Category Archives: environment

Cellulose Nanofibrillated Fiber Based Transistors from the University of Wisconsin-Madison

There’s a team of researchers at the University of Wisconsin-Madison working to substitute silicon used in computer chips with cellulose derived from wood (my May 27, 2015 posting). Their latest effort, featuring mobile electronics, is described in a July 1, 2015 news item on Azonano,

A report published by the U.S. Environmental Protection Agency in 2012 showed that about 152 million mobile devices are discarded every year, of which only 10 percent is recycled — a legacy of waste that consumes a tremendous amount of natural resources and produces a lot of trash made from expensive and non-biodegradable materials like highly purified silicon.

Now researchers from the University of Wisconsin-Madison have come up with a new solution to alleviate the environmental burden of discarded electronics. They have demonstrated the feasibility of making microwave biodegradable thin-film transistors from a transparent, flexible biodegradable substrate made from inexpensive wood, called cellulose nanofibrillated fiber (CNF). This work opens the door for green, low-cost, portable electronic devices in future.

A June 30, 2015 American Institute of Physics news release by Zhengzheng Zhang, which originated the news item, describes the research in more detail,

“We found that cellulose nanofibrillated fiber based transistors exhibit superior performance as that of conventional silicon-based transistors,” said Zhenqiang Ma, the team leader and a professor of electrical and computer engineering at the UW-Madison. “And the bio-based transistors are so safe that you can put them in the forest, and fungus will quickly degrade them. They become as safe as fertilizer.”

Nowadays, the majority of portable electronics are built on non-renewable, non-biodegradable materials such as silicon wafers, which are highly purified, expensive and rigid substrates, but cellulose nanofibrillated fiber films have the potential to replace silicon wafers as electronic substrates in environmental friendly, low-cost, portable gadgets or devices of the future.

Cellulose nanofibrillated fiber is a sustainable, strong, transparent nanomaterial made from wood. Compared to other polymers like plastics, the wood nanomaterial is biocompatible and has relatively low thermal expansion coefficient, which means the material won’t change shape as the temperature changes. All these superior properties make cellulose nanofibril an outstanding candidate for making portable green electronics.

To create high-performance devices, Ma’s team employed silicon nanomembranes as the active material in the transistor — pieces of ultra-thin films (thinner than a human hair) peeled from the bulk crystal and then transferred and glued onto the cellulose nanofibrill substrate to create a flexible, biodegradable and transparent silicon transistor.To create high-performance devices, Ma’s team employed silicon nanomembranes as the active material in the transistor — pieces of ultra-thin films (thinner than a human hair) peeled from the bulk crystal and then transferred and glued onto the cellulose nanofibrill substrate to create a flexible, biodegradable and transparent silicon transistor.

But to make portable electronics, the biodegradable transistor needed to be able to operate at microwave frequencies, which is the working range of most wireless devices. The researchers thus conducted a series of experiments such as measuring the current-voltage characteristics to study the device’s functional performance, which finally showed the biodegradable transistor has superior microwave-frequency operation capabilities comparable to existing semiconductor transistors.

“Biodegradable electronics provide a new solution for environmental problems brought by consumers’ pursuit of quickly upgraded portable devices,” said Ma. “It can be anticipated that future electronic chips and portable devices will be much greener and cheaper than that of today.”

Next, Ma and colleagues plan to develop more complicated circuit system based on the biodegradable transistors.

Here’s a link to and a citation for the team’s latest paper,

Microwave flexible transistors on cellulose nanofibrillated fiber substrates by Jung-Hun Seo, Tzu-Hsuan Chang, Jaeseong Lee, Ronald Sabo, Weidong Zhou, Zhiyong Cai, Shaoqin Gong, and Zhenqiang Ma.  Applied Physics Letters, Volume 106, Issue 26 or  Appl. Phys. Lett. 106, 262101 (2015); http://dx.doi.org/10.1063/1.4921077

This is an open access paper.

New US government nano commercialization effort: nanosensors

The latest announcement (this one about nanosensors) from the US National Nanotechnology Coordination Office (NNCO) on behalf of the US National Nanotechnology (NNI) gets a little confusing but hopefully I’ve managed to clarify things.

It starts off simply enough, from a June 22, 2015 news item on Azonano,

The National Nanotechnology Coordination Office (NNCO) is pleased to announce the launch of a workshop report and a web portal, efforts coordinated through and in support of the Nanotechnology Signature Initiative ‘Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment’ (Sensors NSI). Together, these resources help pave the path forward for the development and commercialization of nanotechnology-enabled sensors and sensors for nanotechnology.

A June 19, 2015 NNCO news release on EurekAlert, which originated the news item, provides details about the report, the new portal, and the new series of webinars,

The workshop report is a summary of the National Nanotechnology Initiative (NNI)-sponsored event held September 11-12, 2014, entitled ‘Sensor Fabrication, Integration, and Commercialization Workshop.’ The goal of the workshop was to identify and discuss challenges that are faced by the sensor development community during the fabrication, integration, and commercialization of sensors, particularly those employing or addressing issues of nanoscale materials and technologies.

Workshop attendees, including sensor developers and representative from Federal agencies, identified ways to help facilitate the commercialization of nanosensors, which include:

  • Enhancing communication among researchers, developers, manufacturers, customers, and the Federal Government agencies that support and regulate sensor development.
  • Leveraging resources by building testbeds for sensor developers.
  • Improving access of university and private researchers to federally supported facilities.
  • Encouraging sensor developers to consider and prepare for market and regulatory requirements early in the development process.

In response to discussions at the workshop, the NNI has also launched an NSI Sensors web portal to share information on the sensors development landscape, including funding agencies and opportunities, federally supported facilities, regulatory guidance, and published standards. Ongoing dialogue and collaboration among various stakeholder groups will be critical to effectively transitioning nanosensors to market and to meeting the U.S. need for a reliable and robust sensor infrastructure.

On Thursday June 25, 2015, from noon to 1 pm EDT, NNCO will host a webinar to summarize the highlights from the 2014 ‘Sensor Fabrication, Integration, and Commercialization Workshop’ and to introduce the newly developed Sensors NSI Web Portal. The webinar will also feature a Q&A segment with members of the public. Questions for the panel can be submitted to webinar@nnco.nano.gov from June 18 through the end of the webinar at 1 pm EDT on June 25, 2015.

Here’s the portal for what they’ve called the NSI [Nanotechnology Signature Initiative]: Nanotechnology for Sensors and Sensors for Nanotechnology — Improving and Protecting, Health Safety, and the Environment, also known as, Sensors NSI Web Portal.

Here’s the report titled, “Sensor Fabrication, Integration, and Commercialization Workshop [2014].”

As for the first webinar in this new series, from the National Signature Webinar Series: Resources for the Development of Nanosensors webpage,

The National Nanotechnology Coordination Office (NNCO) will host a webinar to summarize the highlights from the September 2014 Sensor Fabrication, Integration, and Commercialization Workshop and to introduce the newly developed Sensors NSI Web Portal, which was created to share information on the sensors development landscape, including Federal program and funding opportunities, federally supported facilities, regulatory guidance, and published standards.

On Thursday, June 25, 2015, from 12 noon to 1 pm EDT, Federal panelists will begin the event with a discussion of the findings from the Sensor Fabrication, Integration, and Commercialization Workshop, as well as a demonstration of the resources available on the Sensors NSI Portal.  [emphasis mine]

Federal panelists at the event will include:

This event will feature a Q&A segment with members of the public. Questions for the panel can be submitted to webinar@nnco.nano.gov from June 18 through the end of the webinar at 1 pm on June 25, 2015. The moderator reserves the right to group similar questions and to omit questions that are either repetitive or not directly related to the topic. Due to time constraints, it may not be possible to answer all questions.

You can find the link to register at the end/bottom of the event page.

The NNCO does have one other Public Webinar series, ‘NNCO Small- and Medium-sized Business Enterprise (SME) Webinar Series’. They have archived previously held webinars in this series. There are no upcoming webinars in this series currently scheduled.

Saharan silver ants: the nano of it all (science and technology)

Researchers at Columbia University (US) are on quite a publishing binge lately. The latest is a biomimicry story where researchers (from Columbia amongst other universities and including Brookhaven National Laboratory, which has issued its own news release) have taken a very close look at Saharan silver ants to determine how they stay cool in one of the hottest climates in the world. From a June 18, 2015 Columbia University news release (also on EurekAlert), Note: Links have been removed,

Nanfang Yu, assistant professor of applied physics at Columbia Engineering, and colleagues from the University of Zürich and the University of Washington, have discovered two key strategies that enable Saharan silver ants to stay cool in one of the hottest terrestrial environments on Earth. Yu’s team is the first to demonstrate that the ants use a coat of uniquely shaped hairs to control electromagnetic waves over an extremely broad range from the solar spectrum (visible and near-infrared) to the thermal radiation spectrum (mid-infrared), and that different physical mechanisms are used in different spectral bands to realize the same biological function of reducing body temperature. Their research, “Saharan silver ants keep cool by combining enhanced optical reflection and radiative heat dissipation,” is published June 18 [2015] in Science magazine.

The Columbia University news release expands on the theme,

“This is a telling example of how evolution has triggered the adaptation of physical attributes to accomplish a physiological task and ensure survival, in this case to prevent Saharan silver ants from getting overheated,” Yu says. “While there have been many studies of the physical optics of living systems in the ultraviolet and visible range of the spectrum, our understanding of the role of infrared light in their lives is much less advanced. Our study shows that light invisible to the human eye does not necessarily mean that it does not play a crucial role for living organisms.”

The project was initially triggered by wondering whether the ants’ conspicuous silvery coats were important in keeping them cool in blistering heat. Yu’s team found that the answer to this question was much broader once they realized the important role of infrared light. Their discovery that there is a biological solution to a thermoregulatory problem could lead to the development of novel flat optical components that exhibit optimal cooling properties.

“Such biologically inspired cooling surfaces will have high reflectivity in the solar spectrum and high radiative efficiency in the thermal radiation spectrum,” Yu explains. “So this may generate useful applications such as a cooling surface for vehicles, buildings, instruments, and even clothing.”

Saharan silver ants (Cataglyphis bombycina) forage in the Saharan Desert in the full midday sun when surface temperatures reach up to 70°C (158°F), and they must keep their body temperature below their critical thermal maximum of 53.6°C (128.48°F) most of the time. In their wide-ranging foraging journeys, the ants search for corpses of insects and other arthropods that have succumbed to the thermally harsh desert conditions, which they are able to endure more successfully. Being most active during the hottest moment of the day also allows these ants to avoid predatory desert lizards. Researchers have long wondered how these tiny insects (about 10 mm, or 3/8” long) can survive under such thermally extreme and stressful conditions.

Using electron microscopy and ion beam milling, Yu’s group discovered that the ants are covered on the top and sides of their bodies with a coating of uniquely shaped hairs with triangular cross-sections that keep them cool in two ways. These hairs are highly reflective under the visible and near-infrared light, i.e., in the region of maximal solar radiation (the ants run at a speed of up to 0.7 meters per second and look like droplets of mercury on the desert surface). The hairs are also highly emissive in the mid-infrared portion of the electromagnetic spectrum, where they serve as an antireflection layer that enhances the ants’ ability to offload excess heat via thermal radiation, which is emitted from the hot body of the ants to the cold sky. This passive cooling effect works under the full sun whenever the insects are exposed to the clear sky.

“To appreciate the effect of thermal radiation, think of the chilly feeling when you get out of bed in the morning,” says Yu. “Half of the energy loss at that moment is due to thermal radiation since your skin temperature is temporarily much higher than that of the surrounding environment.”

The researchers found that the enhanced reflectivity in the solar spectrum and enhanced thermal radiative efficiency have comparable contributions to reducing the body temperature of silver ants by 5 to 10 degrees compared to if the ants were without the hair cover. “The fact that these silver ants can manipulate electromagnetic waves over such a broad range of spectrum shows us just how complex the function of these seemingly simple biological organs of an insect can be,” observes Norman Nan Shi, lead author of the study and PhD student who works with Yu at Columbia Engineering.

Yu and Shi collaborated on the project with Rüdiger Wehner, professor at the Brain Research Institute, University of Zürich, Switzerland, and Gary Bernard, electrical engineering professor at the University of Washington, Seattle, who are renowned experts in the study of insect physiology and ecology. The Columbia Engineering team designed and conducted all experimental work, including optical and infrared microscopy and spectroscopy experiments, thermodynamic experiments, and computer simulation and modeling. They are currently working on adapting the engineering lessons learned from the study of Saharan silver ants to create flat optical components, or “metasurfaces,” that consist of a planar array of nanophotonic elements and provide designer optical and thermal radiative properties.

Yu and his team plan next to extend their research to other animals and organisms living in extreme environments, trying to learn the strategies these creatures have developed to cope with harsh environmental conditions.

“Animals have evolved diverse strategies to perceive and utilize electromagnetic waves: deep sea fish have eyes that enable them to maneuver and prey in dark waters, butterflies create colors from nanostructures in their wings, honey bees can see and respond to ultraviolet signals, and fireflies use flash communication systems,” Yu adds. “Organs evolved for perceiving or controlling electromagnetic waves often surpass analogous man-made devices in both sophistication and efficiency. Understanding and harnessing natural design concepts deepens our knowledge of complex biological systems and inspires ideas for creating novel technologies.”

Next, there’s the perspective provided by Brookhaven National Laboratory in a June 18, 2015 news item on Nanowerk (Note: It is very similar to the Columbia University news release but it takes a turn towards the technical challenges as you’ll see if you keep reading),

The paper, published by Columbia Engineering researchers and collaborators—including researchers from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory—describes how the nanoscale structure of the hairs helps increase the reflectivity of the ant’s body in both visible and near-infrared wavelengths, allowing the insects to deflect solar radiation their bodies would otherwise absorb. The hairs also enhance emissivity in the mid-infrared spectrum, allowing heat to dissipate efficiently from the hot body of the ants to the cool, clear sky.

A June 18, 2015 BNL news release by Alasdair Wilkins, which originated the Nanowerk news item, describes the collaboration between the researchers and the special adjustments made to the equipment in service of this project (Note: A link has been removed),

In a typical experiment involving biological material such as nanoscale hairs, it would usually be sufficient to use an electron microscope to create an image of the surface of the specimen. This research, however, required Yu’s group to look inside the ant hairs and produce a cross-section of the structure’s interior. The relatively weak beam of electrons from a standard electron microscope would not be able to penetrate the surface of the sample.

The CFN’s dual beam system solves the problem by combining the imaging of an electron microscope with a much more powerful beam of gallium ions.  With 31 protons and 38 neutrons, each gallium ion is about 125,000 times more massive than an electron, and massive enough to create dents in the nanoscale structure – like throwing a stone against a wall. The researchers used these powerful beams to drill precise cuts into the hairs, revealing the crucial information hidden beneath the surface. Indeed, this particular application, in which the system was used to investigate a biological problem, was new for the team at CFN.

“Conventionally, this tool is used to produce cross-sections of microelectronic circuits,” said Camino. “The focused ion beam is like an etching tool. You can think of it like a milling tool in a machine shop, but at the nanoscale. It can remove material at specific places because you can see these locations with the SEM. So locally you remove material and you look at the under layers, because the cuts give you access to the cross section of whatever you want to look at.”

The ant hair research challenged the CFN team to come up with novel solutions to investigate the internal structures without damaging the more delicate biological samples.

“These hairs are very soft compared to, say, semiconductors or crystalline materials. And there’s a lot of local heat that can damage biological samples. So the parameters have to be carefully tuned not to do much damage to it,” he said. “We had to adapt our technique to find the right conditions.”

Another challenge lay in dealing with the so-called charging effect. When the dual beam system is trained on a non-conducting material, electrons can build up at the point where the beams hit the specimen, distorting the resulting image. The team at CFN was able to solve this problem by placing thin layers of gold over the biological material, making the sample just conductive enough to avoid the charging effect.

Revealing Reflectivity

While Camino’s team focused on helping Yu’s group investigate the structure of the ant hairs, Matthew Sfeir’s work with high-brightness Fourier transform optical spectroscopy helped to reveal how the reflectivity of the hairs helped Saharan silver ants regulate temperature. Sfeir’s spectrometer revealed precisely how much those biological structures reflect light across multiple wavelengths, including both visible and near-infrared light.

“It’s a multiplexed measurement,” Sfeir said, explaining his team’s spectrometer. “Instead of tuning through this wavelength and this wavelength, that wavelength, you do them all in one swoop to get all the spectral information in one shot. It gives you very fast measurements and very good resolution spectrally. Then we optimize it for very small samples. It’s a rather unique capability of CFN.”

Sfeir’s spectroscopy work draws on knowledge gained from his work at another key Brookhaven facility: the original National Synchrotron Light Source, where he did much of his postdoc work. His experience was particularly useful in analyzing the reflectivity of the biological structures across many different wavelengths of the electromagnetic spectrum.

“This technique was developed from my experience working with the infrared synchrotron beamlines,” said Sfeir. “Synchrotron beamlines are optimized for exactly this kind of thing. I thought, ‘Hey, wouldn’t it be great if we could develop a similar measurement for the type of solar devices we make at CFN?’ So we built a bench-top version to use here.”

Fascinating, non? At last, here’s a link to and a citation for the paper,

Keeping cool: Enhanced optical reflection and heat dissipation in silver ants by Norman Nan Shi, Cheng-Chia Tsai, Fernando Camino, Gary D. Bernard, Nanfang Yu, and Rüdiger Wehner. Science DOI: 10.1126/science.aab3564 Published online June 18, 2015

This paper is behind a paywall.

Construction and nanotechnology research in Scandinavia

I keep hearing about the possibilities for better (less polluting, more energy efficient, etc.) building construction materials but there never seems to be much progress.  A June 15, 2015 news item on Nanowerk, which suggests some serious efforts are being made in Scandinavia, may help to explain the delay,

It isn’t cars and vehicle traffic that produce the greatest volumes of climate gas emissions – it’s our own homes. But new research will soon be putting an end to all that!

The building sector is currently responsible for 40% of global energy use and climate gas emissions. This is an under-communicated fact in a world where vehicle traffic and exhaust emissions get far more attention.

In the future, however, we will start to see construction materials and high-tech systems integrated into building shells that are specifically designed to remedy this situation. Such systems will be intelligent and multifunctional. They will consume less energy and generate lower levels of harmful climate gas emissions.

With this objective in mind, researchers at SINTEF are currently testing microscopic nanoparticles as insulation materials, applying voltages to window glass and facades as a means of saving energy, and developing solar cells that prevent the accumulation of snow and ice.

Research Director Susie Jahren and Research Manager Petra Rüther are heading SINTEF’s strategic efforts in the field of future construction materials. They say that although there are major commercial opportunities available in the development of green and low carbon building technologies, the construction industry is somewhat bound by tradition and unable to pay for research into future technology development. [emphasis mine]

A June 15, 2015 SINTEF (Scandinavia’s largest independent research organisation) news release on the Alpha Galileo website, which originated the news item, provides an overview of the research being conducted into nanotechnology-enabled construction materials (Note: I have added some heads and ruthlessly trimmed from the text),

[Insulation]

SINTEF researcher Bente Gilbu Tilset is sitting in her office in Forskningsveien 1 in Oslo [Norway]. She and her colleagues are looking into the manufacture of super-insulation materials made up of microscopic nanospheres.

“Our aim is to create a low thermal conductivity construction material “, says Tilset. “When gas molecules collide, energy is transferred between them. If the pores in a given material are small enough, for example less than 100 nanometres in diameter, a molecule will collide more often with the pore walls than with other gas molecules. This will effectively reduce the thermal conductivity of the gas. So, the smaller the pores, the lower the conductivity of the gas”, she says.

[Solar cells]

As part of the project “Bygningsintegrerte solceller for Norge” (Building Integrated Photovoltaics, BIPV Norway), researchers from SINTEF, NTNU, the IFE [IFE Group, privately owned company, located in Sweden] and Teknova [company created by the Nordic Institute for Studies in Innovation {NIFU}, located in Norway], are planning to look into how we can utilise solar cells as integral housing construction components, and how they can be adapted to Norwegian daylight and climatic conditions.

One of the challenges is to develop a solar cell which prevents the accumulation of snow and ice. The cells must be robust enough to withstand harsh wind and weather conditions and have lifetimes that enable them to function as electricity generators.

[Energy]

Today, we spend 90 per cent of our time indoors. This is as much as three times more than in the 1950s. We are also letting less daylight into our buildings as a result of energy considerations and construction engineering requirements. Research shows that daylight is very important to our health, well-being and biological rhythms. It also promotes productivity and learning. So the question is – is it possible to save energy and get the benefits of greater exposure to daylight?

Technologies involving thermochromic, photochromic and electrochromic pigments can help us to control how sunlight enters our buildings, all according to our requirements for daylight and warmth from the sun.

Self-healing concrete

Every year, between 40 and 120 million Euros are spent in Europe on the maintenance of bridges, tunnels and construction walls. These time-consuming and costly activities have to be reduced, and the project CAPDESIGN is aiming to make a contribution in this field.

The objective of the project is to produce concrete that can be ‘restored’ after being exposed to loads and stresses by means of self-healing agents that prevent the formation of cracks. The method involves mixing small capsules into the wet concrete before it hardens. These remain in the matrix until loads or other factors threaten to crack it. The capsules then burst and the self-healing agents are released to repair the structure.

At SINTEF, researchers are working with the material that makes up the capsule shells. The shell has to be able to protect the self-healing agent in the capsules for an extended period and then, under the right conditions, break down and release the agents in response to the formation of cracks caused by temperature, pH, or a load or stress resulting from an impact or shaking. At the same time, the capsules must not impair the ductility or the mechanical properties of the newly-mixed concrete.

You’ll notice most of the research seems to be taking place in Norway. I suspect that is due to the story having come from a joint Norwegian Norwegian University of Science and Technology (NTNU)/SINTEF, website, Gemini.no/en. Anyone wishing to test their Norwegian readings skills need only omit ‘/en’ from the URL.

Opportunity for companies to take a survey on risk management and nanotechnology

A June 8, 2015 news item on Nanowerk features a European Union (EU) Framework Programme 7 (FP7) nanotechnology risk management project and survey,

The EU FP7 Sustainable Nanotechnologies (SUN) project is based on the idea that the current knowledge on environmental and health risks of nanomaterials – while limited – can nevertheless guide nanomanufacturing to avoid liabilities if an integrated approach addressing the complete product lifecycle is applied. SUN aims to evaluate the risks along the supply chains of engineered nanomaterials and incorporate the results into tools and guidelines for sustainable nanomanufacturing.

A May 26, 2015 SUN press release by Stella Stoycheva, which originated the news item, provides more details,

… A key objective of  Sustainable Nanotechnologies (SUN) is to build the SUN Decision Support System (SUNDS) to facilitate safe and sustainable nanomanufacturing and risk management. It will integrate tools for ecological and human health risk assessment, lifecycle assessment, economic assessment and social impact assessment within a sustainability assessment framework. We are currently developing the Technological Alternatives and Risk Management Measures (TARMM) inventory and are looking for companies to fill in a short survey.

… We would appreciate responses from personnel of companies involved in nanotechnology-related activities who are familiar with the risk management practices.

You can go here to take the survey. The focus is on companies and there don’t seem to be any geographic requirements such as only EU companies can participate.

Tiny Science. Big Impacts. Cool Videos. Winners announced and new call for submissions.

The US National Nanotechnology Coordination Office (NNCO) on behalf of the National Nanotechnology Initiative (NNI) has announced the winners for its first, ‘Tiny Science. Big Impacts. Cool Videos.’ contest in a June 5, 2015 news item on Nanowerk,

The National Nanotechnology Coordination Office (NNCO) is pleased to announce the winners of the first Tiny Science. Big Impacts. Cool Videos. nanotechnology video contest for students. Abelardo Colon and Jennifer Gill from the University of Puerto Rico, Rio Piedras, Nanoscience and Nanotechnology Research Lab won the top honors for their video entitled Chlorination-less. The video explains a new method for disinfecting drinking water using a nanodiamond powder. This nanotechnology-enabled method can kill bacteria, is biocompatible, and is reusable, making it a good alternative to traditional chlorination. Congratulations Abelardo and Jennifer!

A June 5, 2015 NNCO news release on EurekAlert, which originated the news item, describes the judging process and plans for the video,

Videos submitted by students from universities across the United States and U.S. territories, were posted on NanoTube, the official National Nanotechnology Initiative (NNI) YouTube channel, for public voting. The winning video was chosen by representatives from the NNI member agencies from the top two videos identified by public voting. This video will be featured on Nano.gov for the next month. For more information on the Tiny Science. Big Impacts. Cool Videos. contest rules and judges, visit the student video contest page on Nano.gov.

Here is Chlorination-less,

From the Chlorination-less YouTube page,

Published on Apr 28, 2015

“Access to clean water is a major international issue that must not be ignored. Our research is finding a new method for the disinfection of drinking water. Even so, chlorination is the most common treatment for the disinfection of drinking water, but has a lot of disadvantages. Disinfectant by-products (DBP’s) produced by the chlorine disinfection process can cause health problems such as cancer to humans that drink water or inhale vapor. Also some bacteria are able to adapt to this chemical treatment. This is why we are proposing a physical treatment using Ultra Dispersed Diamond (UDD) for the disinfection of drinking water. The UDD is a nanodiamond powder, which has bactericidal properties and is biocompatible. After applying the UDD material to the contaminated water we have promising results. There was a reduction of fecal E. coli colonies as time passed and the density of the material increases. This process will be healthier, cheaper, and more environmentally friendly since it is reusable.”

University of Puerto Rico , Rio Piedras Campus

As for the next contest, that begins July 1, 2015 (from the Tiny Science. Big Impacts. Cool Videos. contest webpage), Note: Links have been removed,

Graduate students, will your research lead to nanotechnologies that impact our daily lives? Submit videos that demonstrate how your nanotechnology research will bring solutions to real-world problems. …

Email submissions information to NNCOvideos@gmail.com and include:

Name and affiliation:

Submissions will be accepted from teams and from individuals. A lead contact person must be designated for team submissions. The order in which names are listed in the submission is the order in which they will appear on the NNI public voting page, the NNI YouTube channel, and on Nano.gov.

Description (150 words or less): Explain your research, use plain language and avoid jargon. Concentrate on what problem your research will help to solve.

Title of uploaded video: It should be the same as the video file name you upload using Google Drive.

Releases for people appearing in the video: A release form is available here; print, collect signatures, scan, and email us electronic copies.

Laboratory website: Include link to the lab where you work, if available

Funding source: Include funding agency, program manager, and award/grant number, if possible

Upload videos using Google Drive to NNCOvideos@gmail.com:

Video Criteria

Video length should be between 2.5 and 3 minutes.

Maximum file size is 2 GB

File type must be H.264, MP4, FLV, or MOV

Use a camera that can shoot videos at least 1280 x 720 pixels in size.

Save video file as the title listed on emailed submission information

Remember to avoid jargon while explaining your research

Collect signed releases (available here) from any recognizable individual appearing in your video

You are allowed to have others (e.g., film students) produce the video. If you put your own video together make sure everything is well lit. Fluorescent overhead lights aren’t the best, try to use natural or focused light if you can. Pay attention to sound quality; use a good microphone and listen for background noise. Watch for too much clutter in the background of your scenes, this can be distracting.

Timeline:

NNCO will begin accepting submissions for the Tiny Science. Big Impacts. Cool Videos. video contest on July 1, 2015.

The Tiny Science. Big Impacts. Cool Videos. video contest will close on November 12, 2015.

The deadline for submissions is 12:00 p.m. PST November 12, 2015.

Semifinalist judging for videos submitted before 12:00 p.m. PST on November 12, 2015 takes place from 12:00 p.m. November 19, 2015 to 12:00 p.m. November 30, 2015.

The winning video will be announced on December 15, 2015.

Good luck!

Computer modeling of engineered nanoparticles in surface water, the NanoDUFLOW model

A June 4, 2015 news item on phys.org features research that could be very helpful in understanding the impact that engineered nanoparticles (ENP) have on the water in our environment,

Researchers of Wageningen University (Netherlands) provide the world’s first spatiotemporally explicit model that simulates the behaviour and fate of engineered nanoparticles (ENPs) in surface waters. Wageningen researcher Bart Koelmans: “This is important in order to assure safe nanotechnology. We do need to have an assessment of the risks of ENPs to man and the environment.”

Nanotechnology is developing fast, with the fast growing emission of less than 100 nm engineered nanoparticles as a consequence. ENPs are hard to measure in the environment so that exposure assessments have to rely on modelling. Previous models could only predict average background concentrations on a continental or national scale.

A June 3, 2015 Wageningen University press release, which originated the news item, describes the computer model,

The new NanoDUFLOW model however, developed by Joris Quik, Jeroen de Klein and Bart Koelmans and recently described in Water Research magazine, is capable of simulating the concentrations of ENPs, and their homo- and heteroaggregates in space and time, for any hydrological flow regime of a river. Under the hood of NanoDUFLOW is an ‘engine’ that calculates all relevant interactions among 35 types of particles including the ENPs, and that decides upon aggregation, settling or prolonged flow in the river. The rate of these interactions depends on the flow conditions in the river, which are calculated in the hydrology module of NanoDUFLOW. This module can be set to match the channel structure of any catchment as defined by the user, allowing for a great flexibility.

Development of the model

Development of the model took a long and winding road. ENPs are emerging chemicals with unique properties, which implies that some new process descriptions needed to be developed. One of the main parameters in this new type of models is the attachment efficiency. The attachment efficiency is the chance that two particles stay together when they collide, a chance that depends on the nature of the colliding particles and the chemistry of the water. A smart calculation method needed to be developed that enabled the estimation of the attachment efficiency from laboratory experiments with ENPs and natural particles and waters collected in the field.

Using NanoDUFLOW for the risk assessment of nanomaterials

In order to assure safe nanotechnology, society calls for an assessment of the risks of ENPs to man and the environment. A risk assessment for ENPs requires an assessment of ENP exposure, and of the effects caused by ENPs, which then can be compared in a risk characterisation. Whereas previous screening-level models still may be first choice for lower tiers in the risk assessment, NanoDUFLOW is believed to be useful for higher tiers of the risk assessment, where site specific risks need to be addressed. Simulations with NanoDUFLOW showed the occurrence of clear ENP contamination ‘hot spots’ in the water column and in sediments. Furthermore, NanoDUFLOW was capable of simulating the speciation of ENPs over different size fractions. This speciation defines the ecotoxicologically relevant fractions of ENPs, for a variety of species traits. Also in this respect NanoDUFLOW will add to refining the risk assessment for ENPs.

Here’s a link to and a citation for the paper,

Spatially explicit fate modelling of nanomaterials in natural waters by Joris T. K. Quika, Jeroen J.M. de Klein, & Albert A. Koelmans. Water Research Volume 80, 1 September 2015, Pages 200–208  doi:10.1016/j.watres.2015.05.025

This paper is behind a paywall.

Abakan makes good on Alberta (Canada) promise (coating for better pipeline transport of oil)

It took three years but it seems that US company Abakan Inc.’s announcement of a joint research development centre at the Northern Alberta Institute of Technology (NAIT), (mentioned here in a May 7, 2012 post [US company, Abakan, wants to get in on the Canadian oils sands market]), has borne fruit. A June 8, 2015 news item on Azonano describes the latest developments,

Abakan Inc., an emerging leader in the advanced coatings and metal formulations markets, today announced that it has begun operations at its joint-development facility in Edmonton, Alberta.

Abakan’s subsidiary, MesoCoat Inc., along with the lead project partner, Northern Alberta Institute of Technology (NAIT) will embark on an 18-month collaborative effort to establish a prototype demonstration facility for developing, testing and commercializing wear-resistant clad pipe and components. Western Economic Diversification Canada is also supporting this initiative through a $1.5 million investment toward NAIT. Improvements in wear resistance are expected to make a significant impact in reducing maintenance and downtime costs while increasing productivity in oil sands and other mining applications.

A June 4, 2015 Abakan news release, which originated the news item, provides more detail about the proposed facility, the difficulties encountered during the setup, and some interesting information about pipes,

Abakan shipped its CermaClad high-speed large-area cladding system for installation at the Northern Alberta Institute of Technology’s (NAIT) campus in Edmonton, Alberta in early 2015. Despite delays associated with the installation of some interrelated equipment and machinery, the CermaClad system and other ancillary equipment are now installed at the Edmonton facility. The Edmonton facility is intended to serve as a pilot-scale wear-resistant clad pipe manufacturing facility for the development and qualification of wear-resistant clad pipes, and as a stepping stone for setting-up a full-scale wear-resistant clad pipe manufacturing facility in Alberta. The new facility will also serve as a platform for Abakan’s introduction to the Alberta oil sands market, which, with proven reserves estimated at more than 169 billion barrels, is one of the largest oil resources in the world and a major source of oil for Canada, the United States and Asia. Since Alberta oil sands production is expected to increase significantly over the next decade, producers want to extend the life of the carbon steel pipes used for the hydro-transportation of tailings with harder, tougher coatings that protect pipes from the abrasiveness of tar-like bituminous oil sands.

“Our aim is to fast-track market entry of our wear-resistant clad pipe products for the transportation of oil sands and mining slurries. We have received commitments from oil sands producers in Canada and mining companies in Mexico and Brazil to field-test CermaClad wear-resistant clad pipe products as soon as our system is ready for testing. Apart from our work with conventional less expensive chrome carbide and the more expensive tungsten carbide wear-resistant cladding on pipes, Abakan also expects to introduce new iron-based structurally amorphous metal (SAM) alloy cladding that in testing has exhibited better performance than tungsten carbide cladding, but at a fraction of the cost.” Robert Miller stated further that “although more expensive than the more widely used chrome carbide cladding, our new alloy cladding is expected to be a significantly better value proposition when you consider an estimated life of three times that of chrome carbide cladding and those cost efficiencies that correspond to less downtime revenue losses, and lower maintenance and replacement costs.”

The costs associated with downtime and maintenance in the Alberta oil sands industry estimated at more than $10 billion a year are expected to grow as production expands, according to the Materials and Reliability in Oil Sands (MARIOS) consortium in Alberta. The development of Alberta’s oil sands has been held up by the lack of materials for transport lines and components that are resistant to the highly abrasive slurry. Due to high abrasion, the pipelines have to be rotated every three to four months and replaced every 12 to 15 months. [emphasis mine] The costs involved just in rotating and replacing the pipes is approximately $2 billion annually. The same is true of large components, for example the steel teeth on the giant electric shovels used to recover oil sands, must be replaced approximately every two days.

Abakan’s combination of high productivity coating processes and groundbreaking materials are expected to facilitate significant efficiencies associated with the extraction of these oil resources. Our proprietary materials combined with CermaClad large-area based fusion cladding technology, have demonstrated in laboratory tests a three to eight times improvement in wear and corrosion resistance when compared with traditional weld overlays at costs comparable to rubber and metal matrix composite alternatives. Abakan intends to complete development and initiate field-testing by end of year 2016 and begin the construction of a full-scale wear-resistant clad pipe manufacturing facility in Alberta in early-2017.

Given that there is extensive talk about expanding oil pipelines from Alberta to British Columbia (where I live), the information about the wear and tear is fascinating and disturbing. Emotions are high with regard to the proposed increase in oil flow to the coast as can be seen in a May 27, 2015 article by Mike Howell for the Vancouver Courier about a city hall report on the matter,

A major oil spill in Vancouver waters could potentially expose up to one million people to unsafe levels of a toxic vapour released from diluted bitumen, city council heard Wednesday in a damning city staff report on Kinder Morgan’s proposal to build a pipeline from Alberta to Burnaby [British Columbia].

In presenting the report, deputy city manager Sadhu Johnston outlined scenarios where exposure to the chemical benzene could lead to adverse health effects for residents and visitors, ranging from dizziness to nausea to possible death.

“For folks that are on the seawall, they could be actually struck with this wave of toxic gases that could render them unable to evacuate,” said Johnston, noting 25,000 residents live within 300 metres of the city’s waterfront. “These are serious health impacts. So this is not just about oil hitting shorelines, this is about our residents being exposed to very serious health effects.

  • Kinder Morgan’s own estimate is that pipeline leaks under 75 litres per hour may not be detected.

While I find the presentation’s hysteria a little off-putting, it did alert me to one or two new issues, benzene gas and when spillage from the pipes raises an alarm. For anyone curious about benzene gas and other chemical aspects of an oil spill, there’s a US National Oceanic and Atmospheric Administration (NOAA) webpage titled, Chemistry of an Oil Spill.

Getting back to the pipes, that figure of 75 litres per hour puts a new perspective on the proposed Abakan solution and it suggests that whether or not more and bigger pipes are in our future, we should do a better of job of protecting our environment now. That means better cladding for the pipes and better dispersants and remediation for water, earth, air when there’s a spill.

Policing, detecting, and arresting pollution

The title for a May 13, 2015 news item on ScienceDaily was certainly eye-catching,

Nano-policing pollution

Pollutants emitted by factories and car exhausts affect humans who breathe in these harmful gases and also aggravate climate change up in the atmosphere. Being able to detect such emissions is a critically needed measure.

New research by the Nanoparticles by Design Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), in collaboration with the Materials Center Leoben Austria and the Austrian Centre for Electron Microscopy and Nanoanalysis has developed an efficient way to improve methods for detecting polluting emissions using a sensor at the nanoscale. …

A May 13, 2015 OIST press release (also on EurekAlert) by Joykrit Mitra, which originated the news item, details the research (Note: A link has been removed),

The researchers used a copper oxide nanowire decorated with palladium nanoparticles to detect carbon monoxide, a common industrial pollutant.  The sensor was tested in conditions similar to ambient air since future devices developed from this method will need to operate in these conditions.

Copper oxide is a semiconductor and scientists use nanowires fabricated from it to search for potential application in the microelectronics industry. But in gas sensing applications, copper oxide was much less widely investigated compared to other metal oxide materials.

A semiconductor can be made to experience dramatic changes in its electrical properties when a small amount of foreign atoms are made to attach to its surface at high temperatures.  In this case, the copper oxide nanowire was made part of an electric circuit. The researchers detected carbon monoxide indirectly, by measuring the change in the resulting circuit’s electrical resistance in presence of the gas. They found that copper oxide nanowires decorated with palladium nanoparticles show a significantly greater increase in electrical resistance in the presence of carbon monoxide than the same type of nanowires without the nanoparticles.

The OIST Nanoparticles by Design Unit used a sophisticated technique that allowed them to first sift nanoparticles according to size, then deliver and deposit the palladium nanoparticles onto the surface of the nanowires in an evenly distributed manner. This even dispersion of size selected nanoparticles and the resulting nanoparticles-nanowire interactions are crucial to get an enhanced electrical response.  The OIST nanoparticle deposition system can be tailored to deposit multiple types of nanoparticles at the same time, segregated on distinct areas of the wafer where the nanowire sits. In other words, this system can be engineered to be able to detect multiple kinds of gases.  The next step is to detect different gases at the same time by using multiple sensor devices, with each device utilizing a different type of nanoparticle.

Compared to other options being explored in gas sensing which are bulky and difficult to miniaturize, nanowire gas sensors will be cheaper and potentially easier to mass produce.

The main energy cost in operating this kind of a sensor will be the high temperatures necessary to facilitate the chemical reactions for ensuring certain electrical response. In this study 350 degree centigrade was used.  However, different nanowire-nanoparticle material configurations are currently being investigated in order to lower the operating temperature of this system.

“I think nanoparticle-decorated nanowires have a huge potential for practical applications as it is possible to incorporate this type of technology into industrial devices,” said Stephan Steinhauer, a Japan Society for the Promotion of Science (JSPS) postdoctoral research fellow working under the supervision of Prof. Mukhles Sowwan at the OIST Nanoparticles by Design Unit.

The researchers have provided this image showing their work,

Palladium nanoparticles were deposited on the entire wafer in an evenly distributed fashion, as seen in the background.  They also attached on the surface of the copper oxide wire in the same evenly distributed manner, as seen in the foreground.   On the upper right is a top view of a single palladium nanoparticle photographed with a transmission electron microscope(TEM) which can only produce black and white images. The nanoparticle is made up of columns consisting of palladium atoms stacked on top of each other.  Courtesy OIST

Palladium nanoparticles were deposited on the entire wafer in an evenly distributed fashion, as seen in the background. They also attached on the surface of the copper oxide wire in the same evenly distributed manner, as seen in the foreground.
On the upper right is a top view of a single palladium nanoparticle photographed with a transmission electron microscope(TEM) which can only produce black and white images. The nanoparticle is made up of columns consisting of palladium atoms stacked on top of each other. Courtesy OIST

Here’s a link to and a citation for the paper,

Single CuO nanowires decorated with size-selected Pd nanoparticles for CO sensing in humid atmosphere by Stephan Steinhauer, Vidyadhar Singh, Cathal Cassidy, Christian Gspan, Werner Grogger, Mukhles Sowwan, and Anton Köck. Nanotechnology 2015 Volume 26 Number 17 doi:10.1088/0957-4484/26/17/175502

This paper is behind a paywall.

Nanopollution of marine life

Concerns are being raised about nanosunscreens and nanotechnology-enabled marine paints and their effect on marine life, specifically, sea urchins. From a May 13, 2015 news item on Nanowerk (Note: A link has been removed),

Nanomaterials commonly used in sunscreens and boat-bottom paints are making sea urchin embryos more vulnerable to toxins, according to a study from the University of California, Davis [UC Davis]. The authors said this could pose a risk to coastal, marine and freshwater environments.

The study, published in the journal Environmental Science and Technology (“Copper Oxide and Zinc Oxide Nanomaterials Act as Inhibitors of Multidrug Resistance Transport in Sea Urchin Embryos: Their Role as Chemosensitizers”), is the first to show that the nanomaterials work as chemosensitizers. In cancer treatments, a chemosensitizer makes tumor cells more sensitive to the effects of chemotherapy.

Similarly, nanozinc and nanocopper made developing sea urchin embryos more sensitive to other chemicals, blocking transporters that would otherwise defend them by pumping toxins out of cells.

A May 12, 2015 UC Davis news release, which originated the news item, includes some cautions,

Nanozinc oxide is used as an additive in cosmetics such as sunscreens, toothpastes and beauty products. Nanocopper oxide is often used for electronics and technology, but also for antifouling paints, which prevent things like barnacles and mussels from attaching to boats.

“At low levels, both of these nanomaterials are nontoxic,” said co-author Gary Cherr, professor and interim director of the UC Davis Bodega Marine Laboratory, and an affiliate of the UC Davis Coastal Marine Sciences Institute. “However, for sea urchins in sensitive life stages, they disrupt the main defense mechanism that would otherwise protect them from environmental toxins.”

Science for safe design

Nanomaterials are tiny chemical substances measured in nanometers, which are about 100,000 times smaller than the diameter of a human hair. Nano-sized particles can enter the body through the skin, ingestion, or inhalation. They are being rapidly introduced across the fields of electronics, medicine and technology, where they are being used to make energy efficient batteries, clean up oil spills, and fight cancer, among many other uses. However, relatively little is known about nanomaterials with respect to the environment and health.

Here’s a link to and a citation for the paper,

Copper Oxide and Zinc Oxide Nanomaterials Act as Inhibitors of Multidrug Resistance Transport in Sea Urchin Embryos: Their Role as Chemosensitizers by Bing Wu, Cristina Torres-Duarte, Bryan J. Cole, and Gary N. Cherr. Environ. Sci. Technol., 2015, 49 (9), pp 5760–5770 DOI: 10.1021/acs.est.5b00345 Publication Date (Web): April 7, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

While this research into nanoparticles as chemosensitizers is, according to UC Davis, the first of its kind, the concern over nanosunscreens and marine waters has been gaining traction over the last few years. For example, there’s  research featured in a June 10, 2013 article by Roberta Kwok for the University of Washington’s ‘Conservation This Week’ magazine,

Sunscreen offers protection from UV rays, reduces the risk of skin cancer, and even slows down signs of aging. Unfortunately, researchers have found that sunscreen also pollutes the ocean.

Although people have been using these products for decades, “the effect of sunscreens, as a source of introduced chemicals to the coastal marine system, has not yet been addressed,” a research team writes in PLOS ONE. Sunscreens contain chemicals not only for UV protection, but also for coloring, fragrance, and texture. And beaches are becoming ever-more-popular vacation spots; for example, nearly 10 million tourists visited Majorca Island in the Mediterranean Sea in 2010.

Here’s a link to the 2013 PLOS ONE paper,

Sunscreen Products as Emerging Pollutants to Coastal Waters by Antonio Tovar-Sánchez, David Sánchez-Quiles, Gotzon Basterretxea, Juan L. Benedé, Alberto Chisvert, Amparo Salvador, Ignacio Moreno-Garrido, and Julián Blasco. PLOS ONE DOI: 10.1371/journal.pone.0065451 Published: June 5, 2013

This is an open access journal.