Category Archives: Technology

Vector Institute and Canada’s artificial intelligence sector

On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),

A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.

Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.

“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”

As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.

In addition, Vector is expected to receive funding from the Province of Ontario and more than 30 top Canadian and global companies eager to tap this pool of talent to grow their businesses. The institute will also work closely with other Ontario universities with AI talent.

(See my March 24, 2017 posting; scroll down about 25% for the science part, including the Pan-Canadian Artificial Intelligence Strategy of the budget.)

Not obvious in last week’s coverage of the Pan-Canadian Artificial Intelligence Strategy is that the much lauded Hinton has been living in the US and working for Google. These latest announcements (Pan-Canadian AI Strategy and Vector Institute) mean that he’s moving back.

A March 28, 2017 article by Kate Allen for TorontoStar.com provides more details about the Vector Institute, Hinton, and the Canadian ‘brain drain’ as it applies to artificial intelligence, (Note:  A link has been removed)

Toronto will host a new institute devoted to artificial intelligence, a major gambit to bolster a field of research pioneered in Canada but consistently drained of talent by major U.S. technology companies like Google, Facebook and Microsoft.

The Vector Institute, an independent non-profit affiliated with the University of Toronto, will hire about 25 new faculty and research scientists. It will be backed by more than $150 million in public and corporate funding in an unusual hybridization of pure research and business-minded commercial goals.

The province will spend $50 million over five years, while the federal government, which announced a $125-million Pan-Canadian Artificial Intelligence Strategy in last week’s budget, is providing at least $40 million, backers say. More than two dozen companies have committed millions more over 10 years, including $5 million each from sponsors including Google, Air Canada, Loblaws, and Canada’s five biggest banks [Bank of Montreal (BMO). Canadian Imperial Bank of Commerce ({CIBC} President’s Choice Financial},  Royal Bank of Canada (RBC), Scotiabank (Tangerine), Toronto-Dominion Bank (TD Canada Trust)].

The mode of artificial intelligence that the Vector Institute will focus on, deep learning, has seen remarkable results in recent years, particularly in image and speech recognition. Geoffrey Hinton, considered the “godfather” of deep learning for the breakthroughs he made while a professor at U of T, has worked for Google since 2013 in California and Toronto.

Hinton will move back to Canada to lead a research team based at the tech giant’s Toronto offices and act as chief scientific adviser of the new institute.

Researchers trained in Canadian artificial intelligence labs fill the ranks of major technology companies, working on tools like instant language translation, facial recognition, and recommendation services. Academic institutions and startups in Toronto, Waterloo, Montreal and Edmonton boast leaders in the field, but other researchers have left for U.S. universities and corporate labs.

The goals of the Vector Institute are to retain, repatriate and attract AI talent, to create more trained experts, and to feed that expertise into existing Canadian companies and startups.

Hospitals are expected to be a major partner, since health care is an intriguing application for AI. Last month, researchers from Stanford University announced they had trained a deep learning algorithm to identify potentially cancerous skin lesions with accuracy comparable to human dermatologists. The Toronto company Deep Genomics is using deep learning to read genomes and identify mutations that may lead to disease, among other things.

Intelligent algorithms can also be applied to tasks that might seem less virtuous, like reading private data to better target advertising. Zemel [Richard Zemel, the institute’s research director and a professor of computer science at U of T] says the centre is creating an ethics working group [emphasis mine] and maintaining ties with organizations that promote fairness and transparency in machine learning. As for privacy concerns, “that’s something we are well aware of. We don’t have a well-formed policy yet but we will fairly soon.”

The institute’s annual funding pales in comparison to the revenues of the American tech giants, which are measured in tens of billions. The risk the institute’s backers are taking is simply creating an even more robust machine learning PhD mill for the U.S.

“They obviously won’t all stay in Canada, but Toronto industry is very keen to get them,” Hinton said. “I think Trump might help there.” Two researchers on Hinton’s new Toronto-based team are Iranian, one of the countries targeted by U.S. President Donald Trump’s travel bans.

Ethics do seem to be a bit of an afterthought. Presumably the Vector Institute’s ‘ethics working group’ won’t include any regular folks. Is there any thought to what the rest of us think about these developments? As there will also be some collaboration with other proposed AI institutes including ones at the University of Montreal (Université de Montréal) and the University of Alberta (Kate McGillivray’s article coming up shortly mentions them), might the ethics group be centered in either Edmonton or Montreal? Interestingly, two Canadians (Timothy Caulfield at the University of Alberta and Eric Racine at Université de Montréa) testified at the US Commission for the Study of Bioethical Issues Feb. 10 – 11, 2014 meeting, the Brain research, ethics, and nanotechnology. Still speculating here but I imagine Caulfield and/or Racine could be persuaded to extend their expertise in ethics and the human brain to AI and its neural networks.

Getting back to the topic at hand the ‘AI sceneCanada’, Allen’s article is worth reading in its entirety if you have the time.

Kate McGillivray’s March 29, 2017 article for the Canadian Broadcasting Corporation’s (CBC) news online provides more details about the Canadian AI situation and the new strategies,

With artificial intelligence set to transform our world, a new institute is putting Toronto to the front of the line to lead the charge.

The Vector Institute for Artificial Intelligence, made possible by funding from the federal government revealed in the 2017 budget, will move into new digs in the MaRS Discovery District by the end of the year.

Vector’s funding comes partially from a $125 million investment announced in last Wednesday’s federal budget to launch a pan-Canadian artificial intelligence strategy, with similar institutes being established in Montreal and Edmonton.

“[A.I.] cuts across pretty well every sector of the economy,” said Dr. Alan Bernstein, CEO and president of the Canadian Institute for Advanced Research, the organization tasked with administering the federal program.

“Silicon Valley and England and other places really jumped on it, so we kind of lost the lead a little bit. I think the Canadian federal government has now realized that,” he said.

Stopping up the brain drain

Critical to the strategy’s success is building a homegrown base of A.I. experts and innovators — a problem in the last decade, despite pioneering work on so-called “Deep Learning” by Canadian scholars such as Yoshua Bengio and Geoffrey Hinton, a former University of Toronto professor who will now serve as Vector’s chief scientific advisor.

With few university faculty positions in Canada and with many innovative companies headquartered elsewhere, it has been tough to keep the few graduates specializing in A.I. in town.

“We were paying to educate people and shipping them south,” explained Ed Clark, chair of the Vector Institute and business advisor to Ontario Premier Kathleen Wynne.

The existence of that “fantastic science” will lean heavily on how much buy-in Vector and Canada’s other two A.I. centres get.

Toronto’s portion of the $125 million is a “great start,” said Bernstein, but taken alone, “it’s not enough money.”

“My estimate of the right amount of money to make a difference is a half a billion or so, and I think we will get there,” he said.

Jessica Murphy’s March 29, 2017 article for the British Broadcasting Corporation’s (BBC) news online offers some intriguing detail about the Canadian AI scene,

Canadian researchers have been behind some recent major breakthroughs in artificial intelligence. Now, the country is betting on becoming a big player in one of the hottest fields in technology, with help from the likes of Google and RBC [Royal Bank of Canada].

In an unassuming building on the University of Toronto’s downtown campus, Geoff Hinton laboured for years on the “lunatic fringe” of academia and artificial intelligence, pursuing research in an area of AI called neural networks.

Also known as “deep learning”, neural networks are computer programs that learn in similar way to human brains. The field showed early promise in the 1980s, but the tech sector turned its attention to other AI methods after that promise seemed slow to develop.

“The approaches that I thought were silly were in the ascendancy and the approach that I thought was the right approach was regarded as silly,” says the British-born [emphasis mine] professor, who splits his time between the university and Google, where he is a vice-president of engineering fellow.

Neural networks are used by the likes of Netflix to recommend what you should binge watch and smartphones with voice assistance tools. Google DeepMind’s AlphaGo AI used them to win against a human in the ancient game of Go in 2016.

Foteini Agrafioti, who heads up the new RBC Research in Machine Learning lab at the University of Toronto, said those recent innovations made AI attractive to researchers and the tech industry.

“Anything that’s powering Google’s engines right now is powered by deep learning,” she says.

Developments in the field helped jumpstart innovation and paved the way for the technology’s commercialisation. They also captured the attention of Google, IBM and Microsoft, and kicked off a hiring race in the field.

The renewed focus on neural networks has boosted the careers of early Canadian AI machine learning pioneers like Hinton, the University of Montreal’s Yoshua Bengio, and University of Alberta’s Richard Sutton.

Money from big tech is coming north, along with investments by domestic corporations like banking multinational RBC and auto parts giant Magna, and millions of dollars in government funding.

Former banking executive Ed Clark will head the institute, and says the goal is to make Toronto, which has the largest concentration of AI-related industries in Canada, one of the top five places in the world for AI innovation and business.

The founders also want it to serve as a magnet and retention tool for top talent aggressively head-hunted by US firms.

Clark says they want to “wake up” Canadian industry to the possibilities of AI, which is expected to have a massive impact on fields like healthcare, banking, manufacturing and transportation.

Google invested C$4.5m (US$3.4m/£2.7m) last November [2016] in the University of Montreal’s Montreal Institute for Learning Algorithms.

Microsoft is funding a Montreal startup, Element AI. The Seattle-based company also announced it would acquire Montreal-based Maluuba and help fund AI research at the University of Montreal and McGill University.

Thomson Reuters and General Motors both recently moved AI labs to Toronto.

RBC is also investing in the future of AI in Canada, including opening a machine learning lab headed by Agrafioti, co-funding a program to bring global AI talent and entrepreneurs to Toronto, and collaborating with Sutton and the University of Alberta’s Machine Intelligence Institute.

Canadian tech also sees the travel uncertainty created by the Trump administration in the US as making Canada more attractive to foreign talent. (One of Clark’s the selling points is that Toronto as an “open and diverse” city).

This may reverse the ‘brain drain’ but it appears Canada’s role as a ‘branch plant economy’ for foreign (usually US) companies could become an important discussion once more. From the ‘Foreign ownership of companies of Canada’ Wikipedia entry (Note: Links have been removed),

Historically, foreign ownership was a political issue in Canada in the late 1960s and early 1970s, when it was believed by some that U.S. investment had reached new heights (though its levels had actually remained stable for decades), and then in the 1980s, during debates over the Free Trade Agreement.

But the situation has changed, since in the interim period Canada itself became a major investor and owner of foreign corporations. Since the 1980s, Canada’s levels of investment and ownership in foreign companies have been larger than foreign investment and ownership in Canada. In some smaller countries, such as Montenegro, Canadian investment is sizable enough to make up a major portion of the economy. In Northern Ireland, for example, Canada is the largest foreign investor. By becoming foreign owners themselves, Canadians have become far less politically concerned about investment within Canada.

Of note is that Canada’s largest companies by value, and largest employers, tend to be foreign-owned in a way that is more typical of a developing nation than a G8 member. The best example is the automotive sector, one of Canada’s most important industries. It is dominated by American, German, and Japanese giants. Although this situation is not unique to Canada in the global context, it is unique among G-8 nations, and many other relatively small nations also have national automotive companies.

It’s interesting to note that sometimes Canadian companies are the big investors but that doesn’t change our basic position. And, as I’ve noted in other postings (including the March 24, 2017 posting), these government investments in science and technology won’t necessarily lead to a move away from our ‘branch plant economy’ towards an innovative Canada.

You can find out more about the Vector Institute for Artificial Intelligence here.

BTW, I noted that reference to Hinton as ‘British-born’ in the BBC article. He was educated in the UK and subsidized by UK taxpayers (from his Wikipedia entry; Note: Links have been removed),

Hinton was educated at King’s College, Cambridge graduating in 1970, with a Bachelor of Arts in experimental psychology.[1] He continued his study at the University of Edinburgh where he was awarded a PhD in artificial intelligence in 1977 for research supervised by H. Christopher Longuet-Higgins.[3][12]

It seems Canadians are not the only ones to experience  ‘brain drains’.

Finally, I wrote at length about a recent initiative taking place between the University of British Columbia (Vancouver, Canada) and the University of Washington (Seattle, Washington), the Cascadia Urban Analytics Cooperative in a Feb. 28, 2017 posting noting that the initiative is being funded by Microsoft to the tune $1M and is part of a larger cooperative effort between the province of British Columbia and the state of Washington. Artificial intelligence is not the only area where US technology companies are hedging their bets (against Trump’s administration which seems determined to terrify people from crossing US borders) by investing in Canada.

For anyone interested in a little more information about AI in the US and China, there’s today’s (March 31, 2017)earlier posting: China, US, and the race for artificial intelligence research domination.

The Canadian science scene and the 2017 Canadian federal budget

There’s not much happening in the 2017-18 budget in terms of new spending according to Paul Wells’ March 22, 2017 article for TheStar.com,

This is the 22nd or 23rd federal budget I’ve covered. And I’ve never seen the like of the one Bill Morneau introduced on Wednesday [March 22, 2017].

Not even in the last days of the Harper Conservatives did a budget provide for so little new spending — $1.3 billion in the current budget year, total, in all fields of government. That’s a little less than half of one per cent of all federal program spending for this year.

But times are tight. The future is a place where we can dream. So the dollars flow more freely in later years. In 2021-22, the budget’s fifth planning year, new spending peaks at $8.2 billion. Which will be about 2.4 per cent of all program spending.

He’s not alone in this 2017 federal budget analysis; CBC (Canadian Broadcasting Corporation) pundits, Chantal Hébert, Andrew Coyne, and Jennifer Ditchburn said much the same during their ‘At Issue’ segment of the March 22, 2017 broadcast of The National (news).

Before I focus on the science and technology budget, here are some general highlights from the CBC’s March 22, 2017 article on the 2017-18 budget announcement (Note: Links have been removed,

Here are highlights from the 2017 federal budget:

  • Deficit: $28.5 billion, up from $25.4 billion projected in the fall.
  • Trend: Deficits gradually decline over next five years — but still at $18.8 billion in 2021-22.
  • Housing: $11.2 billion over 11 years, already budgeted, will go to a national housing strategy.
  • Child care: $7 billion over 10 years, already budgeted, for new spaces, starting 2018-19.
  • Indigenous: $3.4 billion in new money over five years for infrastructure, health and education.
  • Defence: $8.4 billion in capital spending for equipment pushed forward to 2035.
  • Care givers: New care-giving benefit up to 15 weeks, starting next year.
  • Skills: New agency to research and measure skills development, starting 2018-19.
  • Innovation: $950 million over five years to support business-led “superclusters.”
  • Startups: $400 million over three years for a new venture capital catalyst initiative.
  • AI: $125 million to launch a pan-Canadian Artificial Intelligence Strategy.
  • Coding kids: $50 million over two years for initiatives to teach children to code.
  • Families: Option to extend parental leave up to 18 months.
  • Uber tax: GST to be collected on ride-sharing services.
  • Sin taxes: One cent more on a bottle of wine, five cents on 24 case of beer.
  • Bye-bye: No more Canada Savings Bonds.
  • Transit credit killed: 15 per cent non-refundable public transit tax credit phased out this year.

You can find the entire 2017-18 budget here.

Science and the 2017-18 budget

For anyone interested in the science news, you’ll find most of that in the 2017 budget’s Chapter 1 — Skills, Innovation and Middle Class jobs. As well, Wayne Kondro has written up a précis in his March 22, 2017 article for Science (magazine),

Finance officials, who speak on condition of anonymity during the budget lock-up, indicated the budgets of the granting councils, the main source of operational grants for university researchers, will be “static” until the government can assess recommendations that emerge from an expert panel formed in 2015 and headed by former University of Toronto President David Naylor to review basic science in Canada [highlighted in my June 15, 2016 posting ; $2M has been allocated for the advisor and associated secretariat]. Until then, the officials said, funding for the Natural Sciences and Engineering Research Council of Canada (NSERC) will remain at roughly $848 million, whereas that for the Canadian Institutes of Health Research (CIHR) will remain at $773 million, and for the Social Sciences and Humanities Research Council [SSHRC] at $547 million.

NSERC, though, will receive $8.1 million over 5 years to administer a PromoScience Program that introduces youth, particularly unrepresented groups like Aboriginal people and women, to science, technology, engineering, and mathematics through measures like “space camps and conservation projects.” CIHR, meanwhile, could receive modest amounts from separate plans to identify climate change health risks and to reduce drug and substance abuse, the officials added.

… Canada’s Innovation and Skills Plan, would funnel $600 million over 5 years allocated in 2016, and $112.5 million slated for public transit and green infrastructure, to create Silicon Valley–like “super clusters,” which the budget defined as “dense areas of business activity that contain large and small companies, post-secondary institutions and specialized talent and infrastructure.” …

… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”

… Among more specific measures are vows to: Use $87.7 million in previous allocations to the Canada Research Chairs program to create 25 “Canada 150 Research Chairs” honoring the nation’s 150th year of existence, provide $1.5 million per year to support the operations of the office of the as-yet-unappointed national science adviser [see my Dec. 7, 2016 post for information about the job posting, which is now closed]; provide $165.7 million [emphasis mine] over 5 years for the nonprofit organization Mitacs to create roughly 6300 more co-op positions for university students and grads, and provide $60.7 million over five years for new Canadian Space Agency projects, particularly for Canadian participation in the National Aeronautics and Space Administration’s next Mars Orbiter Mission.

Kondros was either reading an earlier version of the budget or made an error regarding Mitacs (from the budget in the “A New, Ambitious Approach to Work-Integrated Learning” subsection),

Mitacs has set an ambitious goal of providing 10,000 work-integrated learning placements for Canadian post-secondary students and graduates each year—up from the current level of around 3,750 placements. Budget 2017 proposes to provide $221 million [emphasis mine] over five years, starting in 2017–18, to achieve this goal and provide relevant work experience to Canadian students.

As well, the budget item for the Pan-Canadian Artificial Intelligence Strategy is $125M.

Moving from Kondros’ précis, the budget (in the “Positioning National Research Council Canada Within the Innovation and Skills Plan” subsection) announces support for these specific areas of science,

Stem Cell Research

The Stem Cell Network, established in 2001, is a national not-for-profit organization that helps translate stem cell research into clinical applications, commercial products and public policy. Its research holds great promise, offering the potential for new therapies and medical treatments for respiratory and heart diseases, cancer, diabetes, spinal cord injury, multiple sclerosis, Crohn’s disease, auto-immune disorders and Parkinson’s disease. To support this important work, Budget 2017 proposes to provide the Stem Cell Network with renewed funding of $6 million in 2018–19.

Space Exploration

Canada has a long and proud history as a space-faring nation. As our international partners prepare to chart new missions, Budget 2017 proposes investments that will underscore Canada’s commitment to innovation and leadership in space. Budget 2017 proposes to provide $80.9 million on a cash basis over five years, starting in 2017–18, for new projects through the Canadian Space Agency that will demonstrate and utilize Canadian innovations in space, including in the field of quantum technology as well as for Mars surface observation. The latter project will enable Canada to join the National Aeronautics and Space Administration’s (NASA’s) next Mars Orbiter Mission.

Quantum Information

The development of new quantum technologies has the potential to transform markets, create new industries and produce leading-edge jobs. The Institute for Quantum Computing is a world-leading Canadian research facility that furthers our understanding of these innovative technologies. Budget 2017 proposes to provide the Institute with renewed funding of $10 million over two years, starting in 2017–18.

Social Innovation

Through community-college partnerships, the Community and College Social Innovation Fund fosters positive social outcomes, such as the integration of vulnerable populations into Canadian communities. Following the success of this pilot program, Budget 2017 proposes to invest $10 million over two years, starting in 2017–18, to continue this work.

International Research Collaborations

The Canadian Institute for Advanced Research (CIFAR) connects Canadian researchers with collaborative research networks led by eminent Canadian and international researchers on topics that touch all humanity. Past collaborations facilitated by CIFAR are credited with fostering Canada’s leadership in artificial intelligence and deep learning. Budget 2017 proposes to provide renewed and enhanced funding of $35 million over five years, starting in 2017–18.

Earlier this week, I highlighted Canada’s strength in the field of regenerative medicine, specifically stem cells in a March 21, 2017 posting. The $6M in the current budget doesn’t look like increased funding but rather a one-year extension. I’m sure they’re happy to receive it  but I imagine it’s a little hard to plan major research projects when you’re not sure how long your funding will last.

As for Canadian leadership in artificial intelligence, that was news to me. Here’s more from the budget,

Canada a Pioneer in Deep Learning in Machines and Brains

CIFAR’s Learning in Machines & Brains program has shaken up the field of artificial intelligence by pioneering a technique called “deep learning,” a computer technique inspired by the human brain and neural networks, which is now routinely used by the likes of Google and Facebook. The program brings together computer scientists, biologists, neuroscientists, psychologists and others, and the result is rich collaborations that have propelled artificial intelligence research forward. The program is co-directed by one of Canada’s foremost experts in artificial intelligence, the Université de Montréal’s Yoshua Bengio, and for his many contributions to the program, the University of Toronto’s Geoffrey Hinton, another Canadian leader in this field, was awarded the title of Distinguished Fellow by CIFAR in 2014.

Meanwhile, from chapter 1 of the budget in the subsection titled “Preparing for the Digital Economy,” there is this provision for children,

Providing educational opportunities for digital skills development to Canadian girls and boys—from kindergarten to grade 12—will give them the head start they need to find and keep good, well-paying, in-demand jobs. To help provide coding and digital skills education to more young Canadians, the Government intends to launch a competitive process through which digital skills training organizations can apply for funding. Budget 2017 proposes to provide $50 million over two years, starting in 2017–18, to support these teaching initiatives.

I wonder if BC Premier Christy Clark is heaving a sigh of relief. At the 2016 #BCTECH Summit, she announced that students in BC would learn to code at school and in newly enhanced coding camp programmes (see my Jan. 19, 2016 posting). Interestingly, there was no mention of additional funding to support her initiative. I guess this money from the federal government comes at a good time as we will have a provincial election later this spring where she can announce the initiative again and, this time, mention there’s money for it.

Attracting brains from afar

Ivan Semeniuk in his March 23, 2017 article (for the Globe and Mail) reads between the lines to analyze the budget’s possible impact on Canadian science,

But a between-the-lines reading of the budget document suggests the government also has another audience in mind: uneasy scientists from the United States and Britain.

The federal government showed its hand at the 2017 #BCTECH Summit. From a March 16, 2017 article by Meera Bains for the CBC news online,

At the B.C. tech summit, Navdeep Bains, Canada’s minister of innovation, said the government will act quickly to fast track work permits to attract highly skilled talent from other countries.

“We’re taking the processing time, which takes months, and reducing it to two weeks for immigration processing for individuals [who] need to come here to help companies grow and scale up,” Bains said.

“So this is a big deal. It’s a game changer.”

That change will happen through the Global Talent Stream, a new program under the federal government’s temporary foreign worker program.  It’s scheduled to begin on June 12, 2017.

U.S. companies are taking notice and a Canadian firm, True North, is offering to help them set up shop.

“What we suggest is that they think about moving their operations, or at least a chunk of their operations, to Vancouver, set up a Canadian subsidiary,” said the company’s founder, Michael Tippett.

“And that subsidiary would be able to house and accommodate those employees.”

Industry experts says while the future is unclear for the tech sector in the U.S., it’s clear high tech in B.C. is gearing up to take advantage.

US business attempts to take advantage of Canada’s relative stability and openness to immigration would seem to be the motive for at least one cross border initiative, the Cascadia Urban Analytics Cooperative. From my Feb. 28, 2017 posting,

There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),

In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.

Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.

A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.

It gets better, it seems Microsoft has been positioning itself for a while if Matt Day’s analysis is correct (from my Feb. 28, 2017 posting),

Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),

Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.

The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.

Microsoft last year [2016] opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].

This was all prior to President Trump’s legislative moves in the US, which have at least one Canadian observer a little more gleeful than I’m comfortable with. From a March 21, 2017 article by Susan Lum  for CBC News online,

U.S. President Donald Trump’s efforts to limit travel into his country while simultaneously cutting money from science-based programs provides an opportunity for Canada’s science sector, says a leading Canadian researcher.

“This is Canada’s moment. I think it’s a time we should be bold,” said Alan Bernstein, president of CIFAR [which on March 22, 2017 was awarded $125M to launch the Pan Canada Artificial Intelligence Strategy in the Canadian federal budget announcement], a global research network that funds hundreds of scientists in 16 countries.

Bernstein believes there are many reasons why Canada has become increasingly attractive to scientists around the world, including the political climate in the United States and the Trump administration’s travel bans.

Thankfully, Bernstein calms down a bit,

“It used to be if you were a bright young person anywhere in the world, you would want to go to Harvard or Berkeley or Stanford, or what have you. Now I think you should give pause to that,” he said. “We have pretty good universities here [emphasis mine]. We speak English. We’re a welcoming society for immigrants.”​

Bernstein cautions that Canada should not be seen to be poaching scientists from the United States — but there is an opportunity.

“It’s as if we’ve been in a choir of an opera in the back of the stage and all of a sudden the stars all left the stage. And the audience is expecting us to sing an aria. So we should sing,” Bernstein said.

Bernstein said the federal government, with this week’s so-called innovation budget, can help Canada hit the right notes.

“Innovation is built on fundamental science, so I’m looking to see if the government is willing to support, in a big way, fundamental science in the country.”

Pretty good universities, eh? Thank you, Dr. Bernstein, for keeping some of the boosterism in check. Let’s leave the chest thumping to President Trump and his cronies.

Ivan Semeniuk’s March 23, 2017 article (for the Globe and Mail) provides more details about the situation in the US and in Britain,

Last week, Donald Trump’s first budget request made clear the U.S. President would significantly reduce or entirely eliminate research funding in areas such as climate science and renewable energy if permitted by Congress. Even the National Institutes of Health, which spearheads medical research in the United States and is historically supported across party lines, was unexpectedly targeted for a $6-billion (U.S.) cut that the White House said could be achieved through “efficiencies.”

In Britain, a recent survey found that 42 per cent of academics were considering leaving the country over worries about a less welcoming environment and the loss of research money that a split with the European Union is expected to bring.

In contrast, Canada’s upbeat language about science in the budget makes a not-so-subtle pitch for diversity and talent from abroad, including $117.6-million to establish 25 research chairs with the aim of attracting “top-tier international scholars.”

For good measure, the budget also includes funding for science promotion and $2-million annually for Canada’s yet-to-be-hired Chief Science Advisor, whose duties will include ensuring that government researchers can speak freely about their work.

“What we’ve been hearing over the last few months is that Canada is seen as a beacon, for its openness and for its commitment to science,” said Ms. Duncan [Kirsty Duncan, Minister of Science], who did not refer directly to either the United States or Britain in her comments.

Providing a less optimistic note, Erica Alini in her March 22, 2017 online article for Global News mentions a perennial problem, the Canadian brain drain,

The budget includes a slew of proposed reforms and boosted funding for existing training programs, as well as new skills-development resources for unemployed and underemployed Canadians not covered under current EI-funded programs.

There are initiatives to help women and indigenous people get degrees or training in science, technology, engineering and mathematics (the so-called STEM subjects) and even to teach kids as young as kindergarten-age to code.

But there was no mention of how to make sure Canadians with the right skills remain in Canada, TD’s DePratto {Toronto Dominion Bank} Economics; TD is currently experiencing a scandal {March 13, 2017 Huffington Post news item}] told Global News.

Canada ranks in the middle of the pack compared to other advanced economies when it comes to its share of its graduates in STEM fields, but the U.S. doesn’t shine either, said DePratto [Brian DePratto, senior economist at TD .

The key difference between Canada and the U.S. is the ability to retain domestic talent and attract brains from all over the world, he noted.

To be blunt, there may be some opportunities for Canadian science but it does well to remember (a) US businesses have no particular loyalty to Canada and (b) all it takes is an election to change any perceived advantages to disadvantages.

Digital policy and intellectual property issues

Dubbed by some as the ‘innovation’ budget (official title:  Building a Strong Middle Class), there is an attempt to address a longstanding innovation issue (from a March 22, 2017 posting by Michael Geist on his eponymous blog (Note: Links have been removed),

The release of today’s [march 22, 2017] federal budget is expected to include a significant emphasis on innovation, with the government revealing how it plans to spend (or re-allocate) hundreds of millions of dollars that is intended to support innovation. Canada’s dismal innovation record needs attention, but spending our way to a more innovative economy is unlikely to yield the desired results. While Navdeep Bains, the Innovation, Science and Economic Development Minister, has talked for months about the importance of innovation, Toronto Star columnist Paul Wells today delivers a cutting but accurate assessment of those efforts:

“This government is the first with a minister for innovation! He’s Navdeep Bains. He frequently posts photos of his meetings on Twitter, with the hashtag “#innovation.” That’s how you know there is innovation going on. A year and a half after he became the minister for #innovation, it’s not clear what Bains’s plans are. It’s pretty clear that within the government he has less than complete control over #innovation. There’s an advisory council on economic growth, chaired by the McKinsey guru Dominic Barton, which periodically reports to the government urging more #innovation.

There’s a science advisory panel, chaired by former University of Toronto president David Naylor, that delivered a report to Science Minister Kirsty Duncan more than three months ago. That report has vanished. One presumes that’s because it offered some advice. Whatever Bains proposes, it will have company.”

Wells is right. Bains has been very visible with plenty of meetings and public photo shoots but no obvious innovation policy direction. This represents a missed opportunity since Bains has plenty of policy tools at his disposal that could advance Canada’s innovation framework without focusing on government spending.

For example, Canada’s communications system – wireless and broadband Internet access – falls directly within his portfolio and is crucial for both business and consumers. Yet Bains has been largely missing in action on the file. He gave approval for the Bell – MTS merger that virtually everyone concedes will increase prices in the province and make the communications market less competitive. There are potential policy measures that could bring new competitors into the market (MVNOs [mobile virtual network operators] and municipal broadband) and that could make it easier for consumers to switch providers (ban on unlocking devices). Some of this falls to the CRTC, but government direction and emphasis would make a difference.

Even more troubling has been his near total invisibility on issues relating to new fees or taxes on Internet access and digital services. Canadian Heritage Minister Mélanie Joly has taken control of the issue with the possibility that Canadians could face increased costs for their Internet access or digital services through mandatory fees to contribute to Canadian content.  Leaving aside the policy objections to such an approach (reducing affordable access and the fact that foreign sources now contribute more toward Canadian English language TV production than Canadian broadcasters and distributors), Internet access and e-commerce are supposed to be Bains’ issue and they have a direct connection to the innovation file. How is it possible for the Innovation, Science and Economic Development Minister to have remained silent for months on the issue?

Bains has been largely missing on trade related innovation issues as well. My Globe and Mail column today focuses on a digital-era NAFTA, pointing to likely U.S. demands on data localization, data transfers, e-commerce rules, and net neutrality.  These are all issues that fall under Bains’ portfolio and will impact investment in Canadian networks and digital services. There are innovation opportunities for Canada here, but Bains has been content to leave the policy issues to others, who will be willing to sacrifice potential gains in those areas.

Intellectual property policy is yet another area that falls directly under Bains’ mandate with an obvious link to innovation, but he has done little on the file. Canada won a huge NAFTA victory late last week involving the Canadian patent system, which was challenged by pharmaceutical giant Eli Lilly. Why has Bains not promoted the decision as an affirmation of how Canada’s intellectual property rules?

On the copyright front, the government is scheduled to conduct a review of the Copyright Act later this year, but it is not clear whether Bains will take the lead or again cede responsibility to Joly. The Copyright Act is statutorily under the Industry Minister and reform offers the chance to kickstart innovation. …

For anyone who’s not familiar with this area, innovation is often code for commercialization of science and technology research efforts. These days, digital service and access policies and intellectual property policies are all key to research and innovation efforts.

The country that’s most often (except in mainstream Canadian news media) held up as an example of leadership in innovation is Estonia. The Economist profiled the country in a July 31, 2013 article and a July 7, 2016 article on apolitical.co provides and update.

Conclusions

Science monies for the tri-council science funding agencies (NSERC, SSHRC, and CIHR) are more or less flat but there were a number of line items in the federal budget which qualify as science funding. The $221M over five years for Mitacs, the $125M for the Pan-Canadian Artificial Intelligence Strategy, additional funding for the Canada research chairs, and some of the digital funding could also be included as part of the overall haul. This is in line with the former government’s (Stephen Harper’s Conservatives) penchant for keeping the tri-council’s budgets under control while spreading largesse elsewhere (notably the Perimeter Institute, TRIUMF [Canada’s National Laboratory for Particle and Nuclear Physics], and, in the 2015 budget, $243.5-million towards the Thirty Metre Telescope (TMT) — a massive astronomical observatory to be constructed on the summit of Mauna Kea, Hawaii, a $1.5-billion project). This has lead to some hard feelings in the past with regard to ‘big science’ projects getting what some have felt is an undeserved boost in finances while the ‘small fish’ are left scrabbling for the ever-diminishing (due to budget cuts in years past and inflation) pittances available from the tri-council agencies.

Mitacs, which started life as a federally funded Network Centre for Excellence focused on mathematics, has since shifted focus to become an innovation ‘champion’. You can find Mitacs here and you can find the organization’s March 2016 budget submission to the House of Commons Standing Committee on Finance here. At the time, they did not request a specific amount of money; they just asked for more.

The amount Mitacs expects to receive this year is over $40M which represents more than double what they received from the federal government and almost of 1/2 of their total income in the 2015-16 fiscal year according to their 2015-16 annual report (see p. 327 for the Mitacs Statement of Operations to March 31, 2016). In fact, the federal government forked over $39,900,189. in the 2015-16 fiscal year to be their largest supporter while Mitacs’ total income (receipts) was $81,993,390.

It’s a strange thing but too much money, etc. can be as bad as too little. I wish the folks Mitacs nothing but good luck with their windfall.

I don’t see anything in the budget that encourages innovation and investment from the industrial sector in Canada.

Finallyl, innovation is a cultural issue as much as it is a financial issue and having worked with a number of developers and start-up companies, the most popular business model is to develop a successful business that will be acquired by a large enterprise thereby allowing the entrepreneurs to retire before the age of 30 (or 40 at the latest). I don’t see anything from the government acknowledging the problem let alone any attempts to tackle it.

All in all, it was a decent budget with nothing in it to seriously offend anyone.

Animal technology: a touchscreen for your dog, sonar lunch orders for dolphins, and more

A rather unexpected (for ignorant folks like me) approach to animal technology has been taken by Ilyena Hirskyj-Douglas in her June 17, 2016 piece on phys.org,

Imagine leaving your dog at home while it turns on the smart TV and chooses a programme to watch. Meanwhile you visit a zoo where you play interactive touchscreen games with the apes and watch the dolphins using sonar to order their lunch. In the field behind you, a farmer is stroking his flock of chickens virtually, leaving the drones to collect sheep while the cows milk themselves. Welcome to the unusual world of animal technology.

Hirskyj-Douglas’s piece was originally published as a June 15, 2016 essay  about animal-computer interaction (ACI) and some of the latest work being done in the field on The Conversation website (Note: Links have been removed),

Animals have interacted with technology for a long time, from tracking devices for conservation research to zoos with early touchscreen computers. But more recently, the field of animal-computer interaction (ACI) has begun to explore in more detail exactly how animals use technology like this. The hope is that better understanding animals’ relationship with technology will means we can use it to monitor and improve their welfare.

My own research involves building intelligent tracking devices for dogs that let them interact with media on a screen so we can study how dogs use TV and what they like to watch (if anything). Perhaps unsurprisingly, I’ve found that dogs like to watch videos of other dogs. This has led me to track dogs dogs’ gaze across individual and multiple screens and attempts to work out how best to make media just for dogs.

Eventually I hope to make an interactive system that allows a dog to pick what they want to watch and that evolves by learning what media they like. This isn’t to create a toy for indulgent pet owners. Dogs are often left at home alone during the day or isolated in kennels. So interactive media technology could improve the animals’ welfare by providing a stimulus and a source of entertainment. …

This 2014 video (embedded in Hirskyj-Douglas’s essay) illustrates how touchscreens are used by great apes,

It’s all quite intriguing and I encourage you to read the essay in it entirety.

If you find the great apes project interesting, you can find  out more about it (I believe it’s in the Primate Research category) and others at the Atlanta Zoo’s research webpage.

Rwanda hosts 2016 World Economic Forum on Africa and shows off its technology

Rwanda and its technological prowess is a story that has been emerging for some time. On the occasion of hosting the 2016 World Economic Forum on Africa, Milton Nkosi has written a May 13, 2016 article for BBC (British Broadcasting Corporation) news online about Rwanda’s ‘technology revolution’,

The Rwandan capital Kigali was a hive of activity this week as the city hosted the World Economic Forum on Africa.

The land of a thousand hills is shaking off its negative image as a country forever linked with the 1994 genocide, in which an estimated 800,000 people were killed.

It is breaking old stereotypes not just about itself but also as an African nation.

In the Kigali suburb of Gikondo, I caught the number 205 bus for the city centre, paying the fare with a quick tap of my pre-paid smart card.

Commuters along the route boarded the bus quickly and easily, taking advantage of the new cashless payment system.

There were no delays or arguments about change, the kind you are almost guaranteed to encounter when taking public transport in many other African cities.

The modern bus was fitted with a TV at the front, which played out music videos for those not already texting or making calls on their mobiles.

On the outskirts of Kigali, I visit the assembly plant for a Latin American computer company [Positivo GBH], another example of the country’s technological progress and attractiveness to foreign investors.

I ask the [sic] Juan Ignacio Ponelli, the Argentinean involved in the decision to establish the company’s first African office here: “Why Rwanda?”

“Why not?” he replies, with a confident smile.

“We had been talking to different African countries but I have to say Rwanda moved fast. They have a strong anti-corruption drive and the country has been growing at about 8% per annum for the last few years.”

If you have the time (it’s a quick read with an embedded video and images), I encourage you to read Nkosi’s piece in its entirety.

As for Rwanda’s technology presence as an emerging story, I did a little digging and found two pieces one for the UN (United Nations) and another for TIME magazine.

From Masimba Tafirenyika’s April 2011 report featuring the then new smart card ticketing system and much more for the UN’s Africa Renewal website,

A luxury commuter bus pulls up by the kerb to pick up passengers. A young woman quickly jumps in, retrieves a smart card from her wallet and swipes it against a machine next to the driver. A buzzer approves the swipe and the woman takes a seat by the window. Nothing unusual, something even routine in advanced economies. But this is tiny landlocked Rwanda, one of the world’s poorest countries, which was nearly brought to its knees by genocide in 1994.

The smart-card ticketing system is known as twende. Its introduction in the capital, Kigali, early this year by Kigali Bus Services is the latest in a string of technological advances that are unleashing rapid changes in the economy and transforming Rwanda into a regional hub for business communications and information technology. …

The rise of Rwanda’s economy is gradually getting investors’ attention. According to the World Bank, it is now easier, faster and less expensive to operate a business in Rwanda than in most other African countries. In this year’s “Ease of Doing Business” rankings, by which the World Bank gauges the intricacies of running a company in different countries, Rwanda comes in at 58 out of 183 nations surveyed, up from 143 in 2009. In Africa only Mauritius, South Africa, Botswana and Tunisia fared better.

The World Bank says that a high ranking indicates that a country has adopted laws favourable to starting and operating a company, in areas such as accessing credit, registering property transfers, paying taxes and enforcing contracts. In 2005 an entrepreneur had to go through nine procedures to start a business in Rwanda, at a cost of 223 per cent of income per capita. Today, observes the Bank, it takes only two procedures in three days, at a cost of 8.9 per cent!

It is perhaps the government’s ambitious plans to transform Rwanda into a regional high-tech hub — or “Singapore of Africa” — that has most fascinated many people, including sceptics. With that goal the government initiated the five-year “National Information and Communication Technology (ICT) Plans.” The first plan, from 2000 to 2005, focused on creating policies favourable to ICT initiatives. The second, from 2006 to 2010, concentrated on building the ICT backbone, including laying fibre-optic cables. The third, scheduled to run from 2011 to 2015, will speed up the introduction of services to exploit the new technology and, authorities are convinced, will push Rwanda ahead of regional rivals.

There’s also this more recent April 7, 2015 article by Jack Linshi for TIME magazine (Note: Links have been removed),

Under President Paul Kagame, who some credit for helping end the 1994 genocide, Rwanda has taken a number of steps to turn itself around. Provincial boundaries were redrawn, infrastructure was strengthened, a transitional justice system convicted the worst Génocidaires — even a new flag was unveiled to promote national unity and reconciliation. While some accuse Kagame of using his country’s history as a means of controlling its modern politics, there’s no doubting his country’s economic success.

But as Rwanda heals its past, the nation is also forging ahead — aggressively. A government initiative is underway to expand technology and connectivity, with the goal of transforming the agrarian economy into a highly digitized, middle-income country by 2020. With its population projected to reach 16 million by 2020, from 8 million in 2000, the country is looking beyond state funds and international aid to develop its economy: “While both of these must contribute, the backbone of the process should be a middle class of Rwandan entrepreneurs,” according the plan, called Vision 2020.

Vision 2020 is bold, but it’s working. And many outside Africa — and inside — are marveling at how an economy long-dominated by subsistence farming is becoming a high-tech hub — and one of the 20 fastest-growing countries in the world.

Both of these pieces help provide insight into Rwanda’s emergence. The 2011 piece offers more in depth analysis of the various government initiatives while the 2015 piece adds some details about the difficulties the country still faces.

Finally, you can find information about 2016 World Economic Forum held May 11 – 13, 2016 here where you will a find a programme, a list of speakers, and videos.

Will AI ‘artists’ be able to fool a panel judging entries the Neukom Institute Prizes in Computational Arts?

There’s an intriguing competition taking place at Dartmouth College (US) according to a May 2, 2016 piece on phys.org (Note: Links have been removed),

Algorithms help us to choose which films to watch, which music to stream and which literature to read. But what if algorithms went beyond their jobs as mediators of human culture and started to create culture themselves?

In 1950 English mathematician and computer scientist Alan Turing published a paper, “Computing Machinery and Intelligence,” which starts off by proposing a thought experiment that he called the “Imitation Game.” In one room is a human “interrogator” and in another room a man and a woman. The goal of the game is for the interrogator to figure out which of the unknown hidden interlocutors is the man and which is the woman. This is to be accomplished by asking a sequence of questions with responses communicated either by a third party or typed out and sent back. “Winning” the Imitation Game means getting the identification right on the first shot.

Turing then modifies the game by replacing one interlocutor with a computer, and asks whether a computer will be able to converse sufficiently well that the interrogator cannot tell the difference between it and the human. This version of the Imitation Game has come to be known as the “Turing Test.”

On May 18 [2016] at Dartmouth, we will explore a different area of intelligence, taking up the question of distinguishing machine-generated art. Specifically, in our “Turing Tests in the Creative Arts,” we ask if machines are capable of generating sonnets, short stories, or dance music that is indistinguishable from human-generated works, though perhaps not yet so advanced as Shakespeare, O. Henry or Daft Punk.

The piece on phys.org is a crossposting of a May 2, 2016 article by Michael Casey and Daniel N. Rockmore for The Conversation. The article goes on to describe the competitions,

The dance music competition (“Algorhythms”) requires participants to construct an enjoyable (fun, cool, rad, choose your favorite modifier for having an excellent time on the dance floor) dance set from a predefined library of dance music. In this case the initial random “seed” is a single track from the database. The software package should be able to use this as inspiration to create a 15-minute set, mixing and modifying choices from the library, which includes standard annotations of more than 20 features, such as genre, tempo (bpm), beat locations, chroma (pitch) and brightness (timbre).

In what might seem a stiffer challenge, the sonnet and short story competitions (“PoeTix” and “DigiLit,” respectively) require participants to submit self-contained software packages that upon the “seed” or input of a (common) noun phrase (such as “dog” or “cheese grater”) are able to generate the desired literary output. Moreover, the code should ideally be able to generate an infinite number of different works from a single given prompt.

To perform the test, we will screen the computer-made entries to eliminate obvious machine-made creations. We’ll mix human-generated work with the rest, and ask a panel of judges to say whether they think each entry is human- or machine-generated. For the dance music competition, scoring will be left to a group of students, dancing to both human- and machine-generated music sets. A “winning” entry will be one that is statistically indistinguishable from the human-generated work.

The competitions are open to any and all comers [competition is now closed; the deadline was April 15, 2016]. To date, entrants include academics as well as nonacademics. As best we can tell, no companies have officially thrown their hats into the ring. This is somewhat of a surprise to us, as in the literary realm companies are already springing up around machine generation of more formulaic kinds of “literature,” such as earnings reports and sports summaries, and there is of course a good deal of AI automation around streaming music playlists, most famously Pandora.

The authors discuss issues with judging the entries,

Evaluation of the entries will not be entirely straightforward. Even in the initial Imitation Game, the question was whether conversing with men and women over time would reveal their gender differences. (It’s striking that this question was posed by a closeted gay man [Alan Turing].) The Turing Test, similarly, asks whether the machine’s conversation reveals its lack of humanity not in any single interaction but in many over time.

It’s also worth considering the context of the test/game. Is the probability of winning the Imitation Game independent of time, culture and social class? Arguably, as we in the West approach a time of more fluid definitions of gender, that original Imitation Game would be more difficult to win. Similarly, what of the Turing Test? In the 21st century, our communications are increasingly with machines (whether we like it or not). Texting and messaging have dramatically changed the form and expectations of our communications. For example, abbreviations, misspellings and dropped words are now almost the norm. The same considerations apply to art forms as well.

The authors also pose the question: Who is the artist?

Thinking about art forms leads naturally to another question: who is the artist? Is the person who writes the computer code that creates sonnets a poet? Is the programmer of an algorithm to generate short stories a writer? Is the coder of a music-mixing machine a DJ?

Where is the divide between the artist and the computational assistant and how does the drawing of this line affect the classification of the output? The sonnet form was constructed as a high-level algorithm for creative work – though one that’s executed by humans. Today, when the Microsoft Office Assistant “corrects” your grammar or “questions” your word choice and you adapt to it (either happily or out of sheer laziness), is the creative work still “yours” or is it now a human-machine collaborative work?

That’s an interesting question and one I asked in the context of two ‘mashup’ art exhibitions in Vancouver (Canada) in my March 8, 2016 posting.

Getting back to back to Dartmouth College and its Neukom Institute Prizes in Computational Arts, here’s a list of the competition judges from the competition homepage,

David Cope (Composer, Algorithmic Music Pioneer, UCSC Music Professor)
David Krakauer (President, the Santa Fe Institute)
Louis Menand (Pulitzer Prize winning author and Professor at Harvard University)
Ray Monk (Author, Biographer, Professor of Philosophy)
Lynn Neary (NPR: Correspondent, Arts Desk and Guest Host)
Joe Palca (NPR: Correspondent, Science Desk)
Robert Siegel (NPR: Senior Host, All Things Considered)

The announcements will be made Wednesday, May 18, 2016. I can hardly wait!

Addendum

Martin Robbins has written a rather amusing May 6, 2016 post for the Guardian science blogs on AI and art critics where he also notes that the question: What is art? is unanswerable (Note: Links have been removed),

Jonathan Jones is unhappy about artificial intelligence. It might be hard to tell from a casual glance at the art critic’s recent column, “The digital Rembrandt: a new way to mock art, made by fools,” but if you look carefully the subtle clues are there. His use of the adjectives “horrible, tasteless, insensitive and soulless” in a single sentence, for example.

The source of Jones’s ire is a new piece of software that puts… I’m so sorry… the ‘art’ into ‘artificial intelligence’. By analyzing a subset of Rembrandt paintings that featured ‘bearded white men in their 40s looking to the right’, its algorithms were able to extract the key features that defined the Dutchman’s style. …

Of course an artificial intelligence is the worst possible enemy of a critic, because it has no ego and literally does not give a crap what you think. An arts critic trying to deal with an AI is like an old school mechanic trying to replace the battery in an iPhone – lost, possessing all the wrong tools and ultimately irrelevant. I’m not surprised Jones is angry. If I were in his shoes, a computer painting a Rembrandt would bring me out in hives.
Advertisement

Can a computer really produce art? We can’t answer that without dealing with another question: what exactly is art? …

I wonder what either Robbins or Jones will make of the Dartmouth competition?

A dress that lights up according to reactions on Twitter

I don’t usually have an opportunity to write about red carpet events but the recent Met Gala, also known as the Costume Institute Gala and the Met Ball, which took place on the evening of May 2, 2016 in New York, featured a ‘cognitive’ dress. Here’s more from a May 2, 2016 article by Emma Spedding for The Telegraph (UK),

“Tech white tie” was the dress code for last night’s Met Gala, inspired by the theme of this year’s Met fashion exhibition, ‘Manus x Machina: Fashion in the Age of Technology’. While many of the a-list attendees interpreted this to mean ‘silver sequins’, several rose to the challenge with beautiful, future-gazing gowns which give a glimpse of how our clothes might behave in the future.

Supermodel Karolina Kurkova wore a ‘cognitive’ Marchesa gown that was created in collaboration with technology company IBM. The two companies came together following a survey conducted by IBM which found that Marchesa was one of the favourite designers of its employees. The dress is created using a conductive fabric chosen from 40,000 options and embedded with 150 LED lights which change colour in reaction to the sentiments of Kurkova’s Twitter followers.

A May 2, 2016 article by Rose Pastore for Fast Company provides a little more technical detail and some insight into why Marchesa partnered with IBM,

At the Met Gala in Manhattan tonight [May 2, 2016], one model will be wearing a “cognitive dress”: A gown, designed by fashion house Marchesa, that will shift in color based on input from IBM’s Watson supercomputer. The dress features gauzy white roses, each embedded with an LED that will display different colors depending on the general sentiment of tweets about the Met Gala. The algorithm powering the dress relies on Watson Color Theory, which links emotions to colors, and on the Watson Tone Analyzer, a service that can detect emotion in text.

In addition to the color-changing cognitive dress, Marchesa designers are using Watson to get new color palette ideas. The designers choose from a list of emotions and concepts—things like romance, excitement, and power—and Watson recommends a palette of colors it associates with those sentiments.

An April 29, 2016 posting by Ann Rubin for IBM’s Think blog discusses the history of technology/art partnerships and provides more technical detail (yes!) about this one,

Throughout history, we’ve seen traces of technology enabling humans to create – from Da Vinci’s use of the camera obscura to Caravaggio’s work with mirrors and lenses. Today, cognitive systems like Watson are giving artists, designers and creative minds the tools to make sense of the world in ground-breaking ways, opening up new avenues for humans to approach creative thinking.

The dress’ cognitive creation relies on a mix of Watson APIs, cognitive tools from IBM Research, solutions from Watson developer partner Inno360 and the creative vision from the Marchesa design team. In advance of it making its exciting debut on the red carpet, we’d like to take you on the journey of how man and machine collaborated to create this special dress.

Rooted in the belief that color and images can indicate moods and send messages, Marchesa first selected five key human emotions – joy, passion, excitement, encouragement and curiosity – that they wanted the dress to convey. IBM Research then fed this data into the cognitive color design tool, a groundbreaking project out of IBM Research-Yorktown that understands the psychological effects of colors, the interrelationships between emotions, and image aesthetics.

This process also involved feeding Watson hundreds of images associated with Marchesa dresses in order to understand and learn the brand’s color palette. Ultimately, Watson was able to suggest color palettes that were in line with Marchesa’s brand and the identified emotions, which will come to life on the dress during the Met Gala.

Once the colors were finalized, Marchesa turned to IBM partner Inno360 to source a fabric for their creation. Using Inno360’s R&D platform – powered by a combination of seven Watson services – the team searched more than 40,000 sources for fabric information, narrowing down to 150 sources of the most useful options to consider for the dress.

From this selection, Inno360 worked in partnership with IBM Research-Almaden to identify printed and woven textiles that would respond well to the LED technology needed to execute the final part of the collaboration. Inno360 was then able to deliver 35 unique fabric recommendations based on a variety of criteria important to Marchesa, like weight, luminosity, and flexibility. From there, Marchesa weighed the benefits of different material compositions, weights and qualities to select the final fabric that suited the criteria for their dress and remained true to their brand.

Here’s what the dress looks like,

Courtesy of Marchesa Facebook page {https://www.facebook.com/MarchesaFashion/)

Courtesy of Marchesa Facebook page {https://www.facebook.com/MarchesaFashion/)

Watson is an artificial intelligence program,which I have written about a few times but I think this Feb. 28, 2011 posting (scroll down about 50% of the way), which mentions Watson, product placement, Jeopardy (tv quiz show), and medical diagnoses seems the most à propos given IBM’s latest product placement at the Met Gala.

Not the only ‘tech’ dress

There was at least one other ‘tech’ dress at the 2016 Met Gala, this one designed by Zac Posen and worn by Claire Danes. It did not receive a stellar review in a May 3, 2016 posting by Elaine Lui on Laineygossip.com,

People are losing their goddamn minds over this dress, by Zac Posen. Because it lights up.

It’s bullsh-t.

This is a BULLSH-T DRESS.

It’s Cinderella with a lamp shoved underneath her skirt.

Here’s a video of Danes and her dress at the Met Gala,

A Sept. 10, 2015 news item in People magazine indicates that Posen’s a different version of a ‘tech’ dress was a collaboration with Google (Note: Links have been removed),

Designer Zac Posen lit up his 2015 New York Fashion Week kickoff show on Tuesday by debuting a gorgeous and tech-savvy coded LED dress that blinked in different, dazzling pre-programmed patterns down the runway.

In coordination with Google’s non-profit organization, Made with Code, which inspires girls to pursue careers in tech coding, Posen teamed up with 30 girls (all between the ages of 13 and 18), who attended the show, to introduce the flashy dress — which was designed by Posen and coded by the young women.

“This is the future of the industry: mixing craft, fashion and technology,” the 34-year-old designer told PEOPLE. “There’s a discrepancy in the coding field, hardly any women are at the forefront, and that’s a real shame. If we can entice young women through the allure of fashion, to get them learning this language, why not?”

..

Through a micro controller, the gown displays coded patterns in 500 LED lights that are set to match the blues and yellows of Posen’s new collection. The circuit was designed and physically built into Posen’s dress fabric by 22-year-old up-and-coming fashion designer and computer science enthusiast, Maddy Maxey, who tells PEOPLE she was nervous watching Rocha [model Coco Rocha] make her way down the catwalk.

“It’s exactly as if she was carrying a microwave down the runway,” Maxey said. “It’s an entire circuit on a textile, so if one connection had come lose, the dress wouldn’t have worked. But, it did! And it was so deeply rewarding.”

Other ‘tech’ dresses

Back in 2009 I attended that year’s International Symposium on Electronic Arts and heard Clive van Heerden of Royal Philips Electronics talk about a number of innovative concepts including a ‘mood’ dress that would reveal the wearer’s emotions to whomever should glance their way. It was not a popular concept especially not in Japan where it was first tested.

The symposium also featured Maurits Waldemeyer who worked with fashion designer Chalayan Hussein and LED dresses and dresses that changed shape as the models went down the runway.

In 2010 there was a flurry of media interest in mood changing ‘smart’ clothes designed by researchers at Concordia University (Barbara Layne, Canada) and Goldsmiths College (Janis Jefferies, UK). Here’s more from a June 4, 2010 BBC news online item,

The clothes are connected to a database that analyses the data to work out a person’s emotional state.

Media, including songs, words and images, are then piped to the display and speakers in the clothes to calm a wearer or offer support.

Created as part of an artistic project called Wearable Absence the clothes are made from textiles woven with different sorts of wireless sensors. These can track a wide variety of tell-tale biological markers including temperature, heart rate, breathing and galvanic skin response.

Final comments

I don’t have anything grand to say. It is interesting to see the progression of ‘tech’ dresses from avant garde designers and academics to haute couture.

3D printed clothing

A seamless garment or article of footwear would minimize skin irritation for those of us not able to afford custom couture and an April 19, 2016 news item on ScienceDaily offers hope in an announcement of efforts by a team of UK scientists to change the textile industry’s approach to garment and footwear construction,

Loughborough University has teamed up with global textile and garment manufacturer the Yeh Group, to embark on landmark work in 3D textile printing that could revolutionise how clothes and footwear are made.

Personalised 3D printed fashion — manufactured within 24 hours — is the end goal of a new project led by Loughborough University that’s set to change the way we shop for clothes.

An April 18, 2016 Loughborough University press release, which originated the news item, describes the project (Note: Links have been removed),

Dr Guy Bingham, Senior Lecturer in Product and Industrial Design, has teamed up with global textile and garment manufacturer the Yeh Group, to embark on landmark work in 3D textile printing that could revolutionise how clothes and footwear are made.

The 18-month project[1], known as 3D Fashion, will see Dr Bingham – a world leader in his field – produce 3D wearable, full size, Additive Manufacturing (AM) textile garments and footwear – with design input from a major fashion house.

Advancements in AM textiles have made it possible to produce 3D printed garments directly from raw material, such as polymer, in a single manufacturing operation. This technology not only has the potential to reduce waste, labour costs and CO2e, but can modernise clothing production by encouraging localised manufacturing and production.

Currently, garment manufacture generates 1.8 million tonnes of waste material – equivalent to 70kg or 100 pairs of jeans per UK household, with 6.3 billion m³ of water used in the process – equivalent to 200,000 litres per year per household or 1,000 filled bathtubs[2].

Dr Bingham said: “With 3D printing there is no limit to what you can build and it is this design freedom which makes the technology so exciting by bringing to life what was previously considered to be impossible.

“This landmark technology allows us as designers to innovate faster and create personalised, ready-to-wear fashion in a digital world with no geometrical constraints and almost zero waste material. We envisage that with further development of the technology, we could 3D print a garment within 24 hours.

David Yeh, Managing Director, Tong Siang (Yeh Group), said: “3D Fashion supports the Yeh Group vision of direct polymer to garment manufacture. The Yeh Group is always striving to cut out unnecessary waste and resource use, and support the industries goals of faster to market, creating a manufacturing technology that brands and retailers can install closer to their customers. This is all with no compromise to performance.”

Loughborough University has produced a video about this project,

You can find out more about the Yeh Group on their website or on their Facebook page. I believe the company is headquartered in Thailand but I can’t tell if Tong Siang (the Yeh Group? on LinkedIn) is the corporate parent, the subsidiary, or an alternate company name.

YBC 7289: a 3,800-year-old mathematical text and 3D printing at Yale University

1,300 years before Pythagoras came up with the theorem associated with his name, a school kid in Babylon formed a disc out of clay and scratched out the theorem when the surface was drying.  According to an April 12, 2016 news item on phys.org the Bablyonians got to the theorem first, (Note: A link has been removed),

Thirty-eight hundred years ago, on the hot river plains of what is now southern Iraq, a Babylonian student did a bit of schoolwork that changed our understanding of ancient mathematics. The student scooped up a palm-sized clump of wet clay, formed a disc about the size and shape of a hamburger, and let it dry down a bit in the sun. On the surface of the moist clay the student drew a diagram that showed the people of the Old Babylonian Period (1,900–1,700 B.C.E.) fully understood the principles of the “Pythagorean Theorem” 1300 years before Greek geometer Pythagoras was born, and were also capable of calculating the square root of two to six decimal places.

Today, thanks to the Internet and new digital scanning methods being employed at Yale, this ancient geometry lesson continues to be used in modern classrooms around the world.

Just when you think it’s all about the theorem, the story which originated in an April 11, 2016 Yale University news release by Patrick Lynch takes a turn,

“This geometry tablet is one of the most-reproduced cultural objects that Yale owns — it’s published in mathematics textbooks the world over,” says Professor Benjamin Foster, curator of the Babylonian Collection, which includes the tablet. It’s also a popular teaching tool in Yale classes. “At the Babylonian Collection we have a very active teaching and learning function, and we regard education as one of the core parts of our mission,” says Foster. “We have graduate and undergraduate groups in our collection classroom every week.”

The tablet, formally known as YBC 7289, “Old Babylonian Period Mathematical Text,” came to Yale in 1909 as part of a much larger collection of cuneiform tablets assembled by J. Pierpont Morgan and donated to Yale. In the ancient Mideast cuneiform writing was created by using a sharp stylus pressed into the surface of a soft clay tablet to produce wedge-like impressions representing pictographic words and numbers. Morgan’s donation of tablets and other artifacts formed the nucleus of the Yale Babylonian Collection, which now incorporates 45,000 items from the ancient Mesopotamian kingdoms.

Discoverying [sic] the tablet’s mathematical significance

The importance of the geometry tablet was first recognized by science historians Otto Neugebauer and Abraham Sachs in their 1945 book “Mathematical Cuneiform Texts.”

“Ironically, mathematicians today are much more fascinated with the Babylonians’ ability to accurately calculate irrational numbers like the square root of two than they are with the geometry demonstrations,” notes associate Babylonian Collection curator Agnete Lassen.

“The Old Babylonian Period produced many tablets that show complex mathematics, but it also produced things you might not expect from a culture this old, such as grammars, dictionaries, and word lists,” says Lassen “One of the two main languages spoken in early Babylonia  was dying out, and people were careful to document and save what they could on cuneiform tablets. It’s ironic that almost 4,000 years ago people were thinking about cultural preservation, [emphasis mine] and actively preserving their learning for future generations.”.

This business about ancient peoples trying to preserve culture and learning for future generations suggests that the efforts in Palmyra, Syria (my April 6, 2016 post about 3D printing parts of Palmyra) are born of an age-old impulse. And then the story takes another turn and becomes a 3D printing story (from the Yale University news release),

Today, however, the tablet is a fragile lump of clay that would not survive routine handling in a classroom. In looking for alternatives that might bring the highlights of the Babylonian Collection to a wider audience, the collection’s curators partnered with Yale’s Institute for the Preservation of Cultural Heritage (IPCH) to bring the objects into the digital world.

Scanning at the IPCH

The IPCH Digitization Lab’s first step was to do reflectance transformation imaging (RTI) on each of fourteen Babylonian Collection objects. RTI is a photographic technique that enables a student or researcher to look at a subject with many different lighting angles. That’s particularly important for something like a cuneiform tablet, where there are complex 3D marks incised into the surface. With RTI you can freely manipulate the lighting, and see subtle surface variations that no ordinary photograph would reveal.

Chelsea Graham of the IPCH Digitization Lab and her colleague Yang Ying Yang of the Yale Computer Graphics Group then did laser scanning of the tablet to create a three-dimensional geometric model that can be freely rotated onscreen. The resulting 3D models can be combined with many other types of digital imaging to give researchers and students a virtual tablet onscreen, and the same data can be use to create a 3D printed facsimile that can be freely used in the classroom without risk to the delicate original.
3D printing digital materials

While virtual models on the computer screen have proved to be a valuable teaching and research resource, even the most accurate 3D model on a computer screen doesn’t convey the tactile  impact, and physicality of the real object. Yale’s Center for Engineering Innovation and Design has collaborated with the IPCH on a number of cultural heritage projects, and the center’s assistant director, Joseph Zinter, has used its 3D printing expertise on a wide range of engineering, basic science, and cultural heritage projects.

“Whether it’s a sculpture, a rare skull, or a microscopic neuron or molecule highly magnified, you can pick up a 3D printed model and hold it, and it’s a very different and important way to understand the data. Holding something in your hand is a distinctive learning experience,” notes Zinter.

Sharing cultural heritage projects in the digital world

Once a cultural artifact has entered the digital world there are practical problems with how to share the information with students and scholars. IPCH postdoctoral fellows Goze Akoglu and Eleni Kotoula are working with Yale computer science faculty member Holly Rushmeier to create an integrated collaborative software platform to support the research and sharing of cultural heritage artifacts like the Babylonian tablet.

“Right now cultural heritage professionals must juggle many kinds of software, running several types of specialized 2D and 3D media viewers as well as conventional word processing and graphics programs. Our vision is to create a single virtual environment that accommodates many kinds of media, as well as supporting communication and annotation within the project,” says Kotoula.

The wide sharing and disseminating of cultural artifacts is one advantage of digitizing objects, notes professor Rushmeier, “but the key thing about digital is the power to study large virtual collections. It’s not about scanning and modeling the individual object. When the scanned object becomes part of a large collection of digital data, then machine learning and search analysis tools can be run over the collection, allowing scholars to ask questions and make comparisons that aren’t possible by other means,” says Rushmeier.

Reflecting on the process that brings state-of-the-art digital tools to one of humanity’s oldest forms of writing, Graham said “It strikes me that this tablet has made a very long journey from classroom to classroom. People sometimes think the digital or 3D-printed models are just a novelty, or just for exhibitions, but you can engage and interact much more with the 3D printed object, or 3D model on the screen. I think the creators of this tablet would have appreciated the efforts to bring this fragile object back to the classroom.”

There is also a video highlighting the work,

Skin as a touchscreen (“smart” hands)

An April 11, 2016 news item on phys.org highlights some research presented at the IEEE (Institute of Electrical and Electronics Engineers) Haptics (touch) Symposium 2016,

Using your skin as a touchscreen has been brought a step closer after UK scientists successfully created tactile sensations on the palm using ultrasound sent through the hand.

The University of Sussex-led study – funded by the Nokia Research Centre and the European Research Council – is the first to find a way for users to feel what they are doing when interacting with displays projected on their hand.

This solves one of the biggest challenges for technology companies who see the human body, particularly the hand, as the ideal display extension for the next generation of smartwatches and other smart devices.

Current ideas rely on vibrations or pins, which both need contact with the palm to work, interrupting the display.

However, this new innovation, called SkinHaptics, sends sensations to the palm from the other side of the hand, leaving the palm free to display the screen.

An April 11, 2016 University of Sussex press release (also on EurekAlert) by James Hakmer, which originated the news item, provides more detail,

The device uses ‘time-reversal’ processing to send ultrasound waves through the hand. This technique is effectively like ripples in water but in reverse – the waves become more targeted as they travel through the hand, ending at a precise point on the palm.

It draws on a rapidly growing field of technology called haptics, which is the science of applying touch sensation and control to interaction with computers and technology.

Professor Sriram Subramanian, who leads the research team at the University of Sussex, says that technologies will inevitably need to engage other senses, such as touch, as we enter what designers are calling an ‘eye-free’ age of technology.

He says: “Wearables are already big business and will only get bigger. But as we wear technology more, it gets smaller and we look at it less, and therefore multisensory capabilities become much more important.

“If you imagine you are on your bike and want to change the volume control on your smartwatch, the interaction space on the watch is very small. So companies are looking at how to extend this space to the hand of the user.

“What we offer people is the ability to feel their actions when they are interacting with the hand.”

The findings were presented at the IEEE Haptics Symposium [April 8 – 11] 2016 in Philadelphia, USA, by the study’s co-author Dr Daniel Spelmezan, a research assistant in the Interact Lab.

There is a video of the work (I was not able to activate sound, if there is any accompanying this video),

The consequence of watching this silent video was that I found the whole thing somewhat mysterious.

3D print the city of Palmyra (Syria)?

Designated a World Heritage Site by UNESCO (United Nations Educational, Scientific and Cultural Organization), Palmyra dates back to Second Century BCE (before the common era) as UNESCO’s Site of Palmyra webpage indicates,

An oasis in the Syrian desert, north-east of Damascus, Palmyra contains the monumental ruins of a great city that was one of the most important cultural centres of the ancient world. From the 1st to the 2nd century, the art and architecture of Palmyra, standing at the crossroads of several civilizations, married Graeco-Roman techniques with local traditions and Persian influences.

First mentioned in the archives of Mari in the 2nd millennium BC, Palmyra was an established caravan oasis when it came under Roman control in the mid-first century AD as part of the Roman province of Syria.  It grew steadily in importance as a city on the trade route linking Persia, India and China with the Roman Empire, marking the crossroads of several civilisations in the ancient world. A grand, colonnaded street of 1100 metres’ length forms the monumental axis of the city, which together with secondary colonnaded cross streets links the major public monuments including the Temple of Ba’al, Diocletian’s Camp, the Agora, Theatre, other temples and urban quarters. Architectural ornament including unique examples of funerary sculpture unites the forms of Greco-roman art with indigenous elements and Persian influences in a strongly original style. Outside the city’s walls are remains of a Roman aqueduct and immense necropolises.

Discovery of the ruined city by travellers in the 17th and 18th centuries resulted in its subsequent influence on architectural styles.

Until recently Palmyra was occupied by ISIS or ISIL or IS (depending on what the group is being called today). A March 31, 2016 news item on phys.org presents a perspective on the city and cultural heritage in a time of strife,

The destruction at the ancient city of Palmyra symbolises the suffering of the Syrian people at the hands of the terrorist group known as Islamic State (IS). Palmyra was a largely Roman city located at a desert oasis on a vital crossroad, and “one of the most important cultural centres of the ancient world”. Its remarkable preservation highlighted an intermingling of cultures that today, as then, came to stand for the tolerance and multiculturalism that pre-conflict Syria was renowned for -– tolerance that IS seeks to eradicate.

A March 31, 2016 essay by Emma Cunliffe (University of Oxford) for The Conversation, which originated the news item, expands on the theme,

Early in the conflict, the area was heavily fortified. Roads and embankments were dug through the necropolises and the Roman walls, and the historic citadel defences were upgraded. Yet the terrorists occupied and desecrated the city from May 2015, systematically destroying monuments such as the Temple of Baalshamin, the Temple of Bel, seven tower tombs, a large Lion goddess statue and two Islamic shrines. They ransacked the museum, tortured and executing the former site director Khaled al-Asaad in search of treasure to sell. According to satellite imagery analysis the site was heavily looted throughout it all.

Now the city has been recaptured, the first damage assessments are underway, and Syrian – and international – attention is already turning to restoration. This work will be greatly aided by the Syrians who risked their lives to transport the contents of the Palmyra museum to safety. The last truck pulled out as IS arrived, with bullets whizzing past.

There is a contrasting view as to how much destruction occurred from a March 29, 2016 essay by Paul Rogers (University of Bradford) for The Conversation,

Syrian Army units have taken back the ancient city of Palmyra from Islamic State. The units are now also trying to extend their control to include al-Qaryatain, to the south west of Palmyra, and Sukhnah, to the north east.

There are indications that the damage done to the ancient world heritage site which lies just outside Palmyra has been much less than feared. It may even have been limited to the destruction of two or three individual ruins – certainly important in their own right but just a small part of a huge complex that stretches over scores of hectares.

Written before some of the latest events, Rogers’ perspective is one of military tactics and strategy which contrasts with Cunliffe’s cultural heritage perspective. Like the answers to the classic question ‘Is the glass is half empty or is the glass is half full?’, both are correct, in their way.

Getting back to the cultural heritage aspect, Cunliffe outlines how Syrians and others in the international community are attempting to restore Palmyra, from her March 31, 2016 essay (Note: Links have been removed),

Even as they were displaced, Syrians have worked to keep a detailed memory of the city alive. Syrian artists created artworks depicting the destruction. In a Jordanian camp, refugees made miniature models of the city and other cultural sites, even measuring out the number and position of Palmyra’s columns from photographs.

The international community is also playing its part. Groups like UNOSAT [UNITAR’s Operational Satellite Applications Programme], the UN’s satellite imagery analysts have used satellite imagery to monitor the damage. On the ground, Syrian-founded NGOs like APSA [Association for the Protection Syrian Archaeology] have linked with universities to assess the site. Groups such as NewPalmyra and Palmyra 3D Model are using the latest technology to create open-access 3D computer models from photographs.

Others have gone even further. The Million Image Database Project at the Oxford Institute for Digital Archaeology distributed cameras to volunteers across the Middle East to collect 3D photos of sites. As well as creating 3D models, they will recreate full-scale artefacts, sites, and architectural features using their own cement-based 3D printing techniques. This will start with a recreation of the arch from Palmyra’s Temple of Bel, due to be unveiled in London in April 2016.

Here’s an artistic representation of the destruction,

A depiction of the destruction. Humam Alsalim and Rami Bakhos

A depiction of the destruction. Humam Alsalim and Rami Bakhos

Of course, there are some ethical issues about the restoration being raised, from Cunliffe’s March 31, 2016 essay (Note: Links have been removed),

It wouldn’t be the first time such large-scale restoration has been undertaken. Historic central Warsaw, for example, was destroyed during World War II, and was almost completely reconstructed and is now a World Heritage site. Reconstruction is costly, but might be accomplished more quickly and cheaply using new digital techniques, showing the world that Syria values its cultural heritage.

But many argue that 3D printing fails to capture the authenticity of the original structures, amounting to little more than the Disneyfication of heritage. They also point out that the fighting is still ongoing: 370,000 Syrians are dead, millions are displaced, and perhaps 50%-70% of the nearby town has been destroyed. Given the pressing humanitarian needs, stabilisation alone should be the priority for now.

Rebuilding also fails to redress the loss caused by the extensive looting of the site, focusing only on the dramatically destroyed monuments. Perhaps most importantly, its worth asking whether returning Palmyra exactly to its pre-conflict state denies a major chapter of its history? There needs to be a wide-ranging discussion on the priorities for the immediate future and the nature of any future reconstruction.

While I grasp most of the arguments I’m not sure why 3D printing raises a greater ethical issue, “… many argue that 3D printing fails to capture the authenticity of the original structures, amounting to little more than the Disneyfication of heritage … .” Couldn’t you say that about any form of restoration? Certainly, I was disconcerted when I saw the Sphinx in Cairo in real life where the restoration is quite obvious from angles not usually seen in tourist pictures.

More tangentially, how big is the 3D printer? If memory serves, building materials from ancient times were often large blocks of stone.

Getting back to the point, both Cunliffe’s and Rogers’ essays are worth reading in their entirety if you have the time. And since those essays have been written there has been an update for Associated Press in an April 1, 2016 article by Albert Aji on phys.org. Apparently, the IS retreat included time to plant thousands of mines throughout Palmyra with trees, doors, animals and more being booby-trapped and, now, being detonated by the Syrian army.

One final comment, The booby-trapping reminded me of a scene in the English Patient (movie) when the allies have won the war, the Germans have withdrawn and British and Canadian soldiers have liberated a town in Italy. They celebrate that night and one exuberant Brit soldier climbs a flagpole (I think) and is killed because the Germans had booby-trapped the top of the flagpole. Some years ago, a friend of mine was peacekeeper in Croatia and he said that everything was booby-trapped, flagpoles, mailboxes, cemetery markers, etc. He never said anything much more about but I have the impression it was demoralizing and stressful. I think the discussion about restoration and the artwork produced by Syrians in response to the happenings in Palmyra are an important way to counteract demoralization and stress. Whether money should be spent on restoration or all of it dedicated to pressing humanitarian needs is a question for other people to answer but a society without art and culture is one that is dying so it is heartening to note the vibrancy in Syria.

ETA April 19, 2016: Palmyra’s Arch of Triumph has been successfully replicated and is standing in London, UK according to an April 19, 2016 news item on phys.org. The replica is about 2/3 the size of the original. No reason for the size change is given in the Associated Press article. The arch scheduled to remain in London for a few more days before moving to New York, Dubai, and other destinations before arriving in Palmyra.