Category Archives: military

The security of the Internet of Nano-Things with NanoMalaysia’s CEO Dr Rezal Khairi Ahmad

I’ve not come across the Internet of Nano-Things before and I’m always glad to be introduced to something new. In this case, I’m doubly happy as I get to catch up (a little) with the Malaysian nano scene. From an April 19, 2017 article by Avanti Kumar for (Note: Links have been removed),

After being certified in 2011 as a nanocentre, national applied research agency MIMOS continued to make regular moves to boost Malaysia’s nanotechnology ambitions. This included helping to develop the national graphene action plan (NGAP 2020).

Much of the task of driving and commercialising the NGAP ecosystem is in the hands of NanoMalaysia, which was incorporated in 2011 as a company limited by guarantee (CLG) under Malaysia’s Ministry of Science, Technology and Innovation (MOSTI) to act as a business entity.

During another event in March 2016 where I saw that 360 new products were to be commercialised under NGAP, NanoMalaysia’s chief executive officer Dr. Rezal Khairi Ahmad said that benefits would include a US$5 billion impact on GNI (gross net income) and 9,000 related new jobs by the year 2020.

In his capacity as a keynote speaker at this year’s Computerworld Security Summit in Kuala Lumpur (20 April 2017), Dr Rezal agreed to a security-themed interview on this relatively new industry sector.  This is also part of a series of special security features.

To start, I asked Dr Rezal for a brief run-through of his role.

[RKA]  I’m the founding Chief Executive Officer and also Board Member of NanoMalaysia, Nano Commerce Sdn. Bhd, representing NanoMalaysia’s business interests, the Chairman of NanoVerify Sdn. Bhd, a nanotechnology certification entity and a Director of Nanovation Ventures Sdn. Bhd., an investment arm of NanoMalaysia.

Prior to this, I served as Acting Under-Secretary of National Nanotechnology Directorate, Ministry of Science, Technology and Innovation on the policy aspect of nanotechnology and vice president of [national investment body] Khazanah Nasional touching on human capital and investment research.

NanoMalaysia’s primary role in the development of Malaysia’s National Graphene Action Plan 2020 together with Agensi Inovasi Malaysia and PEMANDU [Performance Management & Delivery Unit attached to Prime Minister’s Office] is a major landmark in our journey to ensure Malaysia stays competitive in the global innovation landscape particularly in nanotechnology, which cuts across all industries including ICT [information and communications technologies].

Can you talk about graphene and its significance to local industry?

Graphene is touted as one of the game-changing advanced materials made of one atom-thick carbon and acknowledged by World Economic Forum [WEF] as no. 4 emerging technology in 2016.

Beyond being a fancy nano material, graphene plays a central role in the development of endogenous hardware aspects of Malaysia’s Internet of Things aspirations or the now evolved Internet of Nano-Things (IoNT). Some of these are:
-·Super small, lightweight and hyper-sensitive low-cost Graphene-based sensors and Radio Frequency ID (RFID)
– Higher speed, Low loss and power consumption graphene based optical transmitter and receiver for 5G systems
– Making IoNT a low-cost and practical industrial and domestic solutions in Malaysia.

Let’s move to the security aspects of nanotechnology: what’s your take on IoNT?

In the context of IoNT, which WEF acknowledged to be the top emerging technology in 2016, the current work-in-progress,  ‘ubiquitous’ deployment of sensors in Malaysia and worldwide, I certainly see increasing data security risks at the sensor, transmission, collection, processing and even analytics levels.

The initial industry approaches to IoNT data security will probably be polarised between cascaded and centralised system approaches.

I think some hacking attacks will obviously focus on data theft. I therefore foresee a trend favouring cascaded security – with both hardware, software and more advanced data encryption technologies in place.

What security steps do you currently advise?

The priority is to tackle potential data theft at every stage of IoNT systems.  The best-available preventive measures should include some versions of cascaded and embedded security in the form of hardware tags and advanced encryption.

To end, what’s your main message for business and IT leaders?

The digital era has removed the clear line that once separated State and Business as well as People. Everything and everyone is more interconnected. We are now an ecosystem both by chance and design. Cyber-attacks can be made to afflict either one and be used to hold any one at ransom thus creating a local or even global systemic chain reaction effect.

The connected world presents endless commercial, social and environmental development opportunities…and threats. The development and deployment of emerging cyber-related technologies, in particular IoNT – which promises a market size of US$9.69 billion by 2020 – should be done responsibly in the form of infused data security technologies to ensure prolific market acceptance and profitable returns.

For our part, NanoMalaysia is working with various parties locally and abroad push Malaysia’s strategic industry sectors to be relevant to the Fourth Industrial Revolution supported by cyber-physical systems manifesting into full automation, robots, artificial intelligence, de-centralised power generation, energy storage, water and food supplies, remote assets and logistics management and custom manufacturing requiring secured data sensing, traffic and analytics systems in place.

If you have the time, I advise reading the article in its entirety.

‘Mother of all bombs’ is a nanoweapon?

According to physicist, Louis A. Del Monte, in an April 14, 2017 opinion piece for Huffington, the ‘mother of all bombs ‘ is a nanoweapon (Note: Links have been removed),

The United States military dropped its largest non-nuclear bomb, the GBU-43/B Massive Ordnance Air Blast Bomb (MOAB), nicknamed the “mother of all bombs,” on an ISIS cave and tunnel complex in the Achin District of the Nangarhar province, Afghanistan [on Thursday, April 13, 2017]. The Achin District is the center of ISIS activity in Afghanistan. This was the first use in combat of the GBU-43/B Massive Ordnance Air Blast (MOAB).

… Although it carries only about 8 tons of explosives, the explosive mixture delivers a destructive impact equivalent of 11 tons of TNT.

There is little doubt the United States Department of Defense is likely using nanometals, such as nanoaluminum (alternately spelled nano-aluminum) mixed with TNT, to enhance the detonation properties of the MOAB. The use of nanoaluminum mixed with TNT was known to boost the explosive power of the TNT since the early 2000s. If true, this means that the largest known United States non-nuclear bomb is a nanoweapon. When most of us think about nanoweapons, we think small, essentially invisible weapons, like nanobots (i.e., tiny robots made using nanotechnology). That can often be the case. But, as defined in my recent book, Nanoweapons: A Growing Threat to Humanity (Potomac 2017), “Nanoweapons are any military technology that exploits the power of nanotechnology.” This means even the largest munition, such as the MOAB, is a nanoweapon if it uses nanotechnology.

… The explosive is H6, which is a mixture of five ingredients (by weight):

  • 44.0% RDX & nitrocellulose (RDX is a well know explosive, more powerful that TNT, often used with TNT and other explosives. Nitrocellulose is a propellant or low-order explosive, originally known as gun-cotton.)
  • 29.5% TNT
  • 21.0% powdered aluminum
  • 5.0% paraffin wax as a phlegmatizing (i.e., stabilizing) agent.
  • 0.5% calcium chloride (to absorb moisture and eliminate the production of gas

Note, the TNT and powdered aluminum account for over half the explosive payload by weight. It is highly likely that the “powdered aluminum” is nanoaluminum, since nanoaluminum can enhance the destructive properties of TNT. This argues that H6 is a nano-enhanced explosive, making the MOAB a nanoweapon.

The United States GBU-43/B Massive Ordnance Air Blast Bomb (MOAB) was the largest non-nuclear bomb known until Russia detonated the Aviation Thermobaric Bomb of Increased Power, termed the “father of all bombs” (FOAB), in 2007. It is reportedly four times more destructive than the MOAB, even though it carries only 7 tons of explosives versus the 8 tons of the MOAB. Interestingly, the Russians claim to achieve the more destructive punch using nanotechnology.

If you have the time, I encourage you to read the piece in its entirety.

Predicting how a memristor functions

An April 3, 2017 news item on Nanowerk announces a new memristor development (Note: A link has been removed),

Researchers from the CNRS [Centre national de la recherche scientifique; France] , Thales, and the Universities of Bordeaux, Paris-Sud, and Evry have created an artificial synapse capable of learning autonomously. They were also able to model the device, which is essential for developing more complex circuits. The research was published in Nature Communications (“Learning through ferroelectric domain dynamics in solid-state synapses”)

An April 3, 2017 CNRS press release, which originated the news item, provides a nice introduction to the memristor concept before providing a few more details about this latest work (Note: A link has been removed),

One of the goals of biomimetics is to take inspiration from the functioning of the brain [also known as neuromorphic engineering or neuromorphic computing] in order to design increasingly intelligent machines. This principle is already at work in information technology, in the form of the algorithms used for completing certain tasks, such as image recognition; this, for instance, is what Facebook uses to identify photos. However, the procedure consumes a lot of energy. Vincent Garcia (Unité mixte de physique CNRS/Thales) and his colleagues have just taken a step forward in this area by creating directly on a chip an artificial synapse that is capable of learning. They have also developed a physical model that explains this learning capacity. This discovery opens the way to creating a network of synapses and hence intelligent systems requiring less time and energy.

Our brain’s learning process is linked to our synapses, which serve as connections between our neurons. The more the synapse is stimulated, the more the connection is reinforced and learning improved. Researchers took inspiration from this mechanism to design an artificial synapse, called a memristor. This electronic nanocomponent consists of a thin ferroelectric layer sandwiched between two electrodes, and whose resistance can be tuned using voltage pulses similar to those in neurons. If the resistance is low the synaptic connection will be strong, and if the resistance is high the connection will be weak. This capacity to adapt its resistance enables the synapse to learn.

Although research focusing on these artificial synapses is central to the concerns of many laboratories, the functioning of these devices remained largely unknown. The researchers have succeeded, for the first time, in developing a physical model able to predict how they function. This understanding of the process will make it possible to create more complex systems, such as a series of artificial neurons interconnected by these memristors.

As part of the ULPEC H2020 European project, this discovery will be used for real-time shape recognition using an innovative camera1 : the pixels remain inactive, except when they see a change in the angle of vision. The data processing procedure will require less energy, and will take less time to detect the selected objects. The research involved teams from the CNRS/Thales physics joint research unit, the Laboratoire de l’intégration du matériau au système (CNRS/Université de Bordeaux/Bordeaux INP), the University of Arkansas (US), the Centre de nanosciences et nanotechnologies (CNRS/Université Paris-Sud), the Université d’Evry, and Thales.


Image synapse

© Sören Boyn / CNRS/Thales physics joint research unit.

Artist’s impression of the electronic synapse: the particles represent electrons circulating through oxide, by analogy with neurotransmitters in biological synapses. The flow of electrons depends on the oxide’s ferroelectric domain structure, which is controlled by electric voltage pulses.

Here’s a link to and a citation for the paper,

Learning through ferroelectric domain dynamics in solid-state synapses by Sören Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stéphane Fusil, Stéphanie Girod, Cécile Carrétéro, Karin Garcia, Stéphane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnès Barthélémy, Sylvain Saïghi, & Vincent Garcia. Nature Communications 8, Article number: 14736 (2017) doi:10.1038/ncomms14736 Published online: 03 April 2017

This paper is open access.

Thales or Thales Group is a French company, from its Wikipedia entry (Note: Links have been removed),

Thales Group (French: [talɛs]) is a French multinational company that designs and builds electrical systems and provides services for the aerospace, defence, transportation and security markets. Its headquarters are in La Défense[2] (the business district of Paris), and its stock is listed on the Euronext Paris.

The company changed its name to Thales (from the Greek philosopher Thales,[3] pronounced [talɛs] reflecting its pronunciation in French) from Thomson-CSF in December 2000 shortly after the £1.3 billion acquisition of Racal Electronics plc, a UK defence electronics group. It is partially state-owned by the French government,[4] and has operations in more than 56 countries. It has 64,000 employees and generated €14.9 billion in revenues in 2016. The Group is ranked as the 475th largest company in the world by Fortune 500 Global.[5] It is also the 10th largest defence contractor in the world[6] and 55% of its total sales are military sales.[4]

The ULPEC (Ultra-Low Power Event-Based Camera) H2020 [Horizon 2020 funded) European project can be found here,

The long term goal of ULPEC is to develop advanced vision applications with ultra-low power requirements and ultra-low latency. The output of the ULPEC project is a demonstrator connecting a neuromorphic event-based camera to a high speed ultra-low power consumption asynchronous visual data processing system (Spiking Neural Network with memristive synapses). Although ULPEC device aims to reach TRL 4, it is a highly application-oriented project: prospective use cases will b…

Finally, for anyone curious about Thales, the philosopher (from his Wikipedia entry), Note: Links have been removed,

Thales of Miletus (/ˈθeɪliːz/; Greek: Θαλῆς (ὁ Μῑλήσιος), Thalēs; c. 624 – c. 546 BC) was a pre-Socratic Greek/Phoenician philosopher, mathematician and astronomer from Miletus in Asia Minor (present-day Milet in Turkey). He was one of the Seven Sages of Greece. Many, most notably Aristotle, regard him as the first philosopher in the Greek tradition,[1][2] and he is otherwise historically recognized as the first individual in Western civilization known to have entertained and engaged in scientific philosophy.[3][4]

Nanozymes as an antidote for pesticides

Should you have concerns about exposure to pesticides or chemical warfare agents (timely given events in Syria as per this April 4, 2017 news item on CBC [Canadian Broadcasting News Corporation] online) , scientists at the Lomonosov Moscow State University have developed a possible antidote according to a March 8,, 2017 news item on,

Members of the Faculty of Chemistry of the Lomonosov Moscow State University have developed novel nanosized agents that could be used as efficient protective and antidote modalities against the impact of neurotoxic organophosphorus compounds such as pesticides and chemical warfare agents. …

A March 7, 2017 Lomonosov Moscow State University press release on EurekAlert, which originated the news item, describes the work in detail,

A group of scientists from the Faculty of Chemistry under the leadership of Prof. Alexander Kabanov has focused their research supported by a “megagrant” on the nanoparticle-based delivery to an organism of enzymes, capable of destroying toxic organophosphorous compounds. Development of first nanosized drugs has started more than 30 years ago and already in the 90-s first nanomedicines for cancer treatment entered the market. First such medicines were based on liposomes – spherical vesicles made of lipid bilayers. The new technology, developed by Kabanov and his colleagues, uses an enzyme, synthesized at the Lomonosov Moscow State University, encapsulated into a biodegradable polymer coat, based on an amino acid (glutamic acid).

Alexander Kabanov, Doctor of Chemistry, Professor at the Eshelman School of Pharmacy of the University of North Carolina (USA) and the Faculty of Chemistry, M. V. Lomonosov Moscow State University, one of the authors of the article explains: “At the end of the 80-s my team (at that time in Moscow) and independently Japanese colleagues led by Prof. Kazunori Kataoka from Tokyo began using polymer micelles for small molecules delivery. Soon the nanomedicine field has “exploded”. Currently hundreds of laboratories across the globe work in this area, applying a wide variety of approaches to creation of such nanosized agents. A medicine on the basis of polymeric micelles, developed by a Korean company Samyang Biopharm, was approved for human use in 2006.”

Professor Kabanov’s team after moving to the USA in 1994 focused on development of polymer micelles, which could include biopolymers due to electrostatic interactions. Initially chemists were interested in usage of micelles for RNA and DNA delivery but later on scientists started actively utilizing this approach for delivery of proteins and, namely, enzymes, to the brain and other organs.

Alexander Kabanov says: “At the time I worked at the University of Nebraska Medical Center, in Omaha (USA) and by 2010 we had a lot of results in this area. That’s why when my colleague from the Chemical Enzymology Department of the Lomonosov Moscow State University, Prof. Natalia Klyachko offered me to apply for a megagrant the research theme of the new laboratory was quite obvious. Specifically, to use our delivery approach, which we’ve called a “nanozyme”, for “improvement” of enzymes, developed by colleagues at the Lomonosov Moscow State University for its further medical application.”

Scientists together with the group of enzymologists from the Lomonosov Moscow State University under the leadership of Elena Efremenko, Doctor of Biological Sciences, have chosen organophosphorus hydrolase as a one of the delivered enzymes. Organophosphorus hydrolase is capable of degrading toxic pesticides and chemical warfare agents with very high rate. However, it has disadvantages: because of its bacterial origin, an immune response is observed as a result of its delivery to an organism of mammals. Moreover, organophosphorus hydrolase is quickly removed from the body. Chemists have solved this problem with the help of a “self-assembly” approach: as a result of inclusion of organophosphorus hydrolase enzyme in a nanozyme particles the immune response becomes weaker and, on the contrary, both the storage stability of the enzyme and its lifetime after delivery to an organism considerably increase. Rat experiments have proved that such nanozyme efficiently protects organisms against lethal doses of highly toxic pesticides and even chemical warfare agents, such as VX nerve gas.

Alexander Kabanov summarizes: “The simplicity of our approach is very important. You could get an organophosphorus hydrolase nanozyme by simple mixing of aqueous solutions of anenzyme and safe biocompatible polymer. This nanozyme is self-assembled due to electrostatic interaction between a protein (enzyme) and polymer”.

According to the scientist’s words the simplicity and technological effectiveness of the approach along with the obtained promising results of animal experiments bring hope that this modality could be successful and in clinical use.

Members of the Faculty of Chemistry of the Lomonosov Moscow State University, along with scientists from the 27th Central Research Institute of the Ministry of Defense of the Russian Federation, the Eshelman School of Pharmacy of the University of North Carolina at Chapel Hill (USA) and the University of Nebraska Medical Center (UNC) have taken part in the Project.

Here’s a link to and a citation for the paper,

A simple and highly effective catalytic nanozyme scavenger for organophosphorus neurotoxins by Elena N. Efremenko, Ilya V. Lyagin, Natalia L. Klyachko, Tatiana Bronich, Natalia V. Zavyalova, Yuhang Jiang, Alexander V. Kabanov. Journal of Controlled Release Volume 247, 10 February 2017, Pages 175–181

This paper is behind a paywall.

Hairy strength could lead to new body armour

A Jan. 18, 2017 news item on Nanowerk announces research into hair strength from the University of California at San Diego (UCSD or UC San Diego),

In a new study, researchers at the University of California San Diego investigate why hair is incredibly strong and resistant to breaking. The findings could lead to the development of new materials for body armor and help cosmetic manufacturers create better hair care products.

Hair has a strength to weight ratio comparable to steel. It can be stretched up to one and a half times its original length before breaking. “We wanted to understand the mechanism behind this extraordinary property,” said Yang (Daniel) Yu, a nanoengineering Ph.D. student at UC San Diego and the first author of the study.

A Jan. 18 (?), 2017 UCSD news release, which originated the news item, provides more information,

“Nature creates a variety of interesting materials and architectures in very ingenious ways. We’re interested in understanding the correlation between the structure and the properties of biological materials to develop synthetic materials and designs — based on nature — that have better performance than existing ones,” said Marc Meyers, a professor of mechanical engineering at the UC San Diego Jacobs School of Engineering and the lead author of the study.

In a study published online in Dec. in the journal Materials Science and Engineering C, researchers examined at the nanoscale level how a strand of human hair behaves when it is deformed, or stretched. The team found that hair behaves differently depending on how fast or slow it is stretched. The faster hair is stretched, the stronger it is. “Think of a highly viscous substance like honey,” Meyers explained. “If you deform it fast it becomes stiff, but if you deform it slowly it readily pours.”

Hair consists of two main parts — the cortex, which is made up of parallel fibrils, and the matrix, which has an amorphous (random) structure. The matrix is sensitive to the speed at which hair is deformed, while the cortex is not. The combination of these two components, Yu explained, is what gives hair the ability to withstand high stress and strain.

And as hair is stretched, its structure changes in a particular way. At the nanoscale, the cortex fibrils in hair are each made up of thousands of coiled spiral-shaped chains of molecules called alpha helix chains. As hair is deformed, the alpha helix chains uncoil and become pleated sheet structures known as beta sheets. This structural change allows hair to handle a large amount deformation without breaking.

This structural transformation is partially reversible. When hair is stretched under a small amount of strain, it can recover its original shape. Stretch it further, the structural transformation becomes irreversible. “This is the first time evidence for this transformation has been discovered,” Yu said.

“Hair is such a common material with many fascinating properties,” said Bin Wang, a UC San Diego PhD alumna from the Department of Mechanical and Aerospace Engineering and co-author on the paper. Wang is now at the Shenzhen Institutes of Advanced Technology in China continuing research on hair.

The team also conducted stretching tests on hair at different humidity levels and temperatures. At higher humidity levels, hair can withstand up to 70 to 80 percent deformation before breaking (dry hair can undergo up to 50 percent deformation). Water essentially “softens” hair — it enters the matrix and breaks the sulfur bonds connecting the filaments inside a strand of hair. Researchers also found that hair starts to undergo permanent damage at 60 degrees Celsius (140 degrees Fahrenheit). Beyond this temperature, hair breaks faster at lower stress and strain.

“Since I was a child I always wondered why hair is so strong. Now I know why,” said Wen Yang, a former postdoctoral researcher in Meyers’ research group and co-author on the paper.

The team is currently conducting further studies on the effects of water on the properties of human hair. Moving forward, the team is investigating the detailed mechanism of how washing hair causes it to return to its original shape.

Here’s a link to and a citation for the paper,

Structure and mechanical behavior of human hair by Yang Yua, Wen Yang, Bin Wang, Marc André Meyers. Materials Science and Engineering: C Volume 73, 1 April 2017, Pages 152–163

This paper is behind a paywall.

Solar-powered clothing

This research comes from the University of Central Florida (US) and includes a pop culture reference to the movie “Back to the Future.”  From a Nov. 14, 2016 news item on,

Marty McFly’s self-lacing Nikes in Back to the Future Part II inspired a UCF scientist who has developed filaments that harvest and store the sun’s energy—and can be woven into textiles.

The breakthrough would essentially turn jackets and other clothing into wearable, solar-powered batteries that never need to be plugged in. It could one day revolutionize wearable technology, helping everyone from soldiers who now carry heavy loads of batteries to a texting-addicted teen who could charge his smartphone by simply slipping it in a pocket.

A Nov. 14, 2016 University of Central Florida news release (also on EurekAlert) by Mark Schlueb, which originated the news item, expands on the theme,

“That movie was the motivation,” Associate Professor Jayan Thomas, a nanotechnology scientist at the University of Central Florida’s NanoScience Technology Center, said of the film released in 1989. “If you can develop self-charging clothes or textiles, you can realize those cinematic fantasies – that’s the cool thing.”

Thomas already has been lauded for earlier ground-breaking research. Last year, he received an R&D 100 Award – given to the top inventions of the year worldwide – for his development of a cable that can not only transmit energy like a normal cable but also store energy like a battery. He’s also working on semi-transparent solar cells that can be applied to windows, allowing some light to pass through while also harvesting solar power.

His new work builds on that research.

“The idea came to me: We make energy-storage devices and we make solar cells in the labs. Why not combine these two devices together?” Thomas said.

Thomas, who holds joint appointments in the College of Optics & Photonics and the Department of Materials Science & Engineering, set out to do just that.

Taking it further, he envisioned technology that could enable wearable tech. His research team developed filaments in the form of copper ribbons that are thin, flexible and lightweight. The ribbons have a solar cell on one side and energy-storing layers on the other.

Though more comfortable with advanced nanotechnology, Thomas and his team then bought a small, tabletop loom. After another UCF scientists taught them to use it, they wove the ribbons into a square of yarn.

The proof-of-concept shows that the filaments could be laced throughout jackets or other outwear to harvest and store energy to power phones, personal health sensors and other tech gadgets. It’s an advancement that overcomes the main shortcoming of solar cells: The energy they produce must flow into the power grid or be stored in a battery that limits their portability.

“A major application could be with our military,” Thomas said. “When you think about our soldiers in Iraq or Afghanistan, they’re walking in the sun. Some of them are carrying more than 30 pounds of batteries on their bodies. It is hard for the military to deliver batteries to these soldiers in this hostile environment. A garment like this can harvest and store energy at the same time if sunlight is available.”

There are a host of other potential uses, including electric cars that could generate and store energy whenever they’re in the sun.

“That’s the future. What we’ve done is demonstrate that it can be made,” Thomas said. “It’s going to be very useful for the general public and the military and many other applications.”

The proof-of-concept shows that the filaments could be laced throughout jackets or other outwear to harvest and store energy to power phones, personal health sensors and other tech gadgets. It's an advancement that overcomes the main shortcoming of solar cells: the energy they produce must flow into the power grid or be stored in a battery that limits their portability. Credit: UCF Read more at:

The proof-of-concept shows that the filaments could be laced throughout jackets or other outwear to harvest and store energy to power phones, personal health sensors and other tech gadgets. It’s an advancement that overcomes the main shortcoming of solar cells: the energy they produce must flow into the power grid or be stored in a battery that limits their portability. Credit: UCF

Here’s a link to and a citation for the paper,

Wearable energy-smart ribbons for synchronous energy harvest and storage by Chao Li, Md. Monirul Islam, Julian Moore, Joseph Sleppy, Caleb Morrison, Konstantin Konstantinov, Shi Xue Dou, Chait Renduchintala, & Jayan Thomas. Nature Communications 7, Article number: 13319 (2016)  doi:10.1038/ncomms13319 Published online: 11 November 2016

This paper is open access.

Dexter Johnson in a Nov. 15, 2016 posting on his blog Nanoclast on the IEEE (Institute of Electrical and Electronics Engineers) provides context for this research and, in this excerpt, more insight from the researcher,

In a telephone interview with IEEE Spectrum, Thomas did concede that at this point, the supercapacitor was not capable of storing enough energy to replace the batteries entirely, but could be used to make a hybrid battery that would certainly reduce the load a soldier carries.

Thomas added: “By combining a few sets of ribbons (2-3 ribbons) in parallel and connecting these sets (3-4) in a series, it’s possible to provide enough power to operate a radio for 10 minutes. …

For anyone interested in knowing more about how this research fits into the field of textiles that harvest energy, I recommend reading Dexter’s piece.

Remembrance of things past

It’s Remembrance Day today (Nov. 11, 2016), a statutory holiday (in Canada) honouring the members of the military who have died and who have been injured in battle.

As for the survivors, our returning soldiers don’t have adequate support to reenter society after their tour of duty. Even more sadly, that has been true since time immemorial. The one hopeful aspect we have is increased awareness which will hopefully lead to needed changes.

Renata D’Aliesio, Les Perreaux and Allan Maki wrote a Nov. 4, 2016 article for the Globe and Mail about soldier suicide in Canada,

This article is part of The Unremembered, a Globe and Mail investigation into soldiers and veterans who died by suicide after deployment during the Afghanistan mission.

They were sons of bankers, miners and infanteers. They were strongmen and endurance runners. They were husbands and fathers who took their children camping and taught them how to play shinny on backyard rinks.

All 31 were dedicated Canadian soldiers and airmen who served on the perilous Afghanistan mission. They all came home. All ended their lives.

Most were haunted by the things they saw and did in Afghanistan, their families told The Globe and Mail. Many asked the military for help, but in several cases, their medical assessments and treatment were delayed, even as their post-traumatic stress, depression and sleeplessness worsened.

I believe there are issues with former peacekeepers; I’m thinking in particular of those who served in the Balkans and Rwanda, although I’m other certain missions could also be mentioned.

I grew up in a house with someone who had PTSD (post traumatic stress syndrome)—my father, a WWII veteran. It was difficult; he was difficult.  Only many years later did I realize what an extraordinary effort it must have taken for him to establish a family and relationships, go to work day in and day out, fight a battle with the bottle in his 40s, and come through the other side when he was in 70s, shortly before he died.

I once read this description of the process we all have to go through when soldiers return (the following is paraphrased),

There are two jobs to be accomplished. We have to forgive them (the soldiers) for what they’ve done and then, they have to forgive us for asking them to do it.

If I find anything about how to encourage the Canadian military to provide better support other than contacting your Member of Parliament, I will add it to this post.

One final remembrance of things past. Leonard Cohen died on Nov. 10, 2016. This Oct. 17, 2016 article by David Remnick seems quite timely (h/t Lainey Gossip Nov. 11, 2016 intro),

… Even before he had much of an audience, he had a distinct idea of the audience he wanted. In a letter to his publisher, he said that he was out to reach “inner-directed adolescents, lovers in all degrees of anguish, disappointed Platonists, pornography-peepers, hair-handed monks and Popists.”

I find it peculiarly appropriate to apply the description to soldiers.

Finally, here’s the song everyone has been playing in tribute to Cohen. This cover features a performance by the sublime K D Lang,

In Memoriam.

Protecting soldiers from biological and chemical agents with a ‘second skin’ made of carbon nanotubes

There are lots of ‘second skins’ which promise to protect against various chemical and biological agents, the big plus for this ‘skin’ from the US Lawrence Livermore National Laboratory is breathability. From an Aug. 3, 2016 news item on Nanowerk (Note: A link has been removed),

This material is the first key component of futuristic smart uniforms that also will respond to and protect from environmental chemical hazards. The research appears in the July 27 [2016] edition of the journal, , Advanced Materials (“Carbon Nanotubes: Ultrabreathable and Protective Membranes with Sub-5 nm Carbon Nanotube Pores”).

An Aug. 3, 2016 Lawrence Livermore National Laboratory (LLNL) news release (also on EurekAlert), which originated the news item, explains further (Note: Links have been removed),

High breathability is a critical requirement for protective clothing to prevent heat-stress and exhaustion when military personnel are engaged in missions in contaminated environments. Current protective military uniforms are based on heavyweight full-barrier protection or permeable adsorptive protective garments that cannot meet the critical demand of simultaneous high comfort and protection, and provide a passive rather than active response to an environmental threat.

The LLNL team fabricated flexible polymeric membranes with aligned carbon nanotube (CNT) channels as moisture conductive pores. The size of these pores (less than 5 nanometers, nm) is 5,000 times smaller than the width of a human hair [if 1 nm is 1/100,000 or 1/60,000 of a human hair {the two most commonly used measurements} then wouldn’t 5 nm be between 1/20,000 or1/15,000 of a human hair?] .

“We demonstrated that these membranes provide rates of water vapor transport that surpass those of commercial breathable fabrics like GoreTex, even though the CNT pores are only a few nanometers wide,” said Ngoc Bui, the lead author of the paper.

To provide high breathability, the new composite material takes advantage of the unique transport properties of carbon nanotube pores. By quantifying the membrane permeability to water vapor, the team found for the first time that, when a concentration gradient is used as a driving force, CNT nanochannels can sustain gas-transport rates exceeding that of a well-known diffusion theory by more than one order of magnitude.

These membranes also provide protection from biological agents due to their very small pore size — less than 5 nanometers (nm) wide. Biological threats like bacteria or viruses are much larger and typically more than 10-nm in size. Performed tests demonstrated that the CNT membranes repelled Dengue virus from aqueous solutions during filtration tests. This confirms that LLNL-developed CNT membranes provide effective protection from biological threats by size exclusion rather than by merely preventing wetting.

Furthermore, the results show that CNT pores combine high breathability and bio-protection in a single functional material.

However, chemical agents are much smaller in size and require the membrane pores to be able to react to block the threat. To encode the membrane with a smart and dynamic response to small chemical hazards, LLNL scientists and collaborators are surface modifying these prototype carbon nanotube membranes with chemical-threat-responsive functional groups. These functional groups will sense and block the threat like gatekeepers on the pore entrance. A second response scheme also is in development — similar to how living skin peels off when challenged with dangerous external factors. The fabric will exfoliate upon reaction with the chemical agent.

“The material will be like a smart second skin that responds to the environment,” said Kuang Jen Wu, leader of LLNL’s Biosecurity & Biosciences Group. “In this way, the fabric will be able to block chemical agents such as sulfur mustard (blister agent), GD and VX nerve agents, toxins such as staphylococcal enterotoxin and biological spores such as anthrax.”

Current work is directed toward designing this multifunctional material to undergo a rapid transition from the breathable state to the protective state.

“These responsive membranes are expected to be particularly effective in mitigating a physiological burden because a less breathable but protective state can be actuated locally and only when needed,” said Francesco Fornasiero, LLNL’s principal investigator of the project.

The new uniforms could be deployed in the field in less than 10 years.

“The goal of this science and technology program is to develop a focused, innovative technological solution for future chemical biological defense protective clothing,” said Tracee Whitfield, the DTRA [US Defense Threat Reduction Agency] science and technology manager for the Dynamic Multifunctional Material for a Second Skin Program. “Swatch-level evaluations will occur in early 2018 to demonstrate the concept of ‘second skin,’ a major milestone that is a key step in the maturation of this technology.”

The researchers have prepared a video describing their work,

Here’s a link to and a citation for the paper,

Ultrabreathable and Protective Membranes with Sub-5 nm Carbon Nanotube Pores by Ngoc Bui, Eric R. Meshot, Sangil Kim, José Peña, Phillip W. Gibson, Kuang Jen Wu, and Francesco Fornasiero. Advanced Materials Volume 28, Issue 28, pages 5871–5877, July 27, 2016 DOI: 10.1002/adma.201600740 Version of Record online: 9 MAY 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Enzyme-based sustainable sensing devices

This story about a sustainable sensing device involves sweat. A July 28, 2016 news item on ScienceDaily describes the sweaty situation,

It may be clammy and inconvenient, but human sweat has at least one positive characteristic — it can give insight to what’s happening inside your body. A new study published in the ECS [Electrochemical Society] Journal of Solid State Science and Technology aims to take advantage of sweat’s trove of medical information through the development of a sustainable, wearable sensor to detect lactate levels in your perspiration.

Caption: Depiction of patch sensor via CFDRC. Credit: Sergio Omar Garcia/CFDRC

Caption: Depiction of patch sensor via CFDRC. Credit: Sergio Omar Garcia/CFDRC

The patch in that image doesn’t seem all that wearable but presumably there will be some changes made. A July 28, 2016 Electrochemical Society news release on EurekAlert, which originated the news item, provides more detail about the technology,

“When the human body undergoes strenuous exercise, there’s a point at which aerobic muscle function becomes anaerobic muscle function,” says Jenny Ulyanova, CFD Research Corporation (CFDRC) researcher and co-author of the paper. “At that point, lactate is produce at a faster rate than it is being consumed. When that happens, knowing what those levels are can be an indicator of potentially problematic conditions like muscle fatigue, stress, and dehydration.”

Utilizing green technology

Using sweat to track changes in the body is not a new concept. While there have been many developments in recent years to sense changes in the concentrations of the components of sweat, no purely biological green technology has been used for these devices. The team of CFDRC researchers, in collaboration with the University of New Mexico, developed an enzyme-based sensor powered by a biofuel cell – providing a safe, renewable power source.

Biofuel cells have become a promising technology in the field of energy storage, but still face many issues related to short active lifetimes, low power densities, and low efficiency levels. However, they have several attractive points, including their ability to use renewable fuels like glucose and implement affordable, renewable catalysts.

“The biofuel cell works in this particular case because the sensor is a low-power device,” Ulyanova says. “They’re very good at having high energy densities, but power densities are still a work in progress. But for low-power applications like this particular sensor, it works very well.”

In their research, entitled “Wearable Sensor System Powered by a Biofuel Cell for Detection of Lactate Levels in Sweat,” the team powered the biofuel cells with a fuel based on glucose. This same enzymatic technology, where the enzymes oxidize the fuel and generate energy, is used at the working electrode of the sensor which allows for the detection of lactate in your sweat.

Targeting lactate

While the use of the biofuel cell is a novel aspect of this work, what sets it apart from similar developments in the field is the use of electrochemical processes to very accurately detect a specific compound in a very complex medium like sweat.

“We’re doing it electrochemically, so we’re looking at applying a constant load to the sensor and generating a current response,” Ulyanova says, “which is directly proportional to the concentration of our target analyte.”

Practical applications

Originally, the sensor was developed to help detect and predict conditions related to lactate levels (i.e. fatigue and dehydration) for military personnel.

“The sensor was designed for a soldier in training at boot camp,” says Sergio Omar Garcia, CFDRC researcher and co-author of the paper, “but it could be applied to people that are active and anyone participating in strenuous activity.”

As for commercial applications, the researchers believe the device could be used as a training aid to monitor lactate changes in the same way that athletes use heart rate monitors to see how their heart rate changes during exercise.

On-body testing

The team is currently working to redesign the physical appearance of the patch to move from laboratory research to on-body tests. Once the scientists optimize how the sensor adheres to the skin, its sweat sample delivery/removal, and the systems electronic components, volunteers will test its capabilities while exercising.

“We had actually talked about this idea to some local high school football coaches,” Ulyanova says, “and they seem to really like it and are willing to put forth the use of their players to beta test the idea.”

After initial data is gathered, the team will be able to work with other groups to interpret the data and relate it to the physical condition of the person. With this, predictive models could be built to potentially help prevent conditions related to individual overexertion.

Future plans for the device include implementing wireless transmission of results and the development of a suite of sensors (a hybrid sensor) that can detect various other biomolecules, indicative of physical or physiological stressors.

Here’s a link to and a citation for the paper,

Wearable Sensor System Powered by a Biofuel Cell for Detection of Lactate Levels in Sweat by S. O. Garcia, Y. V. Ulyanova, R. Figueroa-Teran, K. H. Bhatt, S. Singhal and P. Atanassov. ECS J. Solid State Sci. Technol. 2016 volume 5, issue 8, M3075-M3081 doi: 10.1149/2.0131608jss

This paper is behind a paywall.

Robots, Dallas (US), ethics, and killing

I’ve waited a while before posting this piece in the hope that the situation would calm. Sadly, it took longer than hoped as there was an additional shooting incident of police officers in Baton Rouge on July 17, 2016. There’s more about that shooting in a July 18, 2016 news posting by Steve Visser for CNN.)

Finally: Robots, Dallas, ethics, and killing: In the wake of the Thursday, July 7, 2016 shooting in Dallas (Texas, US) and subsequent use of a robot armed with a bomb to kill  the suspect, a discussion about ethics has been raised.

This discussion comes at a difficult period. In the same week as the targeted shooting of white police officers in Dallas, two African-American males were shot and killed in two apparently unprovoked shootings by police. The victims were Alton Sterling in Baton Rouge, Louisiana on Tuesday, July 5, 2016 and, Philando Castile in Minnesota on Wednesday, July 6, 2016. (There’s more detail about the shootings prior to Dallas in a July 7, 2016 news item on CNN.) The suspect in Dallas, Micah Xavier Johnson, a 25-year-old African-American male had served in the US Army Reserve and been deployed in Afghanistan (there’s more in a July 9, 2016 news item by Emily Shapiro, Julia Jacobo, and Stephanie Wash for All of this has taken place within the context of a movement started in 2013 in the US, Black Lives Matter.

Getting back to robots, most of the material I’ve seen about ‘killing or killer’ robots has so far involved industrial accidents (very few to date) and ethical issues for self-driven cars (see a May 31, 2016 posting by Noah J. Goodall on the IEEE [Institute of Electrical and Electronics Engineers] Spectrum website).

The incident in Dallas is apparently the first time a US police organization has used a robot as a bomb, although it has been an occasional practice by US Armed Forces in combat situations. Rob Lever in a July 8, 2016 Agence France-Presse piece on focuses on the technology aspect,

The “bomb robot” killing of a suspected Dallas shooter may be the first lethal use of an automated device by American police, and underscores growing role of technology in law enforcement.

Regardless of the methods in Dallas, the use of robots is expected to grow, to handle potentially dangerous missions in law enforcement and the military.

Researchers at Florida International University meanwhile have been working on a TeleBot that would allow disabled police officers to control a humanoid robot.

The robot, described in some reports as similar to the “RoboCop” in films from 1987 and 2014, was designed “to look intimidating and authoritative enough for citizens to obey the commands,” but with a “friendly appearance” that makes it “approachable to citizens of all ages,” according to a research paper.

Robot developers downplay the potential for the use of automated lethal force by the devices, but some analysts say debate on this is needed, both for policing and the military.

A July 9, 2016 Associated Press piece by Michael Liedtke and Bree Fowler on focuses more closely on ethical issues raised by the Dallas incident,

When Dallas police used a bomb-carrying robot to kill a sniper, they also kicked off an ethical debate about technology’s use as a crime-fighting weapon.

The strategy opens a new chapter in the escalating use of remote and semi-autonomous devices to fight crime and protect lives. It also raises new questions over when it’s appropriate to dispatch a robot to kill dangerous suspects instead of continuing to negotiate their surrender.

“If lethally equipped robots can be used in this situation, when else can they be used?” says Elizabeth Joh, a University of California at Davis law professor who has followed U.S. law enforcement’s use of technology. “Extreme emergencies shouldn’t define the scope of more ordinary situations where police may want to use robots that are capable of harm.”

In approaching the question about the ethics, Mike Masnick’s July 8, 2016 posting on Techdirt provides a surprisingly sympathetic reading for the Dallas Police Department’s actions, as well as, asking some provocative questions about how robots might be better employed by police organizations (Note: Links have been removed),

The Dallas Police have a long history of engaging in community policing designed to de-escalate situations, rather than encourage antagonism between police and the community, have been handling all of this with astounding restraint, frankly. Many other police departments would be lashing out, and yet the Dallas Police Dept, while obviously grieving for a horrible situation, appear to be handling this tragic situation professionally. And it appears that they did everything they could in a reasonable manner. They first tried to negotiate with Johnson, but after that failed and they feared more lives would be lost, they went with the robot + bomb option. And, obviously, considering he had already shot many police officers, I don’t think anyone would question the police justification if they had shot Johnson.

But, still, at the very least, the whole situation raises a lot of questions about the legality of police using a bomb offensively to blow someone up. And, it raises some serious questions about how other police departments might use this kind of technology in the future. The situation here appears to be one where people reasonably concluded that this was the most effective way to stop further bloodshed. And this is a police department with a strong track record of reasonable behavior. But what about other police departments where they don’t have that kind of history? What are the protocols for sending in a robot or drone to kill someone? Are there any rules at all?

Furthermore, it actually makes you wonder, why isn’t there a focus on using robots to de-escalate these situations? What if, instead of buying military surplus bomb robots, there were robots being designed to disarm a shooter, or detain him in a manner that would make it easier for the police to capture him alive? Why should the focus of remote robotic devices be to kill him? This isn’t faulting the Dallas Police Department for its actions last night. But, rather, if we’re going to enter the age of robocop, shouldn’t we be looking for ways to use such robotic devices in a manner that would help capture suspects alive, rather than dead?

Gordon Corera’s July 12, 2016 article on the BBC’s (British Broadcasting Corporation) news website provides an overview of the use of automation and of ‘killing/killer robots’,

Remote killing is not new in warfare. Technology has always been driven by military application, including allowing killing to be carried out at distance – prior examples might be the introduction of the longbow by the English at Crecy in 1346, then later the Nazi V1 and V2 rockets.

More recently, unmanned aerial vehicles (UAVs) or drones such as the Predator and the Reaper have been used by the US outside of traditional military battlefields.

Since 2009, the official US estimate is that about 2,500 “combatants” have been killed in 473 strikes, along with perhaps more than 100 non-combatants. Critics dispute those figures as being too low.

Back in 2008, I visited the Creech Air Force Base in the Nevada desert, where drones are flown from.

During our visit, the British pilots from the RAF deployed their weapons for the first time.

One of the pilots visibly bristled when I asked him if it ever felt like playing a video game – a question that many ask.

The military uses encrypted channels to control its ordnance disposal robots, but – as any hacker will tell you – there is almost always a flaw somewhere that a determined opponent can find and exploit.

We have already seen cars being taken control of remotely while people are driving them, and the nightmare of the future might be someone taking control of a robot and sending a weapon in the wrong direction.

The military is at the cutting edge of developing robotics, but domestic policing is also a different context in which greater separation from the community being policed risks compounding problems.

The balance between risks and benefits of robots, remote control and automation remain unclear.

But Dallas suggests that the future may be creeping up on us faster than we can debate it.

The excerpts here do not do justice to the articles, if you’re interested in this topic and have the time, I encourage you to read all the articles cited here in their entirety.

*(ETA: July 25, 2016 at 1405 hours PDT: There is a July 25, 2016 essay by Carrie Sheffield for which may provide some insight into the Black Lives matter movement and some of the generational issues within the US African-American community as revealed by the movement.)*