Category Archives: environment

Short term exposure to engineered nanoparticles used for semiconductors not too risky?

Short term exposure means anywhere from 30 minutes to 48 hours according to the news release and the concentration is much higher than would be expected in current real life conditions. Still, this research from the University of Arizona and collaborators represents an addition to the data about engineered nanoparticles (ENP) and their possible impact on health and safety. From a Feb. 22, 2016 news item on phys.org,

Short-term exposure to engineered nanoparticles used in semiconductor manufacturing poses little risk to people or the environment, according to a widely read research paper from a University of Arizona-led research team.

Co-authored by 27 researchers from eight U.S. universities, the article, “Physical, chemical and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments,” was published in the Royal Society of Chemistry journal Environmental Science Nano in May 2015. The paper, which calls for further analysis of potential toxicity for longer exposure periods, was one of the journal’s 10 most downloaded papers in 2015.

A Feb. 17, 2016 University of Arizona news release (also on EurekAlert), which originated the news item, provides more detail,

“This study is extremely relevant both for industry and for the public,” said Reyes Sierra, lead researcher of the study and professor of chemical and environmental engineering at the University of Arizona.

Small Wonder

Engineered nanoparticles are used to make semiconductors, solar panels, satellites, food packaging, food additives, batteries, baseball bats, cosmetics, sunscreen and countless other products. They also hold great promise for biomedical applications, such as cancer drug delivery systems.

Designing and studying nano-scale materials is no small feat. Most university researchers produce them in the laboratory to approximate those used in industry. But for this study, Cabot Microelectronics provided slurries of engineered nanoparticles to the researchers.

“Minus a few proprietary ingredients, our slurries were exactly the same as those used by companies like Intel and IBM,” Sierra said. Both companies collaborated on the study.

The engineers analyzed the physical, chemical and biological attributes of four metal oxide nanomaterials — ceria, alumina, and two forms of silica — commonly used in chemical mechanical planarization slurries for making semiconductors.

Clean Manufacturing

Chemical mechanical planarization is the process used to etch and polish silicon wafers to be smooth and flat so the hundreds of silicon chips attached to their surfaces will produce properly functioning circuits. Even the most infinitesimal scratch on a wafer can wreak havoc on the circuitry.

When their work is done, engineered nanoparticles are released to wastewater treatment facilities. Engineered nanoparticles are not regulated, and their prevalence in the environment is poorly understood [emphasis mine].

Researchers at the UA and around the world are studying the potential effects of these tiny and complex materials on human health and the environment.

“One of the few things we know for sure about engineered nanoparticles is that they behave very differently than other materials,” Sierra said. “For example, they have much greater surface area relative to their volume, which can make them more reactive. We don’t know whether this greater reactivity translates to enhanced toxicity.”

The researchers exposed the four nanoparticles, suspended in separate slurries, to adenocarcinoma human alveolar basal epithelial cells at doses up to 2,000 milligrams per liter for 24 to 38 hours, and to marine bacteria cells, Aliivibrio fischeri, up to 1,300 milligrams per liter for approximately 30 minutes.

These concentrations are much higher than would be expected in the environment, Sierra said.

Using a variety of techniques, including toxicity bioassays, electron microscopy, mass spectrometry and laser scattering, to measure such factors as particle size, surface area and particle composition, the researchers determined that all four nanoparticles posed low risk to the human and bacterial cells.

“These nanoparticles showed no adverse effects on the human cells or the bacteria, even at very high concentrations,” Sierra said. “The cells showed the very same behavior as cells that were not exposed to nanoparticles.”

The authors recommended further studies to characterize potential adverse effects at longer exposures and higher concentrations.

“Think of a fish in a stream where wastewater containing nanoparticles is discharged,” Sierra said. “Exposure to the nanoparticles could be for much longer.”

Here’s a link to and a citation for the paper,

Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments by David Speed, Paul Westerhoff, Reyes Sierra-Alvarez, Rockford Draper, Paul Pantano, Shyam Aravamudhan, Kai Loon Chen, Kiril Hristovski, Pierre Herckes, Xiangyu Bi, Yu Yang, Chao Zeng, Lila Otero-Gonzalez, Carole Mikoryak, Blake A. Wilson, Karshak Kosaraju, Mubin Tarannum, Steven Crawford, Peng Yi, Xitong Liu, S. V. Babu, Mansour Moinpour, James Ranville, Manuel Montano, Charlie Corredor, Jonathan Posner, and Farhang Shadman. Environ. Sci.: Nano, 2015,2, 227-244 DOI: 10.1039/C5EN00046G First published online 14 May 2015

This is open access but you may need to register before reading the paper.

The bit about nanoparticles’ “… prevalence in the environment is poorly understood …”and the focus of this research reminded me of an April 2014 announcement (my April 8, 2014 posting; scroll down about 40% of the way) regarding a new research network being hosted by Arizona State University, the LCnano network, which is part of the Life Cycle of Nanomaterials project being funded by the US National Science Foundation. The network’s (LCnano) director is Paul Westerhoff who is also one of this report’s authors.

University of British Columbia (Canada) researchers reverse coating process: a smart window story?

It’s nice to see that the science writing at the University of British Columbia (UBC) has gone up a notch if a Feb. 11, 2016 news release (original received via email; see also a Feb. 11, 2016 news item on Nanowerk and EurekAlert) is any indication,

Imagine if the picture window in your living room could double as a giant thermostat or big screen TV. A discovery by researchers at the University of British Columbia has brought us one step closer to this becoming a reality.

Researchers at UBC’s Okanagan campus in Kelowna found that coating small pieces of glass with extremely thin layers of metal like silver makes it possible to enhance the amount of light coming through the glass. This, coupled with the fact that metals naturally conduct electricity, may make it possible to add advanced technologies to windowpanes and other glass objects.

“Engineers are constantly trying to expand the scope of materials that they can use for display technologies, and having thin, inexpensive, see-through components that conduct electricity will be huge,” said UBC Associate Professor and lead investigator Kenneth Chau. “I think one of the most important implications of this research is the potential to integrate electronic capabilities into windows and make them smart.” [!]

The next phase of this research, added Chau, will be to incorporate their invention onto windows with an aim to selectively filter light and heat waves depending on the season or time of day.

The theory underlying the research was developed by Chau and collaborator Loïc Markley, an assistant professor of engineering at UBC. Chau and Markley questioned what would happen if they reversed the practice of applying glass over metal—a typical method used in the creation of energy efficient window coatings.

“It’s been known for quite a while that you could put glass on metal to make metal more transparent, but people have never put metal on top of glass to make glass more transparent,” said Markley. “It’s counter-intuitive to think that metal could be used to enhance light transmission, but we saw that this was actually possible, and our experiments are the first to prove it.”

This work from UBC comes on the heels of a University of Alberta team rethinking the architecture for thin film transistors  (a Feb. 10, 2016 posting).

Getting back to UBC, here’s a link to and a citation for the paper,

Layers by Coatings of Opposing Susceptibility: How Metals Help See Through Dielectrics by Mohammed Al Shakhs, Lucian Augusto, Loïc Markley, & Kenneth J. Chau. Scientific Reports 6, Article number: 20659 (2016) doi:10.1038/srep20659 Published online: 10 February 2016

This is an open access paper.

My most recent post about smart windows (a longstanding obsession) is a Jan. 21, 2016 piece featuring a UK technology that combines self-cleaning and temperature control properties for a possible market introduction in the next three to five years.

Synthesizing titanium dioxide nanoparticles with herbal extracts

It was somewhat unexpected to see a science collaboration between an Iranian researcher and an Iraqi researcher given the two countries engaged in a hard-fought war for almost eight years (1980 – 88). However, since almost 30 years have passed, it seems at least two people feel it’s time to approach things differently. A Jan. 28, 2016 news item on Nanotechnology Now announces the research,

Environmental preservation is today one of the greatest concerns of scientists in all scientific aspects.

Given the direct effect of chemical industry on environment, chemists try to present new methods for the synthesis of materials with less chemical pollution but more biocompatibility.

Iranian and Iraqi researchers studied the possibility of the application of herbal extracts to synthesize titanium dioxide nanoparticles. Results prove that the herbal extract enables production of nanoparticles at a higher rate and efficiency but less environmental pollution.

A Jan. 28, 2016 Fars Agency news release, which originated the news item, expands on the theme,

The aim of the research was to synthesize titanium dioxide nanoparticles in a simple, fast and cost effective manner with high efficiency in the presence of Euphorbia heteradena Jaub extract. This plant is found commonly in the western and central parts of Iran.

The nanoparticles also have application in the degradation of organic materials and water and wastewater purification due to their appropriate stability, non-toxicity and photocatalytic activity.

The method presented in this research is in agreement with global standards of green chemistry unlike other chemical methods. In fact, no toxic solvent or reactant (such as chemical reducers and stabilizers) has been used in this method. Elimination of by-products during the synthesis of nanoparticles and ease of production scaling up from laboratorial scale to industrial one are among the other advantages of the new method.

According to the researchers, instability of the synthetic nanoparticles is one of the challenges in previous studies. However, experiments suggest that no structural change is observed in the synthetized nanoparticles even after two months.

Here’s a link to and a citation for the researchers’ 2015 paper,

Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteradena Jaub root extract and evaluation of their stability by Mahmoud Nasrollahzadeh, S. Mohammad Sajad. Ceramics International Volume 41, Issue 10, Part B, December 2015, Pages 14435–14439 doi:10.1016/j.ceramint.2015.07.079 Available online 21 July 2015

This paper is behind a paywall.

Revolutionary ‘smart’ windows from the UK

This is the first time I’ve seen self-cleaning and temperature control features mentioned together with regard to a ‘smart’ window, which makes this very exciting news. From a Jan. 20, 2016 UK Engineering and Physical Sciences Research Council (EPSRC) press release (also on EurekAlert),

A revolutionary new type of smart window could cut window-cleaning costs in tall buildings while reducing heating bills and boosting worker productivity. Developed by University College London (UCL) with support from EPSRC, prototype samples confirm that the glass can deliver three key benefits:

Self-cleaning: The window is ultra-resistant to water, so rain hitting the outside forms spherical droplets that roll easily over the surface – picking up dirt, dust and other contaminants and carrying them away. This is due to the pencil-like, conical design of nanostructures engraved onto the glass, trapping air and ensuring only a tiny amount of water comes into contact with the surface. This is different from normal glass, where raindrops cling to the surface, slide down more slowly and leave marks behind.
Energy-saving: The glass is coated with a very thin (5-10nm) film of vanadium dioxide which during cold periods stops thermal radiation escaping and so prevents heat loss; during hot periods it prevents infrared radiation from the sun entering the building. Vanadium dioxide is a cheap and abundant material, combining with the thinness of the coating to offer real cost and sustainability advantages over silver/gold-based and other coatings used by current energy-saving windows.
Anti-glare: The design of the nanostructures also gives the windows the same anti-reflective properties found in the eyes of moths and other creatures that have evolved to hide from predators. It cuts the amount of light reflected internally in a room to less than 5 per cent – compared with the 20-30 per cent achieved by other prototype vanadium dioxide coated, energy-saving windows – with this reduction in ‘glare’ providing a big boost to occupant comfort.

This is the first time that a nanostructure has been combined with a thermochromic coating. The bio-inspired nanostructure amplifies the thermochromics properties of the coating and the net result is a self-cleaning, highly performing smart window, said Dr Ioannis Papakonstantinou of UCL.

The UCL team calculate that the windows could result in a reduction in heating bills of up to 40 per cent, with the precise amount in any particular case depending on the exact latitude of the building where they are incorporated. Windows made of the ground-breaking glass could be especially well-suited to use in high-rise office buildings.

Dr Ioannis Papakonstantinou of UCL, project leader, explains: It’s currently estimated that, because of the obvious difficulties involved, the cost of cleaning a skyscraper’s windows in its first 5 years is the same as the original cost of installing them. Our glass could drastically cut this expenditure, quite apart from the appeal of lower energy bills and improved occupant productivity thanks to less glare. As the trend in architecture continues towards the inclusion of more glass, it’s vital that windows are as low-maintenance as possible.

So, when can I buy these windows? (from the press release; Note: Links have been removed)

Discussions are now under way with UK glass manufacturers with a view to driving this new window concept towards commercialisation. The key is to develop ways of scaling up the nano-manufacturing methods that the UCL team have specially developed to produce the glass, as well as scaling up the vanadium dioxide coating process. Smart windows could begin to reach the market within around 3-5 years [emphasis mine], depending on the team’s success in securing industrial interest.

Dr Papakonstantinou says: We also hope to develop a ‘smart’ film that incorporates our nanostructures and can easily be added to conventional domestic, office, factory and other windows on a DIY [do-it-yourself] basis to deliver the triple benefit of lower energy use, less light reflection and self-cleaning, without significantly affecting aesthetics.

Professor Philip Nelson, Chief Executive of EPSRC said: This project is an example of how investing in excellent research drives innovation to produce tangible benefits. In this case the new technique could deliver both energy savings and cost reductions.

A 5-year European Research Council (ERC) starting grant (IntelGlazing) has been awarded to fabricate smart windows on a large scale and test them under realistic, outdoor environmental conditions.

The UCL team that developed the prototype smart window includes Mr Alaric Taylor, a PhD student in Dr Papakonstantinou’s group, and Professor Ivan Parkin from UCL’s Department of Chemistry.

I wish them good luck.

One last note, these new windows are the outcome of a 2.5 year EPSRC funded project: Biologically Inspired Nanostructures for Smart Windows with Antireflection and Self-Cleaning Properties, which ended in Sept.  2015.

Directa Plus unleashes graphene-based mobile decontamination units

I’ve been covering Directa Plus stories for a little over a year now (my Dec. 17, 2014 posting titled: Water purification, Italy, Romania, and graphene and my May 25, 2015 posting titled: A GEnIuS approach to oil spill remediation at 18th European Forum on Eco-innovation. The product that most interests me is the graphene-based environmental decontamination unit, Grafysorber. Happily it is now being offered commercially according to a Dec. 18, 2015 Directa Plus press release found on Business Wire (and a PDF news release, you will need to download, can be found on the company’s website here),

Directa Plus (“Directa or “the Company”), one of the largest producers and suppliers of graphene for use in consumer and industrial products, is pleased to announce the global commercial launch of the Grafysorber™ Decontamination Unit, the world’s first graphene-based system for tackling environmental emergencies such as oil spills. The launch follows successful industrial remediation activities conducted in Italy and Romania.

The Company is also pleased to announce that Biocart S.r.l., an Italian company engaged in the research, development and industrialisation of next-generation materials and solutions for the mitigation of natural disasters and environmental remediation, has purchased the first three mobile units.

Giulio Cesareo, Chief Executive Officer of Directa, said: “We are pleased to launch the Grafysorber™ Decontamination Unit that will enable a prompt and effective response to a potential catastrophe such as an oil spill – and so help avoid a major environmental disaster. Due to the mobile nature of the unit, it can be stored nearer to an area where an event may occur, thereby reducing the time and costs ordinarily associated with the transportation of a solution.”

The Grafysorber™ Decontamination Unit contains a proprietary and patented plasma machine that is able to produce on site all the Grafysorber™ needed to clean up water contaminated with the harmful hydrocarbons contained in oil spills. As it is a mobile unit, it can be quickly deployed to the site of the spill.

During 2015, two industrial remediation activities have been carried out with GrafysorberTM, treating approximately 35,000m3 of water contaminated with petroleum hydrocarbons. Less than 5g/m3 of GrafysorberTM were able to remove the hydrocarbon contaminants, reducing the concentration from 550mg/l to a safe level of approximately 0.5mg/l, with a significant cost reduction of 50-60% compared with traditional technologies.

Grafysorber™ is a sustainable product as it enables the recovery and recycling of the adsorbed oils; it is recyclable; and it does not contain any toxic substances. The ability to produce the graphene on site and in the right quantity renders it a very cost-effective solution compared with conventional solutions. Grafysorber™ has received approval from the Ministry of Environment in Italy and in Romania.

“This is an important step for Directa Plus as we unveil another significant application for graphene-based solutions. It has been achieved due to our technical strength and proprietary process for producing graphene in various forms in a cost effective manner. The ability of the Grafysorber™ Decontamination Unit to produce all the graphene necessary to purify the contaminated water directly at the site of use can be easily replicated and applied to other emergency scenarios. The initial demand that we have already received for this product provides further evidence that graphene has left the laboratory and is ready for mass adoption,” added Giulio Cesareo.

I look forward to hearing more about this product as it is put into use.

Pomegranates, silver nanoparticles, and Persian carpets

One of the issues with adding silver nanoparticles to textiles is that they wash off and eventually enter our water supply. According to a Dec. 14. 2015 news item on Nanotechnology Now, Iranian scientists has devised a technique for affixing silver nanoparticles,

Iranian researchers produced laboratorial samples of antibacterial woolen fabrics by using nanoparticles which are able to preserve their properties even after five times of washing.

A Dec. 12, 2015 Iran Nanotechnology Initiative Council (INIC) press release, which originated the news item, provides more detail,

Nanoparticles used in the production of fabrics have been produced through a cost-effective method and by using environmentally-friendly materials.

The aim of the research was to obtain an eco-friendly method for the production and application of silver nanoparticles in carpet weaving industry to create antibacterial properties in the final product. The interesting point in this research is the application of pomegranate skin as the reducer in the process to produce nanoparticles.

Results showed that pigment extracted from pomegranate skin is able to be used in the production of silver nanoparticles. Therefore, this method decreases the application of chemical reducers in the synthesis of these nanoparticles, and it also decreases the environmental pollution. In addition, the synthesized nanoparticles preserve their antibacterial properties after being loaded on woolen fiber samples. Therefore, carpets woven by these fibers have antibacterial properties and no bacteria will grow on them.

After carrying out complementary tests and producing the fabrics and fibers at a large scale, the products can be used in carpet weaving industries and also in production of medical devices.

Based on the results, fabrics completed with silver nanoparticles synthesized at low ratio of pigment have antibacterial properties and they do not affect the color of samples. Fabric samples also conserve their antibacterial properties even after five times of washing. The decrease in pH value and increase in temperature improves exhaustion of silver nanoparticles on the wool.

Here’s a link to and a citation for the paper,

Novel method for synthesis of silver nanoparticles and their application on wool by Majid Nasiri Boroumand, Majid Montazer, Frank Simon, Jolanta Liesiene, Zoran Šaponjic, Victoria Dutschk. Applied Surface Science Volume 346, 15 August 2015, Pages 477–483 doi:10.1016/j.apsusc.2015.04.047

This paper is behind a paywall.

You gotta shake, shake, shake those nanomaterials out of the water

A team at Michigan Technological University (Michigan Tech) has developed a simple technique for clearing nanoparticles from water according to a Dec. 10, 2015 news item on Nanotechnology Now,

Nano implies small—and that’s great for use in medical devices, beauty products and smartphones—but it’s also a problem. The tiny nanoparticles, nanowires, nanotubes and other nanomaterials that make up our technology eventually find their way into water. The Environmental Protection Agency says more 1,300 commercial products use some kind of nanomaterial. And we just don’t know the full impact on health and the environment.

A Dec. 10, 2015 Michigan Tech news release, which originated the news item, describes the concept and the research in more detail,

“Look at plastic,” says Yoke Khin Yap, a professor of physics at Michigan Technological University. “These materials changed the world over the past decades—but can we clean up all the plastic in the ocean? We struggle to clean up meter-scale plastics, so what happens when we need to clean on the nano-scale?”

The method sounds like a salad dressing recipe: take water, sprinkle in nanomaterials, add oil and shake.

Water and oil don’t mix, of course, but shaking them together is what makes salad dressing so great. Only instead of emulsifying and capturing bits of shitake or basil in tiny olive oil bubbles, this mixture grabs nanomaterials.

Dongyan Zhang, a research professor of physics at Michigan Tech, led the experiments, which covered tests on carbon nanotubes, graphene, boron nitride nanotubes, boron nitride nanosheets and zinc oxide nanowires. Those are used in everything from carbon fiber golf clubs to sunscreen.

“These materials are very, very tiny, and that means if you try to remove them and clean them out of contaminated water, that it’s quite difficult,” Zhang says, adding that techniques like filter paper or meshes often don’t work.

What makes shaking work is the shape of one- and two-dimensional nanomaterials. As the oil and water separate after some rigorous shaking, the wires, tubes and sheets settle at the bottom of the oil, just above the water. The oils trap them. However, zero-dimensional nanomaterials, such as nanospheres do not get trapped.

The researchers, according to the news release, are attempting to anticipate the potential contamination of our water supply by nanomaterials and provide a solution before it happens,

We don’t have to wait until the final vote is in on whether nanomaterials have a positive or negative impact on people’s health and environmental health. With the simplicity of this technique, and how prolific nanomaterials are becoming, removing nanomaterials makes sense. Also, finding ways to effectively remove nanomaterials sooner rather than later could improve the technology’s market potential.

“Ideally for a new technology to be successfully implemented, it needs to be shown that the technology does not cause adverse effects to the environment,” Yap, Zhang and their co-authors write. “Therefore, unless the potential risks of introducing nanomaterials into the environment are properly addressed, it will hinder the industrialization of products incorporating nanotechnology.”

Purifying water and greening nanotechnology could be as simple as shaking a vial of water and oil.

Here’s a video about the research supplied by Michigan Tech,

Here’s a link to and a citation for the paper,

A Simple and Universal Technique To Extract One- and Two-Dimensional Nanomaterials from Contaminated Water by Bishnu Tiwari, Dongyan Zhang, Dustin Winslow, Chee Huei Lee, Boyi Hao, and Yoke Khin Yap. ACS Appl. Mater. Interfaces, 2015, 7 (47), pp 26108–26116 DOI: 10.1021/acsami.5b07542 Publication Date (Web): November 9, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Making diesel cleaner

A Dec. 10, 2015 news item on Nanowerk announces a new method for producing diesel fuels (Note: A link has been removed),

Researchers from KU Leuven [Belgium] and Utrecht University [Netherlands] have discovered a new approach to the production of fuels (Nature, “Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons”). Their new method can be used to produce much cleaner diesel. It can quickly be scaled up for industrial use. In 5 to 10 years, we may see the first cars driven by this new clean diesel.

A Dec. 10, 2015 KU Leuven press release, which originated the news item, provides more detail about the research,

The production of fuel involves the use of catalysts. These substances trigger the chemical reactions that convert raw material into fuel. In the case of diesel, small catalyst granules are added to the raw material to sufficiently change the molecules of the raw material to produce useable fuel.

Catalysts can have one or more chemical functions. The catalyst that was used for this particular study has two functions, represented by two different materials: a metal (platinum) and a solid-state acid. During the production process for diesel, the molecules bounce to and fro between the metal and the acid. Each time a molecule comes into contact with one of the materials, it changes a little bit. At the end of the process, the molecules are ready to be used for diesel fuel.

The assumption has always been that the metal and the solid-state acid in the catalyst should be as close together as possible. That would speed up the production process by helping the molecules bounce to and fro more quickly. Professor Johan Martens (KU Leuven) and Professor Krijn de Jong (Utrecht University) have now discovered that this assumption is incorrect. [emphasis mine] If the functions within a catalyst are nanometres apart, the process yields better molecules for cleaner fuel.

“Our results are the exact opposite of what we had expected. At first, we thought that the samples had been switched or that something was wrong with our analysis”, says Professor Martens. “We repeated the experiments three times, only to arrive at the same conclusion: the current theory is wrong. There has to be a minimum distance between the functions within a catalyst. This goes against what the industry has been doing for the past 50 years.”

The new technique can optimise quite a few molecules in diesel. Cars that are driven by this clean diesel would emit far fewer particulates and CO². The researchers believe that their method can be scaled up for industrial use with relative ease, so the new diesel could be used in cars in 5 to 10 years.

The new technique can be applied to petroleum-based fuels, but also to renewable carbon from biomass.

A fifty year old assumption has been found wrong. Interesting, non? In any event, here’s a link to and a citation for the paper,

Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons by Jovana Zecevic, Gina Vanbutsele, Krijn P. de Jong, & Johan A. Martens. Nature 528, 245–248 (10 December 2015)  doi:10.1038/nature16173 Published online 09 December 2015

This paper is behind a paywall.

Russians offer nanotechnology report at Paris Climate talks

Sadly I cannot find the report presented by the Russians  at the Paris Climate Talks (also known as World Climate Change Conference 2015 [COP21]) but did find this reference to it in a Dec. 7, 2015 article in the New York Times,

One of the surprises of the Paris climate talks was the sudden interest by Russia in appearing as a player in the efforts to reel in greenhouse gases.

The second part occurred on Monday, when an event was added to the schedule of news briefings: “Russia Proposes a New Approach to Climate Change.”

And so Russia did, putting forth a plan — and a report — that in the end seemed largely geared toward promoting a government-funded business, run by a prominent politician.

The Russian Times (rt.com) published a Nov. 30, 2015 article detailing President Vladimir Putin’s address to the conference attendees,

“We have gone beyond the target fixed by the Kyoto Protocol for the period from 1991 to 2012. Russia not only prevented the growth of greenhouse gas emission, by also significantly reduced it,” Putin said.

“Nearly 40 billion tons of carbon dioxide equivalent weren’t released into the atmosphere. As a comparison, the total emissions of all countries in 2012 reached 46 billion tons.”

Russia is planning to keep progressing by bringing breakthrough technologies into practice, “including nanotechnology,” Putin continued saying the country is also open to exchange and share the findings.

Apart from that, Putin has also promised Russia will reduce its polluting emissions by 70 percent by 2030 as compared to base level in 1990.

A Dec. 8, 2015 article by Jasper Nikki De La Cruz for The Science Times provides more detail about the Russian report/proposal (Note: A link has been removed),

Russia proposes a “New Approach” when it comes to dealing with climate change. The proposal focuses on efforts to reduce emissions involving five materials: steel, cement, aluminum, plastic and paper. The proposal is not on the reduction of the production of these materials but rather making these materials lighter, stronger and more efficient. With this approach, nanotechnology is put into the spotlight as the primary technology in making this proposal possible in real-world applications.

Rusnano is a company that is dedicated to nanotechnology. They received $10B of funding from the Russian government. They are pegged to be the frontrunner in research and application of nanotechnology in the production of the mentioned materials.

“Carbon nanotubes have been shown to toughen aluminum, make plastics conductive, extend the life of lithium-ion batteries,” Anatoly B. Chubais, Rusnano founder, said. “So all that is true. Tangentially, that can then lower CO2 emissions, I suppose.”

James Tour, a scientist at Rice University, commented for the New York Times Dec. 7, 2015 article on this suggestion that greater use of carbon nanotubes could reduce emissions,

A report laying out the materials thesis rested heavily on contentions about the use of carbon nanotubes. For a moment that puzzled James M. Tour, a professor of chemistry and materials science at Rice University and an expert on nanomaterials, who was asked about the proposal.

“Carbon nanotubes have been shown to toughen aluminum, make plastics conductive, extend the life of lithium-ion batteries,” he said in an email. “So all that is true. Tangentially, that can then lower CO2 emissions, I suppose.”

But, he added, “All of the above was well known long before Rusnano came around.”

Reporters, too, were confused. When one asked whether the announcement was “a distraction from real action,” Mr. Chubais said the proposal was a means to the same end.

I don’t find the Russian proposal all that outlandish although the emphasis on carbon nanotubes seems a bit outsized (pun intended). In any event, there’s certainly a role for emerging technologies to play in the attempts to change our lifestyles and ameliorate climate change.

Boron nitride sponges for oil spill cleanups

The best part of the news is that the scientists are ready to test these sponges in industrial trials but first here’s why the Australians are so excited about the work from a Dec. 1, 2015 news item on Azonano,

Deakin University scientists have manufactured a revolutionary material that can clean up oil spills, which could save the earth from potential future disasters such as any repeat of the 2010 Gulf Coast BP disaster that wreaked environmental havoc and cost a reported $40 billion.

The major breakthrough material, which literally absorbs the oil like a sponge, is the result of support from the Australian Research Council and is now ready to be trialled by industry after two years of refinement in the laboratory at Deakin’s Institute for Frontier Materials (IFM).

Alfred Deakin Professor Ying (Ian) Chen, the lead author on a paper which outlines the team’s breakthrough in today’s edition of Nature Communications, said the material was the most exciting advancement in oil spill clean-up technology in decades.

Oil spills are a global problem and wreak havoc on our aquatic ecosystems, not to mention cost billions of dollars in damage.

“Everyone remembers the Gulf Coast disaster, but here in Australia they are a regular problem, and not just in our waters. Oil spills from trucks and other vehicles can close freeways for an entire day, again amounting to large economic losses. Professor Chen

But current methods of cleaning up oil spills are inefficient and unsophisticated, taking too long, causing ongoing and expensive damage, which is why the development of our technology was supported by the Australian Research Council.

“We are so excited to have finally got to this stage after two years of trying to work out how to turn what we knew was a good material into something that could be practically used.

A Nov. 30, 2015 Deakin University media release, which originated the news item, provides some technical details,

“In 2013 we developed the first stage of the material, but it was simply a powder. This powder had absorption capabilities, but you cannot simply throw powder onto oil – you need to be able to bind that powder into a sponge so that we can soak the oil up, and also separate it from water.”

The lead author on the paper, IFM scientist Dr Weiwei Lei,) an Australian Research Council Discovery Early Career Research Awardee, said turning the powder into a sponge was a big challenge.

“But we have finally done it by developing a new production technique,” Dr Lei said.

“The ground-breaking material is called a boron nitride nanosheet, which is made up of flakes which are just several nanometers (one billionth of a meter) in thickness with tiny holes which can increase its surface area per gram to effectively the size of 5.5 tennis courts.”

The research team, which included scientists from Drexel University, Philadelphia, and Missouri University of Science and Technology, started with boron nitride powder known as “white graphite” and broke it into atomically thin sheets that were used to make a sponge.

“The pores in the nanosheets provide the surface area to absorb oils and organic solvents up to 33 times its own weight,” Dr Lei said.

Professor Yury Gogotsi from Drexel University said boron nitride nanosheets did not burn, could withstand flame, and be used in flexible and transparent electrical and heat insulation, as well as many other applications.

“We are delighted that support from the Australian Research Council allowed us to participate in this interesting study and we could help our IFM colleagues to model and better understand this wonderful material, ” Professor Gogotsi said.

Professor Vadym Mochalin from Missouri University of Science and Technology said the mechanochemical technique developed meant it was possible to produce high-concentration stable aqueous colloidal solutions of boron nitride sheets, which could then be transformed into the ultralight porous aerogels and membranes for oil clean-up.

“The use of computational modelling helped us to understand the intimate details of this novel mechanochemical exfoliation process. It is a nice illustration of the power, which combined experimental plus modelling approach offers researchers nowadays.”

The research team is now ready to have their “sponge” trialled by industry. [emphasis mine]

The nanotechnology team at IFM has been working on boron nitride nanomaterials for two decades and is an internationally recognised leader in boron nitride nanotubes and nanosheets.

There was at least one other team working on  sponges, all these are composed of carbon nanotubes, for oil spills (mentioned in my April 17, 2012 posting) but they don’t seem to have been able to get their work out of the laboratory.

Here’s a link to and a citation for boron nitride sponges,

Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization by Weiwei Lei, Vadym N. Mochalin, Dan Liu, Si Qin, Yury Gogotsi, & Ying Chen. Nature Communications 6, Article number: 8849 doi:10.1038/ncomms9849 Published 27 November 2015

This is an open access paper.