Category Archives: medicine

Health technology and the Canadian Broadcasting Corporation’s (CBC) two-tier health system ‘Viewpoint’

There’s a lot of talk and handwringing about Canada’s health care system, which ebbs and flows in almost predictable cycles. Jesse Hirsh in a May 16, 2017 ‘Viewpoints’ segment (an occasional series run as part the of the CBC’s [Canadian Broadcasting Corporation] flagship, daily news programme, The National) dared to reframe the discussion as one about technology and ‘those who get it’  [the technologically literate] and ‘those who don’t’,  a state Hirsh described as being illiterate as you can see and hear in the following video.

I don’t know about you but I’m getting tired of being called illiterate when I don’t know something. To be illiterate means you can’t read and write and as it turns out I do both of those things on a daily basis (sometimes even in two languages). Despite my efforts, I’m ignorant about any number of things and those numbers keep increasing day by day. BTW, Is there anyone who isn’t having trouble keeping up?

Moving on from my rhetorical question, Hirsh has a point about the tech divide and about the need for discussion. It’s a point that hadn’t occurred to me (although I think he’s taking it in the wrong direction). In fact, this business of a tech divide already exists if you consider that people who live in rural environments and need the latest lifesaving techniques or complex procedures or access to highly specialized experts have to travel to urban centres. I gather that Hirsh feels that this divide isn’t necessarily going to be an urban/rural split so much as an issue of how technically literate you and your doctor are.  That’s intriguing but then his argumentation gets muddled. Confusingly, he seems to be suggesting that the key to the split is your access (not your technical literacy) to artificial intelligence (AI) and algorithms (presumably he’s referring to big data and data analytics). I expect access will come down more to money than technological literacy.

For example, money is likely to be a key issue when you consider his big pitch is for access to IBM’s Watson computer. (My Feb. 28, 2011 posting titled: Engineering, entertainment, IBM’s Watson, and product placement focuses largely on Watson, its winning appearances on the US television game show, Jeopardy, and its subsequent adoption into the University of Maryland’s School of Medicine in a project to bring Watson into the examining room with patients.)

Hirsh’s choice of IBM’s Watson is particularly interesting for a number of reasons. (1) Presumably there are companies other than IBM in this sector. Why do they not rate a mention?  (2) Given the current situation with IBM and the Canadian federal government’s introduction of the Phoenix payroll system (a PeopleSoft product customized by IBM), which is  a failure of monumental proportions (a Feb. 23, 2017 article by David Reevely for the Ottawa Citizen and a May 25, 2017 article by Jordan Press for the National Post), there may be a little hesitation, if not downright resistance, to a large scale implementation of any IBM product or service, regardless of where the blame lies. (3) Hirsh notes on the home page for his eponymous website,

I’m presently spending time at the IBM Innovation Space in Toronto Canada, investigating the impact of artificial intelligence and cognitive computing on all sectors and industries.

Yes, it would seem he has some sort of relationship with IBM not referenced in his Viewpoints segment on The National. Also, his description of the relationship isn’t especially illuminating but perhaps it.s this? (from the IBM Innovation Space  – Toronto Incubator Application webpage),

Our incubator

The IBM Innovation Space is a Toronto-based incubator that provides startups with a collaborative space to innovate and disrupt the market. Our goal is to provide you with the tools needed to take your idea to the next level, introduce you to the right networks and help you acquire new clients. Our unique approach, specifically around client engagement, positions your company for optimal growth and revenue at an accelerated pace.

OUR SERVICES

IBM Bluemix
IBM Global Entrepreneur
Softlayer – an IBM Company
Watson

Startups partnered with the IBM Innovation Space can receive up to $120,000 in IBM credits at no charge for up to 12 months through the Global Entrepreneurship Program (GEP). These credits can be used in our products such our IBM Bluemix developer platform, Softlayer cloud services, and our world-renowned IBM Watson ‘cognitive thinking’ APIs. We provide you with enterprise grade technology to meet your clients’ needs, large or small.

Collaborative workspace in the heart of Downtown Toronto
Mentorship opportunities available with leading experts
Access to large clients to scale your startup quickly and effectively
Weekly programming ranging from guest speakers to collaborative activities
Help with funding and access to local VCs and investors​

Final comments

While I have some issues with Hirsh’s presentation, I agree that we should be discussing the issues around increased automation of our health care system. A friend of mine’s husband is a doctor and according to him those prescriptions and orders you get when leaving the hospital? They are not made up by a doctor so much as they are spit up by a computer based on the data that the doctors and nurses have supplied.

GIGO, bias, and de-skilling

Leaving aside the wonders that Hirsh describes, there’s an oldish saying in the computer business, garbage in/garbage out (gigo). At its simplest, who’s going to catch a mistake? (There are lots of mistakes made in hospitals and other health care settings.)

There are also issues around the quality of research. Are all the research papers included in the data used by the algorithms going to be considered equal? There’s more than one case where a piece of problematic research has been accepted uncritically, even if it get through peer review, and subsequently cited many times over. One of the ways to measure impact, i.e., importance, is to track the number of citations. There’s also the matter of where the research is published. A ‘high impact’ journal, such as Nature, Science, or Cell, automatically gives a piece of research a boost.

There are other kinds of bias as well. Increasingly, there’s discussion about algorithms being biased and about how machine learning (AI) can become biased. (See my May 24, 2017 posting: Machine learning programs learn bias, which highlights the issues and cites other FrogHeart posts on that and other related topics.)

These problems are to a large extent already present. Doctors have biases and research can be wrong and it can take a long time before there are corrections. However, the advent of an automated health diagnosis and treatment system is likely to exacerbate the problems. For example, if you don’t agree with your doctor’s diagnosis or treatment, you can search other opinions. What happens when your diagnosis and treatment have become data? Will the system give you another opinion? Who will you talk to? The doctor who got an answer from ‘Watson”? Is she or he going to debate Watson? Are you?

This leads to another issue and that’s automated systems getting more credit than they deserve. Futurists such as Hirsh tend to underestimate people and overestimate the positive impact that automation will have. A computer, data analystics, or an AI system are tools not gods. You’ll have as much luck petitioning one of those tools as you would Zeus.

The unasked question is how will your doctor or other health professional gain experience and skills if they never have to practice the basic, boring aspects of health care (asking questions for a history, reading medical journals to keep up with the research, etc.) and leave them to the computers? There had to be  a reason for calling it a medical ‘practice’.

There are definitely going to be advantages to these technological innovations but thoughtful adoption of these practices (pun intended) should be our goal.

Who owns your data?

Another issue which is increasingly making itself felt is ownership of data. Jacob Brogan has written a provocative May 23, 2017 piece for slate.com asking that question about the data Ancestry.com gathers for DNA testing (Note: Links have been removed),

AncestryDNA’s pitch to consumers is simple enough. For $99 (US), the company will analyze a sample of your saliva and then send back information about your “ethnic mix.” While that promise may be scientifically dubious, it’s a relatively clear-cut proposal. Some, however, worry that the service might raise significant privacy concerns.

After surveying AncestryDNA’s terms and conditions, consumer protection attorney Joel Winston found a few issues that troubled him. As he noted in a Medium post last week, the agreement asserts that it grants the company “a perpetual, royalty-free, world-wide, transferable license to use your DNA.” (The actual clause is considerably longer.) According to Winston, “With this single contractual provision, customers are granting Ancestry.com the broadest possible rights to own and exploit their genetic information.”

Winston also noted a handful of other issues that further complicate the question of ownership. Since we share much of our DNA with our relatives, he warned, “Even if you’ve never used Ancestry.com, but one of your genetic relatives has, the company may already own identifiable portions of your DNA.” [emphasis mine] Theoretically, that means information about your genetic makeup could make its way into the hands of insurers or other interested parties, whether or not you’ve sent the company your spit. (Maryam Zaringhalam explored some related risks in a recent Slate article.) Further, Winston notes that Ancestry’s customers waive their legal rights, meaning that they cannot sue the company if their information gets used against them in some way.

Over the weekend, Eric Heath, Ancestry’s chief privacy officer, responded to these concerns on the company’s own site. He claims that the transferable license is necessary for the company to provide its customers with the service that they’re paying for: “We need that license in order to move your data through our systems, render it around the globe, and to provide you with the results of our analysis work.” In other words, it allows them to send genetic samples to labs (Ancestry uses outside vendors), store the resulting data on servers, and furnish the company’s customers with the results of the study they’ve requested.

Speaking to me over the phone, Heath suggested that this license was akin to the ones that companies such as YouTube employ when users upload original content. It grants them the right to shift that data around and manipulate it in various ways, but isn’t an assertion of ownership. “We have committed to our users that their DNA data is theirs. They own their DNA,” he said.

I’m glad to see the company’s representatives are open to discussion and, later in the article, you’ll see there’ve already been some changes made. Still, there is no guarantee that the situation won’t again change, for ill this time.

What data do they have and what can they do with it?

It’s not everybody who thinks data collection and data analytics constitute problems. While some people might balk at the thought of their genetic data being traded around and possibly used against them, e.g., while hunting for a job, or turned into a source of revenue, there tends to be a more laissez-faire attitude to other types of data. Andrew MacLeod’s May 24, 2017 article for thetyee.ca highlights political implications and privacy issues (Note: Links have been removed),

After a small Victoria [British Columbia, Canada] company played an outsized role in the Brexit vote, government information and privacy watchdogs in British Columbia and Britain have been consulting each other about the use of social media to target voters based on their personal data.

The U.K.’s information commissioner, Elizabeth Denham [Note: Denham was formerly B.C.’s Office of the Information and Privacy Commissioner], announced last week [May 17, 2017] that she is launching an investigation into “the use of data analytics for political purposes.”

The investigation will look at whether political parties or advocacy groups are gathering personal information from Facebook and other social media and using it to target individuals with messages, Denham said.

B.C.’s Office of the Information and Privacy Commissioner confirmed it has been contacted by Denham.

Macleod’s March 6, 2017 article for thetyee.ca provides more details about the company’s role (note: Links have been removed),

The “tiny” and “secretive” British Columbia technology company [AggregateIQ; AIQ] that played a key role in the Brexit referendum was until recently listed as the Canadian office of a much larger firm that has 25 years of experience using behavioural research to shape public opinion around the world.

The larger firm, SCL Group, says it has worked to influence election outcomes in 19 countries. Its associated company in the U.S., Cambridge Analytica, has worked on a wide range of campaigns, including Donald Trump’s presidential bid.

In late February [2017], the Telegraph reported that campaign disclosures showed that Vote Leave campaigners had spent £3.5 million — about C$5.75 million [emphasis mine] — with a company called AggregateIQ, run by CEO Zack Massingham in downtown Victoria.

That was more than the Leave side paid any other company or individual during the campaign and about 40 per cent of its spending ahead of the June referendum that saw Britons narrowly vote to exit the European Union.

According to media reports, Aggregate develops advertising to be used on sites including Facebook, Twitter and YouTube, then targets messages to audiences who are likely to be receptive.

The Telegraph story described Victoria as “provincial” and “picturesque” and AggregateIQ as “secretive” and “low-profile.”

Canadian media also expressed surprise at AggregateIQ’s outsized role in the Brexit vote.

The Globe and Mail’s Paul Waldie wrote “It’s quite a coup for Mr. Massingham, who has only been involved in politics for six years and started AggregateIQ in 2013.”

Victoria Times Colonist columnist Jack Knox wrote “If you have never heard of AIQ, join the club.”

The Victoria company, however, appears to be connected to the much larger SCL Group, which describes itself on its website as “the global leader in data-driven communications.”

In the United States it works through related company Cambridge Analytica and has been involved in elections since 2012. Politico reported in 2015 that the firm was working on Ted Cruz’s presidential primary campaign.

And NBC and other media outlets reported that the Trump campaign paid Cambridge Analytica millions to crunch data on 230 million U.S. adults, using information from loyalty cards, club and gym memberships and charity donations [emphasis mine] to predict how an individual might vote and to shape targeted political messages.

That’s quite a chunk of change and I don’t believe that gym memberships, charity donations, etc. were the only sources of information (in the US, there’s voter registration, credit card information, and more) but the list did raise my eyebrows. It would seem we are under surveillance at all times, even in the gym.

In any event, I hope that Hirsh’s call for discussion is successful and that the discussion includes more critical thinking about the implications of Hirsh’s ‘Brave New World’.

Café Scientifique (Vancouver, Canada) May 30, 2017 talk: Jerilyn Prior redux

I’m not sure ‘redux’ is exactly the right term but I’m going to declare it ‘close enough’. This upcoming talk was originally scheduled for March 2016 (my March 29, 2016 posting) but cancelled when the venerable The Railway Club abruptly closed its doors after 84 years of operation.

Our next café will happen on TUESDAY MAY 30TH, 7:30PM in the back room
at YAGGER'S DOWNTOWN (433 W Pender). Our speaker for the evening
will be DR. JERILYNN PRIOR, a is Professor of Endocrinology and
Metabolism at the University of British Columbia, founder and scientific
director of the Centre for Menstrual Cycle and Ovulation Research
(CeMCOR), director of the BC Center of the Canadian Multicenter
Osteoporosis Study (CaMOS), and a past president of the Society for
Menstrual Cycle Research.  The title of her talk is:

IS PERIMENOPAUSE ESTROGEN DEFICIENCY?
SORTING ENGRAINED MISINFORMATION ABOUT WOMEN’S MIDLIFE REPRODUCTIVE
TRANSITION

43 years old with teenagers a full-time executive director of a not for
profit is not sleeping, she wakes soaked a couple of times a night, not
every night but especially around the time her period comes. As it does
frequently—it is heavy, even flooding. Her sexual interest is
virtually gone and she feels dry when she tries.

Her family doctor offered her The Pill. When she took it she got very
sore breasts, ankle swelling and high blood pressure. Her brain feels
fuzzy, she’s getting migraines, gaining weight and just can’t cope.
. . .
What’s going on? Does she need estrogen “replacement”?  If yes,
why when she’s still getting flow? Does The Pill work for other women?
_WHAT DO WE KNOW ABOUT THE WHAT, WHY, HOW LONG AND HOW TO HELP
SYMPTOMATIC PERIMENOPAUSAL WOMEN?_

We hope to see you there!

As I noted in March 2016, this seems more like a description for a workshop on perimenopause  and consequently of more interest for doctors and perimenopausal women than the audience that Café Scientifique usually draws. Of course, I  could be completely wrong.

Repairing a ‘broken’ heart with a 3D printed patch

The idea of using stem cells to help heal your heart so you don’t have scar tissue seems to be a step closer to reality. From an April 14, 2017 news item on ScienceDaily which announces the research and explains why scar tissue in your heart is a problem,

A team of biomedical engineering researchers, led by the University of Minnesota, has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step forward in treating patients with tissue damage after a heart attack.

According to the American Heart Association, heart disease is the No. 1 cause of death in the U.S. killing more than 360,000 people a year. During a heart attack, a person loses blood flow to the heart muscle and that causes cells to die. Our bodies can’t replace those heart muscle cells so the body forms scar tissue in that area of the heart, which puts the person at risk for compromised heart function and future heart failure.

An April 13, 2017 University of Minnesota news release (also on EurekAlert but dated April 14, 2017), which originated the news item, describes the work in more detail,

In this study, researchers from the University of Minnesota-Twin Cities, University of Wisconsin-Madison, and University of Alabama-Birmingham used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab.

When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from cells and structural proteins native to the heart, it became part of the heart and absorbed into the body, requiring no further surgeries.

“This is a significant step forward in treating the No. 1 cause of death in the U.S.,” said Brenda Ogle, an associate professor of biomedical engineering at the University of Minnesota. “We feel that we could scale this up to repair hearts of larger animals and possibly even humans within the next several years.”

Ogle said that this research is different from previous research in that the patch is modeled after a digital, three-dimensional scan of the structural proteins of native heart tissue.  The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells.  Only with 3D printing of this type can we achieve one micron resolution needed to mimic structures of native heart tissue.

“We were quite surprised by how well it worked given the complexity of the heart,” Ogle said.  “We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch.”

Ogle said they are already beginning the next step to develop a larger patch that they would test on a pig heart, which is similar in size to a human heart.

The researchers has made this video of beating heart cells in a petri dish available,

Date: Published on Apr 14, 2017

Caption: Researchers used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab. Credit: Brenda Ogle, University of Minnesota

Here’s a link to and a citation for the paper,

Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold by Ling Gao, Molly E. Kupfer, Jangwook P. Jung, Libang Yang, Patrick Zhang, Yong Da Sie, Quyen Tran, Visar Ajeti, Brian T. Freeman, Vladimir G. Fast, Paul J. Campagnola, Brenda M. Ogle, Jianyi Zhang. Circulation Research April 14, 2017, Volume 120, Issue 8 https://doi.org/10.1161/CIRCRESAHA.116.310277 Circulation Research. 2017;120:1318-1325 Originally published online] January 9, 2017

This paper appears to be open access.

Nanocoating to reduce dental implant failures

Scientists at Plymouth University (UK) have developed a nanocoating that could reduce the number of dental implant failures. From a March 24, 2017 news item on Nanowerk (Note: A link has been removed),

According to the American Academy of Implant Dentistry (AAID), 15 million Americans have crown or bridge replacements and three million have dental implants — with this latter number rising by 500,000 a year. The AAID estimates that the value of the American and European market for dental implants will rise to $4.2 billion by 2022.

Dental implants are a successful form of treatment for patients, yet according to a study published in 2005, five to 10 per cent of all dental implants fail.

The reasons for this failure are several-fold – mechanical problems, poor connection to the bones in which they are implanted, infection or rejection. When failure occurs the dental implant must be removed.

The main reason for dental implant failure is peri-implantitis. This is the destructive inflammatory process affecting the soft and hard tissues surrounding dental implants. This occurs when pathogenic microbes in the mouth and oral cavity develop into biofilms, which protects them and encourages growth. Peri-implantitis is caused when the biofilms develop on dental implants.

A research team comprising scientists from the School of Biological Sciences, Peninsula Schools of Medicine and Dentistry and the School of Engineering at the University of Plymouth, have joined forces to develop and evaluate the effectiveness of a new nanocoating for dental implants to reduce the risk of peri-implantitis.

The results of their work are published in the journal Nanotoxicology (“Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings”).

A March 27, 2017 Plymouth University press release, which originated the news item, gives more details about the research,

In the study, the research team created a new approach using a combination of silver, titanium oxide and hydroxyapatite nanocoatings.

The application of the combination to the surface of titanium alloy implants successfully inhibited bacterial growth and reduced the formation of bacterial biofilm on the surface of the implants by 97.5 per cent.

Not only did the combination result in the effective eradication of infection, it created a surface with anti-biofilm properties which supported successful integration into surrounding bone and accelerated bone healing.

Professor Christopher Tredwin, Head of Plymouth University Peninsula School of Dentistry, commented:

“In this cross-Faculty study we have identified the means to protect dental implants against the most common cause of their failure. The potential of our work for increased patient comfort and satisfaction, and reduced costs, is great and we look forward to translating our findings into clinical practice.”

The University of Plymouth was the first university in the UK to secure Research Council Funding in Nanoscience and this project is the latest in a long line of projects investigating nanotechnology and human health.

Nanoscience activity at the University of Plymouth is led by Professor Richard Handy, who has represented the UK on matters relating to the Environmental Safety and Human Health of Nanomaterials at the Organisation for Economic Cooperation and Development (OECD). He commented:

“As yet there are no nano-specific guidelines in dental or medical implant legislation and we are, with colleagues elsewhere, guiding the way in this area. The EU recognises that medical devices and implants must: perform as expected for its intended use, and be better than similar items in the market; be safe for the intended use or safer than an existing item, and; be biocompatible or have negligible toxicity.”

He added:

“Our work has been about proving these criteria which we have done in vitro. The next step would be to demonstrate the effectiveness of our discovery, perhaps with animal models and then human volunteers.”

Dr Alexandros Besinis, Lecturer in Mechanical Engineering at the School of Engineering, University of Plymouth, led the research team. He commented:

“Current strategies to render the surface of dental implants antibacterial with the aim to prevent infection and peri-implantitis development, include application of antimicrobial coatings loaded with antibiotics or chlorhexidine. However, such approaches are usually effective only in the short-term, and the use of chlorhexidine has also been reported to be toxic to human cells. The significance of our new study is that we have successfully applied a dual-layered silver-hydroxyapatite nanocoating to titanium alloy medical implants which helps to overcome these risks.”

Dr Besinis has been an Honorary Teaching Fellow at the Peninsula School of Dentistry since 2011 and has recently joined the School of Engineering. His research interests focus on advanced engineering materials and the use of nanotechnology to build novel biomaterials and medical implants with improved mechanical, physical and antibacterial properties.

Here’s a link to and a citation for the paper,

Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings by A. Besinis, S. D. Hadi, H. R. Le, C. Tredwin & R. D. Handy.  Nanotoxicology Volume 11, 2017 – Issue 3  Pages 327-338  http://dx.doi.org/10.1080/17435390.2017.1299890 Published online: 17 Mar 2017

This paper appears to be open access.

Ultra-thin superconducting film for outer space

Truth in a press release? But first, there’s this April 6, 2017 news item on Nanowerk announcing research that may have applications in aerospace and other sectors,

Experimental physicists in the research group led by Professor Uwe Hartmann at Saarland University have developed a thin nanomaterial with superconducting properties. Below about -200 °C these materials conduct electricity without loss, levitate magnets and can screen magnetic fields.

The particularly interesting aspect of this work is that the research team has succeeded in creating superconducting nanowires that can be woven into an ultra-thin film that is as flexible as cling film. As a result, novel coatings for applications ranging from aerospace to medical technology are becoming possible.

The research team will be exhibiting their superconducting film at Hannover Messe from April 24th to April 28th [2017] (Hall 2, Stand B46) and are looking for commercial and industrial partners with whom they can develop their system for practical applications.

An April 6, 2017 University of Saarland press release (also on EurekAlert), which originated the news item, provides more details along with a line that rings with the truth,

A team of experimental physicists at Saarland University have developed something that – it has to be said – seems pretty unremarkable at first sight. [emphasis mine] It looks like nothing more than a charred black piece of paper. But appearances can be deceiving. This unassuming object is a superconductor. The term ‘superconductor’ is given to a material that (usually at a very low temperatures) has zero electrical resistance and can therefore conduct an electric current without loss. Put simply, the electrons in the material can flow unrestricted through the cold immobilized atomic lattice. In the absence of electrical resistance, if a magnet is brought up close to a cold superconductor, the magnet effectively ‘sees’ a mirror image of itself in the superconducting material. So if a superconductor and a magnet are placed in close proximity to one another and cooled with liquid nitrogen they will repel each another and the magnet levitates above the superconductor. The term ‘levitation’ comes from the Latin word levitas meaning lightness. It’s a bit like a low-temperature version of the hoverboard from the ‘Back to the Future’ films. If the temperature is too high, however, frictionless sliding is just not going to happen.
Many of the common superconducting materials available today are rigid, brittle and dense, which makes them heavy. The Saarbrücken physicists have now succeeded in packing superconducting properties into a thin flexible film. The material is a essentially a woven fabric of plastic fibres and high-temperature superconducting nanowires. ‘That makes the material very pliable and adaptable – like cling film (or ‘plastic wrap’ as it’s also known). Theoretically, the material can be made to any size. And we need fewer resources than are typically required to make superconducting ceramics, so our superconducting mesh is also cheaper to fabricate,’ explains Uwe Hartmann, Professor of Nanostructure Research and Nanotechnology at Saarland University.

The low weight of the film is particularly advantageous. ‘With a density of only 0.05 grams per cubic centimetre, the material is very light, weighing about a hundred times less than a conventional superconductor. This makes the material very promising for all those applications where weight is an issue, such as in space technology. There are also potential applications in medical technology,’ explains Hartmann. The material could be used as a novel coating to provide low-temperature screening from electromagnetic fields, or it could be used in flexible cables or to facilitate friction-free motion.

In order to be able to weave this new material, the experimental physicists made use of a technique known as electrospinning, which is usually used in the manufacture of polymeric fibres. ‘We force a liquid material through a very fine nozzle known as a spinneret to which a high electrical voltage has been applied. This produces nanowire filaments that are a thousand times thinner than the diameter of a human hair, typically about 300 nanometres or less. We then heat the mesh of fibres so that superconductors of the right composition are created. The superconducting material itself is typically an yttrium-barium-copper-oxide or similar compound,’ explains Dr. Michael Koblischka, one of the research scientists in Hartmann‘s group.

The research project received €100,000 in funding from the Volkswagen Foundation as part of its ‘Experiment!’ initiative. The initiative aims to encourage curiosity-driven, blue-skies research. The positive results from the Saarbrücken research team demonstrate the value of this type of funding. Since September 2016, the project has been supported by the German Research Foundation (DFG). Total funds of around €425,000 will be provided over a three-year period during which the research team will be carrying out more detailed investigations into the properties of the nanowires.

I’d say the “unremarkable but appearances can be deceiving” comments are true more often than not. I think that’s one of the hard things about science. Big advances can look nondescript.

What looks like a pretty unremarkable piece of burnt paper is in fact an ultrathin superconductor that has been developed by the team lead by Uwe Hartmann (r.) shown here with doctoral student XianLin Zeng. Courtesy: Saarland University

In any event, here’s a link to and a citation for the paper,

Preparation of granular Bi-2212 nanowires by electrospinning by Xian Lin Zeng, Michael R Koblischka, Thomas Karwoth, Thomas Hauet, and Uwe Hartmann. Superconductor Science and Technology, Volume 30, Number 3 Published 1 February 2017

© 2017 IOP Publishing Ltd

This paper is behind a paywall.

Accurate spatial orientation for regenerating cells

German scientists have developed a system that helps guide nerve cells into proper spatial alignmentswhen they are regenerating according to an April 5, 2017 news item on Nanowerk,

In many tissues of the human body, such as nerve tissue, the spatial organization of cells plays an important role. Nerve cells and their long protrusions assemble into nerve tracts and transport information throughout the body. When such a tissue is injured, an accurate spatial orientation of the cells facilitates the healing process. Scientists from the DWI – Leibniz Institute for Interactive Materials in Aachen developed an injectable gel, which can act as a guidance system for nerve cells.

An April 5, 2017 Leibniz Institute press release, which originated the news item, explains more about the research,

Inside the body, an extracellular matrix surrounds the cells. It provides mechanical support and promotes spatial tissue organization. In order to regenerate damaged tissue, an artificial matrix can temporally replace the natural extracellular matrix. This matrix needs to mimic the natural cell environment in order to efficiently stimulate the regenerative potential of the surrounding tissue. Solid implants, however, may impair remaining healthy tissue whereas soft, injectable materials allow for a minimal invasive therapy, which is particularly beneficial for sensitive tissues, such as the spinal cord. Unfortunately, up to now, artificial soft materials did not yet reproduce the complex structures and spatial properties of natural tissues.

A team of scientists, headed by Dr. Laura De Laporte from the DWI – Leibniz Institute for Interactive Materials, developed a new, minimal invasive material termed ‘Anisogel’. “If you aim to enhance the regeneration of damaged spinal cord tissue, you need to come up with a new material concept,” says Jonas Rose. He is a PhD student working on the Anisogel project. “We use micrometer-sized building blocks and assemble them into 3D hierarchically organized structures.” Anisogel consists of two gel components. Many, microscopically small, soft rod-shaped gels, incorporated with a low amount of magnetic nanoparticles, are the first component. Using a weak magnetic field, scientists can orient the gel rods, after which a very soft surrounding gel matrix is crosslinked, forming the structural guidance system. The gel rods, being stabilized by the gel matrix, maintain their orientation, even after removal of the magnetic field. Using cell culture experiments, the researchers demonstrate that cells can easily migrate through this gel matrix, and that nerve cells and fibroblasts orient along the paths provided by this guidance system.  A low amount of one percent gel rods inside the entire Anisogel volume is proven to be sufficient to induce linear nerve growth. The material, developed by the Aachen-based scientists, is the first injectable biomaterial, which assembles into a controlled oriented structure after injection and provides a functional guidance system for cells. “To meet the complex requirements of this approach, the project team includes researchers with very different areas of expertise,” says Laura De Laporte, whose research is supported by a Starting Grant of the European Research Council. “This interdisciplinary work is what makes this project so fascinating.”

“Although our cell culture experiments were successful, we are prepared to go a long way to translate our Anisogel into a medical therapy. In collaboration with the Uniklinik RWTH Aachen, we currently plan pre-clinical studies to further test and optimize this material,” Laura De Laporte explains.

Here’s a link to and a citation for the paper,

Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance  by Jonas C. Rose, María Cámara-Torres, Khosrow Rahimi, Jens Köhler, Martin Möller, and Laura De Laporte. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.7b01123 Publication Date (Web): March 22, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Solar-powered graphene skin for more feeling in your prosthetics

A March 23, 2017 news item on Nanowerk highlights research that could put feeling into a prosthetic limb,

A new way of harnessing the sun’s rays to power ‘synthetic skin’ could help to create advanced prosthetic limbs capable of returning the sense of touch to amputees.

Engineers from the University of Glasgow, who have previously developed an ‘electronic skin’ covering for prosthetic hands made from graphene, have found a way to use some of graphene’s remarkable physical properties to use energy from the sun to power the skin.

Graphene is a highly flexible form of graphite which, despite being just a single atom thick, is stronger than steel, electrically conductive, and transparent. It is graphene’s optical transparency, which allows around 98% of the light which strikes its surface to pass directly through it, which makes it ideal for gathering energy from the sun to generate power.

A March 23, 2017 University of Glasgow press release, which originated the news item, details more about the research,

Ravinder Dahiya

Dr Ravinder Dahiya

A new research paper, published today in the journal Advanced Functional Materials, describes how Dr Dahiya and colleagues from his Bendable Electronics and Sensing Technologies (BEST) group have integrated power-generating photovoltaic cells into their electronic skin for the first time.

Dr Dahiya, from the University of Glasgow’s School of Engineering, said: “Human skin is an incredibly complex system capable of detecting pressure, temperature and texture through an array of neural sensors which carry signals from the skin to the brain.

“My colleagues and I have already made significant steps in creating prosthetic prototypes which integrate synthetic skin and are capable of making very sensitive pressure measurements. Those measurements mean the prosthetic hand is capable of performing challenging tasks like properly gripping soft materials, which other prosthetics can struggle with. We are also using innovative 3D printing strategies to build more affordable sensitive prosthetic limbs, including the formation of a very active student club called ‘Helping Hands’.

“Skin capable of touch sensitivity also opens the possibility of creating robots capable of making better decisions about human safety. A robot working on a construction line, for example, is much less likely to accidentally injure a human if it can feel that a person has unexpectedly entered their area of movement and stop before an injury can occur.”

The new skin requires just 20 nanowatts of power per square centimetre, which is easily met even by the poorest-quality photovoltaic cells currently available on the market. And although currently energy generated by the skin’s photovoltaic cells cannot be stored, the team are already looking into ways to divert unused energy into batteries, allowing the energy to be used as and when it is required.

Dr Dahiya added: “The other next step for us is to further develop the power-generation technology which underpins this research and use it to power the motors which drive the prosthetic hand itself. This could allow the creation of an entirely energy-autonomous prosthetic limb.

“We’ve already made some encouraging progress in this direction and we’re looking forward to presenting those results soon. We are also exploring the possibility of building on these exciting results to develop wearable systems for affordable healthcare. In this direction, recently we also got small funds from Scottish Funding Council.”

For more information about this advance and others in the field of prosthetics you may want to check out Megan Scudellari’s March 30, 2017 article for the IEEE’s (Institute of Electrical and Electronics Engineers) Spectrum (Note: Links have been removed),

Cochlear implants can restore hearing to individuals with some types of hearing loss. Retinal implants are now on the market to restore sight to the blind. But there are no commercially available prosthetics that restore a sense of touch to those who have lost a limb.

Several products are in development, including this haptic system at Case Western Reserve University, which would enable upper-limb prosthetic users to, say, pluck a grape off a stem or pull a potato chip out of a bag. It sounds simple, but such tasks are virtually impossible without a sense of touch and pressure.

Now, a team at the University of Glasgow that previously developed a flexible ‘electronic skin’ capable of making sensitive pressure measurements, has figured out how to power their skin with sunlight. …

Here’s a link to and a citation for the paper,

Energy-Autonomous, Flexible, and Transparent Tactile Skin by Carlos García Núñez, William Taube Navaraj, Emre O. Polat and Ravinder Dahiya. Advanced Functional Materials DOI: 10.1002/adfm.201606287 Version of Record online: 22 MAR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Gold spring-shaped coils for detecting twisted molecules

An April 3, 2017 news item on ScienceDaily describes a technique that could improve nanorobotics and more,

University of Bath scientists have used gold spring-shaped coils 5,000 times thinner than human hairs with powerful lasers to enable the detection of twisted molecules, and the applications could improve pharmaceutical design, telecommunications and nanorobotics.

An April 3, 2017 University of Bath press release (also on EurekAlert), which originated the news item, provides more detail (Note: A link has been removed),

Molecules, including many pharmaceuticals, twist in certain ways and can exist in left or right ‘handed’ forms depending on how they twist. This twisting, called chirality, is crucial to understand because it changes the way a molecule behaves, for example within our bodies.

Scientists can study chiral molecules using particular laser light, which itself twists as it travels. Such studies get especially difficult for small amounts of molecules. This is where the minuscule gold springs can be helpful. Their shape twists the light and could better fit it to the molecules, making it easier to detect minute amounts.

Using some of the smallest springs ever created, the researchers from the University of Bath Department of Physics, working with colleagues from the Max Planck Institute for Intelligent Systems, examined how effective the gold springs could be at enhancing interactions between light and chiral molecules. They based their study on a colour-conversion method for light, known as Second Harmonic Generation (SHG), whereby the better the performance of the spring, the more red laser light converts into blue laser light.

They found that the springs were indeed very promising but that how well they performed depended on the direction they were facing.

Physics PhD student David Hooper who is the first author of the study, said: “It is like using a kaleidoscope to look at a picture; the picture becomes distorted when you rotate the kaleidoscope. We need to minimise the distortion.”

In order to reduce the distortions, the team is now working on ways to optimise the springs, which are known as chiral nanostructures.

“Closely observing the chirality of molecules has lots of potential applications, for example it could help improve the design and purity of pharmaceuticals and fine chemicals, help develop motion controls for nanorobotics and miniaturise components in telecommunications,” said Dr Ventsislav Valev who led the study and the University of Bath research team.

Gold spring shaped coils help reveal information about chiral molecules. Credit Ventsi Valev.

Here’s a link to and a citation for the paper,

Strong Rotational Anisotropies Affect Nonlinear Chiral Metamaterials by David C. Hooper, Andrew G. Mark, Christian Kuppe, Joel T. Collins, Peer Fischer, Ventsislav K. Valev. Advanced Materials DOI: 10.1002/adma.201605110  View/save citation First published: 31 January 2017

This is an open access paper.

3D bioprinting: a conference about the latest trends (May 3 – 5, 2017 at the University of British Columbia, Vancouver)

The University of British Columbia’s (UBC) Peter Wall Institute for Advanced Studies (PWIAS) is hosting along with local biotech firm, Aspect Biosystems, a May 3 -5, 2017 international research roundtable known as ‘Printing the Future of Therapeutics in 3D‘.

A May 1, 2017 UBC news release (received via email) offers some insight into the field of bioprinting from one of the roundtable organizers,

This week, global experts will gather [4] at the University of British
Columbia to discuss the latest trends in 3D bioprinting—a technology
used to create living tissues and organs.

In this Q&A, UBC chemical and biological engineering professor
Vikramaditya Yadav [5], who is also with the Regenerative Medicine
Cluster Initiative in B.C., explains how bioprinting could potentially
transform healthcare and drug development, and highlights Canadian
innovations in this field.

WHY IS 3D BIOPRINTING SIGNIFICANT?

Bioprinted tissues or organs could allow scientists to predict
beforehand how a drug will interact within the body. For every
life-saving therapeutic drug that makes its way into our medicine
cabinets, Health Canada blocks the entry of nine drugs because they are
proven unsafe or ineffective. Eliminating poor-quality drug candidates
to reduce development costs—and therefore the cost to consumers—has
never been more urgent.

In Canada alone, nearly 4,500 individuals are waiting to be matched with
organ donors. If and when bioprinters evolve to the point where they can
manufacture implantable organs, the concept of an organ transplant
waiting list would cease to exist. And bioprinted tissues and organs
from a patient’s own healthy cells could potentially reduce the risk
of transplant rejection and related challenges.

HOW IS THIS TECHNOLOGY CURRENTLY BEING USED?

Skin, cartilage and bone, and blood vessels are some of the tissue types
that have been successfully constructed using bioprinting. Two of the
most active players are the Wake Forest Institute for Regenerative
Medicine in North Carolina, which reports that its bioprinters can make
enough replacement skin to cover a burn with 10 times less healthy
tissue than is usually needed, and California-based Organovo, which
makes its kidney and liver tissue commercially available to
pharmaceutical companies for drug testing.

Beyond medicine, bioprinting has already been commercialized to print
meat and artificial leather. It’s been estimated that the global
bioprinting market will hit $2 billion by 2021.

HOW IS CANADA INVOLVED IN THIS FIELD?

Canada is home to some of the most innovative research clusters and
start-up companies in the field. The UBC spin-off Aspect Biosystems [6]
has pioneered a bioprinting paradigm that rapidly prints on-demand
tissues. It has successfully generated tissues found in human lungs.

Many initiatives at Canadian universities are laying strong foundations
for the translation of bioprinting and tissue engineering into
mainstream medical technologies. These include the Regenerative Medicine
Cluster Initiative in B.C., which is headed by UBC, and the University
of Toronto’s Institute of Biomaterials and Biomedical Engineering.

WHAT ETHICAL ISSUES DOES BIOPRINTING CREATE?

There are concerns about the quality of the printed tissues. It’s
important to note that the U.S. Food and Drug Administration and Health
Canada are dedicating entire divisions to regulation of biomanufactured
products and biomedical devices, and the FDA also has a special division
that focuses on regulation of additive manufacturing – another name
for 3D printing.

These regulatory bodies have an impressive track record that should
assuage concerns about the marketing of substandard tissue. But cost and
pricing are arguably much more complex issues.

Some ethicists have also raised questions about whether society is not
too far away from creating Replicants, à la _Blade Runner_. The idea is
fascinating, scary and ethically grey. In theory, if one could replace
the extracellular matrix of bones and muscles with a stronger substitute
and use cells that are viable for longer, it is not too far-fetched to
create bones or muscles that are stronger and more durable than their
natural counterparts.

WILL DOCTORS BE PRINTING REPLACEMENT BODY PARTS IN 20 YEARS’ TIME?

This is still some way off. Optimistically, patients could see the
technology in certain clinical environments within the next decade.
However, some technical challenges must be addressed in order for this
to occur, beginning with faithful replication of the correct 3D
architecture and vascularity of tissues and organs. The bioprinters
themselves need to be improved in order to increase cell viability after
printing.

These developments are happening as we speak. Regulation, though, will
be the biggest challenge for the field in the coming years.

There are some events open to the public (from the international research roundtable homepage),

OPEN EVENTS

You’re invited to attend the open events associated with Printing the Future of Therapeutics in 3D.

Café Scientifique

Thursday, May 4, 2017
Telus World of Science
5:30 – 8:00pm [all tickets have been claimed as of May 2, 2017 at 3:15 pm PT]

3D Bioprinting: Shaping the Future of Health

Imagine a world where drugs are developed without the use of animals, where doctors know how a patient will react to a drug before prescribing it and where patients can have a replacement organ 3D-printed using their own cells, without dealing with long donor waiting lists or organ rejection. 3D bioprinting could enable this world. Join us for lively discussion and dessert as experts in the field discuss the exciting potential of 3D bioprinting and the ethical issues raised when you can print human tissues on demand. This is also a rare opportunity to see a bioprinter live in action!

Open Session

Friday, May 5, 2017
Peter Wall Institute for Advanced Studies
2:00 – 7:00pm

A Scientific Discussion on the Promise of 3D Bioprinting

The medical industry is struggling to keep our ageing population healthy. Developing effective and safe drugs is too expensive and time-consuming to continue unchanged. We cannot meet the current demand for transplant organs, and people are dying on the donor waiting list every day.  We invite you to join an open session where four of the most influential academic and industry professionals in the field discuss how 3D bioprinting is being used to shape the future of health and what ethical challenges may be involved if you are able to print your own organs.

ROUNDTABLE INFORMATION

The University of British Columbia and the award-winning bioprinting company Aspect Biosystems, are proud to be co-organizing the first “Printing the Future of Therapeutics in 3D” International Research Roundtable. This event will congregate global leaders in tissue engineering research and pharmaceutical industry experts to discuss the rapidly emerging and potentially game-changing technology of 3D-printing living human tissues (bioprinting). The goals are to:

Highlight the state-of-the-art in 3D bioprinting research
Ideate on disruptive innovations that will transform bioprinting from a novel research tool to a broadly adopted systematic practice
Formulate an actionable strategy for industry engagement, clinical translation and societal impact
Present in a public forum, key messages to educate and stimulate discussion on the promises of bioprinting technology

The Roundtable will bring together a unique collection of industry experts and academic leaders to define a guiding vision to efficiently deploy bioprinting technology for the discovery and development of new therapeutics. As the novel technology of 3D bioprinting is more broadly adopted, we envision this Roundtable will become a key annual meeting to help guide the development of the technology both in Canada and globally.

We thank you for your involvement in this ground-breaking event and look forward to you all joining us in Vancouver for this unique research roundtable.

Kind Regards,
The Organizing Committee
Christian Naus, Professor, Cellular & Physiological Sciences, UBC
Vikram Yadav, Assistant Professor, Chemical & Biological Engineering, UBC
Tamer Mohamed, CEO, Aspect Biosystems
Sam Wadsworth, CSO, Aspect Biosystems
Natalie Korenic, Business Coordinator, Aspect Biosystems

I’m glad to see this event is taking place—and with public events too! (Wish I’d seen the Café Scientifique announcement earlier when I first checked for tickets  yesterday. I was hoping there’d been some cancellations today.) Finally, for the interested, you can find Aspect Biosystems here.

Emerging technology and the law

I have three news bits about legal issues that are arising as a consequence of emerging technologies.

Deep neural networks, art, and copyright

Caption: The rise of automated art opens new creative avenues, coupled with new problems for copyright protection. Credit: Provided by: Alexander Mordvintsev, Christopher Olah and Mike Tyka

Presumably this artwork is a demonstration of automated art although they never really do explain how in the news item/news release. An April 26, 2017 news item on ScienceDaily announces research into copyright and the latest in using neural networks to create art,

In 1968, sociologist Jean Baudrillard wrote on automatism that “contained within it is the dream of a dominated world […] that serves an inert and dreamy humanity.”

With the growing popularity of Deep Neural Networks (DNN’s), this dream is fast becoming a reality.

Dr. Jean-Marc Deltorn, researcher at the Centre d’études internationales de la propriété intellectuelle in Strasbourg, argues that we must remain a responsive and responsible force in this process of automation — not inert dominators. As he demonstrates in a recent Frontiers in Digital Humanities paper, the dream of automation demands a careful study of the legal problems linked to copyright.

An April 26, 2017 Frontiers (publishing) news release on EurekAlert, which originated the news item, describes the research in more detail,

For more than half a century, artists have looked to computational processes as a way of expanding their vision. DNN’s are the culmination of this cross-pollination: by learning to identify a complex number of patterns, they can generate new creations.

These systems are made up of complex algorithms modeled on the transmission of signals between neurons in the brain.

DNN creations rely in equal measure on human inputs and the non-human algorithmic networks that process them.

Inputs are fed into the system, which is layered. Each layer provides an opportunity for a more refined knowledge of the inputs (shape, color, lines). Neural networks compare actual outputs to expected ones, and correct the predictive error through repetition and optimization. They train their own pattern recognition, thereby optimizing their learning curve and producing increasingly accurate outputs.

The deeper the layers are, the higher the level of abstraction. The highest layers are able to identify the contents of a given input with reasonable accuracy, after extended periods of training.

Creation thus becomes increasingly automated through what Deltorn calls “the arcane traceries of deep architecture”. The results are sufficiently abstracted from their sources to produce original creations that have been exhibited in galleries, sold at auction and performed at concerts.

The originality of DNN’s is a combined product of technological automation on one hand, human inputs and decisions on the other.

DNN’s are gaining popularity. Various platforms (such as DeepDream) now allow internet users to generate their very own new creations . This popularization of the automation process calls for a comprehensive legal framework that ensures a creator’s economic and moral rights with regards to his work – copyright protection.

Form, originality and attribution are the three requirements for copyright. And while DNN creations satisfy the first of these three, the claim to originality and attribution will depend largely on a given country legislation and on the traceability of the human creator.

Legislation usually sets a low threshold to originality. As DNN creations could in theory be able to create an endless number of riffs on source materials, the uncurbed creation of original works could inflate the existing number of copyright protections.

Additionally, a small number of national copyright laws confers attribution to what UK legislation defines loosely as “the person by whom the arrangements necessary for the creation of the work are undertaken.” In the case of DNN’s, this could mean anybody from the programmer to the user of a DNN interface.

Combined with an overly supple take on originality, this view on attribution would further increase the number of copyrightable works.

The risk, in both cases, is that artists will be less willing to publish their own works, for fear of infringement of DNN copyright protections.

In order to promote creativity – one seminal aim of copyright protection – the issue must be limited to creations that manifest a personal voice “and not just the electric glint of a computational engine,” to quote Deltorn. A delicate act of discernment.

DNN’s promise new avenues of creative expression for artists – with potential caveats. Copyright protection – a “catalyst to creativity” – must be contained. Many of us gently bask in the glow of an increasingly automated form of technology. But if we want to safeguard the ineffable quality that defines much art, it might be a good idea to hone in more closely on the differences between the electric and the creative spark.

This research is and be will part of a broader Frontiers Research Topic collection of articles on Deep Learning and Digital Humanities.

Here’s a link to and a citation for the paper,

Deep Creations: Intellectual Property and the Automata by Jean-Marc Deltorn. Front. Digit. Humanit., 01 February 2017 | https://doi.org/10.3389/fdigh.2017.00003

This paper is open access.

Conference on governance of emerging technologies

I received an April 17, 2017 notice via email about this upcoming conference. Here’s more from the Fifth Annual Conference on Governance of Emerging Technologies: Law, Policy and Ethics webpage,

The Fifth Annual Conference on Governance of Emerging Technologies:

Law, Policy and Ethics held at the new

Beus Center for Law & Society in Phoenix, AZ

May 17-19, 2017!

Call for Abstracts – Now Closed

The conference will consist of plenary and session presentations and discussions on regulatory, governance, legal, policy, social and ethical aspects of emerging technologies, including (but not limited to) nanotechnology, synthetic biology, gene editing, biotechnology, genomics, personalized medicine, human enhancement technologies, telecommunications, information technologies, surveillance technologies, geoengineering, neuroscience, artificial intelligence, and robotics. The conference is premised on the belief that there is much to be learned and shared from and across the governance experience and proposals for these various emerging technologies.

Keynote Speakers:

Gillian HadfieldRichard L. and Antoinette Schamoi Kirtland Professor of Law and Professor of Economics USC [University of Southern California] Gould School of Law

Shobita Parthasarathy, Associate Professor of Public Policy and Women’s Studies, Director, Science, Technology, and Public Policy Program University of Michigan

Stuart Russell, Professor at [University of California] Berkeley, is a computer scientist known for his contributions to artificial intelligence

Craig Shank, Vice President for Corporate Standards Group in Microsoft’s Corporate, External and Legal Affairs (CELA)

Plenary Panels:

Innovation – Responsible and/or Permissionless

Ellen-Marie Forsberg, Senior Researcher/Research Manager at Oslo and Akershus University College of Applied Sciences

Adam Thierer, Senior Research Fellow with the Technology Policy Program at the Mercatus Center at George Mason University

Wendell Wallach, Consultant, ethicist, and scholar at Yale University’s Interdisciplinary Center for Bioethics

 Gene Drives, Trade and International Regulations

Greg Kaebnick, Director, Editorial Department; Editor, Hastings Center Report; Research Scholar, Hastings Center

Jennifer Kuzma, Goodnight-North Carolina GlaxoSmithKline Foundation Distinguished Professor in Social Sciences in the School of Public and International Affairs (SPIA) and co-director of the Genetic Engineering and Society (GES) Center at North Carolina State University

Andrew Maynard, Senior Sustainability Scholar, Julie Ann Wrigley Global Institute of Sustainability Director, Risk Innovation Lab, School for the Future of Innovation in Society Professor, School for the Future of Innovation in Society, Arizona State University

Gary Marchant, Regents’ Professor of Law, Professor of Law Faculty Director and Faculty Fellow, Center for Law, Science & Innovation, Arizona State University

Marc Saner, Inaugural Director of the Institute for Science, Society and Policy, and Associate Professor, University of Ottawa Department of Geography

Big Data

Anupam Chander, Martin Luther King, Jr. Professor of Law and Director, California International Law Center, UC Davis School of Law

Pilar Ossorio, Professor of Law and Bioethics, University of Wisconsin, School of Law and School of Medicine and Public Health; Morgridge Institute for Research, Ethics Scholar-in-Residence

George Poste, Chief Scientist, Complex Adaptive Systems Initiative (CASI) (http://www.casi.asu.edu/), Regents’ Professor and Del E. Webb Chair in Health Innovation, Arizona State University

Emily Shuckburgh, climate scientist and deputy head of the Polar Oceans Team at the British Antarctic Survey, University of Cambridge

 Responsible Development of AI

Spring Berman, Ira A. Fulton Schools of Engineering, Arizona State University

John Havens, The IEEE [Institute of Electrical and Electronics Engineers] Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems

Subbarao Kambhampati, Senior Sustainability Scientist, Julie Ann Wrigley Global Institute of Sustainability, Professor, School of Computing, Informatics and Decision Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University

Wendell Wallach, Consultant, Ethicist, and Scholar at Yale University’s Interdisciplinary Center for Bioethics

Existential and Catastrophic Ricks [sic]

Tony Barrett, Co-Founder and Director of Research of the Global Catastrophic Risk Institute

Haydn Belfield,  Academic Project Administrator, Centre for the Study of Existential Risk at the University of Cambridge

Margaret E. Kosal Associate Director, Sam Nunn School of International Affairs, Georgia Institute of Technology

Catherine Rhodes,  Academic Project Manager, Centre for the Study of Existential Risk at CSER, University of Cambridge

These were the panels that are of interest to me; there are others on the homepage.

Here’s some information from the Conference registration webpage,

Early Bird Registration – $50 off until May 1! Enter discount code: earlybirdGETs50

New: Group Discount – Register 2+ attendees together and receive an additional 20% off for all group members!

Click Here to Register!

Conference registration fees are as follows:

  • General (non-CLE) Registration: $150.00
  • CLE Registration: $350.00
  • *Current Student / ASU Law Alumni Registration: $50.00
  • ^Cybsersecurity sessions only (May 19): $100 CLE / $50 General / Free for students (registration info coming soon)

There you have it.

Neuro-techno future laws

I’m pretty sure this isn’t the first exploration of potential legal issues arising from research into neuroscience although it’s the first one I’ve stumbled across. From an April 25, 2017 news item on phys.org,

New human rights laws to prepare for advances in neurotechnology that put the ‘freedom of the mind’ at risk have been proposed today in the open access journal Life Sciences, Society and Policy.

The authors of the study suggest four new human rights laws could emerge in the near future to protect against exploitation and loss of privacy. The four laws are: the right to cognitive liberty, the right to mental privacy, the right to mental integrity and the right to psychological continuity.

An April 25, 2017 Biomed Central news release on EurekAlert, which originated the news item, describes the work in more detail,

Marcello Ienca, lead author and PhD student at the Institute for Biomedical Ethics at the University of Basel, said: “The mind is considered to be the last refuge of personal freedom and self-determination, but advances in neural engineering, brain imaging and neurotechnology put the freedom of the mind at risk. Our proposed laws would give people the right to refuse coercive and invasive neurotechnology, protect the privacy of data collected by neurotechnology, and protect the physical and psychological aspects of the mind from damage by the misuse of neurotechnology.”

Advances in neurotechnology, such as sophisticated brain imaging and the development of brain-computer interfaces, have led to these technologies moving away from a clinical setting and into the consumer domain. While these advances may be beneficial for individuals and society, there is a risk that the technology could be misused and create unprecedented threats to personal freedom.

Professor Roberto Andorno, co-author of the research, explained: “Brain imaging technology has already reached a point where there is discussion over its legitimacy in criminal court, for example as a tool for assessing criminal responsibility or even the risk of reoffending. Consumer companies are using brain imaging for ‘neuromarketing’, to understand consumer behaviour and elicit desired responses from customers. There are also tools such as ‘brain decoders’ which can turn brain imaging data into images, text or sound. All of these could pose a threat to personal freedom which we sought to address with the development of four new human rights laws.”

The authors explain that as neurotechnology improves and becomes commonplace, there is a risk that the technology could be hacked, allowing a third-party to ‘eavesdrop’ on someone’s mind. In the future, a brain-computer interface used to control consumer technology could put the user at risk of physical and psychological damage caused by a third-party attack on the technology. There are also ethical and legal concerns over the protection of data generated by these devices that need to be considered.

International human rights laws make no specific mention to neuroscience, although advances in biomedicine have become intertwined with laws, such as those concerning human genetic data. Similar to the historical trajectory of the genetic revolution, the authors state that the on-going neurorevolution will force a reconceptualization of human rights laws and even the creation of new ones.

Marcello Ienca added: “Science-fiction can teach us a lot about the potential threat of technology. Neurotechnology featured in famous stories has in some cases already become a reality, while others are inching ever closer, or exist as military and commercial prototypes. We need to be prepared to deal with the impact these technologies will have on our personal freedom.”

Here’s a link to and a citation for the paper,

Towards new human rights in the age of neuroscience and neurotechnology by Marcello Ienca and Roberto Andorno. Life Sciences, Society and Policy201713:5 DOI: 10.1186/s40504-017-0050-1 Published: 26 April 2017

©  The Author(s). 2017

This paper is open access.