Category Archives: medicine

Brain Talks (Vancouver, Canada) Nov. 26, 2015 event: Neurobiology of depression

Here’s more about the Brain Talks event from a Nov. 23, 3015 email announcement,

Please join us for another stimulating BrainTalks event!

Neurobiology of Depression: Insights from different treatment techniques

Thursday, Nov 26 [2015], 6:00pm @ Paetzold Auditorium, Vancouver General Hospital


Dr. Andrew Howard ~ Deep Brain Stimulation

Dr Howard will highlight what he has learned from ten years of experience with deep brain stimulation of the subcallosal gyrus for treatment-refractory major depression. He aims to present a transparent, unbiased view of the current landscape of deep brain stimulation for depression as well as hypotheses on why subcallosal gyrus deep brain stimulation has helped some and failed others.

Dr. Joseph Tham ~ Electroconvulsive Therapy

Electroconvulsive therapy has been in use since the late 1930’s and continues to be an important therapeutic modality since then in the treatment of severe depressive illness. Dr Tham will discuss current practice and ideas on mechanisms of activity.

Dr. Hassan Azim ~ Psychoanalysis for Depression

Dr Azim will make a case for the role of psychoanalysis in the reversal of adverse consequences culminating in depression. Specifically, experiential, epigenetic, and developmental factors will be considered.

Panel discussion and wine and cheese reception to follow!

Please RSVP here

You can find the Brain Talks website here, which features a homepage inviting both medical personnel and members of the general public to the events,

BrainTalks is a series of talks inviting you to contemplate emerging research about the brain. Researchers studying the brain, from various disciplines including psychiatry, neuroscience, neuroimaging, and neurology, gather to discuss current leading edge topics on the mind.

As an audience member, you join the discussion at the end of the talk, both in the presence of the entire audience, and with an opportunity afterwards to talk with the speaker more informally in a wine and cheese casual setting. The talks also serve as a connecting place for those interested in similar topics, potentially launching new endeavours or simply connecting people in discussions on how to approach their research, their knowledge, or their clinical practice.

For the general public [emphasis mine], these talks serve as a channel where by knowledge usually sequestered in inaccessible journals or university classrooms, is now available, potentially allowing people to better understand their brains and minds, how they work, and how to optimize brain health.

Don’t forget to RSVP, so they’ll know how big a box of wine to purchase.

Swallow your technology and wear it inside (wearable tech: 2 of 3)

While there are a number of wearable and fashionable pieces of technology that monitor heart rate and breathing, they are all worn on the outside of your body. Researchers are working on an alternative that can be swallowed and will monitor vital signs from within the gastrointestinal tract. I believe this is a prototype of the device,

This ingestible electronic device invented at MIT can measure heart rate and respiratory rate from inside the gastrointestinal tract. Courtesy: MIT

This ingestible electronic device invented at MIT can measure heart rate and respiratory rate from inside the gastrointestinal tract. Image: Albert Swiston/MIT Lincoln Laboratory Courtesy: MIT

From a Nov. 18, 2015 news item on,

This type of sensor could make it easier to assess trauma patients, monitor soldiers in battle, perform long-term evaluation of patients with chronic illnesses, or improve training for professional and amateur athletes, the researchers say.

The new sensor calculates heart and breathing rates from the distinctive sound waves produced by the beating of the heart and the inhalation and exhalation of the lungs.

“Through characterization of the acoustic wave, recorded from different parts of the GI tract, we found that we could measure both heart rate and respiratory rate with good accuracy,” says Giovanni Traverso, a research affiliate at MIT’s Koch Institute for Integrative Cancer Research, a gastroenterologist at Massachusetts General Hospital, and one of the lead authors of a paper describing the device in the Nov. 18 issue of the journal PLOS One.

A Nov. 18, 2015 Massachusetts Institute of Technology (MIT) news release by Anne Trafton, which originated the news item, further explains the research,

Doctors currently measure vital signs such as heart and respiratory rate using techniques including electrocardiograms (ECG) and pulse oximetry, which require contact with the patient’s skin. These vital signs can also be measured with wearable monitors, but those are often uncomfortable to wear.

Inspired by existing ingestible devices that can measure body temperature, and others that take internal digestive-tract images, the researchers set out to design a sensor that would measure heart and respiratory rate, as well as temperature, from inside the digestive tract.

The simplest way to achieve this, they decided, would be to listen to the body using a small microphone. Listening to the sounds of the chest is one of the oldest medical diagnostic techniques, practiced by Hippocrates in ancient Greece. Since the 1800s, doctors have used stethoscopes to listen to these sounds.

The researchers essentially created “an extremely tiny stethoscope that you can swallow,” Swiston says. “Using the same sensor, we can collect both your heart sounds and your lung sounds. That’s one of the advantages of our approach — we can use one sensor to get two pieces of information.”

To translate these acoustic data into heart and breathing rates, the researchers had to devise signal processing systems that distinguish the sounds produced by the heart and lungs from each other, as well as from background noise produced by the digestive tract and other parts of the body.

The entire sensor is about the size of a multivitamin pill and consists of a tiny microphone packaged in a silicone capsule, along with electronics that process the sound and wirelessly send radio signals to an external receiver, with a range of about 3 meters.

In tests along the GI tract of pigs, the researchers found that the device could accurately pick up heart rate and respiratory rate, even when conditions such as the amount of food being digested were varied.

“The authors introduce some interesting and radically different approaches to wearable physiological status monitors, in which the devices are not worn on the skin or on clothing, but instead reside, in a transient fashion, inside the gastrointestinal tract. The resulting capabilities provide a powerful complement to those found in wearable technologies as traditionally conceived,” says John Rogers, a professor of materials science and engineering at the University of Illinois who was not part of the research team.

Better diagnosis

The researchers expect that the device would remain in the digestive tract for only a day or two, so for longer-term monitoring, patients would swallow new capsules as needed.

For the military, this kind of ingestible device could be useful for monitoring soldiers for fatigue, dehydration, tachycardia, or shock, the researchers say. When combined with a temperature sensor, it could also detect hypothermia, hyperthermia, or fever from infections.

In the future, the researchers plan to design sensors that could diagnose heart conditions such as abnormal heart rhythms (arrhythmias), or breathing problems including emphysema or asthma. Currently doctors require patients to wear a harness (Holter) monitor for up to a week to detect such problems, but these often fail to produce a diagnosis because patients are uncomfortable wearing them 24 hours a day.

“If you could ingest a device that would listen for those pathological sounds, rather than wearing an electrical monitor, that would improve patient compliance,” Swiston says.

The researchers also hope to create sensors that would not only diagnose a problem but also deliver a drug to treat it.

“We hope that one day we’re able to detect certain molecules or a pathogen and then deliver an antibiotic, for example,” Traverso says. “This development provides the foundation for that kind of system down the line.”

MIT has provided a video with two of the researchers describing their work and and plans for its future development,

Here’s a link to and a citation for the paper,

Physiologic Status Monitoring via the Gastrointestinal Tract by G. Traverso, G. Ciccarelli, S. Schwartz, T. Hughes, T. Boettcher, R. Barman, R. Langer, & A. Swiston. PLOS DOI: 10.1371/journal.pone.0141666 Published: November 18, 2015

This paper is open access.

Shape memory in a supercapacitor fibre for ‘smart’ textiles (wearable tech: 1 of 3)

Wearable technology seems to be quite trendy for a grouping not usually seen: consumers, fashion designers, medical personnel, manufacturers, and scientists.

The first in this informal series concerns a fibre with memory shape. From a Nov. 19, 2015 news item on Nanowerk (Note: A link has been removed),

Wearing your mobile phone display on your jacket sleeve or an EKG probe in your sports kit are not off in some distant imagined future. Wearable “electronic textiles” are on the way. In the journal Angewandte Chemie (“A Shape-Memory Supercapacitor Fiber”), Chinese researchers have now introduced a new type of fiber-shaped supercapacitor for energy-storage textiles. Thanks to their shape memory, these textiles could potentially adapt to different body types: shapes formed by stretching and bending remain “frozen”, but can be returned to their original form or reshaped as desired.

A Nov. 19, 2015 Wiley Publishers press release, which originated the news item, provides context and detail about the work,

Any electronic components designed to be integrated into textiles must be stretchable and bendable. This is also true of the supercapacitors that are frequently used for data preservation in static storage systems (SRAM). SRAM is a type of storage that holds a small amount of data that is rapidly retrievable. It is often used for caches in processors or local storage on chips in devices whose data must be stored for long periods without a constant power supply. Some time ago, a team headed by Huisheng Peng at Fudan University developed stretchable, pliable fiber-shaped supercapacitors for integration into electronic textiles. Peng and his co-workers have now made further progress: supercapacitor fibers with shape memory.

Any electronic components designed to be integrated into textiles must be stretchable and bendable. This is also true of the supercapacitors that are frequently used for data preservation in static storage systems (SRAM). SRAM is a type of storage that holds a small amount of data that is rapidly retrievable. It is often used for caches in processors or local storage on chips in devices whose data must be stored for long periods without a constant power supply.
Some time ago, a team headed by Huisheng Peng at Fudan University developed stretchable, pliable fiber-shaped supercapacitors for integration into electronic textiles. Peng and his co-workers have now made further progress: supercapacitor fibers with shape memory.

The fibers are made using a core of polyurethane fiber with shape memory. This fiber is wrapped with a thin layer of parallel carbon nanotubes like a sheet of paper. This is followed by a coating of electrolyte gel, a second sheet of carbon nanotubes, and a final layer of electrolyte gel. The two layers of carbon nanotubes act as electrodes for the supercapacitor. Above a certain temperature, the fibers produced in this process can be bent as desired and stretched to twice their original length. The new shape can be “frozen” by cooling. Reheating allows the fibers to return to their original shape and size, after which they can be reshaped again. The electrochemical performance is fully maintained through all shape changes.

Weaving the fibers into tissues results in “smart” textiles that could be tailored to fit the bodies of different people. This could be used to make precisely fitted but reusable electronic monitoring systems for patients in hospitals, for example. The perfect fit should render them both more comfortable and more reliable.

Here’s a link to and a citation for the paper,

A Shape-Memory Supercapacitor Fiber by Jue Deng, Ye Zhang, Yang Zhao, Peining Chen, Dr. Xunliang Cheng, & Prof. Dr. Huisheng Peng. Angewandte Chemie International Edition  DOI: 10.1002/anie.201508293  First published: 3 November 2015

This paper is behind a paywall.

Attomolar cancer detection: measuring microRNAs in blood

The latest research does not lead to a magical disease detector where nanoscale sensors swim through the body continuously monitoring our health and alerting us should something untoward occur (see this Oct. 28, 2014 article on for more about Google X’s development plans for it and this Nov. 11, 2015 news item on Nanowerk for a measured response from a researcher in the field).

Now onto some real research, a Nov. 17, 2015 news item on ScienceDaily announces an ultrasensitive (attoscale) sensor employing gold nanoparticles for detecting cancer,

A simple, ultrasensitive microRNA sensor developed and tested by researchers from the schools of science and medicine at Indiana University-Purdue University Indianapolis and the Indiana University Melvin and Bren Simon Cancer Center holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.

A Nov. 17, 2015 Indiana University-Purdue University Indianapolis news release on EurekAlert, which originated the news item, provides more detail about research that seems to have focused largely on pancreatic cancer detection (Note: Links have been removed),

In a study published in the Nov. [2015] issue of ACS Nano, a peer-reviewed journal of the American Chemical Society focusing on nanoscience and nanotechnology research, the IUPUI researchers describe their design of the novel, low-cost, nanotechnology-enabled reusable sensor. They also report on the promising results of tests of the sensor’s ability to identify pancreatic cancer or indicate the existence of a benign condition by quantifying changes in levels of microRNA signatures linked to pancreatic cancer. MicroRNAs are small molecules of RNA that regulate how larger RNA molecules lead to protein expression. As such, microRNAs are very important in biology and disease states.

“We used the fundamental concepts of nanotechnology to design the sensor to detect and quantify biomolecules at very low concentrations,” said Rajesh Sardar, Ph.D., who developed the sensor.

“We have designed an ultrasensitive technique so that we can see minute changes in microRNA concentrations in a patient’s blood and confirm the presence of pancreatic cancer.” Sardar is an assistant professor of chemistry and chemical biology in the School of Science at IUPUI and leads an interdisciplinary research program focusing on the intersection of analytical chemistry and the nanoscience of metallic nanoparticles.

“If we can establish that there is cancer in the pancreas because the sensor detects high levels of microRNA-10b or one of the other microRNAs associated with that specific cancer, we may be able to treat it sooner,” said Murray Korc, M.D., the Myles Brand Professor of Cancer Research at the IU School of Medicine and a researcher at the IU Simon Cancer Center. Korc, worked with Sardar to improve the sensor’s capabilities and led the testing of the sensor and its clinical uses as well as advancing the understanding of pancreatic cancer biology.

“That’s especially significant for pancreatic cancer, because for many patients it is symptom-free for years or even a decade or more, by which time it has spread to other organs, when surgical removal is no longer possible and therapeutic options are limited,” said Korc. “For example, diagnosis of pancreatic cancer at an early stage of the disease followed by surgical removal is associated with a 40 percent five-year survival. Diagnosis of metastatic pancreatic cancer, by contrast, is associated with life expectancy that is often only a year or less.

“The beauty of the sensor designed by Dr. Sardar is its ability to accurately detect mild increases in microRNA levels, which could allow for early cancer diagnosis,” Korc added.

Over the past decade, studies have shown that microRNAs play important roles in cancer and other diseases, such as diabetes and cardiovascular disorders. The new IUPUI nanotechnology-based sensor can detect changes in any of these microRNAs.

The sensor is a small glass chip that contains triangular-shaped gold nanoparticles called ‘nanoprisms.’ After dipping it in a sample of blood or another body fluid, the scientist measures the change in the nanoprism’s optical property to determine the levels of specific microRNAs.

For anyone concerned about the cost associated with creating sensors based on gold, about patents, or about current techniques for monitoring microRNAs, there’s more from the news release (Note: A link has been removed),

“Using gold nanoprisms may sound expensive, but it isn’t because these particles are so very tiny,” Sardar said. “It’s a rather cheap technique because it uses nanotechnology and needs very little gold. $250 worth of gold makes 4,000 sensors. Four thousand sensors allow you to do at least 4,000 tests. The low cost makes this technique ideal for use anywhere, including in low-resource environments in this country and around the world.”

Indiana University Research and Technology Corporation has filed a patent application on Sardar’s and Korc’s groundbreaking nanotechnology-enabled sensor. The researchers’ ultimate goal is to design ultrasensitive and extremely selective low-cost point-of-care diagnostics enabling individual therapeutic approaches to diseases.

Currently, polymerase chain reaction technology is used to determine microRNA signatures, which requires extraction of the microRNA from blood or other biological fluid and reverse transcription or amplification of the microRNA. PCR provides relative values. By contrast, the process developed at IUPUI is simpler, quantitative, more sensitive and highly specific even when two different microRNAs vary in a single position. The study demonstrated that the IUPUI nanotechnology-enabled sensor is as good as if not better than the most advanced PCR in detection and quantification of microRNA.

Here’s a link to and a citation for the paper,

Label-Free Nanoplasmonic-Based Short Noncoding RNA Sensing at Attomolar Concentrations Allows for Quantitative and Highly Specific Assay of MicroRNA-10b in Biological Fluids and Circulating Exosomes by Gayatri K. Joshi, Samantha Deitz-McElyea, Thakshila Liyanage, Katie Lawrence, Sonali Mali, Rajesh Sardar*, and Murray Korc. ACS Nano, Article ASAP DOI: 10.1021/acsnano.5b04527 Publication Date (Web): October 7, 2015

Copyright © 2015 American Chemical Society

This is an open access paper.

The researchers have provided this illustration of gold nanoprisms,

Caption: Indiana University-Purdue University Indianapolis researchers have developed a novel, low-cost, nanotechnology-enabled reusable sensor for which a patent application has been filed. Credit: Department of Chemistry and Chemical Biology, School of Science, Indiana University-Purdue University Indianapolis

Caption: Indiana University-Purdue University Indianapolis researchers have developed a novel, low-cost, nanotechnology-enabled reusable sensor for which a patent application has been filed. Credit: Department of Chemistry and Chemical Biology, School of Science, Indiana University-Purdue University Indianapolis

New tool for mapping neuronal connections in the brain

This work comes from the US Naval Research Laboratory according to a Nov. 17, 2015 news item on Nanowerk (Note: A link has been removed),

Research biologists, chemists and theoreticians at the U.S. Naval Research Laboratory (NRL), are on pace to develop the next generation of functional materials that could enable the mapping of the complex neural connections in the brain (“Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes”). The ultimate goal is to better understand how the billions of neurons in the brain communicate with one another during normal brain function, or dysfunction, as result of injury or disease.

“There is tremendous interest in mapping all the neuron connections in the human brain,” said Dr. James Delehanty, research biologist, Center for Biomolecular Science and Engineering. “To do that we need new tools or materials that allow us to see how large groups of neurons communicate with one another while, at the same time, being able to focus in on a single neuron’s activity. Our most recent work potentially opens the integration of voltage-sensitive nanomaterials into live cells and tissues in a variety of configurations to achieve real-time imaging capabilities not currently possible.”

A Nov. 17, 2015 US Naval Research Laboratory (NRL) news release on EurekAlert, which originated the news item, provides more details,

The basis of neuron communication is the time-dependent modulation of the strength of the electric field that is maintained across the cell’s plasma membrane. This is called an action potential. Among the nanomaterials under consideration for application in neuronal action potential imaging are quantum dots (QDs) — crystalline semiconductor nanomaterials possessing a number of advantageous photophysical attributes.

“QDs are very bright and photostable so you can look at them for long times and they allow for tissue imaging configurations that are not compatible with current materials, for example, organic dyes,” Delehanty added. “Equally important, we’ve shown here that QD brightness tracks, with very high fidelity, the time-resolved electric field strength changes that occur when a neuron undergoes an action potential. Their nanoscale size make them ideal nanoscale voltage sensing materials for interfacing with neurons and other electrically active cells for voltage sensing.”

QDs are small, bright, photo-stable materials that possess nanosecond fluorescence lifetimes. They can be localized within or on cellular plasma membranes and have low cytotoxicity when interfaced with experimental brain systems. Additionally, QDs possess two-photon action cross-section orders of magnitude larger than organic dyes or fluorescent proteins. Two-photon imaging is the preferred imaging modality for imaging deep (millimeters) into the brain and other tissues of the body.

In their most recent work, the NRL researchers showed that an electric field typical of those found in neuronal membranes results in suppression of the QD photoluminescence (PL) and, for the first time, that QD PL is able to track the action potential profile of a firing neuron with millisecond time resolution. This effect is shown to be connected with electric-field-driven QD ionization and consequent QD PL quenching, in contradiction with conventional wisdom that suppression of the QD PL is attributable to the quantum confined Stark effect — the shifting and splitting of spectral lines of atoms and molecules due to presence of an external electric field.

“The inherent superior photostability properties of QDs coupled with their voltage sensitivity could prove advantageous to long-term imaging capabilities that are not currently attainable using traditional organic voltage sensitive dyes,” Delehanty said. “We anticipate that continued research will facilitate the rational design and synthesis of voltage-sensitive QD probes that can be integrated in a variety of imaging configurations for the robust functional imaging and sensing of electrically active cells.”

Here’s a link to and a citation for the paper,

Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes by Clare E. Rowland, Kimihiro Susumu, Michael H. Stewart, Eunkeu Oh, Antti J. Mäkinen, Thomas J. O’Shaughnessy, Gary Kushto, Mason A. Wolak, Jeffrey S. Erickson, Alexander L. Efros, Alan L. Huston, and James B. Delehanty. Nano Lett., 2015, 15 (10), pp 6848–6854 DOI: 10.1021/acs.nanolett.5b02725 Publication Date (Web): September 28, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Primordial goo for implants

Using the words ‘goo’ and ‘nanotechnology’ together almost always leads to ‘end of world’ scenarios referred to as  ‘grey goo‘ or there’s an alternative ‘green goo’ version also known as ecophagy. Presumably, that’s why Australian researchers avoided the word ‘nanotechnology’ in their study of the original goo, primordial goo from which all life oozed, to develop a coating for medical implants. From a Nov. 16, 2015 (Australia) Commonwealth Scientific and Industrial Research Organisation (CSIRO) press release (also on EurekAlert),

Australia’s national science research organisation, CSIRO, has developed an innovative new coating that could be used to improve medical devices and implants, thanks to a “goo” thought to be have been home to the building blocks of life.

The molecules from this primordial goo – known as prebiotic compounds – can be traced back billions of years and have been studied intensively since their discovery several decades ago.

For the first time, Australian researchers have uncovered a way to use these molecules to assist with medical treatments.

“We wanted to use these prehistoric molecules, which are believed to have been the source of all life evolving on Earth, to see if we could apply the chemistry in a practical way.” [Dr. Richard Evans, CSIRO researcher]

The team discovered that the coating is bio-friendly and cells readily grow and colonise it.

It could be applied to medical devices to improve their performance and acceptance by the body.

This could assist with a range of medical procedures.

“The non-toxic coating (left) is adhesive and will coat almost any material making its potential biomedical applications really broad,” Dr Evans said.

The researchers also experimented with adding silver compounds, in order to produce an antibacterial coating that can be used on devices such as catheters to avoid infections.

“Other compounds can also be added to implants to reduce friction, make them more durable and resistant to wear,” Dr Evans said.

The coating process the scientists developed is very simple and uses methods and substances that are readily available.

This means biomedical manufacturers can produce improved results more cost effectively compared to existing coatings.

CSIRO is the first organisation to investigate practical applications of this kind using prebiotic chemistry.

“This research opens the door to a host of new biomedical possibilities that are still yet to be explored,” Dr Evans said.

CSIRO is seeking to partner with biomedical manufacturers to exploit this technology.

Here’s a link to and a citation for the paper,

Prebiotic-chemistry inspired polymer coatings for biomedical and material science applications by Helmut Thissen, Aylin Koegler, Mario Salwiczek, Christopher D Easton, Yue Qu, Trevor Lithgow, and Richard A Evans.  NPG Asia Materials (2015) 7, e225; doi:10.1038/am.2015.122 Published online 13 November 2015

This is an open access paper,

Science and the movies (Bond’s Spectre and The Martian)

There’s some nanotechnology in the new James Bond movie, Spectre, according to Johnny Brayson in his Nov. 5, 2015 (?) article for Bustle (Note: A link has been removed),

James Bond has always been known for his gadgets, and although Daniel Craig’s version of the character has been considerably less doohickey-heavy than past iterations, he’s still managed to make use of a few over the years, from his in-car defibrillator in Casino Royale to his biometric-coded gun in Skyfall. But Spectre, the newest Bond film, changes up the formula and brings more gadgets than fans have seen in years. There are returning favorites like a tricked out Aston Martin and an exploding watch, but there’s also a new twist on an old gadget that allows Bond to be tracked by his bosses, an injected microchip that records his every move. …

To Bond fans, though, the technology isn’t totally new. In Casino Royale, Bond is injected with a microchip that tracks his location and monitors his vital signs. However, when he’s captured by the bad guys, the device is cut out of his arm, rendering it useless. MI6 seems to have learned their lesson in Spectre, because this time around Bond is injected with Smart Blood, consisting of nanotechnology that does the same thing while flowing microscopically through his veins. As for whether it could really happen, the answer is not yet, but someday it could be.

Brayson provides an introduction to some of the exciting developments taking place scientifically in an intriguing way by relating those developments to a James Bond movie. Unfortunately, some of  his details  are wrong. For example, he is describing a single microchip introduced subcutaneously (under the skin) synonymously with ‘smart blood’ which would be many, many microchips prowling your bloodstream.

So, enjoy the article but exercise some caution. For example, this part in his article is mostly right (Note: Links have been removed),

However, there does actually exist nanotechnology that has been safely inserted into a human body — just not for the purposes of tracking.  Some “nanobots”, microscopic robots, have been used within the human eye to deliver drugs directly to the area that needs them [emphasis mine], and the idea is that one day similar nanobots will be able to be injected into one’s bloodstream to administer medication or even perform surgery. Some scientists even believe that a swarm of nanobots in the bloodstream could eventually make humans immune to disease, as the bots would simply destroy or fix any issues as soon as they arrive.

According to a Jan. 30, 2015 article by Jacopo Prisco for CNN, scientists at ETH Zurich were planning to start human clinical trials to test ‘micro or nanobots’ in the human eye. I cannot find any additional information about the proposed trials. Similarly, Israeli researcher Ido Bachelet announced a clinical trial of DNA nanobots on one patient to cure their leukemia (my Jan. 7, 2015 posting). An unsuccessful attempt to get updated information can found in a May 2015 Reddit Futurology posting.

The Martian

That film has been doing very well and, for the most part, seems to have gotten kudos for its science. However for those who like to dig down for more iinformation, Jeffrey Kluger’s Sept. 30, 2015 article for Time magazine expresses some reservations about the science while enthusing over its quality as a film,

… Go see The Martian. But still: Don’t expect all of the science to be what it should be. The hard part about good science fiction has always been the fiction part. How many liberties can you take and how big should they be before you lose credibility? In the case of The Martian, the answer is mixed.

The story’s least honest device is also its most important one: the massive windstorm that sweeps astronaut Mark Watney (Matt Damon) away, causing his crew mates to abandon him on the planet, assuming he has been killed. That sets the entire castaway tale into motion, but on a false note, because while Mars does have winds, its atmosphere is barely 1% of the density of Earth’s, meaning it could never whip up anything like the fury it does in the story.

“I needed a way to force the astronauts off the planet, so I allowed myself some leeway,” Weir conceded in a statement accompanying the movie’s release. …

It was exceedingly cool actually, and for that reason Weir’s liberty could almost be forgiven, but then the story tries to have it both ways with the same bit of science. When a pressure leak causes an entire pod on Watney’s habitat to blow up, he patches a yawning opening in what’s left of the dwelling with plastic tarp and duct tape. That might actually be enough to do the job in the tenuous atmosphere that does exist on Mars. But in the violent one Weir invents for his story, the fix wouldn’t last a day.

There’s more to this entertaining and educational article including embedded images and a video.

Ceapro (a Canadian biotech company) and its pressurized gas expanded technology with a mention of cellulose nanocrystals

At the mention of cellulose nanocrystals (CNC), my interest was piqued. From a Nov. 10, 2015 news item on Nanotechnology Now,

Ceapro Inc. (TSX VENTURE:CZO) (“Ceapro” or the “Company”), a growth-stage biotechnology company focused on the development and commercialization of active ingredients for healthcare and cosmetic industries, announced that Bernhard Seifried, Ph.D., Ceapro’s Senior Research Scientist and a co-inventor of its proprietary Pressurized Gas Expanded Technology (PGX) will present this morning [Nov. 10, 2015] at the prestigious 2015 Composites at Lake Louise engineering conference.

A Nov. 10, 2015 Ceapro press release, which originated the news item, describes the technology in a little more detail and briefly mentions cellulose nanocrystals (Note: A link has been removed),

Dr. Seifried will make a podium presentation entitled, “PGX – Technology: A versatile technology for generating advanced biopolymer materials,” which will feature the unique advantages of Ceapro’s enabling technology for processing aqueous solutions or dispersions of high molecular weight biopolymers, such as starch, polysaccharides, gums, pectins or cellulose nanocrystals, into open-porous morphologies, consisting of nano-scale particles and pores.

Gilles Gagnon, M.Sc., MBA, President and CEO of Ceapro, stated, “Our disruptive PGX enabling technology facilitates biopolymer processing at a new level for generating unique highly porous biopolymer morphologies that can be impregnated with bioactives/APIs or functionalized with other biopolymers to generate exfoliated nano-composites and novel advanced material. We believe this technology will provide transformational solutions not only for our internal programs, but importantly, can be applied much more broadly for Companies with whom we intend to partner globally.”

Utilizing its PGX technology, Ceapro successfully produces its bioactive pharmaceutical grade powder formulation of beta glucan, which is an ingredient in a number of personal care cosmeceutical products as well as a therapeutic agent used for wound healing and a lubricative agent integrated into injectable systems used to treat conditions like urinary incontinence. The Company is developing its enabling PGX platform at the commercial scale level. In order to fully exploit the use of this innovative technology, Ceapro has recently decided to further expand its new world-class manufacturing facility by 10,000 square feet.

“The PGX platform generates unique morphologies that are not possible to produce with other conventional drying systems,” Mr. Gagnon continued. “The ultra-light, highly porous polymer structures produced with PGX have a huge potential for use in an abundant number of applications ranging from functional foods, nutraceuticals, drug delivery and cosmeceuticals, to advanced technical applications.”

Ceapro’s novel PGX Technology can be utilized for a wide variety of bio-industrial processing applications including:

  • Dry aqueous solutions or dispersions of polymers derived from agricultural and/or forestry feedstock, such as polysaccharides, gums, biopolymers at mild processing conditions (40⁰C).
  • Purify biopolymers by removing lipids, salts, sugars and other contaminants, impurities and odours during the precipitation and drying process.
  • Micronize the polymer to a matrix consisting of highly porous fibrils or spherical particles having nano-scale features depending on polymer molecular structure.
  • Functionalize the polymer matrix by generating exfoliated nano-composites of various polymers forming fibers and/or spheres simply by mixing various aqueous polymer solutions/dispersions prior to PGX processing.
  • Impregnate the polymer matrix homogeneously with thermo-sensitive bioactives and/or hydrophobic modifiers to tune solubility of the final polymer bioactive matrix all in the same processing equipment at mild conditions (40⁰C).
  • Extract valuable bioactives at mild conditions from fermentation slurries, while drying the residual biomass.

The highly tune-able PGX process can generate exfoliated nano-composites and highly porous morphologies ranging from sub-micron particles (50nm) to micron-sized granules (2mm), as well as micro- and nanofibrils, granules, fine powders and aerogels with porosities of >99% and specific surface areas exceeding 300 m2/gram. The technology is based on a spray drying method, operating at mild temperatures (40°C) and moderate pressures (100-200 bar) utilizing PGX liquids, which is comprised of a mixture of food grade, recyclable solvents, generally regarded as safe (GRAS), such as pressurized carbon dioxide and anhydrous ethanol. The unique properties of PGX liquids afford single phase conditions and very low or vanishing interfacial tension during the spraying process. This then allows the generation of extremely fine particle morphologies with high porosity and a large specific surface area resulting in favorable solubilisation properties. This platform drying technology has been successfully scaled up from lab scale to pilot scale with a processing capacity of about 200 kg/hr of aqueous solutions.

Ceapro is based in Edmonton in the province of Alberta. This is a province with a CNC (cellulose nanocrytals) pilot production plant as I noted in my Nov. 10, 2013 posting where I belatedly mentioned the plant’s September 2013 commissioning date. The plant was supposed to have had a grand opening in 2014 according to a Sept. 12, 2013 Alberta Innovates Technology Futures [AITF] news release,

“Alberta Innovates-Technology Futures is proud to host and operate Western Canada’s only CNC pilot plant,” said Stephen Lougheed, AITF’s President and CEO. “Today’s commissioning is an important milestone in our ongoing efforts to provide technological know-how to our research and industry partners in their continued applied R&D and commercialization efforts. We’re able to provide researchers with more CNC than ever before, thereby accelerating the development of commercial applications.”

Members of Alberta’s and Western Canada’s growing CNC communities of expertise and interest spent the afternoon exploring potential commercial applications for the cellulose-based ‘wonder material.’

The CNC Pilot Plant’s Grand Opening is planned for 2014. [emphasis mine]

I have not been able to find any online trace of the plant’s grand opening. But I did find a few things. The AITF website has a page dedicated to CNC and its pilot plant and there’s a slide show about CNC and occupational health and safety from members of Alberta’s CNC Pilot Plant Research Team for their project, which started in 2014.

No mention in the Alberta media materials is ever made of CelluForce, a CNC production plant in the province of Québec, which predates the Alberta plant by more than 18 months (my Dec. 15, 2011 posting).

One last comment, CNC or cellulose nanocrystals are sometimes called nanocrystalline cellulose or NCC. This is a result of Canadians who were leaders at the time naming the substance NCC but over time researchers and producers from other countries have favoured the term CNC. Today (2015), the NCC term has been trademarked by Celluforce.

Snake venom as a healing agent in hydrogels

The Brazilian lancehead is one of several South American pit vipers that produce venom that has proven to be a powerful blood coagulant. Scientists at Rice University have combined a derivative of the venom with their injectable hydrogels to create a material that can quickly stop bleeding and protect wounds, even in patients who take anti-coagulant medications. (Credit: Photo by Greg Hume via Wikipedia)

The Brazilian lancehead is one of several South American pit vipers that produce venom that has proven to be a powerful blood coagulant. Scientists at Rice University have combined a derivative of the venom with their injectable hydrogels to create a material that can quickly stop bleeding and protect wounds, even in patients who take anti-coagulant medications. (Credit: Photo by Greg Hume via Wikipedia)

Mesmerizing and beautiful in their way, venomous snakes are healers, as well as, killers. An Oct. 27, 2015 news item on Azonano describes a new healing use for their venom,

A nanofiber hydrogel infused with snake venom may be the best material to stop bleeding quickly, according to Rice University scientists.

The hydrogel called SB50 incorporates batroxobin, a venom produced by two species of South American pit viper. It can be injected as a liquid and quickly turns into a gel that conforms to the site of a wound, keeping it closed, and promotes clotting within seconds.

An Oct. 26, 2015 Rice University news release, which originated the news item, provides more details (Note: Links have been removed),

Rice chemist Jeffrey Hartgerink, lead author Vivek Kumar and their colleagues reported their discovery in the American Chemical Society journal ACS Biomaterials Science and Engineering. The hydrogel may be most useful for surgeries, particularly for patients who take anti-coagulant drugs to thin their blood.

“It’s interesting that you can take something so deadly and turn it into something that has the potential to save lives,” Hartgerink said.

Batroxobin was recognized for its properties as a coagulant – a substance that encourages blood to clot – in 1936. It has been used in various therapies as a way to remove excess fibrin proteins from the blood to treat thrombosis and as a topical hemostat. It has also been used as a diagnostic tool to determine blood-clotting time in the presence of heparin, an anti-coagulant drug.

“From a clinical perspective, that’s far and away the most important issue here,” Hartgerink said. “There’s a lot of different things that can trigger blood coagulation, but when you’re on heparin, most of them don’t work, or they work slowly or poorly. That obviously causes problems if you’re bleeding.

“Heparin blocks the function of thrombin, an enzyme that begins a cascade of reactions that lead to the clotting of blood,” he said. “Batroxobin is also an enzyme with similar function to thrombin, but its function is not blocked by heparin. This is important because surgical bleeding in patients taking heparin can be a serious problem. The use of batroxobin allows us to get around this problem because it can immediately start the clotting process, regardless of whether heparin is there or not.”

The batroxobin combined with the Rice lab’s hydrogels isn’t taken directly from snakes, Hartgerink said. The substance used for medicine is produced by genetically modified bacteria and then purified, avoiding the risk of other contaminant toxins.

The Rice researchers combined batroxobin with their synthetic, self-assembling nanofibers, which can be loaded into a syringe and injected at the site of a wound, where they reassemble themselves into a gel.

Tests showed the new material stopped a wound from bleeding in as little as six seconds, and further prodding of the wound minutes later did not reopen it. The researchers also tested several other options: the hydrogel without batroxobin, the batroxobin without the hydrogel, a current clinical hemostat known as GelFoam and an alternative self-assembling hemostat known as Puramatrix and found that none were as effective, especially in the presence of anti-coagulants.

The new work builds upon the Rice lab’s extensive development of injectable hydrogel scaffolds that help wounds heal and grow natural tissue. The synthetic scaffolds are built from the peptide sequences to mimic natural processes.

“To be clear, we did not discover nor do any of the initial investigations of batroxobin,” Hartgerink said. “Its properties have been well-known for many decades. What we did was combine it with the hydrogel we’ve been working on for a long time.

“We think SB50 has great potential to stop surgical bleeding, particularly in difficult cases in which the patient is taking heparin or other anti-coagulants,” he said. “SB50 takes the powerful clotting ability of this snake venom and makes it far more effective by delivering it in an easily localized hydrogel that prevents possible unwanted systemic effects from using batroxobin alone.”

SB50 will require FDA approval before clinical use, Hartgerink said. While batroxobin is already approved, the Rice lab’s hydrogel has not yet won approval, a process he expects will take several more years of testing.

Here’s a link to and a citation for the paper,

Nanofibrous Snake Venom Hemostat by Vivek A. Kumar, Navindee C. Wickremasinghe, Siyu Shi, and Jeffrey D. Hartgerink. ACS Biomater. Sci. Eng., Article ASAP
DOI: 10.1021/acsbiomaterials.5b00356 Publication Date (Web): October 22, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

US White House’s grand computing challenge could mean a boost for research into artificial intelligence and brains

An Oct. 20, 2015 posting by Lynn Bergeson on Nanotechnology Now announces a US White House challenge incorporating nanotechnology, computing, and brain research (Note: A link has been removed),

On October 20, 2015, the White House announced a grand challenge to develop transformational computing capabilities by combining innovations in multiple scientific disciplines. See The Office of Science and Technology Policy (OSTP) states that, after considering over 100 responses to its June 17, 2015, request for information, it “is excited to announce the following grand challenge that addresses three Administration priorities — the National Nanotechnology Initiative, the National Strategic Computing Initiative (NSCI), and the BRAIN initiative.” The grand challenge is to “[c]reate a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.”

Here’s where the Oct. 20, 2015 posting, which originated the news item, by Lloyd Whitman, Randy Bryant, and Tom Kalil for the US White House blog gets interesting,

 While it continues to be a national priority to advance conventional digital computing—which has been the engine of the information technology revolution—current technology falls far short of the human brain in terms of both the brain’s sensing and problem-solving abilities and its low power consumption. Many experts predict that fundamental physical limitations will prevent transistor technology from ever matching these twin characteristics. We are therefore challenging the nanotechnology and computer science communities to look beyond the decades-old approach to computing based on the Von Neumann architecture as implemented with transistor-based processors, and chart a new path that will continue the rapid pace of innovation beyond the next decade.

There are growing problems facing the Nation that the new computing capabilities envisioned in this challenge might address, from delivering individualized treatments for disease, to allowing advanced robots to work safely alongside people, to proactively identifying and blocking cyber intrusions. To meet this challenge, major breakthroughs are needed not only in the basic devices that store and process information and the amount of energy they require, but in the way a computer analyzes images, sounds, and patterns; interprets and learns from data; and identifies and solves problems. [emphases mine]

Many of these breakthroughs will require new kinds of nanoscale devices and materials integrated into three-dimensional systems and may take a decade or more to achieve. These nanotechnology innovations will have to be developed in close coordination with new computer architectures, and will likely be informed by our growing understanding of the brain—a remarkable, fault-tolerant system that consumes less power than an incandescent light bulb.

Recent progress in developing novel, low-power methods of sensing and computation—including neuromorphic, magneto-electronic, and analog systems—combined with dramatic advances in neuroscience and cognitive sciences, lead us to believe that this ambitious challenge is now within our reach. …

This is the first time I’ve come across anything that publicly links the BRAIN initiative to computing, artificial intelligence, and artificial brains. (For my own sake, I make an arbitrary distinction between algorithms [artificial intelligence] and devices that simulate neural plasticity [artificial brains].)The emphasis in the past has always been on new strategies for dealing with Parkinson’s and other neurological diseases and conditions.