Category Archives: construction

Periodic table of nanomaterials

This charming illustration is the only pictorial representation i’ve seen for Kyoto University’s (Japan) proposed periodic table of nanomaterials, (By the way, 2019 is UNESCO’s [United Nations Educational, Scientific and Cultural Organization] International Year of the Periodic Table of Elements, an event recognizing the table’s 150th anniversary. See my January 8, 2019 posting for information about more events.)

Caption: Molecules interact and align with each other as they self-assemble. This new simulation enables to find what molecules best interact with each other to build nanomaterials, such as materials that work as a nano electrical wire.
Credit Illustration by Izumi Mindy Takamiya

A July 23, 2018 news item on Nanowerk announces the new periodic table (Note: A link has been removed),

The approach was developed by Daniel Packwood of Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) and Taro Hitosugi of the Tokyo Institute of Technology (Nature Communications, “Materials informatics for self-assembly of functionalized organic precursors on metal surfaces”). It involves connecting the chemical properties of molecules with the nanostructures that form as a result of their interaction. A machine learning technique generates data that is then used to develop a diagram that categorizes different molecules according to the nano-sized shapes they form.

This approach could help materials scientists identify the appropriate molecules to use in order to synthesize target nanomaterials.

A July 23, 2018 Kyoto University press release on EurekAlert, which originated the news item, explains further about the computer simulations run by the scientists in pursuit of their specialized periodic table,

Fabricating nanomaterials using a bottom-up approach requires finding ‘precursor molecules’ that interact and align correctly with each other as they self-assemble. But it’s been a major challenge knowing how precursor molecules will interact and what shapes they will form.

Bottom-up fabrication of graphene nanoribbons is receiving much attention due to their potential use in electronics, tissue engineering, construction, and bio-imaging. One way to synthesise them is by using bianthracene precursor molecules that have bromine ‘functional’ groups attached to them. The bromine groups interact with a copper substrate to form nano-sized chains. When these chains are heated, they turn into graphene nanoribbons.

Packwood and Hitosugi tested their simulator using this method for building graphene nanoribbons.

Data was input into the model about the chemical properties of a variety of molecules that can be attached to bianthracene to ‘functionalize’ it and facilitate its interaction with copper. The data went through a series of processes that ultimately led to the formation of a ‘dendrogram’.

This showed that attaching hydrogen molecules to bianthracene led to the development of strong one-dimensional nano-chains. Fluorine, bromine, chlorine, amidogen, and vinyl functional groups led to the formation of moderately strong nano-chains. Trifluoromethyl and methyl functional groups led to the formation of weak one-dimensional islands of molecules, and hydroxide and aldehyde groups led to the formation of strong two-dimensional tile-shaped islands.

The information produced in the dendogram changed based on the temperature data provided. The above categories apply when the interactions are conducted at -73°C. The results changed with warmer temperatures. The researchers recommend applying the data at low temperatures where the effect of the functional groups’ chemical properties on nano-shapes are most clear.

The technique can be applied to other substrates and precursor molecules. The researchers describe their method as analogous to the periodic table of chemical elements, which groups atoms based on how they bond to each other. “However, in order to truly prove that the dendrograms or other informatics-based approaches can be as valuable to materials science as the periodic table, we must incorporate them in a real bottom-up nanomaterial fabrication experiment,” the researchers conclude in their study published in the journal xxx. “We are currently pursuing this direction in our laboratories.”

Here’s a link to and a citation for the paper,

Materials informatics for self-assembly of functionalized organic precursors on metal surfaces by Daniel M. Packwood & Taro Hitosugi. Nature Communicationsvolume 9, Article number: 2469 (2018)DOI: https://doi.org/10.1038/s41467-018-04940-z Published 25 June 2018

This paper is open access.

Terahertz imagers at your fingertips

It seems to me that I stumbled across quite a few carbon nanotube (CNT) stories in 2018. This one comes courtesy of Japan (from a June 28, 2018 news item on Nanowerk),

Researchers at Tokyo Tech have developed flexible terahertz imagers based on chemically “tunable” carbon nanotube materials. The findings expand the scope of terahertz applications to include wrap-around, wearable technologies as well as large-area photonic devices.

Here’s a peek at an imager,

Figure 1. The CNT-based flexible THz imager (a) Resting on a fingertip, the CNT THz imager can easily wrap around curved surfaces. (b) Just by inserting and rotating a flexible THz imager attached to the fingertip, damage to a pipe was clearly detected. Courtesy Tokyo Tech

A June 28, 2018 Tokyo Tech Institute press release (also on Eurekalert), which originated the news item, provides more detail,

Carbon nanotubes (CNTs) are beginning to take the electronics world by storm, and now their use in terahertz (THz) technologies has taken a big step forward.

Due to their excellent conductivity and unique physical properties, CNTs are an attractive option for next-generation electronic devices. One of the most promising developments is their application in THz devices. Increasingly, THz imagers are emerging as a safe and viable alternative to conventional imaging systems across a wide range of applications, from airport security, food inspection and art authentication to medical and environmental sensing technologies.

The demand for THz detectors that can deliver real-time imaging for a broad range of industrial applications has spurred research into low-cost, flexible THz imaging systems. Yukio Kawano of the Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Tech, is a world-renowned expert in this field. In 2016, for example, he announced the development of wearable terahertz technologies based on multiarrayed carbon nanotubes.

Kawano and his team have since been investigating THz detection performance for various types of CNT materials, in recognition of the fact that there is plenty of room for improvement to meet the needs of industrial-scale applications.

Now, they report the development of flexible THz imagers for CNT films that can be fine-tuned to maximize THz detector performance.

Publishing their findings in ACS Applied Nano Materials, the new THz imagers are based on chemically adjustable semiconducting CNT films.

By making use of a technology known as ionic liquid gating1, the researchers demonstrated that they could obtain a high degree of control over key factors related to THz detector performance for a CNT film with a thickness of 30 micrometers. This level of thickness was important to ensure that the imagers would maintain their free-standing shape and flexibility, as shown in Figure 1 [see above].

“Additionally,” the team says, “we developed gate-free Fermi-level2 tuning based on variable-concentration dopant solutions and fabricated a Fermi-level-tuned p-n junction3 CNT THz imager.” In experiments using this new type of imager, the researchers achieved successful visualization of a metal paper clip inside a standard envelope (see Figure 2.)

Non-contact, non-destructive visualization

Figure 2. Non-contact, non-destructive visualization

The CNT THz imager enabled clear, non-destructive visualization of a metal paper clip inside an envelope.

The bendability of the new THz imager and the possibility of even further fine-tuning will expand the range of CNT-based devices that could be developed in the near future.

Moreover, low-cost fabrication methods such as inkjet coating could make large-area THz imaging devices more readily available.

1 Ionic liquid gating

A technique used to modulate a material’s charge carrier properties.

2 Fermi level

A measure of the electrochemical potential for electrons, which is important for determining the electrical and thermal properties of solids. The term is named after the Italian–American physicist Enrico Fermi.

3 p-n junction

Refers to the interface between positive (p-type) and negative (n-type) semiconducting materials. These junctions form the basis of semiconductor electronic devices.

Here’s a link to and a citation for the paper,

Fermi-Level-Controlled Semiconducting-Separated Carbon Nanotube Films for Flexible Terahertz Imagers by Daichi Suzuki, Yuki Ochiai, Yota Nakagawa, Yuki Kuwahara, Takeshi Saito, and Yukio Kawano. ACS Appl. Nano Mater., 2018, 1 (6), pp 2469–2475 DOI: 10.1021/acsanm.8b00421 Publication Date (Web): June 6, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

‘Green’ concrete with graphene

It’s thrilling and I hope they are able to commercialize this technology which makes concrete ‘greener’. From an April 23, 2018 news item on ScienceDaily,

A new greener, stronger and more durable concrete that is made using the wonder-material graphene could revolutionise the construction industry.

Experts from the University of Exeter [UK] have developed a pioneering new technique that uses nanoengineering technology to incorporate graphene into traditional concrete production.

The new composite material, which is more than twice as strong and four times more water resistant than existing concretes, can be used directly by the construction industry on building sites. All of the concrete samples tested are according to British and European standards for construction.

Crucially, the new graphene-reinforced concentre material also drastically reduced the carbon footprint of conventional concrete production methods, making it more sustainable and environmentally friendly.

The research team insist the new technique could pave the way for other nanomaterials to be incorporated into concrete, and so further modernise the construction industry worldwide.

I love the image they’ve included with the press materials (if they hadn’t told me I wouldn’t know that this is the ‘new’ concrete; to me, it looks just like the other stuff),

Caption: The new concrete developed using graphene by experts from the University of Exeter (credit: Dimitar Dimov / University of Exeter) Credit: Dimitar Dimov / University of Exeter

An April 23, 2018 University of Exeter press release (also on EurekAlert), which originated the news item,  provides more details about the work, future applications, and its potential impact,

Professor Monica Craciun, co-author of the paper and from Exeter’s engineering department, said: “Our cities face a growing pressure from global challenges on pollution, sustainable urbanization and resilience to catastrophic natural events, amongst others.

“This new composite material is an absolute game-changer in terms of reinforcing traditional concrete to meets these needs. Not only is it stronger and more durable, but it is also more resistant to water, making it uniquely suitable for construction in areas which require maintenance work and are difficult to be accessed .

“Yet perhaps more importantly, by including graphene we can reduce the amount of materials required to make concrete by around 50 per cent — leading to a significant reduction of 446kg/tonne of the carbon emissions.

“This unprecedented range of functionalities and properties uncovered are an important step in encouraging a more sustainable, environmentally-friendly construction industry worldwide.”

Previous work on using nanotechnology has concentrated on modifying existing components of cement, one of the main elements of concrete production.

In the innovative new study, the research team has created a new technique that centres on suspending atomically thin graphene in water with high yield and no defects, low cost and compatible with modern, large scale manufacturing requirements.

Dimitar Dimov, the lead author and also from the University of Exeter added: “This ground-breaking research is important as it can be applied to large-scale manufacturing and construction. The industry has to be modernised by incorporating not only off-site manufacturing, but innovative new materials as well.

“Finding greener ways to build is a crucial step forward in reducing carbon emissions around the world and so help protect our environment as much as possible. It is the first step, but a crucial step in the right direction to make a more sustainable construction industry for the future.”

Here’s a link to and a citation for the paper,

Ultrahigh Performance Nanoengineered Graphene–Concrete Composites for Multifunctional Applications by Dimitar Dimov, Iddo Amit, Olivier Gorrie, Matthew D. Barnes, Nicola J. Townsend, Ana I. S. Neves, Freddie Withers, Saverio Russo, and Monica Felicia Craciun. Advanced Functional Materials https://doi.org/10.1002/adfm.201705183 First published: 23 April 2018

This paper is open access.

Wood’s natural nanotechnology

“Wood’s natural nanotechnology: is an unusual term and it comes at the end of this February 7, 2018 University of Maryland (US) news release about a technique which will make wood stronger than titanium alloy,

Engineers at the University of Maryland in College Park have found a way to make wood more than ten times times stronger and tougher than before, creating a natural substance that is stronger than titanium alloy.

“This new way to treat wood makes it twelve times stronger than natural wood and ten times tougher,” said Liangbing Hu, the leader of the team that did the research, to be published on Thursday [February 7, 2018] in the journal Nature. “This could be a competitor to steel or even titanium alloys, it is so strong and durable. It’s also comparable to carbon fiber, but much less expensive.” Hu is an associate professor of materials science and engineering and a member of the Maryland Energy Innovation Institute.

“It is both strong and tough, which is a combination not usually found in nature,” said Teng Li, the co-leader of the team and the Samuel P. Langley associate professor of mechanical engineering at the University of Maryland. His team measured the dense wood’s mechanical properties.  “It is as strong as steel, but six times lighter. It takes 10 times more energy to fracture than natural wood. It can even be bent and molded at the beginning of the process.”

The team’s process begins by removing the wood’s lignin, the part of the wood that makes it both rigid and brown in color. Then it is compressed under mild heat, at about 150 F. This causes the cellulose fibers to become very tightly packed. Any defects like holes or knots are crushed together.  The treatment process was extended a little further with a coat of paint.

The scientists found that the wood’s fibers are pressed together so tightly that they can form strong hydrogen bonds, like a crowd of people who can’t budge – who are also holding hands. The compression makes the wood five times thinner than its original size.

The team also tested the material by shooting a bullet-like projectile at it. Unlike natural wood, which was blown straight through, the fully treated wood actually stopped the projectile partway through.

“Soft woods like pine or balsa, which grow fast and are more environmentally friendly, could replace slower-growing but denser woods like teak, in furniture or buildings,” Hu said.

“The paper provides a highly promising route to the design of light weight high performance structural materials, with tremendous potential for a broad range of applications where high strength, large toughness and superior ballistic resistance are desired, “ said Dr. Huajian Gao, a professor at Brown University, who was not involved in the study. “It is particularly exciting to note that the method is versatile for various species of wood and fairly easy to implement.”

“This kind of wood could be used in cars, airplanes, buildings – any application where steel is used,” Hu said.

“The two-step process reported in this paper achieves exceptionally high strength, much beyond what [is] reported in the literature,” said Dr. Zhigang Suo, a professor of mechanics and materials at Harvard University, also not involved with the study. “Given the abundance of wood, as well as other cellulose-rich plants, this paper inspires imagination.”

“The most outstanding observation, in my view, is the existence of a limiting concentration of lignin, the glue between wood cells, to maximize the mechanical performance of the densified wood. Too little or too much removal lower the strength compared to a maximum value achieved at intermediate or partial lignin removal. This reveals the subtle balance between hydrogen bonding and the adhesion imparted by such polyphenolic compound. Moreover, of outstanding interest, is the fact that that wood densification leads to both, increased strength and toughness, two properties that usually offset each other,” said Orlando J. Rojas, a professor at Aalto University in Finland.

Hu’s research has explored the capacities of wood’s natural nanotechnology [emphasis mine]. They previously made a range of emerging technologies out of nanocellulose related materials: (1) super clear paper for replacing plastic; (2) photonic paper for improving solar cell efficiency by 30%; (3) a battery and a supercapacitor out of wood; (4) a battery from a leaf; (5) transparent wood for energy efficient buildings; (6) solar water desalination for drinking and specifically filtering out toxic dyes. These wood-based emerging technologies are being commercialized through a UMD spinoff company, Inventwood LLC.

At a guess, “wood’s natural nanotechnology” refers to the properties of wood and other forms of cellulose at the nanoscale.

Here’s a link to and a citation for the paper,

Processing bulk natural wood into a high-performance structural material by Jianwei Song, Chaoji Chen, Shuze Zhu, Mingwei Zhu, Jiaqi Dai, Upamanyu Ray, Yiju Li, Yudi Kuang, Yongfeng Li, Nelson Quispe, Yonggang Yao, Amy Gong, Ulrich H. Leiste, Hugh A. Bruck, J. Y. Zhu, Azhar Vellore, Heng Li, Marilyn L. Minus, Zheng Jia, Ashlie Martini, Teng Li, & Liangbing Hu. Nature volume 554, pages 224–228 (08 February 2018) doi:10.1038/nature25476 Published online: 07 February 2018

This paper is behind a paywall.

h/t Feb. 7, 2018 news item on Nanowerk and, finally, you can find out more about the wood-based emerging technologies being commcercialized by the University of Maryland here on the Inventwood website.

Cellulose- and chitin-based biomaterial to replace plastics?

Although the term is not actually used in the news release, one of the materials used to create a new biomaterial could safely be described as nanocellulose. From a Sept. 20, 2017 Pennsylvania State University (Penn State) news release (also on EurekAlert) by Jeff Mulhollem,

An inexpensive biomaterial that can be used to sustainably replace plastic barrier coatings in packaging and many other applications has been developed by Penn State researchers, who predict its adoption would greatly reduce pollution.

Completely compostable, the material — a polysaccharide polyelectrolyte complex — is comprised of nearly equal parts of treated cellulose pulp from wood or cotton, and chitosan, which is derived from chitin — the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is the mountains of leftover shells from lobsters, crabs and shrimp consumed by humans.

These environmentally friendly barrier coatings have numerous applications ranging from water-resistant paper, to coatings for ceiling tiles and wallboard, to food coatings to seal in freshness, according to lead researcher Jeffrey Catchmark, professor of agricultural and biological engineering, College of Agricultural Sciences.

“The material’s unexpected strong, insoluble adhesive properties are useful for packaging as well as other applications, such as better performing, fully natural wood-fiber composites for construction and even flooring,” he said. “And the technology has the potential to be incorporated into foods to reduce fat uptake during frying and maintain crispness. Since the coating is essentially fiber-based, it is a means of adding fiber to diets.”

The amazingly sturdy and durable bond between carboxymethyl cellulose and chitosan is the key, he explained. The two very inexpensive polysaccharides — already used in the food industry and in other industrial sectors — have different molecular charges and lock together in a complex that provides the foundation for impervious films, coatings, adhesives and more.

The potential reduction of pollution is immense if these barrier coatings replace millions of tons of petroleum-based plastic associated with food packaging used every year in the United States — and much more globally, Catchmark noted.

He pointed out that the global production of plastic is approaching 300 million tons per year. In a recent year, more than 29 million tons of plastic became municipal solid waste in the U.S. and almost half was plastic packaging. It is anticipated that 10 percent of all plastic produced globally will become ocean debris, representing a significant ecological and human health threat.

crab shells

The material is comprised of cellulose pulp from wood or cotton, and chitosan, derived from chitin, the primary ingredient in the exoskeletons of arthropods and crustaceans. The main source of chitin is shells from lobsters, crabs and shrimp. Image: © iStock Photo OKRAD

The polysaccharide polyelectrolyte complex coatings performed well in research, the findings of which were published recently in Green Chemistry. Paperboard coated with the biomaterial, comprised of nanostructured fibrous particles of carboxymethyl cellulose and chitosan, exhibited strong oil and water barrier properties. The coating also resisted toluene, heptane and salt solutions and exhibited improved wet and dry mechanical and water vapor barrier properties.

“These results show that polysaccharide polyelectrolyte complex-based materials may be competitive barrier alternatives to synthetic polymers for many commercial applications,” said Catchmark, who, in concert with Penn State, has applied for a patent on the coatings.

“In addition, this work demonstrates that new, unexpected properties emerge from multi-polysaccharide systems engaged in electrostatic complexation, enabling new high-performance applications.”

Catchmark began experimenting with biomaterials that might be used instead of plastics a decade or so ago out of concerns for sustainability. He became interested in cellulose, the main component in wood, because it is the largest volume sustainable, renewable material on earth. Catchmark studied its nanostructure — how it is assembled at the nanoscale.

He believed he could develop natural materials that are more robust and improve their properties, so that they could compete with synthetic materials that are not sustainable and generate pollution — such as the low-density polyethylene laminate applied to paper board, Styrofoam and solid plastic used in cups and bottles.

“The challenge is, to do that you’ve got to be able to do it in a way that is manufacturable, and it has to be less expensive than plastic,” Catchmark explained. “Because when you make a change to something that is greener or sustainable, you really have to pay for the switch. So it has to be less expensive in order for companies to actually gain something from it. This creates a problem for sustainable materials — an inertia that has to be overcome with a lower cost.”

lab vials

The amazingly sturdy and durable bond between carboxymethyl cellulose and chitosan is the key. The two very inexpensive polysaccharides, already used in the food industry and in other industrial sectors, have different molecular charges and lock together in a complex that provides the foundation for impervious films, coatings, adhesives and more. Image: Penn State

Funded by a Research Applications for Innovation grant from the College of Agricultural Sciences, Catchmark currently is working to develop commercialization partners in different industry sectors for a wide variety of products.

“We are trying to take the last step now and make a real impact on the world, and get industry people to stop using plastics and instead use these natural materials,” he said. “So they (consumers) have a choice — after the biomaterials are used, they can be recycled, buried in the ground or composted, and they will decompose. Or they can continue to use plastics that will end up in the oceans, where they will persist for thousands of years.”

Also involved in the research were Snehasish Basu, post-doctoral scholar, and Adam Plucinski, master’s degree student, now instructor of engineering at Penn State Altoona. Staff in Penn State’s Material Research Institute provided assistance with the project.

The U.S. Department of Agriculture supported this work. Southern Champion Tray, of Chattanooga, Tennessee, provided paperboard and information on its production for experiments.

Here’s a link to and a citation for the paper,

Sustainable barrier materials based on polysaccharide polyelectrolyte complexes by
Snehasish Basu, Adam Plucinski, and Jeffrey M. Catchmark. Green Chemistry 2017, 19, 4080-4092 DOI: 10.1039/C7GC00991G

This paper is behind a paywall. One comment, I found an anomaly on the page when I visited. At the top of the citation page, it states that this is issue 17 of Green Chemistry but the citation in the column on the right is “2017, 19 … “, which would be issue 19.

Historic and other buildings get protection from pollution?

This Sept. 15, 2017 news item on Nanowerk announces a new product for protecting buildings from pollution,

The organic pollution decomposing properties of titanium dioxide (TiO2 ) have been known for about half a century. However, practical applications have been few and hard to develop, but now a Greek paint producer claims to have found a solution

A Sept. 11, 2017 Youris (European Research Media Center) press release by Koen Mortelmans which originated the news item expands on the theme,

The photocatalytic properties of anatase, one of the three naturally occurring forms of titanium dioxide, were discovered in Japan in the late 1960s. Under the influence of the UV-radiation in sunlight, it can decompose organic pollutants such as bacteria, fungi and nicotine, and some inorganic materials into carbon dioxide. The catalytic effect is caused by the nanostructure of its crystals.

Applied outdoors, this affordable and widely available material could represent an efficient self-cleaning solution for buildings. This is due to the chemical reaction, which leaves a residue on building façades, a residue then washed away when it rains. Applying it to monuments in urban areas may save our cultural heritage, which is threatened by pollutants.

However, “photocatalytic paints and additives have long been a challenge for the coating industry, because the catalytic action affects the durability of resin binders and oxidizes the paint components,” explains Ioannis Arabatzis, founder and managing director of NanoPhos, based in the Greek town of Lavrio, in one of the countries home to some of the most important monuments of human history. The Greek company is testing a paint called Kirei, inspired by a Japanese word meaning both clean and beautiful.

According to Arabatzis, it’s an innovative product because it combines the self-cleaning action of photocatalytic nanoparticles and the reflective properties of cool wall paints. “When applied on exterior surfaces this paint can reflect more than 94% of the incident InfraRed radiation (IR), saving energy and reducing costs for heating and cooling”, he says. “The reflection values are enhanced by the self-cleaning ability. Compared to conventional paints, they remain unchanged for longer.”

The development of Kirei has been included in the European project BRESAER (BREakthrough Solutions for Adaptable Envelopes in building Refurbishment) which is studying a sustainable and adaptable “envelope system” to renovate buildings. The new paint was tested and subjected to quality controls following ISO standard procedures at the company’s own facilities and in other independent laboratories. “The lab results from testing in artificial, accelerated weathering conditions are reliable,” Arabatzis claims. “There was no sign of discolouration, chalking, cracking or any other paint defect during 2,000 hours of exposure to the simulated environmental conditions. We expect the coating’s service lifetime to be at least ten years.”

Many studies are being conducted to exploit the properties of titanium dioxide. Jan Duyzer, researcher at the Netherlands Organisation for Applied Scientific Research (TNO) in Utrecht, focused on depollution: “There is no doubt about the ability of anatase to decrease the levels of nitrogen oxides in the air. But in real situations, there are many differences in pollution, wind, light, and temperature. We were commissioned by the Dutch government specifically to find a way to take nitrogen oxides out of the air on roads and in traffic tunnels. We used anatase coated panels. Our results were disappointing, so the government decided to discontinue the research. Furthermore, we still don’t know what caused the difference between lab and life. Our best current hypothesis is that the total surface of the coated panels is very small compared to the large volumes of polluted air passing over them,” he tells youris.com.

Experimental deployment of titanium dioxide panels on an acoustic wall along a Dutch highway – Courtesy of Netherlands Organisation for Applied Scientific Research (TNO)

“In laboratory conditions the air is blown over the photocatalytic surface with a certain degree of turbulence. This results in the NOx-particles and the photocatalytic material coming into full contact with one another,” says engineer Anne Beeldens, visiting professor at KU Leuven, Belgium. Her experience with photocatalytic TiO2 is also limited to nitrogen dioxide (NOx) pollution.

In real applications, the air stream at the contact surface becomes laminar. This results in a lower velocity of the air at the surface and a lower depollution rate. Additionally, not all the air will be in contact with the photocatalytic surfaces. To ensure a good working application, the photocatalytic material needs to be positioned so that all the air is in contact with the surface and flows over it in a turbulent manner. This would allow as much of the NOx as possible to be in contact with photocatalytic material. In view of this, a good working application could lead to a reduction of 5 to 10 percent of NOx in the air, which is significant compared to other measures to reduce pollutants.”

The depollution capacity of TiO2 is undisputed, but most applications and tests have only involved specific kinds of substances. More research and measurements are required if we are to benefit more from the precious features of this material.

I think the most recent piece here on protecting buildings, i.e., the historic type, from pollution is an Oct. 21, 2014 posting: Heart of stone.

US Dept. of Agriculture announces its nanotechnology research grants

I don’t always stumble across the US Department of Agriculture’s nanotechnology research grant announcements but I’m always grateful when I do as it’s good to find out about  nanotechnology research taking place in the agricultural sector. From a July 21, 2017 news item on Nanowerk,,

The U.S. Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA) today announced 13 grants totaling $4.6 million for research on the next generation of agricultural technologies and systems to meet the growing demand for food, fuel, and fiber. The grants are funded through NIFA’s Agriculture and Food Research Initiative (AFRI), authorized by the 2014 Farm Bill.

“Nanotechnology is being rapidly implemented in medicine, electronics, energy, and biotechnology, and it has huge potential to enhance the agricultural sector,” said NIFA Director Sonny Ramaswamy. “NIFA research investments can help spur nanotechnology-based improvements to ensure global nutritional security and prosperity in rural communities.”

A July 20, 2017 USDA news release, which originated the news item, lists this year’s grants and provides a brief description of a few of the newly and previously funded projects,

Fiscal year 2016 grants being announced include:

Nanotechnology for Agricultural and Food Systems

  • Kansas State University, Manhattan, Kansas, $450,200
  • Wichita State University, Wichita, Kansas, $340,000
  • University of Massachusetts, Amherst, Massachusetts, $444,550
  • University of Nevada, Las Vegas, Nevada,$150,000
  • North Dakota State University, Fargo, North Dakota, $149,000
  • Cornell University, Ithaca, New York, $455,000
  • Cornell University, Ithaca, New York, $450,200
  • Oregon State University, Corvallis, Oregon, $402,550
  • University of Pennsylvania, Philadelphia, Pennsylvania, $405,055
  • Gordon Research Conferences, West Kingston, Rhode Island, $45,000
  • The University of Tennessee,  Knoxville, Tennessee, $450,200
  • Utah State University, Logan, Utah, $450,200
  • The George Washington University, Washington, D.C., $450,200

Project details can be found at the NIFA website (link is external).

Among the grants, a University of Pennsylvania project will engineer cellulose nanomaterials [emphasis mine] with high toughness for potential use in building materials, automotive components, and consumer products. A University of Nevada-Las Vegas project will develop a rapid, sensitive test to detect Salmonella typhimurium to enhance food supply safety.

Previously funded grants include an Iowa State University project in which a low-cost and disposable biosensor made out of nanoparticle graphene that can detect pesticides in soil was developed. The biosensor also has the potential for use in the biomedical, environmental, and food safety fields. University of Minnesota (link is external) researchers created a sponge that uses nanotechnology to quickly absorb mercury, as well as bacterial and fungal microbes from polluted water. The sponge can be used on tap water, industrial wastewater, and in lakes. It converts contaminants into nontoxic waste that can be disposed in a landfill.

NIFA invests in and advances agricultural research, education, and extension and promotes transformative discoveries that solve societal challenges. NIFA support for the best and brightest scientists and extension personnel has resulted in user-inspired, groundbreaking discoveries that combat childhood obesity, improve and sustain rural economic growth, address water availability issues, increase food production, find new sources of energy, mitigate climate variability and ensure food safety. To learn more about NIFA’s impact on agricultural science, visit www.nifa.usda.gov/impacts, sign up for email updates (link is external) or follow us on Twitter @USDA_NIFA (link is external), #NIFAImpacts (link is external).

Given my interest in nanocellulose materials (Canada was/is a leader in the production of cellulose nanocrystals [CNC] but there has been little news about Canadian research into CNC applications), I used the NIFA link to access the table listing the grants and clicked on ‘brief’ in the View column in the University of Pennsylania row to find this description of the project,

ENGINEERING CELLULOSE NANOMATERIALS WITH HIGH TOUGHNESS

NON-TECHNICAL SUMMARY: Cellulose nanofibrils (CNFs) are natural materials with exceptional mechanical properties that can be obtained from renewable plant-based resources. CNFs are stiff, strong, and lightweight, thus they are ideal for use in structural materials. In particular, there is a significant opportunity to use CNFs to realize polymer composites with improved toughness and resistance to fracture. The overall goal of this project is to establish an understanding of fracture toughness enhancement in polymer composites reinforced with CNFs. A key outcome of this work will be process – structure – fracture property relationships for CNF-reinforced composites. The knowledge developed in this project will enable a new class of tough CNF-reinforced composite materials with applications in areas such as building materials, automotive components, and consumer products.The composite materials that will be investigated are at the convergence of nanotechnology and bio-sourced material trends. Emerging nanocellulose technologies have the potential to move biomass materials into high value-added applications and entirely new markets.

It’s not the only nanocellulose material project being funded in this round, there’s this at North Dakota State University, from the NIFA ‘brief’ project description page,

NOVEL NANOCELLULOSE BASED FIRE RETARDANT FOR POLYMER COMPOSITES

NON-TECHNICAL SUMMARY: Synthetic polymers are quite vulnerable to fire.There are 2.4 million reported fires, resulting in 7.8 billion dollars of direct property loss, an estimated 30 billion dollars of indirect loss, 29,000 civilian injuries, 101,000 firefighter injuries and 6000 civilian fatalities annually in the U.S. There is an urgent need for a safe, potent, and reliable fire retardant (FR) system that can be used in commodity polymers to reduce their flammability and protect lives and properties. The goal of this project is to develop a novel, safe and biobased FR system using agricultural and woody biomass. The project is divided into three major tasks. The first is to manufacture zinc oxide (ZnO) coated cellulose nanoparticles and evaluate their morphological, chemical, structural and thermal characteristics. The second task will be to design and manufacture polymer composites containing nano sized zinc oxide and cellulose crystals. Finally the third task will be to test the fire retardancy and mechanical properties of the composites. Wbelieve that presence of zinc oxide and cellulose nanocrystals in polymers will limit the oxygen supply by charring, shielding the surface and cellulose nanocrystals will make composites strong. The outcome of this project will help in developing a safe, reliable and biobased fire retardant for consumer goods, automotive, building products and will help in saving human lives and property damage due to fire.

One day, I hope to hear about Canadian research into applications for nanocellulose materials. (fingers crossed for good luck)

The Swiss come to a better understanding of nanomaterials

Just to keep things interesting, after the report suggesting most of the information that the OECD (Organization for Economic Cooperation and Development) has on nanomaterials is of little value for determining risk (see my April 5, 2017 posting for more) the Swiss government has released a report where they claim an improved understanding of nanomaterials than they previously had due to further research into the matter. From an April 6, 2017 news item on Nanowerk,

In the past six years, the [Swiss] National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64) intensively studied the development, use, behaviour and degradation of engineered nanomaterials, including their impact on humans and on the environment.

Twenty-three research projects on biomedicine, the environment, energy, construction materials and food demonstrated the enormous potential of engineered nanoparticles for numerous applications in industry and medicine. Thanks to these projects we now know a great deal more about the risks associated with nanomaterials and are therefore able to more accurately determine where and how they can be safely used.

An April 6, 2017 Swiss National Science Foundation press release, which originated the news item, expands on the theme,

“One of the specified criteria in the programme was that every project had to examine both the opportunities and the risks, and in some cases this was a major challenge for the researchers,” explains Peter Gehr, President of the NRP 64 Steering Committee.

One development that is nearing industrial application concerns a building material strengthened with nanocellulose that can be used to produce a strong but lightweight insulation material. Successful research was also carried out in the area of energy, where the aim was to find a way to make lithium-ion batteries safer and more efficient.

Promising outlook for nanomedicine

A great deal of potential is predicted for the field of nanomedicine. Nine of the 23 projects in NRP 64 focused on biomedical applications of nanoparticles. These include their use for drug delivery, for example in the fight against viruses, or as immune modulators in a vaccine against asthma. Another promising application concerns the use of nanomagnets for filtering out harmful metallic substances from the blood. One of the projects demonstrated that certain nanoparticles can penetrate the placenta barrier, which points to potential new therapy options. The potential of cartilage and bone substitute materials based on nanocellulose or nanofibres was also studied.

The examination of potential health risks was the focus of NRP 64. A number of projects examined what happens when nanoparticles are inhaled, while two focused on ingestion. One of these investigated whether the human gut is able to absorb iron more efficiently if it is administered in the form of iron nanoparticles in a food additive, while the other studied silicon nanoparticles as they occur in powdered condiments. It was ascertained that further studies will be required in order to determine the doses that can be used without risking an inflammatory reaction in the gut.

What happens to engineered nanomaterials in the environment?

The aim of the seven projects focusing on environmental impact was to gain a better understanding of the toxicity of nanomaterials and their degradability, stability and accumulation in the environment and in biological systems. Here, the research teams monitored how engineered nanoparticles disseminate along their lifecycle, and where they end up or how they can be discarded.

One of the projects established that 95 per cent of silver nanoparticles that are washed out of textiles are collected in sewage treatment plants, while the remaining particles end up in sewage sludge, which in Switzerland is incinerated. In another project a measurement device was developed to determine how aquatic microorganisms react when they come into contact with nanoparticles.

Applying results and making them available to industry

“The findings of the NRP 64 projects form the basis for a safe application of nanomaterials,” says Christoph Studer from the Federal Office of Public Health. “It has become apparent that regulatory instruments such as testing guidelines will have to be adapted at both national and international level.” Studer has been closely monitoring the research programme in his capacity as the Swiss government’s representative in NRP 64. In this context, the precautionary matrix developed by the government is an important instrument by means of which companies can systematically assess the risks associated with the use of nanomaterials in their production processes.

The importance of standardised characterisation and evaluation of engineered nanomaterials was highlighted by the close cooperation among researchers in the programme. “The research network that was built up in the framework of NRP 64 is functioning smoothly and needs to be further nurtured,” says Professor Bernd Nowack from Empa, who headed one of the 23 projects.

The results of NRP 64 show that new key technologies such as the use of nanomaterials need to be closely monitored through basic research due to the lack of data on its long-term effects. As Peter Gehr points out, “We now know a lot more about the risks of nanomaterials and how to keep them under control. However, we need to conduct additional research to learn what happens when humans and the environment are exposed to engineered nanoparticles over longer periods, or what happens a long time after a one-off exposure.”

You can find out more about the Opportunities and Risks of Nanomaterials; National Research Programme (NRP 64) here.

‘No kiln’ ceramics

Sometimes it’s hard to believe what one reads and this piece about ceramics made without kilns  (for me) fits into that category (from a Feb. 28, 2017 ETH Zurich [English: Swiss Federal Institute of Technology in Zurich] [German: Eidgenössische Technische Hochschule Zürich]) press release (also on EurekAlert) by Fabio Bergamin),

The manufacture of cement, bricks, bathroom tiles and porcelain crockery normally requires a great deal of heat: a kiln is used to fire the ceramic materials at temperatures well in excess of 1,000°C. Now, material scientists from ETH Zurich have developed what seems at first glance to be an astonishingly simple method of manufacture that works at room temperature. The scientists used a calcium carbonate nanopowder as the starting material and instead of firing it, they added a small amount of water and then compacted it.

“The manufacturing process is based on the geological process of rock formation,” explains Florian Bouville, a postdoc in the group of André Studart, Professor of Complex Materials. Sedimentary rock is formed from sediment that is compressed over millions of years through the pressure exerted by overlying deposits. This process turns calcium carbonate sediment into limestone with the help of the surrounding water. As the ETH researchers used calcium carbonate with an extremely fine particle size (nanoparticles) as the starting material, their compacting process took only an hour. “Our work is the first evidence that a piece of ceramic material can be manufactured at room temperature in such a short amount of time and with relatively low pressures,” says ETH professor Studart.

Stronger than concrete

As tests have shown, the new material can withstand about ten times as much force as concrete before it breaks, and is as stiff as stone or concrete. In other words, it is just as hard to deform.

So far, the scientists have produced material samples of about the size of a one-franc piece using a conventional hydraulic press such as those normally used in industry. “The challenge is to generate a sufficiently high pressure for the compacting process. Larger workpieces require a correspondingly greater force,” says Bouville. According to the scientists, ceramic pieces the size of small bathroom tiles should theoretically be feasible.

Energy-efficient and environmentally benign

“For a long time, material scientists have been searching for a way to produce ceramic materials under mild conditions, as the firing process requires a large amount of energy,” says Studart. The new room-temperature method – which experts refer to as cold sintering — is much more energy-efficient and also enables the production of composite materials containing, for example, plastic.

The technique is also of interest with a view to a future CO2-neutral society. Specifically, the carbonate nanoparticles could conceivably be produced using CO2 captured from the atmosphere or from waste gases from thermal power stations. In this scenario, the captured CO2 is allowed to react with a suitable rock in powder form to produce carbonate, which could then be used to manufacture ceramics at room temperature. The climate-damaging CO2 would thus be stored in ceramic products in the long term. These would constitute a CO2 sink and could help thermal power stations to operate on a carbon-neutral basis.

According to the scientists, in the long term, the new approach of cold sintering even has the potential to lead to more environmentally friendly substitutes for cement-based materials. However, great research efforts are needed to reach this goal. Cement production is not only energy-intensive, but it also generates large amounts of CO2 – unlike potential cold-sintered replacement materials.

Here’s a link to and a citation for the paper,

Geologically-inspired strong bulk ceramics made with water at room temperature by Florian Bouville & André R. Studart. Nature Communications 8, Article number: 14655 (2017) doi:10.1038/ncomms14655 Published online: 06 March 2017

This paper is open access.

Florian Bouville’s work in ceramics was last mentioned here in a March 25, 2014 posting.

Drip dry housing

This piece on new construction materials does have a nanotechnology aspect although it’s not made clear exactly how nanotechnology plays a role.

From a Dec. 28, 2016 news item on phys.org (Note: A link has been removed),

The construction industry is preparing to use textiles from the clothing and footwear industries. Gore-Tex-like membranes, which are usually found in weather-proof jackets and trekking shoes, are now being studied to build breathable, water-resistant walls. Tyvek is one such synthetic textile being used as a “raincoat” for homes.

You can find out more about Tyvek here.on the Dupont website.

A Dec. 21, 2016 press release by Chiara Cecchi for Youris ((European Research Media Center), which originated the news item, proceeds with more about textile-type construction materials,

Camping tents, which have been used for ages to protect against wind, ultra-violet rays and rain, have also inspired the modern construction industry, or “buildtech sector”. This new field of research focuses on the different fibres (animal-based such as wool or silk, plant-based such as linen and cotton and synthetic such as polyester and rayon) in order to develop technical or high-performance materials, thus improving the quality of construction, especially for buildings, dams, bridges, tunnels and roads. This is due to the fibres’ mechanical properties, such as lightness, strength, and also resistance to many factors like creep, deterioration by chemicals and pollutants in the air or rain.

“Textiles play an important role in the modernisation of infrastructure and in sustainable buildings”, explains Andrea Bassi, professor at the Department of Civil and Environmental Engineering (DICA), Politecnico of Milan, “Nylon and fiberglass are mixed with traditional fibres to control thermal and acoustic insulation in walls, façades and roofs. Technological innovation in materials, which includes nanotechnologies [emphasis mine] combined with traditional textiles used in clothes, enables buildings and other constructions to be designed using textiles containing steel polyvinyl chloride (PVC) or ethylene tetrafluoroethylene (ETFE). This gives the materials new antibacterial, antifungal and antimycotic properties in addition to being antistatic, sound-absorbing and water-resistant”.

Rooflys is another example. In this case, coated black woven textiles are placed under the roof to protect roof insulation from mould. These building textiles have also been tested for fire resistance, nail sealability, water and vapour impermeability, wind and UV resistance.

Photo: Production line at the co-operative enterprise CAVAC Biomatériaux, France. Natural fibres processed into a continuous mat (biofib) – Martin Ansell, BRE CICM, University of Bath, UK

In Spain three researchers from the Technical University of Madrid (UPM) have developed a new panel made with textile waste. They claim that it can significantly enhance both the thermal and acoustic conditions of buildings, while reducing greenhouse gas emissions and the energy impact associated with the development of construction materials.

Besides textiles, innovative natural fibre composite materials are a parallel field of the research on insulators that can preserve indoor air quality. These bio-based materials, such as straw and hemp, can reduce the incidence of mould growth because they breathe. The breathability of materials refers to their ability to absorb and desorb moisture naturally”, says expert Finlay White from Modcell, who contributed to the construction of what they claim are the world’s first commercially available straw houses, “For example, highly insulated buildings with poor ventilation can build-up high levels of moisture in the air. If the moisture meets a cool surface it will condensate and producing mould, unless it is managed. Bio-based materials have the means to absorb moisture so that the risk of condensation is reduced, preventing the potential for mould growth”.

The Bristol-based green technology firm [Modcell] is collaborating with the European Isobio project, which is testing bio-based insulators which perform 20% better than conventional materials. “This would lead to a 5% total energy reduction over the lifecycle of a building”, explains Martin Ansell, from BRE Centre for Innovative Construction Materials (BRE CICM), University of Bath, UK, another partner of the project.

“Costs would also be reduced. We are evaluating the thermal and hygroscopic properties of a range of plant-derived by-products including hemp, jute, rape and straw fibres plus corn cob residues. Advanced sol-gel coatings are being deposited on these fibres to optimise these properties in order to produce highly insulating and breathable construction materials”, Ansell concludes.

You can find Modcell here.

Here’s another image, which I believe is a closeup of the processed fibre shown in the above,

Production line at the co-operative enterprise CAVAC Biomatériaux, France. Natural fibres processed into a continuous mat (biofib) – Martin Ansell, BRE CICM, University of Bath, UK [Note: This caption appears to be a copy of the caption for the previous image]