Category Archives: environment

Nickel-eating plant in the Philippines

For anyone interested in phytoremediation and/or phytomining, this news from the Philippines is quite exciting (from a May 9, 2014 news release on EurekAlert, Note: A link has been removed, (also on ScienceDaily),

Scientists from the University of the Philippines, Los Baños (UPLB) have discovered a new plant species with an unusual lifestyle — it eats nickel for a living — accumulating up to 18,000 ppm of the metal in its leaves without itself being poisoned, says Professor Edwino Fernando, lead author of the report. Such an amount is a hundred to a thousand times higher than in most other plants. The study was published in the open access journal PhytoKeys.

The new species is called Rinorea niccolifera, reflecting its ability to absorb nickel in very high amounts. Nickel hyperaccumulation is such a rare phenomenon with only about 0.5–1% of plant species native to nickel-rich soils having been recorded to exhibit the ability. Throughout the world, only about 450 species are known with this unusual trait, which is still a small proportion of the estimated 300,000 species of vascular plants.

A May 9, 2014 Penfold Publishers news release, which originated the items elsewhere, provides more details and an image of the nickel-eating plant,

The new species, according to Dr Marilyn Quimado, one of the lead scientists of the research team, was discovered on the western part of Luzon Island in the Philippines, an area known for soils rich in heavy metals.

“Hyperacccumulator plants have great potentials for the development of green technologies, for example, ‘phytoremediation’ and ‘phytomining’”, explains Dr Augustine Doronila of the School of Chemistry, University of Melbourne, who is also co-author of the report.

Phytoremediation refers to the use of hyperacccumulator plants to remove heavy metals in contaminated soils. Phytomining, on the other hand, is the use of hyperacccumulator plants to grow and harvest in order to recover commercially valuable metals in plant shoots from metal-rich sites. [emphasis mine]

In a previous piece about phytomining and in contrast to this news release, I suggested that phytoremediation could also function as phytomining (an idea I found elsewhere), my March 5, 2013 posting. There are also a November 22, 2012 posting and a Sept. 26, 2012 posting on the topic of phyto-mining (anyone keen to read everything here on this topic, may want to search the term both with and without hyphens).

Here is the nickel-eating plant,

Caption: This photo shows the newly described metal-eating plant, Rinorea niccolifera. Credit: Dr. Edwino S. Fernando Usage Restrictions: CC-BY 4.0

Caption: This photo shows the newly described metal-eating plant, Rinorea niccolifera.
Credit: Dr. Edwino S. Fernando
Usage Restrictions: CC-BY 4.0

Here’s a link to and a citation for the paper,

Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines by Edwino Fernando, Marilyn Quimado, and Augustine Doronila. PhytoKeys 37: 1–13. doi: 10.3897/phytokeys.37.7136

This paper is open access.

In a burst of curiosity I checked out the University of Philippines website and found some research bearing similarity to today’s (May 9, 2014) piece although in this case the metal being discussed is gold and the researchers are investigating the possibility of using bacteria to produce gold nanoparticles. From an April 16, 2014 article written by Miguel Victor T. Durian for the university’s Horizon magazine,

A pioneering nanotechnology study conducted by scientists at the UPLB National Institute of Molecular Biology and Biotechnology (BIOTECH) is exploring the potentials of plantgrowth- promoting bacteria (PGPB) in the biosynthesis of nanogold.

Dr. Lilia M. Fernando, Dr. Florinia E. Merca, and Dr. Erlinda S. Paterno are looking at how nanogold could be produced in large quantities using PGPB as this could bring down medical diagnostic and treatment costs especially against a dreaded disease – cancer.

“Our study primarily aimed to find a less expensive source of gold through the biosynthesis of the element by microorganisms.” Dr. Fernando explained. “Gold costs around 200 to 300 US dollars (or about Php9,000 to Php14,000), …,” Ms. Fernando added.

Furthermore, PGPB is abundantly available in the soils of the Philippines. In fact, the researchers carried out their collection of PGPB in Tarlac and Bohol. Moreover, cultivation of PGPB does not require any special incubation procedures in order to maintain its nano-size because it can survive at room temperature. This makes the cultivation of PGPB easier and less expensive compared to other microorganisms.

I look forward to hearing more about these projects as they develop.

Mopping up that oil spill with a nanocellulose sponge and a segue into Canadian oil and politics

Empa (Swiss Federal Laboratories for Materials Science and Technology or ,in German, Eidgenössische Materialprüfungs- und Forschungsanstalt) has announced the development of a nanocellulose sponge useful for cleaning up oil spills in a May 5, 2014 news item on Nanowerk (Note: A link has been removed),

A new, absorbable material from Empa wood research could be of assistance in future oil spill accidents: a chemically modified nanocellulose sponge. The light material absorbs the oil spill, remains floating on the surface and can then be recovered. The absorbent can be produced in an environmentally-friendly manner from recycled paper, wood or agricultural by-products (“Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water”).

A May 2, 2014 Empa news release (also on EurekAlert*}, which originated the news item, includes a description of the potential for oil spills due to transport issues, Empa’s proposed clean-up technology, and a request for investment,

All industrial nations need large volumes of oil which is normally delivered by ocean-going tankers or via inland waterways to its destination. The most environmentally-friendly way of cleaning up nature after an oil spill accident is to absorb and recover the floating film of oil. The Empa researchers Tanja Zimmermann and Philippe Tingaut, in collaboration with Gilles Sèbe from the University of Bordeaux, have now succeeded in developing a highly absorbent material which separates the oil film from the water and can then be easily recovered, “silylated” nanocellulose sponge. In laboratory tests the sponges absorbed up to 50 times their own weight of mineral oil or engine oil. They kept their shape to such an extent that they could be removed with pincers from the water. The next step is to fine tune the sponges so that they can be used not only on a laboratory scale but also in real disasters. To this end, a partner from industry is currently seeked.

Here’s what the nanocellulose sponge looks like (oil was dyed red and the sponge has absorbed it from the water),

The sponge remains afloat and can be pulled out easily. The oil phase is selectively removed from the surface of water. Image: Empa

The sponge remains afloat and can be pulled out easily. The oil phase is selectively removed from the surface of water.
Image: Empa

The news release describes the substance, nanofibrillated cellulose (NFC), and its advantages,

Nanofibrillated Cellulose (NFC), the basic material for the sponges, is extracted from cellulose-containing materials like wood pulp, agricultural by products (such as straw) or waste materials (such as recycled paper) by adding water to them and pressing the aqueous pulp through several narrow nozzles at high pressure. This produces a suspension with gel-like properties containing long and interconnected cellulose nanofibres .

When the water from the gel is replaced with air by freeze-drying, a nanocellulose sponge is formed which absorbs both water and oil. This pristine material sinks in water and is thus not useful for the envisaged purpose. The Empa researchers have succeeded in modifying the chemical properties of the nanocellulose in just one process step by admixing a reactive alkoxysilane molecule in the gel before freeze-drying. The nanocellulose sponge loses its hydrophilic properties, is no longer suffused with water and only binds with oily substances.

In the laboratory the “silylated” nanocellulose sponge absorbed test substances like engine oil, silicone oil, ethanol, acetone or chloroform within seconds. Nanofibrillated cellulose sponge, therefore, reconciles several desirable properties: it is absorbent, floats reliably on water even when fully saturated and is biodegradable.

Here’s a link to and a citation for the paper,

Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water by Zheng Zhang, Gilles Sèbe, Daniel Rentsch, Tanja Zimmermann, and Philippe Tingaut. Chem. Mater., 2014, 26 (8), pp 2659–2668 DOI: 10.1021/cm5004164 Publication Date (Web): April 10, 2014

Copyright © 2014 American Chemical Society

This article is behind a paywall.

I featured ‘nanocellulose and oil spills’ research at the University Wisconsin-Madison in a Feb. 26, 2014 post titled, Cleaning up oil* spills with cellulose nanofibril aerogels (Note: I corrected a typo in my headline hence the asterisk). I also have a Dec. 31, 2013 piece about a nanotechnology-enabled oil spill recovery technology project (Naimor) searching for funds via crowdfunding. Some major oil projects being considered in Canada and the lack of research on remediation are also mentioned in the post.

Segue Alert! As for the latest on Canada and its oil export situation, there’s a rather interesting May 2, 2014 Bloomberg.com article Canada Finds China Option No Easy Answer to Keystone Snub‘ by Edward Greenspon, Andrew Mayeda, Jeremy van Loon and Rebecca Penty describing two Canadian oil projects and offering a US perspective,

It was February 2012, three months since President Barack Obama had phoned the Canadian prime minister to say the Keystone XL pipeline designed to carry vast volumes of Canadian crude to American markets would be delayed.

Now Harper [Canadian Prime Minister Stephen Harper] found himself thousands of miles from Canada on the banks of the Pearl River promoting Plan B: a pipeline from Alberta’s landlocked oil sands to the Pacific Coast where it could be shipped in tankers to a place that would certainly have it — China. It was a country to which he had never warmed yet that served his current purposes. [China's President at that time was Hu Jintao, 2002 - 2012; currently the President is Xi Jinping, 2013 - ]

The writers do a good job of describing a number of factors having an impact on one or both of the pipeline projects. However, no mention is made in the article that Harper is from the province of Alberta and represents that province’s Calgary Southwest riding. For those unfamiliar with Calgary, it is a city dominated by oil companies. I imagine Mr. Harper is under considerable pressure to resolve oil export and transport issues and I would expect they would prefer to resolve the US issues since many of those oil companies in Calgary have US headquarters.

Still, it seems simple, if the US is not interested as per the problems with the Keystone XL pipeline project, ship the oil to China via a pipeline through the province of British Columbia and onto a tanker. What the writers do not mention is yet another complicating factor, Trudeau, both Justin and, the deceased, Pierre.

As Prime Minister of Canada, Pierre Trudeau was unloved in Alberta, Harper’s home province, due to his energy policies and the formation of the National Energy Board. Harper appears, despite his denials, to have an antipathy towards Pierre Trudeau that goes beyond the political to the personal and it seems to extend beyond Pierre’s grave to his son, Justin. A March 21, 2014 article by Mark Kennedy for the National Post describes Harper’s response to Trudeau’s 2000 funeral this way,

Stephen Harper, then the 41-year-old president of the National Citizens Coalition (NCC), was a proud conservative who had spent three years as a Reform MP. He had entered politics in the mid-1980s, in part because of his disdain for how Pierre Trudeau’s “Just Society” had changed Canada.

So while others were celebrating Trudeau’s legacy, Harper hammered out a newspaper article eviscerating the former prime minister on everything from policy to personality.

Harper blasted Trudeau Sr. for creating “huge deficits, a mammoth national debt, high taxes, bloated bureaucracy, rising unemployment, record inflation, curtailed trade and declining competitiveness.”

On national unity, he wrote that Trudeau was a failure. “Only a bastardized version of his unity vision remains and his other policies have been rejected and repealed by even his own Liberal party.”

Trudeau had merely “embraced the fashionable causes of his time,” wrote Harper.

Getting personal, he took a jab at Trudeau over not joining the military during the Second World War: “He was also a member of the ‘greatest generation,’ the one that defeated the Nazis in war and resolutely stood down the Soviets in the decades that followed. In those battles however, the ones that truly defined his century, Mr. Trudeau took a pass.”

The article was published in the National Post Oct. 5, 2000 — two days after the funeral.

Kennedy’s article was occasioned by the campaign being led by Harper’;s Conservative party against the  leader (as of April 2013) of the Liberal Party, Justin Trudeau.

It’s hard to believe that Harper’s hesitation over China is solely due to human rights issues especially  since Harper has not been noted for consistent interest in those issues and, more particularly, since Prime Minister Pierre Trudeau was one of the first ‘Western’ leaders to visit communist China . Interestingly, Harper has been much more enthusiastic about the US than Pierre Trudeau who while addressing the Press Club in Washington, DC in March 1969, made this observation (from the Pierre Trudeau Wikiquote entry),

Living next to you [the US] is in some ways like sleeping with an elephant. No matter how friendly and even-tempered is the beast, if I can call it that, one is affected by every twitch and grunt.

On that note, I think Canada is always going to be sleeping with an elephant; the only question is, who’s the elephant now? In any event, perhaps Harper is more comfortable with the elephant he knows and that may explain why China’s offer to negotiate a free trade agreement has been left unanswered (this too was not noted in the Bloomberg article). The offer and lack of response were mentioned by Yuen Pau Woo, President and CEO of the Asia Pacific Foundation of Canada, who spoke at length about China, Canada, and their trade relations at a Jan. 31, 2014 MP breakfast (scroll down for video highlights of the Jan. 31, 2014 breakfast) held by Member of Parliament (MP) for Vancouver-Quadra, Joyce Murray.

Geopolitical tensions and Canadian sensitivities aside, I think Canadians in British Columbia (BC), at least, had best prepare for more oil being transported and the likelihood of spills. In fact, there are already more shipments according to a May 6, 2014 article by Larry Pynn for the Vancouver Sun,

B.C. municipalities work to prevent a disastrous accident as rail transport of oil skyrockets

The number of rail cars transporting crude oil and petroleum products through B.C. jumped almost 200 per cent last year, reinforcing the resolve of municipalities to prevent a disastrous accident similar to the derailment in Lac-Mégantic in Quebec last July [2013].

Transport Canada figures provided at The Vancouver Sun’s request show just under 3,400 oil and petroleum rail-car shipments in B.C. last year, compared with about 1,200 in 2012 and 50 in 2011.

The figures come a week after The Sun revealed that train derailments jumped 20 per cent to 110 incidents last year in B.C., the highest level in five years.

Between 2011 and 2012, there was an increase of 2400% (from 50 to 1200) of oil and petroleum rail-car shipments in BC. The almost 300% increase in shipments between 2012 and 2013 seems paltry in comparison.  Given the increase in shipments and the rise in the percentage of derailments, one assumes there’s an oil spill waiting to happen. Especially so, if the Canadian government manages to come to an agreement regarding the proposed pipeline for BC and frankly, I have concerns about the other pipeline too, since either will require more rail cars, trucks, and/or tankers for transport to major centres edging us all closer to a major oil spill.

All of this brings me back to Empa, its oil-absorbing nanocellulose sponges, and the researchers’ plea for investors and funds to further their research. I hope they and all the other researchers (e.g., Naimor) searching for ways to develop and bring their clean-up ideas to market find some support.

*EurekAlert link added May 7, 2014.

ETA May 8, 2014:  Some types of crude oil are more flammable than others according to a May 7, 2014 article by Lindsay Abrams for Salon.com (Note: Links have been removed),

Why oil-by-rail is an explosive disaster waiting to happen
A recent spate of fiery train accidents all have one thing in common: highly volatile cargo from North Dakota

In case the near continuous reports of fiery, deadly oil train accidents hasn’t been enough to convince you, Earth Island Journal is out with a startling investigative piece on North Dakota’s oil boom and the dire need for regulations governing that oil’s transport by rail.

The article is pegged to the train that derailed and exploded last summer in  [Lac-Mégantic] Quebec, killing 47 people, although it just as well could have been the story of the train that derailed and exploded in Alabama last November, the train that derailed and exploded in North Dakota last December, the train that derailed and exploded in Virginia last week or — let’s face it — any future accidents that many see as an inevitability.

The Bakken oil fields in North Dakota are producing over a million barrels of crude oil a day, more than 60 percent of which is shipped by rail. All that greenhouse gas-emitting fossil fuel is bad enough; that more oil spilled in rail accidents last year than the past 35 years combined is also no small thing. But the particular chemical composition of Bakken oil lends an extra weight to these concerns: according to the Pipeline and Hazardous Materials Safety Administration, it may be more flammable and explosive than traditional crude.

While Abrams’ piece is not focused on oil cleanups, it does raise some interesting questions about crude oil transport and whether or not the oil from Alberta might also be more than usually dangerous.

Environmental impacts and graphene

Researchers at the University of California at Riverside (UCR) have published the results of what they claim is the first study featuring the environmental impact from graphene use. From the April 29, 2014 news item on ScienceDaily,

In a first-of-its-kind study of how a material some think could transform the electronics industry moves in water, researchers at the University of California, Riverside Bourns College of Engineering found graphene oxide nanoparticles are very mobile in lakes or streams and therefore may well cause negative environmental impacts if released.

Graphene oxide nanoparticles are an oxidized form of graphene, a single layer of carbon atoms prized for its strength, conductivity and flexibility. Applications for graphene include everything from cell phones and tablet computers to biomedical devices and solar panels.

The use of graphene and other carbon-based nanomaterials, such as carbon nanotubes, are growing rapidly. At the same time, recent studies have suggested graphene oxide may be toxic to humans. [emphasis mine]

As production of these nanomaterials increase, it is important for regulators, such as the Environmental Protection Agency, to understand their potential environmental impacts, said Jacob D. Lanphere, a UC Riverside graduate student who co-authored a just-published paper about graphene oxide nanoparticles transport in ground and surface water environments.

I wish they had cited the studies suggesting graphene oxide (GO) may be toxic. After a quick search I found: Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2 by Tobias Lammel, Paul Boisseaux, Maria-Luisa Fernández-Cruz, and José M Navas (free access paper in Particle and Fibre Toxicology 2013, 10:27 http://www.particleandfibretoxicology.com/content/10/1/27). From what I can tell, this was a highly specialized investigation conducted in a laboratory. While the results seem concerning it’s difficult to draw conclusions from this study or others that may have been conducted.

Dexter Johnson in a May 1, 2014 post on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) provides more relevant citations and some answers (Note: Links have been removed),

While the UC Riverside  did not look at the toxicity of GO in their study, researchers at the Hersam group from Northwestern University did report in a paper published in the journal Nano Letters (“Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung”) that GO was the most toxic form of graphene-based materials that were tested in mice lungs. In other research published in the Journal of Hazardous Materials (“Investigation of acute effects of graphene oxide on wastewater microbial community: A case study”), investigators determined that the toxicity of GO was dose dependent and was toxic in the range of 50 to 300 mg/L. So, below 50 mg/L there appear to be no toxic effects to GO. To give you some context, arsenic is considered toxic at 0.01 mg/L.

Dexter also contrasts graphene oxide with graphene (from his May 1, 2014 post; Note: A link has been removed),

While GO is quite different from graphene in terms of its properties (GO is an insulator while graphene is a conductor), there are many applications that are similar for both GO and graphene. This is the result of GO’s functional groups allowing for different derivatives to be made on the surface of GO, which in turn allows for additional chemical modification. Some have suggested that GO would make a great material to be deposited on additional substrates for thin conductive films where the surface could be tuned for use in optical data storage, sensors, or even biomedical applications.

Getting back to the UCR research, an April 28, 2014 UCR news release (also on EurekAlert but dated April 29, 2014) describes it  in more detail,

Walker’s [Sharon L. Walker, an associate professor and the John Babbage Chair in Environmental Engineering at UC Riverside] lab is one of only a few in the country studying the environmental impact of graphene oxide. The research that led to the Environmental Engineering Science paper focused on understanding graphene oxide nanoparticles’ stability, or how well they hold together, and movement in groundwater versus surface water.

The researchers found significant differences.

In groundwater, which typically has a higher degree of hardness and a lower concentration of natural organic matter, the graphene oxide nanoparticles tended to become less stable and eventually settle out or be removed in subsurface environments.

In surface waters, where there is more organic material and less hardness, the nanoparticles remained stable and moved farther, especially in the subsurface layers of the water bodies.

The researchers also found that graphene oxide nanoparticles, despite being nearly flat, as opposed to spherical, like many other engineered nanoparticles, follow the same theories of stability and transport.

I don’t know what conclusions to draw from the information that the graphene nanoparticles remain stable and moved further in the water. Is a potential buildup of graphene nanoparticles considered a problem because it could end up in our water supply and we would be poisoned by these particles? Dexter provides an answer (from his May 1, 2014 post),

Ultimately, the question of danger of any material or chemical comes down to the simple equation: Hazard x Exposure=Risk. To determine what the real risk is of GO reaching concentrations equal to those that have been found to be toxic (50-300 mg/L) is the key question.

The results of this latest study don’t really answer that question, but only offer a tool by which to measure the level of exposure to groundwater if there was a sudden spill of GO at a manufacturing facility.

While I was focused on ingestion by humans, it seems this research was more focused on the natural environment and possible future poisoning by graphene oxide.

Here’s a link to and a citation for the paper,

Stability and Transport of Graphene Oxide Nanoparticles in Groundwater and Surface Water by Jacob D. Lanphere, Brandon Rogers, Corey Luth, Carl H. Bolster, and Sharon L. Walker. Environmental Engineering Science. -Not available-, ahead of print. doi:10.1089/ees.2013.0392.

Online Ahead of Print: March 17, 2014

If available online, this is behind a paywall.

Monitoring air pollution at home, at work, and in the car—the nano way

Meagan Clark, in an April 18, 2014  article for International Business Times, writes about a project in the EU (European Union) where researchers are working to develop nanotechnology-enabled sensors for air quality at home, at work, and in the car,

Poor indoor and outdoor air quality is linked to one in eight deaths worldwide or 7 million, making it the world’s most dangerous environmental health risk, according to a March [2014?] report by the World Health Organization.

That is the reasoning behind the European Union’s decision to fund a new nanotechnology project [IAQSENSE] that would allow people to gauge air quality real-time at home, work and in cars with low cost, mini sensor systems, the EU’s community research and development information service announced Friday [April 18, 2014].

“The control of indoor air quality and the related comfort it provides should have a huge societal impact on health, presence at work and economic-related factors,” Claude Iroulart, coordinator of IAQSENSE, said in a statement. …

The IAQSENSE homepage provides more details about itself,

The indoor air quality (IAQ) influences the health and well-being of people. For the last 20 years, there has been a growing concern regarding pollutants in closed environments and the difficulty in identifying these pollutants and their critical levels, without heavy, expensive equipment.

IAQSense aims to develop new nanotechnology based sensor systems that will precisely monitor the composition of the air in terms of both chemical and bio contaminants. This system will be miniaturized, low cost and adapted to mass production.

A major challenge consists of a gaz [sic] sensor system which must be at the same time low cost and highly sensitive and selective.  IAQSense relies on three patented technologies, of which one is based on surface ion mobility dynamics separating each gas component. Working like a spectrometer it allows high sensitivity fast multi-gas detection in a way never seen before.

IAQSense Project will characterize, monitor and improve indoor air quality in an innovative way.

The consortium is composed of 4 SMEs [small to medium enterprises[, 3 industrial companies and 3 research institutes. The project will last 3 years (01.09.2013 – 31.08.2016) and will deliver a complete sensor system.

The IAQSense research project has received funding from the European Community´s 7th Framework Programme under grant agreement n° 6043125.

As someone who has suffered from breathing problems from time to time, I wish them the best with this project .

Earth Day, Water Day, and every day

I’m blaming my confusion on the American Chemical Society (ACS) which seemed to be celebrating Earth Day on April 15, 2014 as per its news release highlighting their “Chemists Celebrate Earth Day” video series  while in Vancouver, Canada, we’re celebrating it on April 26, 2014 and elsewhere it seems to be on April 20, this year. Regardless, here’s more about how chemist’s are celebrating from the ACS news release,

Water is arguably the most important resource on the planet. In celebration of Earth Day, the American Chemical Society (ACS) is showcasing three scientists whose research keeps water safe, clean and available for future generations. Geared toward elementary and middle school students, the “Chemists Celebrate Earth Day” series highlights the important work that chemists and chemical engineers do every day. The videos are available at http://bit.ly/CCED2014.

The series focuses on the following subjects:

  • Transforming Tech Toys- Featuring Aydogan Ozcan, Ph.D., of UCLA: Ozcan takes everyday gadgets and turns them into powerful mobile laboratories. He’s made a cell phone into a blood analyzer and a bacteria detector, and now he’s built a device that turns a cell phone into a water tester. It can detect very harmful mercury even at very low levels.
  • All About Droughts - Featuring Collins Balcombe of the U.S. Bureau of Reclamation: Balcombe’s job is to keep your drinking water safe and to find new ways to re-use the water that we flush away everyday so that it doesn’t go to waste, especially in areas that don’t get much rain.
  • Cleaning Up Our Water – Featuring Anne Morrissey, Ph.D., of Dublin City University: We all take medicines, but did you know that sometimes the medicine doesn’t stay in our bodies? It’s up to Anne Morrissey to figure out how to get potentially harmful pharmaceuticals out of the water supply, and she’s doing it using one of the most plentiful things on the planet: sunlight.

Sadly, I missed marking World Water Day which according to a March 21, 2014 news release I received was being celebrated on Saturday, March 22, 2014 with worldwide events and the release of a new UN report,

World Water Day: UN Stresses Water and Energy Issues 

Tokyo Leads Public Celebrations Around the World

Tokyo — March 21 — The deep-rooted relationships between water and energy were highlighted today during main global celebrations in Tokyo marking the United Nations’ annual World Water Day.

“Water and energy are among the world’s most pre-eminent challenges. This year’s focus of World Water Day brings these issues to the attention of the world,” said Michel Jarraud, Secretary-General of the World Meteorological Organization and Chair of UN-Water, which coordinates World Water Day and freshwater-related efforts UN system-wide.

The UN predicts that by 2030 the global population will need 35% more food, 40% more water and 50% more energy. Already today 768 million people lack access to improved water sources, 2.5 billion people have no improved sanitation and 1.3 billion people cannot access electricity.

“These issues need urgent attention – both now and in the post-2015 development discussions. The situation is unacceptable. It is often the same people who lack access to water and sanitation who also lack access to energy, ” said Mr. Jarraud.

The 2014 World Water Development Report (WWDR) – a UN-Water flagship report, produced and coordinated by the World Water Assessment Programme, which is hosted and led by UNESCO – is released on World Water Day as an authoritative status report on global freshwater resources. It highlights the need for policies and regulatory frameworks that recognize and integrate approaches to water and energy priorities.

WWDR, a triennial report from 2003 to 2012, this year becomes an annual edition, responding to the international community’s expression of interest in a concise, evidence-based and yearly publication with a specific thematic focus and recommendations.

WWDR 2014 underlines how water-related issues and choices impact energy and vice versa. For example: drought diminishes energy production, while lack of access to electricity limits irrigation possibilities.

The report notes that roughly 75% of all industrial water withdrawals are used for energy production. Tariffs also illustrate this interdependence: if water is subsidized to sell below cost (as is often the case), energy producers – major water consumers – are less likely to conserve it.  Energy subsidies, in turn, drive up water usage.

The report stresses the imperative of coordinating political governance and ensuring that water and energy prices reflect real costs and environmental impacts.

“Energy and water are at the top of the global development agenda,” said the Rector of United Nations University, David Malone, this year’s coordinator of World Water Day on behalf of UN-Water together with the United Nations Industrial Development Organization (UNIDO).

“Significant policy gaps exist in this nexus at present, and the UN plays an instrumental role in providing evidence and policy-relevant guidance. Through this day, we seek to inform decision-makers, stakeholders and practitioners about the interlinkages, potential synergies and trade-offs, and highlight the need for appropriate responses and regulatory frameworks that account for both water and energy priorities. From UNU’s perspective, it is essential that we stimulate more debate and interactive dialogue around possible solutions to our energy and water challenges.”

UNIDO Director-General LI Yong, emphasized the importance of water and energy for inclusive and sustainable industrial development.

“There is a strong call today for integrating the economic dimension, and the role of industry and manufacturing in particular, into the global post-2015 development priorities. Experience shows that environmentally sound interventions in manufacturing industries can be highly effective and can significantly reduce environmental degradation. I am convinced that inclusive and sustainable industrial development will be a key driver for the successful integration of the economic, social and environmental dimensions,” said Mr. LI.

Rather unusually, Michael Bergerrecently published two Nanowerk Spotlight articles about water (is there theme, anyone?) within 24 hours of each other. In his March 26, 2014 Spotlight article, Michael Berger focuses on graphene and water remediation (Note: Links have been removed),

The unique properties of nanomaterials are beneficial in applications to remove pollutants from the environment. The extremely small size of nanomaterial particles creates a large surface area in relation to their volume, which makes them highly reactive, compared to non-nano forms of the same materials.

The potential impact areas for nanotechnology in water applications are divided into three categories: treatment and remediation; sensing and detection: and pollution prevention (read more: “Nanotechnology and water treatment”).

Silver, iron, gold, titanium oxides and iron oxides are some of the commonly used nanoscale metals and metal oxides cited by the researchers that can be used in environmental remediation (read more: “Overview of nanomaterials for cleaning up the environment”).

A more recent entrant into this nanomaterial arsenal is graphene. Individual graphene sheets and their functionalized derivatives have been used to remove metal ions and organic pollutants from water. These graphene-based nanomaterials show quite high adsorption performance as adsorbents. However they also cause additional cost because the removal of these adsorbent materials after usage is difficult and there is the risk of secondary environmental pollution unless the nanomaterials are collected completely after usage.

One solution to this problem would be the assembly of individual sheets into three-dimensional (3D) macroscopic structures which would preserve the unique properties of individual graphene sheets, and offer easy collecting and recycling after water remediation.

The March 27, 2014 Nanowerk Spotlight article was written by someone at Alberta’s (Canada) Ingenuity Lab and focuses on their ‘nanobiological’ approach to water remediation (Note: Links have been removed),

At Ingenuity Lab in Edmonton, Alberta, Dr. Carlo Montemagno and a team of world-class researchers have been investigating plausible solutions to existing water purification challenges. They are building on Dr. Montemagno’s earlier patented discoveries by using a naturally-existing water channel protein as the functional unit in water purification membranes [4].

Aquaporins are water-transport proteins that play an important osmoregulation role in living organisms [5]. These proteins boast exceptionally high water permeability (~ 1010 water molecules/s), high selectivity for pure water molecules, and a low energy cost, which make aquaporin-embedded membrane well suited as an alternative to conventional RO membranes.

Unlike synthetic polymeric membranes, which are driven by the high pressure-induced diffusion of water through size selective pores, this technology utilizes the biological osmosis mechanism to control the flow of water in cellular systems at low energy. In nature, the direction of osmotic water flow is determined by the osmotic pressure difference between compartments, i.e. water flows toward higher osmotic pressure compartment (salty solution or contaminated water). This direction can however be reversed by applying a pressure to the salty solution (i.e., RO).

The principle of RO is based on the semipermeable characteristics of the separating membrane, which allows the transport of only water molecules depending on the direction of osmotic gradient. Therefore, as envisioned in the recent publication (“Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications”), the core of Ingenuity Lab’s approach is to control the direction of water flow through aquaporin channels with a minimum level of pressure and to use aquaporin-embedded biomimetic membranes as an alternative to conventional RO membranes.

Here’s a link to and a citation for Montemagno’s and his colleague’s paper,

Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications by Hyo-Jick Choi and Carlo D. Montemagno. Materials 2013, 6(12), 5821-5856; doi:10.3390/ma6125821

This paper is open access.

Returning to where I started, here’s a water video featuring graphene from the ACS celebration of Earth Day 2014,

Happy Earth Day!

Good lignin, bad lignin: Florida researchers use plant waste to create lignin nanotubes while researchers in British Columbia develop trees with less lignin

An April 4, 2014 news item on Azonano describes some nanotube research at the University of Florida that reaches past carbon to a new kind of nanotube,

Researchers with the University of Florida’s [UF] Institute of Food and Agricultural Sciences took what some would consider garbage and made a remarkable scientific tool, one that could someday help to correct genetic disorders or treat cancer without chemotherapy’s nasty side effects.

Wilfred Vermerris, an associate professor in UF’s department of microbiology and cell science, and Elena Ten, a postdoctoral research associate, created from plant waste a novel nanotube, one that is much more flexible than rigid carbon nanotubes currently used. The researchers say the lignin nanotubes – about 500 times smaller than a human eyelash – can deliver DNA directly into the nucleus of human cells in tissue culture, where this DNA could then correct genetic conditions. Experiments with DNA injection are currently being done with carbon nanotubes, as well.

“That was a surprising result,” Vermerris said. “If you can do this in actual human beings you could fix defective genes that cause disease symptoms and replace them with functional DNA delivered with these nanotubes.”

An April 3, 2014 University of Florida’s Institute of Food and Agricultural Sciences news release, which originated the news item, describes the lignin nanotubes (LNTs) and future applications in more detail,

The nanotube is made up of lignin from plant material obtained from a UF biofuel pilot facility in Perry, Fla. Lignin is an integral part of the secondary cell walls of plants and enables water movement from the roots to the leaves, but it is not used to make biofuels and would otherwise be burned to generate heat or electricity at the biofuel plant. The lignin nanotubes can be made from a variety of plant residues, including sorghum, poplar, loblolly pine and sugar cane. [emphasis mine]

The researchers first tested to see if the nanotubes were toxic to human cells and were surprised to find that they were less so than carbon nanotubes. Thus, they could deliver a higher dose of medicine to the human cell tissue.  Then they researched if the nanotubes could deliver plasmid DNA to the same cells and that was successful, too. A plasmid is a small DNA molecule that is physically separate from, and can replicate independently of, chromosomal DNA within a cell.

“It’s not a very smooth road because we had to try different experiments to confirm the results,” Ten said. “But it was very fruitful.”

In cases of genetic disorders, the nanotube would be loaded with a functioning copy of a gene, and injected into the body, where it would target the affected tissue, which then makes the missing protein and corrects the genetic disorder.

Although Vermerris cautioned that treatment in humans is many years away, among the conditions that these gene-carrying nanotubes could correct include cystic fibrosis and muscular dystrophy. But, he added, that patients would have to take the corrective DNA via nanotubes on a continuing basis.

Another application under consideration is to use the lignin nanotubes for the delivery of chemotherapy drugs in cancer patients. The nanotubes would ensure the drugs only get to the tumor without affecting healthy tissues.

Vermerris said they created different types of nanotubes, depending on the experiment. They could also adapt nanotubes to a patient’s specific needs, a process called customization.

“You can think about it as a chest of drawers and, depending on the application, you open one drawer or use materials from a different drawer to get things just right for your specific application,” he said.  “It’s not very difficult to do the customization.”

The next step in the research process is for Vermerris and Ten to begin experiments on mice. They are in the application process for those experiments, which would take several years to complete.  If those are successful, permits would need to be obtained for their medical school colleagues to conduct research on human patients, with Vermerris and Ten providing the nanotubes for that research.

“We are a long way from that point,” Vermerris said. “That’s the optimistic long-term trajectory.”

I hope they have good luck with this work. I have emphasized the plant waste the University of Florida scientists studied due to the inclusion of poplar, which is featured in the University of British Columbia research work also being mentioned in this post.

Getting back to Florida for a moment, here’s a link to and a citation for the paper,

Lignin Nanotubes As Vehicles for Gene Delivery into Human Cells by Elena Ten, Chen Ling, Yuan Wang, Arun Srivastava, Luisa Amelia Dempere, and Wilfred Vermerris. Biomacromolecules, 2014, 15 (1), pp 327–338 DOI: 10.1021/bm401555p Publication Date (Web): December 5, 2013
Copyright © 2013 American Chemical Society

This is an open access paper.

Meanwhile, researchers at the University of British Columbia (UBC) are trying to limit the amount of lignin in trees (specifically poplars, which are not mentioned in this excerpt but in the next). From an April 3, 2014 UBC news release,

Researchers have genetically engineered trees that will be easier to break down to produce paper and biofuel, a breakthrough that will mean using fewer chemicals, less energy and creating fewer environmental pollutants.

“One of the largest impediments for the pulp and paper industry as well as the emerging biofuel industry is a polymer found in wood known as lignin,” says Shawn Mansfield, a professor of Wood Science at the University of British Columbia.

Lignin makes up a substantial portion of the cell wall of most plants and is a processing impediment for pulp, paper and biofuel. Currently the lignin must be removed, a process that requires significant chemicals and energy and causes undesirable waste.

Researchers used genetic engineering to modify the lignin to make it easier to break down without adversely affecting the tree’s strength.

“We’re designing trees to be processed with less energy and fewer chemicals, and ultimately recovering more wood carbohydrate than is currently possible,” says Mansfield.

Researchers had previously tried to tackle this problem by reducing the quantity of lignin in trees by suppressing genes, which often resulted in trees that are stunted in growth or were susceptible to wind, snow, pests and pathogens.

“It is truly a unique achievement to design trees for deconstruction while maintaining their growth potential and strength.”

The study, a collaboration between researchers at the University of British Columbia, the University of Wisconsin-Madison, Michigan State University, is a collaboration funded by Great Lakes Bioenergy Research Center, was published today in Science.

Here’s more about lignin and how a decrease would free up more material for biofuels in a more environmentally sustainable fashion, from the news release,

The structure of lignin naturally contains ether bonds that are difficult to degrade. Researchers used genetic engineering to introduce ester bonds into the lignin backbone that are easier to break down chemically.

The new technique means that the lignin may be recovered more effectively and used in other applications, such as adhesives, insolation, carbon fibres and paint additives.

Genetic modification

The genetic modification strategy employed in this study could also be used on other plants like grasses to be used as a new kind of fuel to replace petroleum.

Genetic modification can be a contentious issue, but there are ways to ensure that the genes do not spread to the forest. These techniques include growing crops away from native stands so cross-pollination isn’t possible; introducing genes to make both the male and female trees or plants sterile; and harvesting trees before they reach reproductive maturity.

In the future, genetically modified trees could be planted like an agricultural crop, not in our native forests. Poplar is a potential energy crop for the biofuel industry because the tree grows quickly and on marginal farmland. [emphasis mine] Lignin makes up 20 to 25 per cent of the tree.

“We’re a petroleum reliant society,” says Mansfield. “We rely on the same resource for everything from smartphones to gasoline. We need to diversify and take the pressure off of fossil fuels. Trees and plants have enormous potential to contribute carbon to our society.”

As noted earlier, the researchers in Florida mention poplars in their paper (Note: Links have been removed),

Gymnosperms such as loblolly pine (Pinus taeda L.) contain lignin that is composed almost exclusively of G-residues, whereas lignin from angiosperm dicots, including poplar (Populus spp.) contains a mixture of G- and S-residues. [emphasis mine] Due to the radical-mediated addition of monolignols to the growing lignin polymer, lignin contains a variety of interunit bonds, including aryl–aryl, aryl–alkyl, and alkyl–alkyl bonds.(3) This feature, combined with the association between lignin and cell-wall polysaccharides, which involves both physical and chemical interactions, make the isolation of lignin from plant cell walls challenging. Various isolation methods exist, each relying on breaking certain types of chemical bonds within the lignin, and derivatizations to solubilize the resulting fragments.(5) Several of these methods are used on a large scale in pulp and paper mills and biorefineries, where lignin needs to be removed from woody biomass and crop residues(6) in order to use the cellulose for the production of paper, biofuels, and biobased polymers. The lignin is present in the waste stream and has limited intrinsic economic value.(7)

Since hydroxyl and carboxyl groups in lignin facilitate functionalization, its compatibility with natural and synthetic polymers for different commercial applications have been extensively studied.(8-12) One of the promising directions toward the cost reduction associated with biofuel production is the use of lignin for low-cost carbon fibers.(13) Other recent studies reported development and characterization of lignin nanocomposites for multiple value-added applications. For example, cellulose nanocrystals/lignin nanocomposites were developed for improved optical, antireflective properties(14, 15) and thermal stability of the nanocomposites.(16) [emphasis mine] Model ultrathin bicomponent films prepared from cellulose and lignin derivatives were used to monitor enzyme binding and cellulolytic reactions for sensing platform applications.(17) Enzymes/“synthetic lignin” (dehydrogenation polymer (DHP)) interactions were also investigated to understand how lignin impairs enzymatic hydrolysis during the biomass conversion processes.(18)

The synthesis of lignin nanotubes and nanowires was based on cross-linking a lignin base layer to an alumina membrane, followed by peroxidase-mediated addition of DHP and subsequent dissolution of the membrane in phosphoric acid.(1) Depending upon monomers used for the deposition of DHP, solid nanowires, or hollow nanotubes could be manufactured and easily functionalized due to the presence of many reactive groups. Due to their autofluorescence, lignin nanotubes permit label-free detection under UV radiation.(1) These features make lignin nanotubes suitable candidates for numerous biomedical applications, such as the delivery of therapeutic agents and DNA to specific cells.

The synthesis of LNTs in a sacrificial template membrane is not limited to a single source of lignin or a single lignin isolation procedure. Dimensions of the LNTs and their cytotoxicity to HeLa cells appear to be determined primarily by the lignin isolation procedure, whereas the transfection efficiency is also influenced by the source of the lignin (plant species and genotype). This means that LNTs can be tailored to the application for which they are intended. [emphasis mine] The ability to design LNTs for specific purposes will benefit from a more thorough understanding of the relationship between the structure and the MW of the lignin used to prepare the LNTs, the nanomechanical properties, and the surface characteristics.

We have shown that DNA is physically associated with the LNTs and that the LNTs enter the cytosol, and in some case the nucleus. The LNTs made from NaOH-extracted lignin are of special interest, as they were the shortest in length, substantially reduced HeLa cell viability at levels above approximately 50 mg/mL, and, in the case of pine and poplar, were the most effective in the transfection [penetrating the cell with a bacterial plasmid to leave genetic material in this case] experiments. [emphasis mine]

As I see the issues presented with these two research efforts, there are environmental and energy issues with extracting the lignin while there seem to be some very promising medical applications possible with lignin ‘waste’. These two research efforts aren’t necessarily antithetical but they do raise some very interesting issues as to how we approach our use of resources and future policies.

ETA May 16, 2014: The beat goes on with the Georgia (US) Institute of Technology issues a roadmap for making money from lignin. From a Georgia Tech May 15, 2014 news release on EurekAlert,

When making cellulosic ethanol from plants, one problem is what to do with a woody agricultural waste product called lignin. The old adage in the pulp industry has been that one can make anything from lignin except money.

A new review article in the journal Science points the way toward a future where lignin is transformed from a waste product into valuable materials such as low-cost carbon fiber for cars or bio-based plastics. Using lignin in this way would create new markets for the forest products industry and make ethanol-to-fuel conversion more cost-effective.

“We’ve developed a roadmap for integrating genetic engineering with analytical chemistry tools to tailor the structure of lignin and its isolation so it can be used for materials, chemicals and fuels,” said Arthur Ragauskas, a professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology. Ragauskas is also part of the Institute for Paper Science and Technology at Georgia Tech.

The roadmap was published May 15 [2014] in the journal Science. …

Here’s a link to and citation for the ‘roadmap’,

Lignin Valorization: Improving Lignin Processing in the Biorefinery by  Arthur J. Ragauskas, Gregg T. Beckham, Mary J. Biddy, Richard Chandra, Fang Chen, Mark F. Davis, Brian H. Davison, Richard A. Dixon, Paul Gilna, Martin Keller, Paul Langan, Amit K. Naskar, Jack N. Saddler, Timothy J. Tschaplinski, Gerald A. Tuskan, and Charles E. Wyman. Science 16 May 2014: Vol. 344 no. 6185 DOI: 10.1126/science.1246843

This paper is behind a paywall.

Carbon nanotubes burst forth (in a phallic manner) from the flames

Is this or is this not a phallic image?

Caption: This is a carbon nanotube growth. Credit: ITbM, Nagoya University

Caption: This is a carbon nanotube growth.
Credit: ITbM, Nagoya University

I suppose you could also describe it as a finger. In any event, the research associated with this image concerns a newly observed similarity between carbon nanotube (CNT) growth and hydrocarbon combustion (fuel combustion), according to an April 1, 2014 news item on ScienceDaily,

Professor Stephan Irle of the Institute of Transformative Bio-Molecules (WPI-ITbM) at Nagoya University and co-workers at Kyoto University, Oak Ridge National Lab (ORNL), and Chinese research institutions have revealed through theoretical simulations that the molecular mechanism of carbon nanotube (CNT) growth and hydrocarbon combustion actually share many similarities. In studies using acetylene molecules (ethyne; C2H2, a molecule containing a triple bond between two carbon atoms) as feedstock, the ethynyl radical (C2H), a highly reactive molecular intermediate was found to play an important role in both processes forming CNTs and soot, which are two distinctively different structures. The study published online on January 24, 2014 in Carbon, is expected to lead to identification of new ways to control the growth of CNTs and to increase the understanding of fuel combustion processes.

A March 31, 2014 Institute of Transformative Bio-Molecules (ITbM), Nagoya University press release (also on EurekAlert but dated April 1, 2014), which originated the news item, provides some specifics about carbon nanotubes and about the research,

CNTs are molecules with a cylindrical nanostructure (nano = 10-9 m or 1 / 1,000,000,000 m [one billionth of a metre]). Arising from their unique physical and chemical properties, CNTs have found technological applications in the fields of electronics, optics and materials science. CNTs can be synthesized by a method called chemical vapor deposition, where hydrocarbon vapor molecules are deposited on transition metal catalysts under a flow of non-reactive gas at high temperatures. Current issues with this method are that the CNTs are usually produced as mixtures of nanotubes with various diameters and different sidewall structures. Theoretical simulations coordinated by Professor Irle have looked into the molecular mechanisms of CNT growth using acetylene molecules as feedstock (Figure 1). The outcome of their research provides insight into identifying new parameters that can be varied to improve the control over product distributions in the synthesis of CNTs.

High level theoretical calculations using quantum chemical molecular dynamics were performed to study the early stages of CNT growth from acetylene molecules on small iron (Fe38) clusters. Previous mechanistic studies have postulated complete breakdown of hydrocarbon source gases to atomic carbon before CNT growth. “Our simulations have shown that acetylene oligomerization and cross-linking reactions between hydrocarbon chains occur as major reaction pathways in CNT growth, along with decomposition to atomic carbon” says Professor Stephan Irle, who led the research, “this follows hydrogen-abstraction acetylene addition (HACA)-like mechanisms that are commonly observed in combustion processes” he continues.

Combustion processes are known to proceed by the hydrogen-abstraction acetylene addition (HACA)-like mechanism. Initiation of the mechanism begins with hydrogen atom abstraction from a precursor molecule followed by acetylene addition, and the repetitive cycle leads to formation of ring-structured polycylic aromatic carbons (PAHs). In this process, the highly reactive ethynyl radical (C2H) is continually being regenerated, extending the rings of PAHs and eventually forming soot. The same key reactive intermediate is observed in CNT growth and acts as an organocatalyst (a catalyst based on an organic molecule) facilitating hydrogen transfer reactions across growing hydrocarbon clusters. The simulations identify an intriguing bifurcation process by which hydrogen-rich hydrocarbon species enrich hydrogen content creating non-CNT byproducts, and hydrogen-deficient hydrocarbon species enrich carbon content leading to CNT growth … .

“We started this type of research from 2000, and long simulation time has been a great challenge to conduct full simulations across all participating molecules, due to the relatively high strength of the carbon-hydrogen bond. [emphasis mine] By establishing and using a fast method of calculation, we were able to successfully incorporate hydrogen in our calculations for the first time, which led to this new understanding revealing the similarity between CNT growth and hydrocarbon combustion processes. This finding is very intriguing in the sense that these processes were long considered to proceed by completely different mechanisms” elaborates Professor Irle.

I’m always impressed with the determination and persistence scientists demonstrate in their work and taking almost 14 years to study hydrocarbon combustion and carbon nanotube  growth in such detail is another among many, many such examples.

For the curious, here’s a link to and a citation for the paper,

Quantum chemical simulations reveal acetylene-based growth mechanisms in the chemical vapor deposition synthesis of carbon nanotubes by Ying Wang, Xingfa Gao, Hu-Jun Qian, Yasuhito Ohta, Xiaona Wu, Gyula Eres, Keiji Morokuma, and Stephan Irle, Carbon 72, 22-37 (2014). DOI:10.1016/j.carbon.2014.01.020

This paper is behind a paywall.

Canadian government funding announced for nanotechnology research in Saskatchewan and Alberta

Canada’s Western Economic Diversification and Canada Research Chairs (CRC) programmes both made nanotechnology funding announcements late last week on March 28, 2014.

From a March 28, 2014 news item on CJME radio online,

Funding for nanotechnology was announced at the University of Saskatchewan (U of S) on Friday [March 28, 2014].

Researchers will work on developing nanostructured coatings for parts of artificial joints and even mining equipment.

The $183,946 investment from the Western Economic Diversification Canada will go towards purchasing tailor-made equipment that will help apply the coating.

A March 29, 2014 article by Scott Larson for the Leader-Post provides more details,

In the near future when someone has a hip replacement, the new joint might actually last a lifetime thanks to cutting edge nanotechnology research being done by Qiaoqin Yang and her team. Yang, Canada Research Chair in nanoengineering coating technologies and professor of mechanical engineering at the University of Saskatchewan, has received $183,946 from Western Economic Diversification (WD) to purchase specially made equipment for nanotechnology research.

The equipment will help in developing and testing nanostructured coatings to increase the durability of hard-to-reach industrial and medical components.

“The diamond-based coating is biocompatible and has high wear resistance,” Yang said of the coating material.

There will be four industry-specific coating prototypes tested for projects such as solar energy systems, artificial joints, and mining and oilsands equipment.

Yang said artificial joints usually only last 10-20 years.

I have written about hip and knee replacements and issues with the materials most recently in a Feb. 5, 2013 posting.

As for the CRC announcement about the University of Alberta, here’s more from the March 28, 2014 article by Catherine Griwkowsky for the Edmonton Sun,

The Canadian Research Chairs funding announcement means 11 chair appointments, renewals and tier advancements, part of the 100 faculty who are chair holders at the university.

Carlo Montemagno, Canada Research Chair in Intelligent Nanosystems, said the funding will usher in the next generation in nanotechnology.

“It’s not just the money, it’s the recognition and the visibility that comes with the title,” Montemagno said. “That provides an opportunity for me to be more effective recruiting talent into my laboratory.”

He said the chair position at the University of Alberta allows him to go after riskier projects with a higher impact.

“It provides a nucleating force that allows us to gravitationally pull in talent and resources to position ourselves as global leaders,” Montemagno said.

Previously, he had worked at Cornell University, department head at University of California Los Angeles and dean of engineering at the University of Cincinnati.

Minister of State for Science and Technology Ed Holder said the $88 million will help with Canada’s economic prosperity and will attract more researchers to the country from around the world. …

“I think it’s a huge compliment to what the government of Canada is doing in terms of research and I think it’s a great, great credit to those Canadians who say I can do the best and the greatest research right here in Canada.

He said the success is attracting Canadians back.

Holder, who took over as science boss just over a week ago, said the government has received acknowledgment from granting councils. …

Holder said the proposed budget has an additional $1.5 billion in new money in the budget for research.

Upcoming research projects from the National Institute for Nanotechnology at the University of Alberta:

Artificially engineered system that incorporates the process of photosynthesis in a non-living thing with living elements to convert CO2 emissions to a sellable commodity like rare earth and precious metals.
Extracting minerals and chemicals in waste treatment such as tailings ponds, to clean up polluted water and take out valuable resources.
Cleaning and purifying water with an engineered variant of a molecule 100 times more efficient than current technology, opening land for agricultural development, or industrial plants.

Montemagno has an intriguing turn of phrase “a nucleating force that allows us to gravitationally pull in talent and resources” which I think could be summed up as “money lets us buy what we want with regard to researchers and equipment.” (I first mentioned Montegmagno in a Nov. 19, 2013 post about Alberta’s nanotechnology-focused Ingenuity Lab which he heads.) Holder’s comments are ‘on message’ as they say these days or, as old-timers would say, his comments follow the government’s script.

The listing of the National Institute of Nanotechnology (NINT) projects in Griwkowsky’s article seems a bit enigmatic since there’s no explanation offered as to why these are being included in the newspaper article. The confusion can be cleared up by reading the March 28, 2014 University of Alberta news release,

“Our work is about harnessing the power of ‘n’—nature, nanotechnology and networks,” said Montemagno, one of 11 U of A faculty members who received CRC appointments, renewals or tier advancements. “We use living systems in nature as the inspiration; we use nanotechnology, the ability to manipulate matter at its smallest scale; and we build systems in the understanding that we have to make these small elements work together in complex networks.”

The physical home of this work is Ingenuity Lab, a collaboration between the U of A, the National Institute for Nanotechnology and Alberta Innovates – Technology Futures. Montemagno is the director, and he has assembled a team of top scientists with backgrounds in biochemistry, organic chemistry, neurobiology, molecular biology, physics, computer science, engineering and material science.

Turning CO2 in something valuable

Reducing greenhouse gases is one of the challenges his team is working to address, by capturing carbon dioxide emissions and converting them into high-value chemicals.

Montemagno said the process involves mimicking photosynthesis, using engineered molecules to create a structure that metabolizes CO2. Unlike fermentation and other processes used to convert chemicals, this method is far more energy-efficient, he said.

“You make something that has the same sort of features that are associated with a living process that you want to emulate.”

In another project, Montemagno’s team has turned to cells, viruses and bacteria and how they identify chemicals to react to their environment, with the aim of developing “an exquisite molecular recognition technology” that can find rare precious metals in dilute quantities for extraction. This type of bio-mining is being explored to transform waste from a copper mine into a valuable product, and ultimately could benefit oilsands operations as well.

“The idea is converting waste into a resource and doing it in a way in which you provide more economic opportunity while you’re being a stronger steward of our natural resources.”

Congratulations to the University of Saskatchewan and the University of Alberta!

(A University of British Columbia CRC founding announcement was mentioned in my March 31, 2014 posting about Ed Holder, the new Minister of State (Science and Technology).

NANoReg invites you to April 11, 2014 workshop in Athens, Greece

For anyone interested in nanomaterials and/or attending an EHS-themed (environment, health, and safety) event in Athens, Greece, NANoREG is holding an April 2014 workshop at the Industrial Technologies 2014 conference (April 9 – 11, 2014). From a March 14, 2014 news item on Nanowerk (Some links have been removed),

NANoREG will identify EHS [environment, health, and safety] aspects that are most relevant from a regulatory point of view. It will provide tools for testing the EHS aspects and the assessment and management of the risks to the regulators and other stakeholders.

To assure that the final results of the project can be implemented in an efficient and effective way, Industry and Regulators are strongly involved in the project.
We kindly invite you to attend the NANoREG workshop and to give your opinion on the regulatory testing of nanomaterials, as a valuable contribution to future economic success of nanotechnology!

The workshop will take place on Friday, April 11, 2014 from 11:15 a.m. to 1:30 p.m. in Athens, Greece, as part of the Industrial Technologies 2014 event. For registration please use the offi cial registration portal: www.naturalway.gr/industrial_technologies

Here’s more about the workshop from the NANoREG workshop page on the Industrial Technologies 2014 website,

1. The NANoREG approach: Answers from Science to the questions/needs of Industry and the Regulation Authorities.
2. First entrypoints, the regulatory questions and needs, an overview, matching of needs
3. NANoREG results: Materials, SOPs and the advancement of Regulatory Risk Assessment and Testing.
4.Overview of the NANoREG projects.
5. Whe window for industry participation, keeping pace with innovation.
6. Modes of collaboartion [sic] for industry.
7. Outlook

A joint workshops of EU FP7 Projects SANOWORK, nanoMICEX and Scaffold funded under the topic NMP.2011.1.3-2 “Worker Protection and exposure risk management strategies for nanomaterials production, use and disposal”, will focus on the main achievements of the three Projects in the related area. All three projects are committed to support the needs of companies and aim to provide a practical overview of the results of current research in the field of management of exposure to nanomaterials.

Here are links to the other three projects collaborating on the NANoREG workshop  SANOWORKnanoMICEX, and Scaffold.

Canadian nanobusiness news bitlets: NanoStruck and Lomiko Metals

The two items or ‘news bitlets’ about Canadian nano business don’t amount to much; one concerns a letter of intent and the other, an offer of warrants (like stock options) which likely expired today (March 13, 2014).

It seems NanoStruck Technologies is continuing to make headway in Mexico (as per my Feb. 19, 2014 posting about the company’s LOI and gold mine tailings in Zacatecas state) as the company has signed another letter of intent (LOI), this time, to treat wastewater in the region of Cabo Corrientes. From a March 11, 2014 news item on Azonano,

NanoStruck Technologies Inc. (the “Company” or “NanoStruck”) announces the signing of a Letter of Intent (LOI) with the town of El Tuito to use the Company’s NanoPure technology to treat wastewater from the municipality of Cabo Corrientes in Mexico.

The parties are in dialogue for the treatment of household residual water, which contains food, biodegradable matter, kitchen waste and organic materials. The Company’s NanoPure solution uses chemical-free processes and proprietary nano powders that can be customised to remove such contaminants.

The March 10, 2014 NanoStruck Technologies news release (which originated the news item) link on the company website leads to the full text here on heraldonline.com (Note: Links have been removed),

Homero Romero Amaral, President of the Municipality of Cabo Corrientes said: “NanoStruck’s NanoPure technology is a proven solution for the treatment of residual water in an environmentally friendly way. Its low energy consumption means it also maintains a low carbon footprint.”

Bundeep Singh Rangar, Interim CEO and Chairman of the Board said: “We are privileged to be given the opportunity to work with the Cabo Corrientes municipality to create a long-term residual wastewater treatment solution.”

El Tuito is the capital of Cabo Corrientes, a cape on the Pacific coast of the Mexican state of Jalisco. It marks the southernmost point of the Bahía de Banderas (Bay of Flags), where the port and resort city of Puerto Vallarta is situated.

The Municipality and NanoStruck have commenced negotiation of a definitive agreement regarding the use of the NanoPure technology and hope to complete a binding agreement within 90 days.

My next bitlet concerns, Lomiko Metals and its short form prospectus and offering. From the company’s March 7, 2014 news release (also available on MarketWired),

LOMIKO METALS INC. (TSX VENTURE:LMR) (the “Company” or “Lomiko”) is pleased to announce that it has obtained a final receipt for its short form prospectus (the “Prospectus”) in each of the provinces of British Columbia, Alberta and Ontario, which qualifies the distribution (the “Public Offering”) of (i) a minimum of 6,818,182 units (the “Units”) and a maximum of 27,272,727 Units of the Company at a price of $0.11 per Unit, and (ii) a maximum of 7,692,308 flow-through units (the “Flow-Through Units”) of the Company at a price of $0.13 per Flow-Through Unit, for minimum total gross proceeds of $750,000 and maximum total gross proceeds of $4,000,000.

Each Unit consists of one common share of the Company (each, a “Common Share”) and one-half of one common share purchase warrant (each whole warrant being a “Unit Warrant”). Each Flow-Through Unit consists of one Common Share to be issued on a “flow-through” basis within the meaning of the Income Tax Act (Canada) (each a “Flow-Through Share”) and one-half of one common share purchase warrant (each whole warrant being a “Flow-Through Unit Warrant”).

Each Unit Warrant will entitle the holder thereof to purchase one common share of the Company (the “Unit Warrant Shares”) at a price of $0.15 per Unit Warrant Share at at any time before the date that is 18 months following the closing date of the Public Offering. Each Flow-Through Unit Warrant will entitle the holder thereof to purchase one common share of the Company (the “Flow-Through Unit Warrant Shares”) at a price of $0.20 per Flow-Through Unit Warrant Share at at any time before the date that is 18 months following the closing date of the Public Offering. The Public Offering will be conducted on a “best effort” agency basis through Secutor Capital Management Corporation (the “Agent”), pursuant to an agency agreement dated March 6, 2014 (the “Agency Agreement”) between the Company and the Agent in respect of the Public Offering.

Pursuant to the Agency Agreement, the Company has also granted an over-allotment option to the Agent, exercisable for a period of 30 days following the closing of the Public Offering, in whole or in part, to purchase additional Units and Flow-Through Units in a maximum number equal to up to 15% of the number of Units and Flow-Through Units respectively sold pursuant to the Public Offering. In connection with the Public Offering, the Company will pay the Agent a cash commission equal to 8% of the gross proceeds of the Public Offering and grant compensation options to the Agent entitling it to purchase that number of common shares of the Company equal to 6% of the aggregate number of Units and Flow-Through Units issued and sold under the Public Offering (including the over-allotment option) for a period of 18 months following the closing date of the Public Offering, at a price of $0.11 per common share.

The Company is also pleased to announce it has received conditional approval from the TSX Venture Exchange for its previously announced concurrent non-brokered offering of up to 15,346,231 flow-through units (the “Private Placement Units”) for additional gross proceeds of $2,000,000 (the “Private Placement”). The securities underlying the Private Placement Units will be issued on the same terms as the securities underlying the Flow-Through Units to be issued under the Public Offering. The Company has agreed to pay to Secutor Capital Management Corporation a finder’s fee of 8% in cash and the issuance of a warrant to purchase the number of common shares of the Company equal to 6%, exercisable at $0.13 per share for 18 months from the date of issuance. The securities to be issued under the Private Placement will be subject to a four-month hold period from the closing date of the Private Placement.

The net proceeds from the Public Offering and the Private Placement will be used by Lomiko primarily in connection with the exploration program on the Quatre-Milles East and West mineral properties (Quebec), for business development and for working capital and general corporate purposes. In particular, the proceeds of the flow-through shares under the Public Offering and the Private Placement will be used by the Company to incur eligible Canadian Exploration Expenses as defined by the Income Tax Act (Canada).

Closing of the Public Offering and of the Private Placement is expected to occur on or about March 13, 2014, or such other date as the Agent and the Company may determine. The TSX Venture Exchange has conditionally approved the listing of the securities to be issued pursuant to the Public Offering and the Private Placement. The Public Offering and the Private Placement are subject to customary conditions and the final approval of the TSX Venture Exchange.

The Units, the Flow-Through Units and the Private Placement Units have not been, nor will they be, registered under the United States Securities Act of 1933, as amended (the “1933 Act”), and may not be offered, sold or delivered, directly or indirectly, within the United States, or to or for the account or benefit of U.S. persons unless the Units, the Flow-Through Units and the Private Placement Units are registered under the 1933 Act or pursuant to an applicable exemption from the registration requirements of the 1933 Act. This press release does not constitute an offer to sell, nor it is a solicitation of an offer of securities, nor shall there be any sale of securities in any state of the United States in which such offer, solicitation or sale would be unlawful.

You’re on your own with regard to determining how good an investment this company might be. The company’s March 10, 2014 newsletter does point to two analyses (although, again, you’re on your own as to whether or not these are reputable analysts), The first analyst is Gary Anderson (self-described as a Investor, trader, researcher, and writer- exclusively in 3D Printing Stocks.). He writes this in a Dec. 27, 2013 posting on 3DPrintingStocks.com,

I spend a great deal of time looking for what I believe are legitimate, undiscovered stocks in the 3D printing space because I believe that’s where the major gains will be over a 3-6 month period as they undergo discovery by the broader market.

The little-known penny stock [Lomiko Metals] I’m introducing today has legitimate upside potential for 3D printing investors based on four factors:

  1. The market for their product
  2. Current and potential future value of existing assets
  3. Supply and demand imbalance predicted
  4. Entrance into 3D printing materials market with an established leader

….

3D printing investors looking for a materials supplier as part of their 3D printing portfolio may want to consider Lomiko Metals.  I believe there is limited downside risk at current levels due to the intrinsic value of the company’s hard assets in their Quatre Milles graphite property, and potential for significant share price appreciation due to the four factors discussed above.

Graphene has extraordinary potential as a game-changing material for 3D printing.  Early movers like Lomiko Metals in partnership with Graphene Labs could become the beneficiaries of this amazing material’s potential as it becomes commercialized and utilized in 3D printed components and products that contain revolutionary properties.

Disclosure:    I am long shares of Lomiko Metals.  I received no compensation from Lomiko Metals or any third party for this article.