSD) are envisioning a future where anyone can create a biosensor anywhere. From a March 3, 2015 news item on Azonano,

A new simple tool developed by nanoengineers at the University of California, San Diego, is opening the door to an era when anyone will be able to build sensors, anywhere, including physicians in the clinic, patients in their home and soldiers in the field.

The team from the University of California, San Diego, developed high-tech bio-inks that react with several chemicals, including glucose. They filled off-the-shelf ballpoint pens with the inks and were able to draw sensors to measure glucose directly on the skin and sensors to measure pollution on leaves.

A March 2, 2015 UCSD news release by Ioana Patringenaru, which originated the news item, describes the researchers’ hopes for this technology,

Skin and leaves aren’t the only media on which the pens could be used. Researchers envision sensors drawn directly on smart phones for personalized and inexpensive health monitoring or on external building walls for monitoring of toxic gas pollutants. The sensors also could be used on the battlefield to detect explosives and nerve agents.

The team, led by Joseph Wang, the chairman of the Department of NanoEngineering at the University of California, San Diego, published their findings in the Feb. 26 [2015] issue of Advanced Healthcare Materials. Wang also directs the Center for Wearable Sensors at UC San Diego.

“Our new biocatalytic pen technology, based on novel enzymatic inks, holds considerable promise for a broad range of applications on site and in the field,” Wang said.

The news release goes on to describe one of the key concerns with developing the ink,

The biggest challenge the researchers faced was making inks from chemicals and biochemicals that aren’t harmful to humans or plants; could function as the sensors’ electrodes; and retain their properties over long periods in storage and in various conditions. Researchers turned to biocompatible polyethylene glycol, which is used in several drug delivery applications, as a binder. To make the inks conductive to electric current they used graphite powder. They also added chitosan, an antibacterial agent which is used in bandages to reduce bleeding, to make sure the ink adhered to any surfaces it was used on. The inks’ recipe also includes xylitol, a sugar substitute, which helps stabilize enzymes that react with several chemicals the do-it-yourself sensors are designed to monitor.

There’s a backstory to this research,

Wang’s team has been investigating how to make glucose testing for diabetics easier for several years. The same team of engineers recently developed non-invasive glucose sensors in the form of temporary tattoos. In this study, they used pens, loaded with an ink that reacts to glucose, to draw reusable glucose-measuring sensors on a pattern printed on a transparent, flexible material which includes an electrode. Researchers then pricked a subject’s finger and put the blood sample on the sensor. The enzymatic ink reacted with glucose and the electrode recorded the measurement, which was transmitted to a glucose-measuring device. Researchers then wiped the pattern clean and drew on it again to take another measurement after the subject had eaten.

Researchers estimate that one pen contains enough ink to draw the equivalent of 500 high-fidelity glucose sensor strips. Nanoengineers also demonstrated that the sensors could be drawn directly on the skin and that they could communicate with a Bluetooth-enabled electronic device that controls electrodes called a potentiostat, to gather data.

As mentioned earlier, there are more applications being considered (from the news release),

The pens would also allow users to draw sensors that detect pollutants and potentially harmful chemicals sensors on the spot. Researchers demonstrated that this was possible by drawing a sensor on a leaf with an ink loaded with enzymes that react with phenol, an industrial chemical, which can also be found in cosmetics, including sunscreen. The leaf was then dipped in a solution of water and phenol and the sensor was connected to a pollution detector. The sensors could be modified to react with many pollutants, including heavy metals or pesticides.

Next steps include connecting the sensors wirelessly to monitoring devices and investigating how the sensors perform in difficult conditions, including extreme temperatures, varying humidity and extended exposure to sunlight.

The researchers’ have provided a picture of the pen and a leaf,

Researchers drew sensors capable of detecting pollutants on a leaf. Courtesy: University of California at San Diego

Researchers drew sensors capable of detecting pollutants on a leaf. Courtesy: University of California at San Diego

Here’s a link to and a citation for the paper,

Biocompatible Enzymatic Roller Pens for Direct Writing of Biocatalytic Materials: “Do-it-Yourself” Electrochemical Biosensors by Amay J. Bandodkar, Wenzhao Jia, Julian Ramírez, and Joseph Wang. Advanced Healthcare Materials DOI: 10.1002/adhm.201400808 Article first published online: 26 FEB 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

Copper nanoparticles, toxicity research, colons, zebrafish, and septic tanks

Alicia Taylor, a graduate student at UC Riverside, surrounded by buckets of effluent from the septic tank system she used for her research. Courtesy: University of California at Riverside

Alicia Taylor, a graduate student at UC Riverside, surrounded by buckets of effluent from the septic tank system she used for her research. Courtesy: University of California at Riverside

Those buckets of efflluent are strangely compelling. I think it’s the abundance of orange. More seriously, a March 2, 2015 news item on Nanowerk poses a question about copper nanoparticles,

What do a human colon, septic tank, copper nanoparticles and zebrafish have in common?

They were the key components used by researchers at the University of California, Riverside and UCLA [University of California at Los Angeles] to study the impact copper nanoparticles, which are found in everything from paint to cosmetics, have on organisms inadvertently exposed to them.

The researchers found that the copper nanoparticles, when studied outside the septic tank, impacted zebrafish embryo hatching rates at concentrations as low as 0.5 parts per million. However, when the copper nanoparticles were released into the replica septic tank, which included liquids that simulated human digested food and household wastewater, they were not bioavailable and didn’t impact hatching rates.

A March 2, 2015 University of California at Riverside (UCR) news release (also on EurekAlert), which originated the news item, provides more detail about the research,

“The results are encouraging because they show with a properly functioning septic tank we can eliminate the toxicity of these nanoparticles,” said Alicia Taylor, a graduate student working in the lab of Sharon Walker, a professor of chemical and environmental engineering at the University of California, Riverside’s Bourns College of Engineering.

The research comes at a time when products with nanoparticles are increasingly entering the marketplace. While the safety of workers and consumers exposed to nanoparticles has been studied, much less is known about the environmental implications of nanoparticles. The Environmental Protection Agency is currently accessing the possible effects of nanomaterials, including those made of copper, have on human health and ecosystem health.

The UC Riverside and UCLA [University of California at Los Angeles] researchers dosed the septic tank with micro copper and nano copper, which are elemental forms of copper but encompass different sizes and uses in products, and CuPRO, a nano copper-based material used as an antifungal agent to spray agricultural crops and lawns.

While these copper-based materials have beneficial purposes, inadvertent exposure to organisms such as fish or fish embryos has not received sufficient attention because it is difficult to model complicated exposure environments.

The UC Riverside researchers solved that problem by creating a unique experimental system that consists of the replica human colon and a replica two-compartment septic tank, which was originally an acyclic septic tank. The model colon is made of a custom-built 20-inch-long glass tube with a 2-inch diameter with a rubber stopper at both ends and a tube-shaped membrane typically used for dialysis treatments within the glass tube.

To simulate human feeding, 100 milliliters of a 20-ingredient mixture that replicated digested food was pumped into the dialysis tube at 9 a.m., 3 p.m. and 9 p.m. for five-day-long experiments over nine months.

The septic tank was filled with waste from the colon along with synthetic greywater, which is meant to simulate wastewater from sources such as sinks and bathtubs, and the copper nanoparticles. The researchers built a septic tank because 20 to 30 percent of American households rely on them for sewage treatment. Moreover, research has shown up to 40 percent of septic tanks don’t function properly. This is a concern if the copper materials are disrupting the function of the septic system, which would lead to untreated waste entering the soil and groundwater.

Once the primary chamber of the septic system was full, liquid began to enter the second chamber. Once a week, the effluent was drained from the secondary chamber and it was placed into sealed five-gallon containers. The effluent was then used in combination with zebrafish embryos in a high content screening process using multiwall plates to access hatching rates.

The remaining effluent has been saved and sits in 30 five-gallon buckets in a closet at UC Riverside because some collaborators have requested samples of the liquid for their experiments.

Here’s a link to and a citation for the paper,

Understanding the Transformation, Speciation, and Hazard Potential of Copper Particles in a Model Septic Tank System Using Zebrafish to Monitor the Effluent* by Sijie Lin, Alicia A. Taylor, Zhaoxia Ji, Chong Hyun Chang, Nichola M. Kinsinger, William Ueng, Sharon L. Walker, and André E. Nel. ACS Nano, 2015, 9 (2), pp 2038–2048 DOI: 10.1021/nn507216f
Publication Date (Web): January 27, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

* Link added March 10, 2015.

From monitoring glucose in kidneys to climate change in trees

That headline is almost poetic but I admit It’s a bit of a stretch rhymewise, kidneys/trees. In any event, a Feb. 6, 2015 news item on Azonano describes research into monitoring the effects of climate change on trees,

Serving as a testament to the far-reaching impact of Governor Andrew M. Cuomo’s commitment to maintaining New York State’s global leadership in nanotechnology innovation, SUNY Polytechnic Institute’s Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE) today announced the National Science Foundation (NSF) has awarded $837,000 to support development of a first of its kind nanoscale sensor to monitor the effects of climate change on trees.

A Feb. 5, 2015 SUNY Poly CNSE news release, which originated the news item, provides more details including information about the sensor’s link to measuring glucose in kidneys,

The NSF grant was generated through the Instrument Development for Biological Research (IDBR) program, which provides funds to develop new classes of devices for bio-related research. The NANAPHID, a novel aphid-like nanosensor, will provide real-time measurements of carbohydrates in live plant tissue. Carbohydrate levels in trees are directly connected to plant productivity, such as maple sap production and survival. The NANAPHID will enable researchers to determine the effects of a variety of environmental changes including temperature, precipitation, carbon dioxide, soil acidity, pests and pathogens. The nanosensor can also provide real-time monitoring of sugar concentration levels, which are of signficant importance in maple syrup production and apple and grape farming.

“The technology for the NANAPHID is rooted in a nanoscale sensor SUNY Poly CNSE developed to monitor glucose levels in human kidneys being prepared for transplant. Our team determined that certain adjustments would enable the sensor to provide similar monitoring for plants, and provide a critical insight to the effects of climate change on the environment,” said Dr. James Castracane, professor and head of the Nanobioscience Constellation at SUNY Polytechnic Institute. “This is a perfect example of the cycle of innovation made possible through the ongoing nanotechnology research and development at SUNY Poly CNSE’s NanoTech Complex.”

“This new sensor will be used in several field experiments on measuring sensitivity of boreal forest to climate warming. Questions about forest response to rising air and soil temperatures are extremely important for forecasting future atmospheric carbon dioxide levels, climate change and forest health,” said Dr. Andrei Lapenas, principal investigator and associate professor of climatology at the University at Albany. “At the same time, we already see some potential commercial application for NANAPHID-type sensors in agriculture, food industry and other fields. Our collaboration with SUNY Poly CNSE has been extremely productive and I look forward to continuing our work together.”

The NANAPHID project began in 2014 with a $135,000 SUNY Research Foundation Network of Excellence grant. SUNY Poly CNSE will receive $400,000 of the NSF award for the manufacturing aspects of the sensor array development and testing. The remaining funds will be shared between Dr. Lapenas and researchers Dr. Ruth Yanai (ESF), Dr. Thomas Horton (ESF), and Dr. Pamela Templer (Boston University) for data collection and analysis.

“With current technology, analyzing carbohydrates in plant tissues requires hours in the lab or more than $100 a sample if you want to send them out. And you can’t sample the same tissue twice, the sample is destroyed in the analysis,” said Dr. Yanai. “The implantable device will be cheap to produce and will provide continuous monitoring of sugar concentrations, which is orders of magnitude better in both cost and in the information provided. Research questions we never dreamed of asking before will become possible, like tracking changes in photosynthate over the course of a day or along the stem of a plant, because it’s a nondestructive assay.”

“I see incredible promise for the NANAPHID device in plant ecology. We can use the sensors at the root tip where plants give sugars to symbiotic fungi in exchange for soil nutrients,” said Dr. Horton. “Some fungi are believed to be significant carbon sinks because they produce extensive fungal networks in soils and we can use the sensors to compare the allocation of photosynthate to roots colonized by these fungi versus the allocation to less carbon demanding fungi. Further, the vast majority of these symbiotic fungi cannot be cultured in lab. These sensors will provide valuable insights into plant-microbe interactions under field conditions.”

“The creation of this new sensor will make understanding the effects of a variety of environmental changes, including climate change, on the health and productivity of forests much easier to measure,” said Dr. Templer. “For the first time, we will be able to measure concentrations of carbohydrates in living trees continuously and in real-time, expanding our ability to examine controls on photosynthesis, sap flow, carbon sequestration and other processes in forest ecosystems.”

Fascinating, eh? I wonder who made the connection between human kidneys and plants and how that person made the connection.

Poopy gold, silver, platinum, and more

In the future, gold rushes could occur in sewage plants. Precious metals have been found in large quantity by researchers investigating waste and the passage of nanoparticles (gold, silver, platinum, etc.) into our water. From a Jan. 29, 2015 news article by Adele Peters for Fast Company (Note: Links have been removed),

One unlikely potential source of gold, silver, platinum, and other metals: Sewage sludge. A new study estimates that in a city of a million people, $13 million of metals could be collecting in sewage every year, or $280 per ton of sludge. There’s gold (and silver, copper, and platinum) in them thar poop.

Funded in part by a grant for “nano-prospecting,” the researchers looked at a huge sample of sewage from cities across the U.S., and then studied several specific waste treatment plants. “Initially we thought gold was at just one or two hotspots, but we find it even in smaller wastewater treatment plants,” says Paul Westerhoff, an engineering professor at Arizona State University, who led the new study.

Some of the metals likely come from a variety of sources—we may ingest tiny particles of silver, for example, when we eat with silverware or when we drink water from pipes that have silver alloys. Medical diagnostic tools often use gold or silver. …

The metallic particles Peters is describing are nanoparticles some of which are naturally occurring  as she notes but, increasingly, we are dealing with engineered nanoparticles making their way into the environment.

Engineered or naturally occurring, a shocking quantity of these metallic nanoparticles can be found in our sewage. For example, a waste treatment centre in Japan recorded 1,890 grammes of gold per tonne of ash from incinerated sludge as compared to the 20 – 40 grammes of gold per tonne of ore recovered from one of the world’s top producing gold mines (Miho Yoshikawa’s Jan. 30, 2009 article for Reuters).

While finding it is one thing, extracting it is going to be something else as Paul Westerhoff notes in Peters’ article. For the curious, here’s a link to and a citation for the research paper,

Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide by Paul Westerhoff, Sungyun Lee, Yu Yang, Gwyneth W. Gordon, Kiril Hristovski, Rolf U. Halden, and Pierre Herckes. Environ. Sci. Technol., Article ASAP DOI: 10.1021/es505329q Publication Date (Web): January 12, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

On a completely other topic, this is the first time I’ve noticed this type of note prepended to an abstract,

 Note

This article published January 26, 2015 with errors throughout the text. The corrected version published January 27, 2015.

Getting back to the topic at hand, I checked into nano-prospecting and found this Sept. 19, 2013 Arizona State University news release describing the project launch,

Growing use of nanomaterials in manufactured products is heightening concerns about their potential environmental impact – particularly in water resources.

Tiny amounts of materials such as silver, titanium, silica and platinum are being used in fabrics, clothing, shampoos, toothpastes, tennis racquets and even food products to provide antibacterial protection, self-cleaning capability, food texture and other benefits.

Nanomaterials are also put into industrial polishing agents and catalysts, and are released into the environment when used.

As more of these products are used and disposed of, increasing amounts of the nanomaterials are accumulating in soils, waterways and water-systems facilities. That’s prompting efforts to devise more effective ways of monitoring the movement of the materials and assessing their potential threat to environmental safety and human health.

Three Arizona State University faculty members will lead a research project to help improve methods of gathering accurate information about the fate of the materials and predicting when, where and how they may pose a hazard.

Their “nanoprospecting” endeavor is supported by a recently awarded $300,000 grant from the National Science Foundation.

You can find out more about Paul Westerhoff and his work here.

A hedgehog particle for safer paints and coatings?

The researchers did not extract particles from hedgehogs for this work but they are attempting to provide a description for a class of particles, which could make paints and coatings more environmentally friendly. From a Jan. 28, 2015 news item on phys.org,

A new process that can sprout microscopic spikes on nearly any type of particle may lead to more environmentally friendly paints and a variety of other innovations. Made by a team of University of Michigan engineers, the “hedgehog particles” are named for their bushy appearance under the microscope. …

A Jan. 28, 2015 University of Michigan news release (also EurekAlert), which originated the news item, describes the research,

The new process modifies oily, or hydrophobic, particles, enabling them to disperse easily in water. It can also modify water-soluble, or hydrophilic, particles, enabling them to dissolve in oil or other oily chemicals.

The unusual behavior of the hedgehog particles came as something of a surprise to the research team, says Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering.

“We thought we’d made a mistake,” Kotov said. “We saw these particles that are supposed to hate water dispersing in it and we thought maybe the particles weren’t hydrophobic, or maybe there was a chemical layer that was enabling them to disperse. But we double-checked everything and found that, in fact, these particles defy the conventional chemical wisdom that we all learned in high school.”

The team found that the tiny spikes made the particles repel each other more and attract each other less. The spikes also dramatically reduce the particles’ surface area, helping them to diffuse more easily.

One of the first applications for the particles is likely to be in paints and coatings, where toxic volatile organic compounds (VOCs) like toluene are now used to dissolve pigment. Pigments made from hedgehog particles could potentially be dissolved in nontoxic carriers like water, the researchers say.

This would result in fewer VOC emissions from paints and coatings, which the EPA [US Environmental Protection Agency] estimates at over eight million tons per year in the United States alone. VOCs can cause a variety of respiratory and other ailments and also contribute to smog and climate change. Reducing their use has become a priority for the Environmental Protection Agency and other regulatory bodies worldwide.

“VOC solvents are toxic, they’re flammable, they’re expensive to handle and dispose of safely,” Kotov said. “So if you can avoid using them, there’s a significant cost savings in addition to environmental benefits.”

While some low- and no-VOC coatings are already available, Kotov says hedgehog particles could provide a simpler, more versatile and less expensive way to manufacture them.

For the study, the team created hedgehog particles by growing zinc oxide spikes on polystyrene microbeads. The researchers say that a key advantage of the process is its flexibility; it can be performed on virtually any type of particle, and makers can vary the number and size of the spikes by adjusting the amount of time the particles sit in various solutions while the protrusions are growing. They can also make the spikes out of materials other than zinc oxide.

“I think one thing that’s really exciting about this is that we’re able to make such a wide variety of hedgehog particles,” said Joong Hwan Bahng, a chemical engineering doctoral student. “It’s very controllable and very versatile.”

The researchers say the process is also easily scalable, enabling hedgehog particles to be created “by the bucketful,” according to Kotov. Further down the road, Kotov envisions a variety of other applications, including better oil dispersants that could aid in the cleanup of oil spills and better ways to deliver non-water-soluble prescription medications.

As is becoming more common in news releases, there’s a reference to commercial partners, suggesting (to me) they might be open to offers,

“Anytime you need to dissolve an oily particle in water, there’s a potential application for hedgehog particles,” he said. “It’s really just a matter of finding the right commercial partners. We’re only just beginning to explore the uses for these particles, and I think we’re going to see a lot of applications in the future.”

Here’s a link to and a citation for the paper,

Anomalous dispersions of ‘hedgehog’ particles by Joong Hwan Bahng, Bongjun Yeom, Yichun Wang, Siu On Tung, J. Damon Hoff, & Nicholas Kotov. Nature 517, 596–599 (29 January 2015) doi:10.1038/nature14092 Published online 28 January 2015

This paper is behind a paywall.

Nanowaste or the end of the life cycle for nanoscale materials

A Jan. 27, 2015 Nanwerk spotlight article on nanowaste presents a comprehensive picture of possible issues (Note: Footnotes have been removed),

Based on their special chemical and physical properties, synthetically produced nanomaterials (engineered nanomaterials, ENMs) are currently being used in a wide range of products and applications. The Nanomaterial Databank of Nanowerk … currently lists nanomaterials composed of 28 different elements as well as of carbon (fullerenes, CNT, graphene), quantum dots consisting of several semi-conductor materials, a large number of simple nanoparticulate compounds (oxides, carbonates, nitrides) and those made up of complex compounds containing several components. On the one hand, the application of nanomaterials promises reduction potentials and sustainability effects for the environment, for example through resource and material savings ….

On the other hand, we know very little about the behavior of nanomaterials or about environmental and health risks when these products enter various waste streams at the end of their life cycles. A better understanding of the risks in the so-called End-of-Life-Phase (EOL) calls for considering the different disposal pathways and potential transformation processes that nanomaterials undergo in waste treatment plants. In the disposal phase no consideration is being given to either the special properties of nanomaterials or to potential recovery and re-use. …

There is no special legal framework in place for a separate treatment of nanomaterial containing wastes … or the monitoring of the processes. A prerequisite for such a framework would be exact knowledge about the nanomaterials being used, their form (species) and composition, potential transformation processes as well as about amounts and concentrations. Such information, however, is not available, and virtually no studies have been conducted on the EOL phase of products containing nanomaterials. Very little is known about how nanomaterial-containing wastes behave in thermal, biological or mechanical-biological waste treatment plants or in landfills. …

The spotlight article appears to be a reprint of an ITA (Institute of Technology Assessment) NanoTrust Dossier [“Nanowaste” – Nanomaterial-containing products at the end of their life cycle (NanoTrust Dossier No. 040en – August 2014)] by Sabine Greßler, Florian Part, and André Gazsó,

Abstract:
Based on their special chemical and physical properties, synthetically produced nanomaterials are currently being used in a wide range of products and applications. At the end of their product life cycle, nanomaterials can enter waste treatment plants and landfills via diverse waste streams. Little, however, is known about how nanomaterials behave in the disposal phase and whether potential environmental or health risks arise. There are no specific legal requirements for a separate treatment of nanomaterial-containing wastes. Virtually no information is available about the nanomaterials currently in use, their form and composition, or about their amounts and concentrations. The current assumption is that stable nanoparticles (e.g. metal oxides) are neither chemically nor physically altered in waste incineration plants and that they accumulate especially in the residues (e.g. slag). These residues are ultimately dumped. The disposal problem in the case of stable nanoparticles is therefore merely shifted to the subsequent steps in the waste treatment process. Carbon nanotubes (CNT) are almost completely combusted in incineration plants. Filter systems seem to be only partially efficient, and a release of nanoparticles into the environment cannot be excluded. Incinerating nanomaterials contained in products can also promote the development of organic pollutants as undesired by-products. Only few studies are available on the behavior of nanomaterials in landfills. Moreover, recycling such products could release nanomaterials, most likely when these are shredded and crushed.

This dossier offers a good review of the current state of affairs with regard to nanowaste. I haven’t read it exhaustively but it coincides with my understanding of the situation including the fact that there’s not much research on the topic.

BTW, NanoTrust is a project of the Austrian Academy of Sciences’ Institute of Technology Assessment (ITA). The nanowaste dossier is also available in German.

Government of Canada’s risk assessment for multi-walled carbon nanotubes

Lynn Bergeson’s Jan. 15, 2015 post on the Nanotechnology Now website mentions a newly issued Canadian risk assessment for multi-walled carbon nanotubes (MWCNTs),

Canada announced on January 9, 2015, that the New Substances Program has published six new risk assessment summaries for chemicals and polymers, including a summary for multi-wall carbon nanotubes.

… Environment Canada and Health Canada conduct risk assessments on new substances. These assessments include consideration of information on physical and chemical properties, hazards, uses, and exposure to determine whether a substance is or may become harmful to human health or environment as set out in Section 64 of the Canadian Environmental Protection Act, 1999 (CEPA 1999), and, if harm is suspected, to introduce any appropriate or required control measures. …

Here’s more information from the Summary of Risk Assessment Conducted Pursuant to subsection 83(1) of the Canadian Environmental Protection Act, 1999
Significant New Activity No. 17192: Multi-wall carbon nanotubes webpage,

Substance Identity

The substance is a short tangled multi-walled carbon nanotube that can be classified as a nanomaterial. [emphasis mine]

Notified Activities

The substance is proposed to be manufactured in or imported into Canada in quantities greater than 1000 kg/yr for use as an additive in plastics.

Environmental Fate and Behaviour

Based on its physical and chemical properties, if released to the environment, the substance will tend to partition to water, sediment, soil, and ambient air. The substance is expected to be persistent in these compartments because it is a stable inorganic chemical that will not degrade. Based on the limited understanding of uptake by organisms, more data is required to assess the bioaccumulation potential of this substance at the current schedule notification.

Ecological Assessment

Based on the available hazard information on the substance and surrogate data on structurally related nanomaterials, the substance has low to moderate (1-100 mg/L) acute toxicity in aquatic life (fish/daphnia/algae). The predicted no effect concentration was calculated to be less than 1 mg/L using the ErC50 from the most sensitive organism (P. subcapitata), which was used to estimate the environmental risk.

The notified and other potential activities in Canada were assessed to estimate the environmental exposure potential of the substance throughout its life cycle. Environmental exposure from the notified activities was determined through a conservative generic single point-source release blending scenario. The predicted environmental concentration for notified activities is estimated to be 2.1 µg/L.

Based on the current use profile in conjunction with low to moderate ecotoxicity endpoints, the substance is unlikely to cause ecological harm in Canada.

However, based on the current understanding of carbon nanotubes and nanomaterials in general, a change in the use profile of the substance (SNAc No. 17192) may significantly alter the exposure resulting in the substance becoming harmful to the environment.  Consequently, more information is necessary to better characterize potential environmental risks.

Human Health Assessment

Based on the available hazard information on the substance, the substance has a low potential for acute toxicity by the oral, dermal and inhalation routes of exposure (oral and dermal LD50 greater than 2000 mg/kg bw; inhalation LC50 greater than 1.3 mg/m3). It is a severe eye irritant (MAS score = 68), a mild skin irritant (PII = 1.08) and at most a weak sensitizer (because the positive control was tested at a concentration 10X higher than the test substance). It is not an in vitro mutagen (negative in a mammalian cell gene mutation test and in a mammalian chromosome aberration test).  Therefore the substance is unlikely to cause genetic damage.

Hazards related to substances used in the workplace should be classified accordingly under the Workplace Hazardous Materials Information System (WHMIS).

However, based on the available information on structurally related nanomaterials, the substance may cause respiratory toxicity, immunotoxicity, cardiovascular toxicity and carcinogenicity following oral and inhalation exposure.

When used as an additive in plastics, the substance is expected to be manufactured in or imported into Canada encapsulated in a solid polymer matrix. The potential site of exposure to the substance is expected to be within industrial facilities. Therefore, direct exposure of the general population is expected to be low. No significant environmental release is anticipated due to the specialized use under this notification and therefore indirect exposure of the general population from environmental media is also expected to be low. However, if the substance is produced in different forms (e.g. liquid polymer form), applied in different formulations or used in any other potential applications, an increased direct or indirect exposure potential may exist.

Based on the low potential for direct and indirect exposure of the general population under the industrial uses identified in this submission, the substance is not likely to pose a significant health risk to the general population, and is therefore unlikely to be harmful to human health.

However, based on the current understanding of carbon nanotubes and of nanomaterials in general, the risk arising from the use of the substance in consumer products is not known at this time.  The use of the substance in consumer products or in products intended for use by or for children may significantly alter the exposure of the general population resulting in the substance becoming harmful to human health.  Similarly, the import or manufacture of the substance in quantities greater than 10 000 kg/yr may significantly increase the exposure levels of the general population resulting in the substance becoming harmful to human health.  Consequently, more information is necessary to better characterize potential health risks.

I would like to see a definition for the word short as applied, in this risk assessment, to multi-walled carbon nanotubes. That said, this assessment is pretty much in line with current thinking about short, multi-walled carbon nanotubes. In short (wordplay noted), these carbon nanotubes are relatively safe (although some toxicological issues have been noted) as far as can be determined. However, the ‘relatively safe’ assessment may change as more of these carbon nanotubes enter the environment and as people are introduced to more products containing them.

One last comment, I find it surprising I can’t find any mention in the risk assessment of emergency situations such as fire, earthquake, explosions, etc. which could conceivably release short multi-walled carbon nanotubes into the air exposing emergency workers and people caught in a disaster. As well, those airborne materials might subsequently be found in greater quantity in the soil and water.

Quantum dots, televisions, and a counter-intuitive approach to environmental issues

There’s a very interesting Jan. 8, 2015 essay by Dr. Andrew Maynard, being hosted on Nanowerk, about the effects that quantum dot televisions could have on the environment (Note: A link has been removed),

Earlier this week, The Conversation reported that, “The future is bright, the future is … quantum dot televisions”. And judging by the buzz coming from this week’s annual Consumer Electronics Show (CES) that’s right – the technology is providing manufacturers with a cheap and efficient way of producing the next generation of brilliant, high-definition TV screens.

But the quantum dots in these displays also use materials and technologies – including engineered nanoparticles and the heavy metal cadmium – that have been a magnet for health and environmental concerns. Will the dazzling pictures this technology allow blind us to new health and environmental challenges, or do their benefits outweigh the potential risks?

If I understand things rightly, cadmium is toxic at both the macroscale and the nanoscale and Andrew goes on to describe quantum dots (cadmium at the nanoscale) and the problem they could present in his Jan. 7, 2015 essay on The Conversation,also hosted by Nanowerk, (Note: Link have been removed),

Quantum dots are a product of the emerging field of nanotechnology. They are made of nanometer-sized particles of a semiconducting material – often cadmium selenide. About 2,000 to 20,000 times smaller than the width of a single human hair, they’re designed to absorb light of one color and emit it as another color – to fluoresce. This property makes them particularly well-suited for use in products like tablets and TVs that need bright, white, uniform backlights.

… What is unique about quantum dots is that the color of the emitted light can be modified by simply changing the size of the quantum dot particles. And because this color-shifting is a physical phenomenon, quantum dots far outperform their chemical counterparts in brightness, color and durability.

Unfortunately, the heavy metal cadmium used in the production of many quantum dots is a health and environmental hazard.

On top of this, the potential health and environmental impacts of engineered nanoparticles like quantum dots have been raising concerns with toxicologists and regulators for over a decade now. Research has shown that the size, shape and surface properties of some particles influence the harm they are capable of causing in humans and the environment; smaller particles are often more toxic than their larger counterparts. That said, this is an area where scientific understanding is still developing.

Together, these factors would suggest caution is warranted in adopting quantum dot technologies. Yet taken in isolation they are misleading.

The essay describes the risk factors for various sectors (Note: A link has been removed),

The quantum dots currently being used in TVs are firmly embedded in the screens – usually enclosed behind multiple layers of glass and plastic. As a result, the chances of users being exposed to them during normal operation are pretty much nil.

The situation is potentially different during manufacturing, when there is a chance that someone could be inadvertently exposed to these nanoscopic particles. Scenarios like this have led to agencies like the US National Institute for Occupational Safety and Health taking a close look at safety when working with nanoparticles. While the potential risks are not negligible, good working practices are effective at reducing or eliminating potentially harmful exposures.

End-of-life disposal raises additional concerns. While the nanoparticles are likely to remain firmly embedded within a trashed TV’s screen, the toxic materials they contain, including cadmium, could well be released into the environment. Cadmium is certainly a health and environmental issue with poorly regulated e-waste disposal and recycling. However, when appropriate procedures are used, exposures should be negligible.

It seems quantum dot televisions impose a smaller burden than their cousins on the environment,

Although it seems counter-intuitive, analysis by the company that was made available to the EPA [US Environmental Protection Agency] showed QD Vision’s products lead to a net decrease in environmental cadmium releases compared to conventional TVs. Cadmium is one of the pollutants emitted from coal-fired electrical power plants. Because TVs using the company’s quantum dots use substantially less power than their non-quantum counterparts, the combined cadmium in QD Vision TVs and the power plant emissions associated with their use is actually lower than that associated with conventional flat screen TVs. In other words, using cadmium in quantum dots for production of more energy-efficient displays can actually results in a net reduction in cadmium emissions.

Not the conclusion one might have drawn at the outset, eh? You can read the essay in its entirety on either Nanowerk (Jan. 8, 2015 essay) or The Conversation (Jan. 7, 2015 essay). (Same essay just different publication dates.) Andrew has also posted his essay on the University of Michigan Risk Science Center website, Are quantum dot TVs – and their toxic ingredients – actually better for the environment? Note: Andrew Maynard is the center’s director.