Category Archives: medicine

Medical nanobots (nanorobots) and biocomputing; an important step in Russia

Russian researchers have reported a technique which can make logical calculations from within cells according to an Aug. 19, 2014 news item on ScienceDaily,

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT [Moscow Institute of Physics and Technology] have made an important step towards creating medical nanorobots. They discovered a way of enabling nano- and microparticles to produce logical calculations using a variety of biochemical reactions.

An Aug. 19 (?), 2014 MIPT press release, which originated the news item, provides a good beginner’s explanation of bioengineering in the context of this research,

For example, modern bioengineering techniques allow for making a cell illuminate with different colors or even programming it to die, linking the initiation  of apoptosis [cell death] to the result of binary operations.

Many scientists believe logical operations inside cells or in artificial biomolecular systems to be a way of controlling biological processes and creating full-fledged micro-and nano-robots, which can, for example, deliver drugs on schedule to those tissues where they are needed.

Calculations using biomolecules inside cells, a.k.a. biocomputing, are a very promising and rapidly developing branch of science, according to the leading author of the study, Maxim Nikitin, a 2010 graduate of MIPT’s Department of Biological and Medical Physics. Biocomputing uses natural cellular mechanisms. It is far more difficult, however, to do calculations outside cells, where there are no natural structures that could help carry out calculations. The new study focuses specifically on extracellular biocomputing.

The study paves the way for a number of biomedical technologies and differs significantly from previous works in biocomputing, which focus on both the outside and inside of cells. Scientists from across the globe have been researching binary operations in DNA, RNA and proteins for over a decade now, but Maxim Nikitin and his colleagues were the first to propose and experimentally confirm a method to transform almost any type of nanoparticle or microparticle into autonomous biocomputing structures that are capable of implementing a functionally complete set of Boolean logic gates (YES, NOT, AND and OR) and binding to a target (such as a cell) as result of a computation. This method allows for selective binding to target cells, as well as it represents a new platform to analyze blood and other biological materials.

The prefix “nano” in this case is not a fad or a mere formality. A decrease in particle size sometimes leads to drastic changes in the physical and chemical properties of a substance. The smaller the size, the greater the reactivity; very small semiconductor particles, for example, may produce fluorescent light. The new research project used nanoparticles (i.e. particles of 100 nm) and microparticles (3000 nm or 3 micrometers).

Nanoparticles were coated with a special layer, which “disintegrated” in different ways when exposed to different combinations of signals. A signal here is the interaction of nanoparticles with a particular substance. For example, to implement the logical operation “AND” a spherical nanoparticle was coated with a layer of molecules, which held a layer of spheres of a smaller diameter around it. The molecules holding the outer shell were of two types, each type reacting only to a particular signal; when in contact with two different substances small spheres separated from the surface of a nanoparticle of a larger diameter. Removing the outer layer exposed the active parts of the inner particle, and it was then able to interact with its target. Thus, the team obtained one signal in response to two signals.

For bonding nanoparticles, the researchers selected antibodies. This also distinguishes their project from a number of previous studies in biocomputing, which used DNA or RNA for logical operations. These natural proteins of the immune system have a small active region, which responds only to certain molecules; the body uses the high selectivity of antibodies to recognize and neutralize bacteria and other pathogens.

Making sure that the combination of different types of nanoparticles and antibodies makes it possible to implement various kinds of logical operations, the researchers showed that cancer cells can be specifically targeted as well. The team obtained not simply nanoparticles that can bind to certain types of cells, but particles that look for target cells when both of two different conditions are met, or when two different molecules are present or absent. This additional control may come in handy for more accurate destruction of cancer cells with minimal impact on healthy tissues and organs.

Maxim Nikitin said that although this is just as mall step towards creating efficient nanobiorobots, this area of science is very interesting and opens up great vistas for further research, if one draws an analogy between the first works in the creation of nanobiocomputers and the creation of the first diodes and transistors, which resulted in the rapid development of electronic computers.

Here’s a link to and a citation for the paper,

Biocomputing based on particle disassembly by Maxim P. Nikitin, Victoria O. Shipunova, Sergey M. Deyev, & Petr I. Nikitin. Nature Nanotechnology (2014) doi:10.1038/nnano.2014.156 Published online 17 August 2014

This paper is behind a paywall.

Monitoring health with graphene rubber bands

An Aug. 20, 2014 news item on Azonano highlights graphene research from the University of Surrey (UK) and Trinity College Dublin (Ireland),

Although body motion sensors already exist in different forms, they have not been widely used due to their complexity and cost of production.

Now researchers from the University of Surrey and Trinity College Dublin have for the first time treated common elastic bands with graphene, to create a flexible sensor that is sensitive enough for medical use and can be made cheaply.

An Aug. 15, 2014 University of Surrey press release (also on EurekAlert), which originated the news item, describes the innovation (Note: A link has been removed),

Once treated, the rubber bands remain highly pliable. By fusing this material with graphene – which imparts an electromechanical response on movement – the material can be used as a sensor to measure a patient’s breathing, heart rate or movement, alerting doctors to any irregularities.

“Until now, no such sensor has been produced that meets these needs,” said Surrey’s Dr Alan Dalton. “It sounds like a simple concept, but our graphene-infused rubber bands could really help to revolutionise remote healthcare – and they’re very cheap to manufacture.”

“These sensors are extraordinarily cheap compared to existing technologies. Each device would probably cost pennies instead of pounds, making it ideal technology for use in developing countries where there are not enough medically trained staff to effectively monitor and treat patients quickly.” [commented corresponding author, Professor Jonathan Coleman from Trinity College, Dublin]

Trinity College Dublin issued an Aug. 20, 2014 press release, which provides a little more technical detail and clarifies who led the team for anyone who may been curious about the matter,

The team – led by Professor of Chemical Physics at Trinity, Jonathan Coleman, one of the world’s leading nanoscientists – infused rubber bands with graphene, a nano-material derived from pencil lead which is 10,000 times smaller than the width of a human hair. This process is simple and compatible with normal manufacturing techniques. While rubber does not normally conduct electricity, the addition of graphene made the rubber bands electrically conductive without degrading the mechanical properties of the rubber. Tests showed that any electrical current flowing through the graphene-infused rubber bands was very strongly affected if the band was stretched. As a result, if the band is attached to clothing, the tiniest movements such as breath and pulse can be sensed.

The discovery opens up a host of possibilities for the development of wearable sensors from rubber, which could be used to monitor blood pressure, joint movement and respiration. Other applications of rubber-graphene sensors could be in the automotive industry (to develop sensitive airbags); in robotics, in medical device development (to monitor bodily motion), as early warning systems for cot death in babies or sleep apnoea in adults. They could also be woven into clothing to monitor athletes’ movement or for patients undergoing physical rehabilitation.

Professor Coleman said: “Sensors are becoming extremely important in medicine, wellness and exercise, medical device manufacturing, car manufacturing and robotics, among other areas. Biosensors, which are worn on or implanted into the skin, must be made of durable, flexible and stretchable materials that respond to the motion of the wearer. By implanting graphene into rubber, a flexible natural material, we are able to completely change its properties to make it electrically conductive, to develop a completely new type of sensor. Because rubber is available widely and cheaply, this unique discovery will open up major possibilities in sensor manufacturing worldwide.”

Here’s a link to and a citation for the paper,

Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites by Conor S. Boland, Umar Khan, Claudia Backes, Arlene O’Neill, Joe McCauley, Shane Duane, Ravi Shanker, Yang Liu, Izabela Jurewicz, Alan B. Dalton, and Jonathan N. Coleman. ACS Nano, Article ASAP DOI: 10.1021/nn503454h Publication Date (Web): August 6, 2014

Copyright © 2014 American Chemical Society

This paper is open access (I was able to open the HTML version this morning, Aug. 20, 2014). As well the researchers have made this image illustrating their work available,

[downloaded from http://pubs.acs.org/doi/full/10.1021/nn503454h]

[downloaded from http://pubs.acs.org/doi/full/10.1021/nn503454h]

Nanotechnology, tobacco plants, and the Ebola virus

Before presenting information about the current Ebola crisis and issues with vaccines and curatives, here’s a description of the disease from its Wikipedia entry,

Ebola virus disease (EVD) or Ebola hemorrhagic fever (EHF) is a disease of humans and other primates caused by an ebola virus. Symptoms start two days to three weeks after contracting the virus, with a fever, sore throat, muscle pain, and headaches. Typically nausea, vomiting, and diarrhea follow, along with decreased functioning of the liver and kidneys. Around this time, affected people may begin to bleed both within the body and externally. [1]

As for the current crisis in countries situated on the west coast of the African continent, there’s this from an Aug. 14, 2014 news item on ScienceDaily,

The outbreak of Ebola virus disease that has claimed more than 1,000 lives in West Africa this year poses a serious, ongoing threat to that region: the spread to capital cities and Nigeria — Africa’s most populous nation — presents new challenges for healthcare professionals. The situation has garnered significant attention and fear around the world, but proven public health measures and sharpened clinical vigilance will contain the epidemic and thwart a global spread, according to a new commentary by Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Dr. Fauci’s Aug. 13, 2014 commentary (open access) in the New England Journal of Medicine provides more detail (Note: A link has been removed),

An outbreak of Ebola virus disease (EVD) has jolted West Africa, claiming more than 1000 lives since the virus emerged in Guinea in early 2014 (see figure) Ebola Virus Cases and Deaths in West Africa (Guinea, Liberia, Nigeria, and Sierra Leone), as of August 11, 2014 (Panel A), and Over Time (Panel B).). The rapidly increasing numbers of cases in the African countries of Guinea, Liberia, and Sierra Leone have had public health authorities on high alert throughout the spring and summer. More recent events including the spread of EVD to Nigeria (Africa’s most populous country) and the recent evacuation to the United States of two American health care workers with EVD have captivated the world’s attention and concern. Health professionals and the general public are struggling to comprehend these unfolding dynamics and to separate misinformation and speculation from truth.

In early 2014, EVD emerged in a remote region of Guinea near its borders with Sierra Leone and Liberia. Since then, the epidemic has grown dramatically, fueled by several factors. First, Guinea, Sierra Leone, and Liberia are resource-poor countries already coping with major health challenges, such as malaria and other endemic diseases, some of which may be confused with EVD. Next, their borders are porous, and movement between countries is constant. Health care infrastructure is inadequate, and health workers and essential supplies including personal protective equipment are scarce. Traditional practices, such as bathing of corpses before burial, have facilitated transmission. The epidemic has spread to cities, which complicates tracing of contacts. Finally, decades of conflict have left the populations distrustful of governing officials and authority figures such as health professionals. Add to these problems a rapidly spreading virus with a high mortality rate, and the scope of the challenge becomes clear.

Although the regional threat of Ebola in West Africa looms large, the chance that the virus will establish a foothold in the United States or another high-resource country remains extremely small. Although global air transit could, and most likely will, allow an infected, asymptomatic person to board a plane and unknowingly carry Ebola virus to a higher-income country, containment should be readily achievable. Hospitals in such countries generally have excellent capacity to isolate persons with suspected cases and to care for them safely should they become ill. Public health authorities have the resources and training necessary to trace and monitor contacts. Protocols exist for the appropriate handling of corpses and disposal of biohazardous materials. In addition, characteristics of the virus itself limit its spread. Numerous studies indicate that direct contact with infected bodily fluids — usually feces, vomit, or blood — is necessary for transmission and that the virus is not transmitted from person to person through the air or by casual contact. Isolation procedures have been clearly outlined by the Centers for Disease Control and Prevention (CDC). A high index of suspicion, proper infection-control practices, and epidemiologic investigations should quickly limit the spread of the virus.

Fauci’s article makes it clear that public concerns are rising in the US and I imagine that’s true of Canada too and many other parts of the world, not to mention the countries currently experiencing the EVD outbreak. In the midst of all this comes a US Food and Drug Administration (FDA) warning as per an Aug. 15, 2014 news item (originated by Reuters reporter Toni Clarke) on Nanowerk,

The U.S. Food and Drug Administration said on Thursday [Aug. 14, 2014] it has become aware of products being sold online that fraudulently claim to prevent or treat Ebola.

The FDA’s warning comes on the heels of comments by Nigeria’s top health official, Onyebuchi Chukwu, who reportedly said earlier Thursday [Aug. 14, 2014] that eight Ebola patients in Lagos, the country’s capital, will receive an experimental treatment containing nano-silver.

Erica Jefferson, a spokeswoman for the FDA, said she could not provide any information about the product referenced by the Nigerians.

The Aug. 14,  2014 FDA warning reads in part,

The U.S. Food and Drug Administration is advising consumers to be aware of products sold online claiming to prevent or treat the Ebola virus. Since the outbreak of the Ebola virus in West Africa, the FDA has seen and received consumer complaints about a variety of products claiming to either prevent the Ebola virus or treat the infection.

There are currently no FDA-approved vaccines or drugs to prevent or treat Ebola. Although there are experimental Ebola vaccines and treatments under development, these investigational products are in the early stages of product development, have not yet been fully tested for safety or effectiveness, and the supply is very limited. There are no approved vaccines, drugs, or investigational products specifically for Ebola available for purchase on the Internet. By law, dietary supplements cannot claim to prevent or cure disease.

As per the FDA’s reference to experimental vaccines, an Aug. 6, 2014 article by Caroline Chen, Mark Niquette, Mark Langreth, and Marie French for Bloomberg describes the ZMapp vaccine/treatment (Note: Links have been removed),

On a small plot of land incongruously tucked amid a Kentucky industrial park sit five weather-beaten greenhouses. At the site, tobacco plants contain one of the most promising hopes for developing an effective treatment for the deadly Ebola virus.

The plants contain designer antibodies developed by San Diego-based Mapp Biopharmaceutical Inc. and are grown in Kentucky by a unit of Reynolds American Inc. Two stricken U.S. health workers received an experimental treatment containing the antibodies in Liberia last week. Since receiving doses of the drug, both patients’ conditions have improved.

Tobacco plant-derived medicines, which are also being developed by a company whose investors include Philip Morris International Inc., are part of a handful of cutting edge plant-based treatments that are in the works for everything from pandemic flu to rabies using plants such as lettuce, carrots and even duckweed. While the technique has existed for years, the treatments have only recently begun to reach the marketplace.

Researchers try to identify the best antibodies in the lab, before testing them on mice, then eventually on monkeys. Mapp’s experimental drug, dubbed ZMapp, has three antibodies, which work together to alert the immune system and neutralize the Ebola virus, she [Erica Ollman Saphire, a molecular biologist at the Scripps Research Institute,] said.

This is where the tobacco comes in: the plants are used as hosts to grow large amounts of the antibodies. Genes for the desired antibodies are fused to genes for a natural tobacco virus, Charles Arntzen, a plant biotechnology expert at Arizona State University, said in an Aug. 4 [2014] telephone interview.

The tobacco plants are then infected with this new artificial virus, and antibodies are grown inside the plant. Eventually, the tobacco is ground up and the antibody is extracted, Arntzen said.

The process of growing antibodies in mammals risks transferring viruses that could infect humans, whereas “plants are so far removed, so if they had some sort of plant virus we wouldn’t get sick because viruses are host-specific,” said Qiang Chen, a plant biologist at Arizona State University in Tempe, Arizona, in a telephone interview.

There is a Canadian (?) company working on a tobacco-based vaccines including one for EVD but as the Bloomberg writers note the project is highly secret,

Another tobacco giant-backed company working on biotech drugs grown in tobacco plants is Medicago Inc. in Quebec City, which is owned by Mitsubishi Tanabe Pharma Corp. and Philip Morris. [emphasis mine]

Medicago is working on testing a vaccine for pandemic influenza and has a production greenhouse facility in North Carolina, said Jean-Luc Martre, senior director for government affairs at Medicago. Medicago is planning a final stage trial of the pandemic flu vaccine for next year, he said in a telephone interview.

The plant method is flexible and capable of making antibodies and vaccines for numerous types of viruses, said Martre. In addition to influenza, the company’s website says it is in early stages of testing products for rabies and rotavirus.

Medicago ‘‘is currently closely working with partners for the production of an Ebola antibody as well as other antibodies that are of interest for bio-defense,” he said in an e-mail. He would not disclose who the partners were. [emphasis mine]

I have checked both the English and French language versions of Medicago’s website and cannot find any information about their work on ebola. (The Bloomberg article provides a good overview of the ebola situation and more. I recommend reading it and/or the Aug. 15, 2014 posting on CTV [Canadian Television Network] which originated from an Associated Press article by Malcolm Ritter).

Moving on to more research and ebola, Dexter Johnson in an Aug. 14, 2014 posting (on his Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website,) describes some work from Northeastern University (US), Note: Links have been removed,

With the Ebola virus death toll now topping 1000 and even the much publicized experimental treatment ZMapp failing to save the life of a Spanish missionary priest who was treated with it, it is clear that scientists need to explore new ways of fighting the deadly disease. For researchers at Northeastern University in Boston, one possibility may be using nanotechnology.

“It has been very hard to develop a vaccine or treatment for Ebola or similar viruses because they mutate so quickly,” said Thomas Webster, the chair of Northeastern’s chemical engineering department, in a press release. “In nanotechnology we turned our attention to developing nanoparticles that could be attached chemically to the viruses and stop them from spreading.”

Webster, along with many researchers in the nanotechnology community, have been trying to use gold nanoparticles, in combination with near-infrared light, to kill cancer cells with heat. The hope is that the same approach could be used to kill the Ebola virus.

There is also an Aug. 6, 2014 Northeastern University news release by Joe O’Connell describing the technique being used by Webster’s team,

… According to Web­ster, gold nanopar­ti­cles are cur­rently being used to treat cancer. Infrared waves, he explained, heat up the gold nanopar­ti­cles, which, in turn, attack and destroy every­thing from viruses to cancer cells, but not healthy cells.

Rec­og­nizing that a larger sur­face area would lead to a quicker heat-​​up time, Webster’s team cre­ated gold nanos­tars. “The star has a lot more sur­face area, so it can heat up much faster than a sphere can,” Web­ster said. “And that greater sur­face area allows it to attack more viruses once they absorb to the par­ti­cles.” The problem the researchers face, how­ever, is making sure the hot gold nanopar­ti­cles attack the virus or cancer cells rather than the healthy cells.

At this point, there don’t seem to be any curative measures generally available although some are available experimentally in very small quantities.

Shape-shifting bone material

Mammals of all kind have a horror disfigurement and will avoid members of their group who are disfigured. This horror is one of the themes to be found in the novel Frankenstein by Mary Shelley. Despite the difficulties, Roger Ebert (film critic) continued to make public appearances after cancer surgeries that changed his appearance (from a June 27, 2012 article by Ronni Gordon for Cancer Today),

Facing the Critics
Roger Ebert finds peace with his appearance following disfiguring cancer surgery

“Today I look like an exhibit in the Texas Chainsaw Museum,” he muses in his 2011 memoir, Life Itself. But Ebert decided he wasn’t going to hide the way he looks. In 2007, before attending his annual Overlooked Film Festival, now referred to as Ebertfest, at the University of Illinois at Urbana-Champaign, Ebert and his wife, Chaz, decided that a photograph of him should accompany a story he wrote for the Sun-Times. Later, he posed for a full-page photo that appeared in Esquire in March 2010.

“No point in denying it,” he wrote about his appearance in Life Itself. “No way to hide it. Better for it to be out there.”

Given the difficulties most people experience, researchers are eager to find solutions. An Aug. 13, 2014 American Chemical Society (ACS) news release (also on EurekAlert) describes a presentation at the ACS 284h meeting about shape-shifting material that could be used to ameliorate bone defects,

Injuries, birth defects (such as cleft palates) or surgery to remove a tumor can create gaps in bone that are too large to heal naturally. And when they occur in the head, face or jaw, these bone defects can dramatically alter a person’s appearance. Researchers will report today that they have developed a “self-fitting” material that expands with warm salt water to precisely fill bone defects, and also acts as a scaffold for new bone growth.

Currently, the most common method for filling bone defects in the head, face or jaw (known as the cranio-maxillofacial area) is autografting. That is a process in which surgeons harvest bone from elsewhere in the body, such as the hip bone, and then try to shape it to fit the bone defect.

“The problem is that the autograft is a rigid material that is very difficult to shape into these irregular defects,” says Melissa Grunlan, Ph.D., leader of the study. Also, harvesting bone for the autograft can itself create complications at the place where the bone was taken.

Another approach is to use bone putty or cement to plug gaps. However, these materials aren’t ideal. They become very brittle when they harden, and they lack pores, or small holes, that would allow new bone cells to move in and rebuild the damaged tissue.

To develop a better material, Grunlan and her colleagues at Texas A&M University made a shape-memory polymer (SMP) that molds itself precisely to the shape of the bone defect without being brittle. It also supports the growth of new bone tissue.

SMPs are materials whose geometry changes in response to heat. The team made a porous SMP foam by linking together molecules of poly(ε-caprolactone), an elastic, biodegradable substance that is already used in some medical implants. The resulting material resembled a stiff sponge, with many interconnected pores to allow bone cells to migrate in and grow.

Upon heating to 140 degrees Fahrenheit, the SMP becomes very soft and malleable. So, during surgery to repair a bone defect, a surgeon could warm the SMP to that temperature and fill in the defect with the softened material. Then, as the SMP is cooled to body temperature (98.6 degrees Fahrenheit), it would resume its former stiff texture and “lock” into place.

The researchers also coated the SMPs with polydopamine, a sticky substance that helps lock the polymer into place by inducing formation of a mineral that is found in bone. It may also help osteoblasts, the cells that produce bone, to adhere and spread throughout the polymer. The SMP is biodegradable, so that eventually the scaffold will disappear, leaving only new bone tissue behind.

To test whether the SMP scaffold could support bone cell growth, the researchers seeded the polymer with human osteoblasts. After three days, the polydopamine-coated SMPs had grown about five times more osteoblasts than those without a coating. Furthermore, the osteoblasts produced more of the two proteins, runX2 and osteopontin, that are critical for new bone formation.

Grunlan says that the next step will be to test the SMP’s ability to heal cranio-maxillofacial bone defects in animals. “The work we’ve done in vitro is very encouraging,” she says. “Now we’d like to move this into preclinical and, hopefully, clinical studies.”

The researchers acknowledge funding from the Texas A&M Engineering Experiment Station.

It sounds like there’s still quite a long way to go before this research makes its way out of the laboratory. I wish the researchers all the best.

A tattoo that’s a biobattery and a sensor?

It’s going to be an American Chemical Society (ACS) 248th meeting kind of week as yet another interesting piece of scientific research is bruited (spread) about the internet. This time it’s all about sweat, exercise, and biobatteries. From an Aug. 13, 2014 news item on Nanowerk,

In the future, working up a sweat by exercising may not only be good for your health, but it could also power your small electronic devices. Researchers will report today that they have designed a sensor in the form of a temporary tattoo that can both monitor a person’s progress during exercise and produce power from their perspiration.

An Aug. 13, 2014 ACS news release on EurekAlert, which originated the news item, describes the inspiration (as opposed to perspiration) for this technology,

The device works by detecting and responding to lactate, which is naturally present in sweat. “Lactate is a very important indicator of how you are doing during exercise,” says Wenzhao Jia, Ph.D.

In general, the more intense the exercise, the more lactate the body produces. During strenuous physical activity, the body needs to generate more energy, so it activates a process called glycolysis. Glycolysis produces energy and lactate, the latter of which scientists can detect in the blood.

Professional athletes monitor their lactate levels during performance testing as a way to evaluate their fitness and training program. In addition, doctors measure lactate during exercise testing of patients for conditions marked by abnormally high lactate levels, such as heart or lung disease. Currently, lactate testing is inconvenient and intrusive because blood samples must be collected from the person at different times during the exercise regime and then analyzed.

The news release goes on to describe the research process which resulted in a temporary tattoo that could be used to power small scale electronics,

Jia, a postdoctoral student in the lab of Joseph Wang, D.Sc., at the University of California San Diego, and her colleagues developed a faster, easier and more comfortable way to measure lactate during exercise. They imprinted a flexible lactate sensor onto temporary tattoo paper. The sensor contained an enzyme that strips electrons from lactate, generating a weak electrical current. The researchers applied the tattoo to the upper arms of 10 healthy volunteers. Then the team measured the electrical current produced as the volunteers exercised at increasing resistance levels on a stationary bicycle for 30 minutes. In this way, they could continuously monitor sweat lactate levels over time and with changes in exercise intensity.

The team then went a step further, building on these findings to make a sweat-powered biobattery. Batteries produce energy by passing current, in the form of electrons, from an anode to a cathode. In this case, the anode contained the enzyme that removes electrons from lactate, and the cathode contained a molecule that accepts the electrons.

When 15 volunteers wore the tattoo biobatteries while exercising on a stationary bike, they produced different amounts of power. Interestingly, people who were less fit (exercising fewer than once a week) produced more power than those who were moderately fit (exercising one to three times per week). Enthusiasts who worked out more than three times per week produced the least amount of power. The researchers say that this is probably because the less-fit people became fatigued sooner, causing glycolysis to kick in earlier, forming more lactate. The maximum amount of energy produced by a person in the low-fitness group was 70 microWatts per cm2 of skin.

“The current produced is not that high, but we are working on enhancing it so that eventually we could power some small electronic devices,” Jia says. “Right now, we can get a maximum of 70 microWatts per cm2, but our electrodes are only 2 by 3 millimeters in size and generate about 4 microWatts — a bit small to generate enough power to run a watch, for example, which requires at least 10 microWatts. So besides working to get higher power, we also need to leverage electronics to store the generated current and make it sufficient for these requirements.”

Biobatteries offer certain advantages over conventional batteries: They recharge more quickly, use renewable energy sources (in this case, sweat), and are safer because they do not explode or leak toxic chemicals.

“These represent the first examples of epidermal electrochemical biosensing and biofuel cells that could potentially be used for a wide range of future applications,” Wang says.

The ACS has made a video about this work available,

It seems to me this tattoo battery could be used as a self-powered monitoring device in a medical application for heart or lung disease.

Graphene and an artificial retina

A graphene-based artificial retina project has managed to intermingle the European Union’s two major FET (Future and Emerging Technologies) funding projects, 1B Euros each to be disbursed over 10 years, the Graphene Flagship and the Human Brain Project. From an Aug. 7, 2014 Technische Universitaet Muenchen (TUM) news release (also on EurekAlert),

Because of its unusual properties, graphene holds great potential for applications, especially in the field of medical technology. A team of researchers led by Dr. Jose A. Garrido at the Walter Schottky Institut of the TUM is taking advantage of these properties. In collaboration with partners from the Institut de la Vision of the Université Pierre et Marie Curie in Paris and the French company Pixium Vision, the physicists are developing key components of an artificial retina made of graphene.

Retina implants can serve as optical prostheses for blind people whose optical nerves are still intact. The implants convert incident light into electrical impulses that are transmitted to the brain via the optical nerve. There, the information is transformed into images. Although various approaches for implants exist today, the devices are often rejected by the body and the signals transmitted to the brain are generally not optimal.

Already funded by the Human Brain Project as part of the Neurobotics effort, Garrido and his colleagues will now also receive funding from the Graphene Flagship. As of July 2014, the Graphene Flagship has added 86 new partners including TUM according to the news release.

Here’s an image of an ‘invisible’ graphene sensor (a precursor to developing an artificial retina),

Graphene electronics can be prepared on flexible substrates. Only the gold metal leads are visible in the transparent graphene sensor. (Photo: Natalia Hutanu / TUM)

Graphene electronics can be prepared on flexible substrates. Only the gold metal leads are visible in the transparent graphene sensor. (Photo: Natalia Hutanu / TUM)

Artificial retinas were first featured on this blog in an Aug. 18, 2011 posting about video game Deus Ex: Human Revolution which features a human character with artificial sight. The post includes links to a video of a scientist describing an artificial retina trial with 30 people and an Israeli start-up company, ‘Nano Retina’, along with information about ‘Eyeborg’, a Canadian filmmaker who on losing an eye in an accident had a camera implanted in the previously occupied eye socket.

More recently, a Feb. 15, 2013 posting featured news about the US Food and Drug Administration’s decision to allow sale of the first commercial artificial retinas in the US in the context of news about a neuroprosthetic implant in a rat which allowed it to see in the infrared range, normally an impossible feat.

Cyborgs (a presentation) at the American Chemical Society’s 248th meeting

There will be a plethora of chemistry news online over the next few days as the American Society’s (ACS) 248th meeting in San Francisco, CA from Aug. 10 -14, 2014 takes place. Unexpectedly, an Aug. 11, 2014 news item on Azonano highlights a meeting presentation focused on cyborgs,

No longer just fantastical fodder for sci-fi buffs, cyborg technology is bringing us tangible progress toward real-life electronic skin, prosthetics and ultraflexible circuits. Now taking this human-machine concept to an unprecedented level, pioneering scientists are working on the seamless marriage between electronics and brain signaling with the potential to transform our understanding of how the brain works — and how to treat its most devastating diseases.

An Aug. 10, 2014 ACS news release on EurekAlert provides more detail about the presentation (Note: Links have been removed),

“By focusing on the nanoelectronic connections between cells, we can do things no one has done before,” says Charles M. Lieber, Ph.D. “We’re really going into a new size regime for not only the device that records or stimulates cellular activity, but also for the whole circuit. We can make it really look and behave like smart, soft biological material, and integrate it with cells and cellular networks at the whole-tissue level. This could get around a lot of serious health problems in neurodegenerative diseases in the future.”

These disorders, such as Parkinson’s, that involve malfunctioning nerve cells can lead to difficulty with the most mundane and essential movements that most of us take for granted: walking, talking, eating and swallowing.

Scientists are working furiously to get to the bottom of neurological disorders. But they involve the body’s most complex organ — the brain — which is largely inaccessible to detailed, real-time scrutiny. This inability to see what’s happening in the body’s command center hinders the development of effective treatments for diseases that stem from it.

By using nanoelectronics, it could become possible for scientists to peer for the first time inside cells, see what’s going wrong in real time and ideally set them on a functional path again.

For the past several years, Lieber has been working to dramatically shrink cyborg science to a level that’s thousands of times smaller and more flexible than other bioelectronic research efforts. His team has made ultrathin nanowires that can monitor and influence what goes on inside cells. Using these wires, they have built ultraflexible, 3-D mesh scaffolding with hundreds of addressable electronic units, and they have grown living tissue on it. They have also developed the tiniest electronic probe ever that can record even the fastest signaling between cells.

Rapid-fire cell signaling controls all of the body’s movements, including breathing and swallowing, which are affected in some neurodegenerative diseases. And it’s at this level where the promise of Lieber’s most recent work enters the picture.

In one of the lab’s latest directions, Lieber’s team is figuring out how to inject their tiny, ultraflexible electronics into the brain and allow them to become fully integrated with the existing biological web of neurons. They’re currently in the early stages of the project and are working with rat models.

“It’s hard to say where this work will take us,” he says. “But in the end, I believe our unique approach will take us on a path to do something really revolutionary.”

Lieber acknowledges funding from the U.S. Department of Defense, the National Institutes of Health and the U.S. Air Force.

I first covered Lieber’s work in an Aug. 27, 2012 posting  highlighting some good descriptions from Lieber and his colleagues of their work. There’s also this Aug. 26, 2012 article by Peter Reuell in the Harvard Gazette (featuring a very good technical description for someone not terribly familiar with the field but able to grasp some technical information while managing their own [mine] ignorance). The posting and the article provide details about the foundational work for Lieber’s 2014 presentation at the ACS meeting.

Lieber will be speaking next at the IEEE (Institute for Electrical and Electronics Engineers) 14th International Conference on Nanotechnology sometime between August 18 – 21, 2014 in Toronto, Ontario, Canada.

As for some of Lieber’s latest published work, there’s more information in my Feb. 20, 2014 posting which features a link to a citation for the paper (behind a paywall) in question.

Metaphors in a brief overview of the nanomedicine scene circa August 2014

An Aug. 1, 2014 article by Guizhi Zhu (University of Florida), Lei Mei ((Hunan University; China), and Weihong Tan (University of Florida) for The Scientist provides an overview of the latest and greatest regarding nanomedicine while underscoring the persistence of certain medical metaphors. This overview features a prediction and a relatively benign (pun intended) metaphor,

Both the academic community and the pharmaceutical industry are making increasing investments of time and money in nanotherapeutics. Nearly 50 biomedical products incorporating nanoparticles are already on the market, and many more are moving through the pipeline, with dozens in Phase 2 or Phase 3 clinical trials. Drugmakers are well on their way to realizing the prediction of Christopher Guiffre, chief business officer at the Cambridge, Massachusetts–based nanotherapeutics company Cerulean Pharma, who last November forecast, “Five years from now every pharma will have a nano program.”

Technologies that enable improved cancer detection are constantly racing against the diseases they aim to diagnose, and when survival depends on early intervention, losing this race can be fatal. [emphasis mine] While detecting cancer biomarkers is the key to early diagnosis, the number of bona fide biomarkers that reliably reveal the presence of cancerous cells is low. To overcome this challenge, researchers are developing functional nanomaterials for more sensitive detection of intracellular metabolites, tumor cell–membrane proteins, and even cancer cells that are circulating in the bloodstream. (See “Fighting Cancer with Nanomedicine,” The Scientist, April 2014.)

So, the first metaphor ‘racing’ gives the reader a sense of urgency, the next ones, including “fighting cancer’, provoke a somewhat different state of mind,

Eye on the target

The prototype of targeted drug delivery can be traced back to the concept of a “magic bullet,” proposed by chemotherapy pioneer and 1908 Nobel laureate Paul Ehrlich. [emphasis mine] E[hrlich envisioned a drug that could selectively target a disease-causing organism or diseased cells, leaving healthy tissue unharmed. A century later, researchers are developing many types of nanoscale “magic bullets” that can specifically deliver drugs into target cells or tissues.

It would seem we might be in a state of war as you 'fight cancer' with your 'eyes on the target' as you 'shoot magic bullets' in time to celebrate the 100th anniversary of the start to World War I.

Kostas Kostarelos wrote a Nov. 29, 2013 posting for the Guardian Science Blogs where he (professor of nanomedicine at the University of Manchester and director of the university's Nanomedicine Lab) discussed war metaphors in medicine and possible unintended consequences (Note: A link has been removed). Here's his discussion about the metaphors,

Almost every night I have watched the news these past few months my senses have been assaulted by unpleasant, at times distressing, images of war: missiles, killings and chemical bombs in Syria, Kenya, the USA. I wake up the next morning, trying to forget what I watched the night before, and going to work with our researchers to develop the next potential high-tech cure for cancer, thinking: "does what we do matter at all … ?"

So I was intrigued by an article that will be published in one of the scientific journals in our field entitled: "Nanomedicine metaphors: from war to care". The next lab meeting we had was very awkward, because I was constantly thinking that indeed a lot of the words we were using to communicate our science were directly imported from the language of war. Targeting, stealth nanoparticle, smart bomb, elimination, triggered release, cell death. I struggled to find alternative language.

...

... Hollywood analogies and simplistic interpretations about "good" and "bad" may be inaccurate, but they do seem appropriate and convincing.

I must say, however, that even in pathology, modern medicine increasingly considers the disease to be part of our body, often leading to successful treatment not by "eradication" and "elimination" but by holistic management of a chronic condition. The case of HIV therapeutics is perhaps the brightest example of such revisionist thinking, which has transformed the disease from a "death sentence" in the early years after its discovery to a nonlethal chronic infection today.

Kostarelos then contrasts the less warlike 'modern medicine' metaphors with nanomedicine,

In nanomedicine, which is the application of nanotechnologies and nanomaterials to design medical treatments, the war imagery is even more prevalent. Two of the most clinically successful and intensively studied technologies that operate at the nanoscale are "stealth" and "targeted" medicines. "Stealth" refers to a hydrophilic (water-loving) shield built around a molecule or nanoparticle, made from polymers, that minimises its recognition by the body's defence mechanisms. "Targeting" refers to the specific binding of certain molecules (such as antibodies, peptides and others) to receptors (or other proteins) present only at the surface of diseased cells. The literature in nanomedicine is abundant with both "stealthing", "targeting" and combinations thereof.

Kostarelos then asks this question,

The question I keep asking myself since I read the article about war metaphors in nanomedicine has been whether we are using terminology in a simplistic, single-minded manner that could stifle creative and out-of-the-box thinking.

Intriguing unintended consequences, yes?

Getting back to The Scientist article, which I found quite informative and interesting, its 'war metaphors' seem to extend even to some of the artwork accompanying the article,

[downloaded from http://www.the-scientist.com/?articles.view/articleNo/40598/title/Nanomedicine/]

[downloaded from http://www.the-scientist.com/?articles.view/articleNo/40598/title/Nanomedicine/]

Is that a capsule or a bullet? Regardless, this * article provides a good overview of the research.

* The word ‘a’ was removed on Aug. 8, 2014.

A butterfly kind of day: changing structural colour in six generations and developing fluidic devices

I have two items concerning butterflies. The first is a bioengineering project at Yale University where they changed the colour of a butterfly’s wings from brown to violet (from an Aug. 5, 2014 news item on ScienceDaily),

Yale University scientists have chosen the most fleeting of mediums for their groundbreaking work on biomimicry: They’ve changed the color of butterfly wings.

In so doing, they produced the first structural color change in an animal by influencing evolution. The discovery may have implications for physicists and engineers trying to use evolutionary principles in the design of new materials and devices.

An Aug.5, 2014 Yale University news release (also on EurekAlert), which originated the news item,

“What we did was to imagine a new target color for the wings of a butterfly, without any knowledge of whether this color was achievable, and selected for it gradually using populations of live butterflies,” said Antónia Monteiro, a former professor of ecology and evolutionary biology at Yale, now at the National University of Singapore.

In this case, Monteiro and her team changed the wing color of the butterfly Bicyclus anynana from brown to violet. They needed only six generations of selection.

The news release goes on to explain the interest in structural colour,

Little is known about how structural colors in nature evolved, although researchers have studied such mechanisms extensively in recent years. Most attempts at biomimicry involve finding a desirable outcome in nature and simply trying to copy it in the laboratory.

“Today, materials engineers are making complex materials to perform multiple functions. The parameter space for the design of such materials is huge, so it is not easy to search for the optimal design,” said Hui Cao, chair of Yale’s Department of Applied Physics, who also worked on the study. “This is why we can learn from nature, which has obtained the optimal solutions in many cases via natural evolution over millions of years.”

Indeed, the scientists explained, natural selection algorithms can select for multiple characteristics simultaneously — which is standard operating procedure in the natural world.

A bit of technical information is also included in the news release,

The desired color for the butterfly wings was achieved by changing the relative thickness of the wing scales — specifically, those of the lower lamina. It took less than a year of selective breeding to produce the color change from brown to violet.

One reason Bicyclus anynana was chosen for the experiment, Monteiro said, was because it has cousin species that have evolved violet colors on their wings twice independently. By reproducing such a change in the lab, the Yale team showed that butterfly populations harbor high levels of genetic variation regulating scale thickness that lets them react quickly to new selective conditions.

“We just thought if natural selection has been able to modify wing colors in members of this genus of butterfly, perhaps so can we,” Monteiro said.

Here’s a link to and a citation for the paper,

Artificial selection for structural color on butterfly wings and comparison with natural evolution by Bethany R. Wasik, Seng Fatt Liew, David A. Lilien, April J. Dinwiddie, Heeso Noh, Hui Cao, and Antónia Monteiro. PNAS doi: 10.1073/pnas.1402770111 Published online August 4, 2014

This seems to be an open access paper (I was able to access the six page paper, albeit in a small font, by clicking on an Adobe reader icon).

I have not been able to find an image of the newly violet-coloured Bicyclus anynana butterfly but Yale University has provided an image of the pre-bioengineered version,

This image shows a male Bicyclus anynana, prior to the wing color change. (Below) This image shows the color change from brown to violet, over six generations of breeding. (Photographs courtesy of Antónia Monteiro)

This image shows a male Bicyclus anynana, prior to the wing color change. (Below) This image shows the color change from brown to violet, over six generations of breeding. (Photographs courtesy of Antónia Monteiro)

One of my favourite pieces on structural colour was written for The Scientist and was featured here in a Feb. 7, 2013 posting. Interestingly, Yale University is mentioned in that posting too.

This second butterfly piece focuses on its feeding habits and possible medical applications. From an Aug. 5, 2014 news item on ScienceDaily,

New discoveries about how butterflies feed could help engineers develop tiny probes that siphon liquid out of single cells for a wide range of medical tests and treatments, according to Clemson University researchers.

The National Science Foundation recently awarded the project $696,514. It was the foundation’s third grant to the project, bringing the total since 2009 to more than $3 million.

The research has brought together Clemson’s materials scientists and biologists who have been focusing on the proboscis, the mouthpart that many insects used for feeding.

For materials scientists, the goal is to develop what they call “fiber-based fluidic devices,” among them probes that could eventually allow doctors to pluck a single defective gene out of a cell and replace it with a good one, said Konstantin Kornev, a Clemson materials physics professor. “If someone were programmed to have an illness, it would be eliminated,” he said.

An Aug. 5, 2014 Clemson University media release by Paul Alongi (also on EurekAlert), which originated the news item, explains that this latest research is one of the first steps in a long journey,

… Much remains unknown about how insects use tiny pores and channels in the proboscis to sample and handle fluid.

“It’s like the proverbial magic well,” said Clemson entomology professor Peter Adler. “The more we learn about the butterfly proboscis, the more it has for us to learn about it.”

Kornev said he was attracted to butterflies for their ability to draw various kinds of liquids.

“It can be very thick like nectar and honey or very thin like water,” he said. “They do that easily. That’s a challenge for engineers.”

Researchers want the probe to be able to take fluid out of a single cell, which is 10 times smaller than the diameter of a human hair, Kornev said. The probe also will need to differentiate between different types of fluids, he said.

The technology could be used for medical devices, nanobioreactors that make complex materials and flying “micro-air vehicles” the size of an insect.

“It opens up a huge number of applications,” Kornev said. “We are actively seeking collaboration with cell biologists, medical doctors and other professionals who might find this research exciting and helpful in their applications.”

The study also is breaking new ground in biology. While scientists had a fundamental idea of how butterflies feed, it was less complete than it is now, Adler said.

Scientists have long known that butterflies use the proboscis to suck up fluid, similar to how humans use a drinking straw, Adler said. But the study found that the butterfly proboscis also acts as a sponge, he said.

“It’s a dual mechanism,” Adler said. “As they move the proboscis around, it can help sponge up the liquid and then facilitate the delivery of the liquid so that it can then be sucked up.”

As part of the study, researchers observed butterflies on flowers at the Cherry Farm Insectary just south of the main campus on the shore of Hartwell Lake. Butterflies were raised in the lab and recorded on video as they fed.

Researchers are turning their attention to smaller insects, such as flies, moths and mosquitoes, but the focus will remain on the proboscis.

In the next phase of the study, researchers would like to understand how the proboscis forms.

Larvae enter the pupa without a proboscis and emerge as a butterfly with one. Understanding what happens in the pupa could help develop the probes, Adler said.

Another challenge is figuring out how to keep the probe from getting covered with organic material when it’s inserted into the body, he said.

That’s why researchers are beginning to turn their focus to an insect almost everyone else shoos away.

“It seems the flies are able to pierce an animal’s tissue, take up the blood and not get the proboscis gummed up and covered with bacteria,” Adler said.

Tanju Karanfil, associate dean of research and graduate studies in the College of Engineering and Science, said the study has underscored the importance of breaking down silos that separate researchers from different departments so they can work for the common good.

“The most interesting work happens at the intersection of disciplines,” he said. “In this case, biologists and engineers have come together with different perspectives to answer common questions.

I have a link (which takes you to a correction for the text) and a citation for the paper,

Paradox of the drinking-straw model of the butterfly proboscis by Chen-Chih Tsai, Daria Monaenkova, Charles Beard, Peter Adler, and Konstantin Kornev. J. Exp. Biol. 217, 2130-2138. Original article: doi: 10.1242/​jeb.097998 June 15, 2014 J Exp Biol 217, 2130-2138 Correction: doi: 10.1242/​jeb.109447 July 1, 2014

The article is behind a paywall but you can view the correction in its entirety.

A labradoodle, gold nanoparticles, and cancer treatment for dogs and cats

Here’s the labradoodle,

Caption: Dr. Shawna Klahn, an assistant professor of oncology at the Virginia-Maryland College of Veterinary Medicine, performs a checkup on "Grayton" four weeks after the animal's experimental cancer treatment involving gold nanoparticles and a targeted laser therapy. Credit: Virginia Tech

Caption: Dr. Shawna Klahn, an assistant professor of oncology at the Virginia-Maryland College of Veterinary Medicine, performs a checkup on “Grayton” four weeks after the animal’s experimental cancer treatment involving gold nanoparticles and a targeted laser therapy.
Credit: Virginia Tech

An Aug. 6, 2014 news item on Azonano outlines ‘Grayton’s’ story and how gold nanoparticles will factor in,

When Michael and Sandra Friedlander first came to the Virginia-Maryland College of Veterinary Medicine three years ago with their dog, Grayton, they learned some bad news: Grayton had nasal adenocarcinoma, a form of cancer with a short life expectancy.

“Most dogs with this form of cancer are with their owners no more than a few months after the diagnosis, but here Grayton is three years later,” said Michael Friedlander, who is the executive director of the Virginia Tech Carilion Research Institute and senior dean at the Virginia Tech Carilion School of Medicine.

No stranger to medical research, Friedlander was referred by Veterinary Teaching Hospital clinicians to an experimental treatment at the University of Florida called stereotactic radiation therapy, which delivers precise, high dosages of radiation to a tumor and can only be performed once.

“That shrunk the tumor down to almost nothing,” said Friedlander, who is also the associate provost for health sciences at Virginia Tech. “We knew when Grayton had the procedure that we couldn’t do it again, but now the cancer is back.”

An Aug. 4, 2014 Virginia Tech news release (also on EurekAlert) by Michael Sutphin, which originated the news item, explains what occasioned the release and how gold nanoparticles are being used in veterinary treatment for cancer,

Today [Aug. 4, 2014], the 11-year-old Labradoodle is the first patient at the Virginia-Maryland College of Veterinary Medicine in a new clinical trial that is testing the use of gold nanoparticles and a targeted laser treatment for solid tumors in dogs and cats. The study is one of several on new treatments for client-owned companion animals at the college. In January [2014], the college established the Veterinary Clinical Research Office to help facilitate this work.

“Clinical research at the veterinary college involves both primary research focused on advancing the treatment and diagnosis of veterinary diseases and translational research in which spontaneous diseases in animals can be used as models of human disease,” said Dr. Greg Daniel, head of the Department of Small Animal Clinical Sciences. “In the latter situation, we can provide our companion animal patients with treatment and diagnostic options that are not yet available in mainstream human medicine.”

Although medical researchers have tested gold nanoparticles with targeted laser treatments on human patients with some success, the treatment is still new to both human and veterinary medicine. The college is one of four current veterinary schools around the country testing the AuroLase therapy developed by Nanospectra Biosciences Inc., a startup company based in Houston, Texas. The others are Texas A&M University, the University of Wisconsin-Madison, and the University of Georgia.

Dr. Nick Dervisis, assistant professor of oncology in the Department of Small Animal Clinical Sciences, is leading the Nanospectra-funded study. Following a rhinoscopy performed on Grayton by Dr. David Grant, associate professor of internal medicine, Dervisis began the one-time, experimental therapy.

“The treatment involves two phases,” Dervisis said. “First, we infuse the patient with the gold nanoparticles. Although the nanoparticles distribute throughout the body, they tend to concentrate around blood vessels associated with tumors. Within 36 hours, they have cleared the bloodstream except for tumors. The gold nanoparticles are small enough to circulate freely in the bloodstream and become temporarily captured within the incomplete blood vessel walls common in solid tumors. Then, we use a non-ablative laser on the patient.”

Dervisis explained that a non-ablative laser is not strong enough to harm the skin or normal tissue, but “it does cause the remaining nanoparticles to absorb the laser energy and convert it into heat so that they damage the tumor cells.”

Like all clinical trials, the study involves many unknowns, including the treatment’s usefulness and effectiveness. One month after the AuroLase treatment, the nosebleeds that initially brought Grayton back to the Veterinary Teaching Hospital had stopped and Grayton has no other side effects.

“I’m delighted with the care and service that Grayton has received at the veterinary college,” said Friedlander, who explained that the treatment appears to be safe even though researchers do not know whether it is effective yet. “Grayton recently came with us on our annual vacation at the beach. We didn’t know if he would be able to come again, so it was great to have him with us swimming, catching fish and crabs, and doing what dogs do.”

Current clinical trials at the veterinary college range from the use of MRI to distinguish between benign and cancerous lymph nodes in dogs with oral melanoma, to a new chemotherapy drug for dogs with brain tumors, to the treatment of invasive skin cancer in horses with high-voltage, high-frequency electrical pulses. A complete list of current trials can be found at the college’s new clinical trials website.

Mindy Quigley, who oversees the college’s Veterinary Clinical Research Office, explained that veterinary trials, which follow a four-phase process and a variety of regulations similar to human medicine, have another layer of complexity that human trials do not.

“Variation among species means that a therapy that has proven safe and effective in, for example, humans or dogs, may not work for horses,” said Quigley, who comes to the college from the University of Edinburgh’s College of Medicine and Veterinary Medicine, where she helped set up a new neurology research clinic with funding from author J.K. Rowling. “Many veterinary clinical trials must therefore take therapies that have worked in one species and test them in other species with similar conditions. This is a necessary step to determine if a proposed treatment is safe and effective for our companion animals.”

Grayton may be the first companion animal in the AuroLase study at the veterinary college, but he certainly won’t be the last. Dervisis is continuing to enroll patients in the study and is seeking dogs and cats of a certain size with solid tumors who have not recently received radiation therapy or chemotherapy.

Interested parties can check this site for current clinical trials, including the Aurolase study,  being held by the Virginia-Maryland Regional College of Veterinary Medicine.