Category Archives: Technology

Xenotransplantation—organs for transplantation in human patients—it’s a business and a science

The last time (June 18, 2018 post) I mentioned xenotransplantation (transplanting organs from one species into another species; see more here), it was in the context of an art/sci (or sciart) event coming to Vancouver (Canada).,

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

(The show opens on Sept. 14, 2018.)

At the time, I had yet to stumble across Ingfei Chen’s thoughtful dive into the topic in her May 9, 2018 article for Slate.com,

In the United States, the clock is ticking for more than 114,700 adults and children waiting for a donated kidney or other lifesaving organ, and each day, nearly 20 of them die. Researchers are devising a new way to grow human organs inside other animals, but the method raises potentially thorny ethical issues. Other conceivable futuristic techniques sound like dystopian science fiction. As we envision an era of regenerative medicine decades from now, how far is society willing to go to solve the organ shortage crisis?

I found myself pondering this question after a discussion about the promises of stem cell technologies veered from the intriguing into the bizarre. I was interviewing bioengineer Zev Gartner, co-director and research coordinator of the Center for Cellular Construction at the University of California, San Francisco, about so-called organoids, tiny clumps of organlike tissue that can self-assemble from human stem cells in a Petri dish. These tissue bits are lending new insights into how our organs form and diseases take root. Some researchers even hope they can nurture organoids into full-size human kidneys, pancreases, and other organs for transplantation.

Certain organoid experiments have recently set off alarm bells, but when I asked Gartner about it, his radar for moral concerns was focused elsewhere. For him, the “really, really thought-provoking” scenarios involve other emerging stem cell–based techniques for engineering replacement organs for people, he told me. “Like blastocyst complementation,” he said.

Never heard of it? Neither had I. Turns out it’s a powerful new genetic engineering trick that researchers hope to use for growing human organs inside pigs or sheep—organs that could be genetically personalized for transplant patients, in theory avoiding immune-system rejection problems. The science still has many years to go, but if it pans out, it could be one solution to the organ shortage crisis. However, the prospect of creating hybrid animals with human parts and killing them to harvest organs has already raised a slew of ethical questions. In 2015, the National Institutes of Health placed a moratorium on federal funding of this nascent research area while it evaluated and discussed the issues.

As Gartner sees it, the debate over blastocyst complementation research—work that he finds promising—is just one of many conversations that society needs to have about the ethical and social costs and benefits of future technologies for making lifesaving transplant organs. “There’s all these weird ways that we could go about doing this,” he said, with a spectrum of imaginable approaches that includes organoids, interspecies organ farming, and building organs from scratch using 3D bioprinters. But even if it turns out we can produce human organs in these novel ways, the bigger issue, in each technological instance, may be whether we should.

Gartner crystallized things with a downright creepy example: “We know that the best bioreactor for tissues and organs for humans are human beings,” he said. Hypothetically, “the best way to get you a new heart would be to clone you, grow up a copy of yourself, and take the heart out.” [emphasis mine] Scientists could probably produce a cloned person with the technologies we already have, if money and ethics were of no concern. “But we don’t want to go there, right?” he added in the next breath. “The ethics involved in doing it are not compatible with who we want to be as a society.”

This sounds like Gartner may have been reading some science fiction, specifically, Lois McMaster Bujold and her Barrayar series where she often explored the ethics and possibilities of bioengineering. At this point, some of her work seems eerily prescient.

As for Chen’s article, I strongly encourage you to read it in its entirety if you have the time.

Medicine, healing, and big money

At about the same time, there was a May 31, 2018 news item on phys.org offering a perspective from some of the leaders in the science and the business (Note: Links have been removed),

Over the past few years, researchers led by George Church have made important strides toward engineering the genomes of pigs to make their cells compatible with the human body. So many think that it’s possible that, with the help of CRISPR technology, a healthy heart for a patient in desperate need might one day come from a pig.

“It’s relatively feasible to change one gene in a pig, but to change many dozens—which is quite clear is the minimum here—benefits from CRISPR,” an acronym for clustered regularly interspaced short palindromic repeats, said Church, the Robert Winthrop Professor of Genetics at Harvard Medical School (HMS) and a core faculty member of Harvard’s Wyss Institute for Biologically Inspired Engineering. Xenotransplantation is “one of few” big challenges (along with gene drives and de-extinction, he said) “that really requires the ‘oomph’ of CRISPR.”

To facilitate the development of safe and effective cells, tissues, and organs for future medical transplantation into human patients, Harvard’s Office of Technology Development has granted a technology license to the Cambridge biotech startup eGenesis.

Co-founded by Church and former HMS doctoral student Luhan Yang in 2015, eGenesis announced last year that it had raised $38 million to advance its research and development work. At least eight former members of the Church lab—interns, doctoral students, postdocs, and visiting researchers—have continued their scientific careers as employees there.

“The Church Lab is well known for its relentless pursuit of scientific achievements so ambitious they seem improbable—and, indeed, [for] its track record of success,” said Isaac Kohlberg, Harvard’s chief technology development officer and senior associate provost. “George deserves recognition too for his ability to inspire passion and cultivate a strong entrepreneurial drive among his talented research team.”

The license from Harvard OTD covers a powerful set of genome-engineering technologies developed at HMS and the Wyss Institute, including access to foundational intellectual property relating to the Church Lab’s 2012 breakthrough use of CRISPR, led by Yang and Prashant Mali, to edit the genome of human cells. Subsequent innovations that enabled efficient and accurate editing of numerous genes simultaneously are also included. The license is exclusive to eGenesis but limited to the field of xenotransplantation.

A May 30, 2018 Harvard University news release by Caroline Petty, which originated the news item, explores some of the issues associated with incubating humans organs in other species,

The prospect of using living, nonhuman organs, and concerns over the infectiousness of pathogens either present in the tissues or possibly formed in combination with human genetic material, have prompted the Food and Drug Administration to issue detailed guidance on xenotransplantation research and development since the mid-1990s. In pigs, a primary concern has been that porcine endogenous retroviruses (PERVs), strands of potentially pathogenic DNA in the animals’ genomes, might infect human patients and eventually cause disease. [emphases mine]

That’s where the Church lab’s CRISPR expertise has enabled significant advances. In 2015, the lab published important results in the journal Science, successfully demonstrating the use of genome engineering to eliminate all 62 PERVs in porcine cells. Science later called it “the most widespread CRISPR editing feat to date.”

In 2017, with collaborators at Harvard, other universities, and eGenesis, Church and Yang went further. Publishing again in Science, they first confirmed earlier researchers’ fears: Porcine cells can, in fact, transmit PERVs into human cells, and those human cells can pass them on to other, unexposed human cells. (It is still unknown under what circumstances those PERVs might cause disease.) In the same paper, they corrected the problem, announcing the embryogenesis and birth of 37 PERV-free pigs. [Note: My July 17, 2018 post features research which suggests CRISPR-Cas9 gene editing may cause greater genetic damage than had been thought.]

“Taken together, those innovations were stunning,” said Vivian Berlin, director of business development in OTD, who manages the commercialization strategy for much of Harvard’s intellectual property in the life sciences. “That was the foundation they needed, to convince both the scientific community and the investment community that xenotransplantation might become a reality.”

“After hundreds of tests, this was a critical milestone for eGenesis — and the entire field — and represented a key step toward safe organ transplantation from pigs,” said Julie Sunderland, interim CEO of eGenesis. “Building on this study, we hope to continue to advance the science and potential of making xenotransplantation a safe and routine medical procedure.”

Genetic engineering may undercut human diseases, but also could help restore extinct species, researcher says. [Shades of the Jurassic Park movies!]

It’s not, however, the end of the story: An immunological challenge remains, which eGenesis will need to address. The potential for a patient’s body to outright reject transplanted tissue has stymied many previous attempts at xenotransplantation. Church said numerous genetic changes must be achieved to make porcine organs fully compatible with human patients. Among these are edits to several immune functions, coagulation functions, complements, and sugars, as well as the PERVs.

“Trying the straight transplant failed almost immediately, within hours, because there’s a huge mismatch in the carbohydrates on the surface of the cells, in particular alpha-1-3-galactose, and so that was a showstopper,” Church explained. “When you delete that gene, which you can do with conventional methods, you still get pretty fast rejection, because there are a lot of other aspects that are incompatible. You have to take care of each of them, and not all of them are just about removing things — some of them you have to humanize. There’s a great deal of subtlety involved so that you get normal pig embryogenesis but not rejection.

“Putting it all together into one package is challenging,” he concluded.

In short, it’s the next big challenge for CRISPR.

Not unexpectedly, there is no mention of the CRISPR patent fight between Harvard/MIT’s (Massachusetts Institute of Technology) Broad Institute and the University of California at Berkeley (UC Berkeley). My March 15, 2017 posting featured an outcome where the Broad Institute won the first round of the fight. As I recall, it was a decision based on the principles associated with King Solomon, i.e., the US Patent Office, divided the baby and UCBerkeley got the less important part of the baby. As you might expect the decision has been appealed. In an April 30, 2018 piece, Scientific American reprinted an article about the latest round in the fight written by Sharon Begley for STAT (Note: Links have been removed),

All You Need to Know for Round 2 of the CRISPR Patent Fight

It’s baaaaack, that reputation-shredding, stock-moving fight to the death over key CRISPR patents. On Monday morning in Washington, D.C., the U.S. Court of Appeals for the Federal Circuit will hear oral arguments in University of California v. Broad Institute. Questions?

How did we get here? The patent office ruled in February 2017 that the Broad’s 2014 CRISPR patent on using CRISPR-Cas9 to edit genomes, based on discoveries by Feng Zhang, did not “interfere” with a patent application by UC based on the work of UC Berkeley’s Jennifer Doudna. In plain English, that meant the Broad’s patent, on using CRISPR-Cas9 to edit genomes in eukaryotic cells (all animals and plants, but not bacteria), was different from UC’s, which described Doudna’s experiments using CRISPR-Cas9 to edit DNA in a test tube—and it was therefore valid. The Patent Trial and Appeal Board concluded that when Zhang got CRISPR-Cas9 to work in human and mouse cells in 2012, it was not an obvious extension of Doudna’s earlier research, and that he had no “reasonable expectation of success.” UC appealed, and here we are.

For anyone who may not realize what the stakes are for these institutions, Linda Williams in a March 16, 1999 article for the LA Times had this to say about universities, patents, and money,

The University of Florida made about $2 million last year in royalties on a patent for Gatorade Thirst Quencher, a sports drink that generates some $500 million to $600 million a year in revenue for Quaker Oats Co.

The payments place the university among the top five in the nation in income from patent royalties.

Oh, but if some people on the Gainesville, Fla., campus could just turn back the clock. “If we had done Gatorade right, we would be getting $5 or $6 million (a year),” laments Donald Price, director of the university’s office of corporate programs. “It is a classic example of how not to handle a patent idea,” he added.

Gatorade was developed in 1965 when many universities were ill equipped to judge the commercial potential of ideas emerging from their research labs. Officials blew the university’s chance to control the Gatorade royalties when they declined to develop a professor’s idea.

The Gatorade story does not stop there and, even though it’s almost 20 years old, this article stands the test of time. I strongly encourage you to read it if the business end of patents and academia interest you or if you would like to develop more insight into the Broad Institute/UC Berkeley situation.

Getting back to the science, there is that pesky matter of diseases crossing over from one species to another. While, Harvard and eGenesis claim a victory in this area, it seems more work needs to be done.

Infections from pigs

An August 29, 2018 University of Alabama at Birmingham news release (also on EurekAlert) by Jeff Hansen, describes the latest chapter in the quest to provide more organs for transplantion,

A shortage of organs for transplantation — including kidneys and hearts — means that many patients die while still on waiting lists. So, research at the University of Alabama at Birmingham and other sites has turned to pig organs as an alternative. [emphasis mine]

Using gene-editing, researchers have modified such organs to prevent rejection, and research with primates shows the modified pig organs are well-tolerated.

An added step is needed to ensure the safety of these inter-species transplants — sensitive, quantitative assays for viruses and other infectious microorganisms in donor pigs that potentially could gain access to humans during transplantation.

The U.S. Food and Drug Administration requires such testing, prior to implantation, of tissues used for xenotransplantation from animals to humans. It is possible — though very unlikely — that an infectious agent in transplanted tissues could become an emerging infectious disease in humans.

In a paper published in Xenotransplantation, Mark Prichard, Ph.D., and colleagues at UAB have described the development and testing of 30 quantitative assays for pig infectious agents. These assays had sensitivities similar to clinical lab assays for viral loads in human patients. After validation, the UAB team also used the assays on nine sows and 22 piglets delivered from the sows through caesarian section.

“Going forward, ensuring the safety of these organs is of paramount importance,” Prichard said. “The use of highly sensitive techniques to detect potential pathogens will help to minimize adverse events in xenotransplantation.”

“The assays hold promise as part of the screening program to identify suitable donor animals, validate and release transplantable organs for research purposes, and monitor transplant recipients,” said Prichard, a professor in the UAB Department of Pediatrics and director of the Department of Pediatrics Molecular Diagnostics Laboratory.

The UAB researchers developed quantitative polymerase chain reaction, or qPCR, assays for 28 viruses sometimes found in pigs and two groups of mycoplasmas. They established reproducibility, sensitivity, specificity and lower limit of detection for each assay. All but three showed features of good quantitative assays, and the lower limit of detection values ranged between one and 16 copies of the viral or bacterial genetic material.

Also, the pig virus assays did not give false positives for some closely related human viruses.

As a start to understanding the infectious disease load in normal healthy animals and ensuring the safety of pig tissues used in xenotransplantation research, the researchers then screened blood, nasal swab and stool specimens from nine adult sows and 22 of their piglets delivered by caesarian section.

Mycoplasma species and two distinct herpesviruses were the most commonly detected microorganisms. Yet 14 piglets that were delivered from three sows infected with either or both herpesviruses were not infected with the herpesviruses, showing that transmission of these viruses from sow to the caesarian-delivery piglet was inefficient.

Prichard says the assays promise to enhance the safety of pig tissues for xenotransplantation, and they will also aid evaluation of human specimens after xenotransplantation.

The UAB researchers say they subsequently have evaluated more than 300 additional specimens, and that resulted in the detection of most of the targets. “The detection of these targets in pig specimens provides reassurance that the analytical methods are functioning as designed,” said Prichard, “and there is no a priori reason some targets might be more difficult to detect than others with the methods described here.”

As is my custom, here’s a link to and a citation for the paper,

Xenotransplantation panel for the detection of infectious agents in pigs by Caroll B. Hartline, Ra’Shun L. Conner, Scott H. James, Jennifer Potter, Edward Gray, Jose Estrada, Mathew Tector, A. Joseph Tector, Mark N. Prichard. Xenotransplantaion Volume 25, Issue 4 July/August 2018 e12427 DOI: https://doi.org/10.1111/xen.12427 First published: 18 August 2018

This paper is open access.

All this leads to questions about chimeras. If a pig is incubating organs with human cells it’s a chimera but then means the human receiving the organ becomes a chimera too. (For an example, see my Dec. 22, 2013 posting where there’s mention of a woman who received a trachea from a pig. Scroll down about 30% of the way.)

What is it to be human?

A question much beloved of philosophers and others, the question seems particularly timely with xenotransplantion and other developments such neuroprosthetics (cyborgs) and neuromorphic computing (brainlike computing).

As I’ve noted before, although not recently, popular culture offers a discourse on these issues. Take a look at the superhero movies and the way in which enhanced humans and aliens are presented. For example, X-Men comics and movies present mutants (humans with enhanced abilities) as despised and rejected. Video games (not really my thing but there is the Deus Ex series which has as its hero, a cyborg also offer insight into these issues.

Other than popular culture and in the ‘bleeding edge’ arts community, I can’t recall any public discussion on these matters arising from the extraordinary set of technologies which are being deployed or prepared for deployment in the foreseeable future.

(If you’re in Vancouver (Canada) from September 14 – December 15, 2018, you may want to check out Piccinini’s work. Also, there’s ” NCSU [North Carolina State University] Libraries, NC State’s Genetic Engineering and Society (GES) Center, and the Gregg Museum of Art & Design have issued a public call for art for the upcoming exhibition Art’s Work in the Age of Biotechnology: Shaping our Genetic Futures.” from my Sept. 6, 2018 posting. Deadline: Oct. 1, 2018.)

At a guess, there will be pushback from people who have no interest in debating what it is to be human as they already know, and will find these developments, when they learn about them, to be horrifying and unnatural.

Sexbots, sexbot ethics, families, and marriage

Setting the stage

Can we? Should we? Is this really a good idea? I believe those ships have sailed where sexbots are concerned since the issue is no longer whether we can or should but rather what to do now that we have them. My Oct. 17, 2017 posting: ‘Robots in Vancouver and in Canada (one of two)’ features Harmony, the first (I believe) commercial AI (artificial intelligence)-enhanced sex robot n the US. They were getting ready to start shipping the bot either for Christmas 2017 or in early 2018.

Ethical quandaries?

Things have moved a little more quickly that I would have expected had I thought ahead. An April 5, 2018 essay  (h/t phys.org) by Victoria Brooks, lecturer in law at the University of Westminster (UK) for The Conversation lays out some of ethical issues (Note: Links have been removed),

Late in 2017 at a tech fair in Austria, a sex robot was reportedly “molested” repeatedly and left in a “filthy” state. The robot, named Samantha, received a barrage of male attention, which resulted in her sustaining two broken fingers. This incident confirms worries that the possibility of fully functioning sex robots raises both tantalising possibilities for human desire (by mirroring human/sex-worker relationships), as well as serious ethical questions.

So what should be done? The campaign to “ban” sex robots, as the computer scientist Kate Devlin has argued, is only likely to lead to a lack of discussion. Instead, she hypothesises that many ways of sexual and social inclusivity could be explored as a result of human-robot relationships.

To be sure, there are certain elements of relationships between humans and sex workers that we may not wish to repeat. But to me, it is the ethical aspects of the way we think about human-robot desire that are particularly key.

Why? Because we do not even agree yet on what sex is. Sex can mean lots of different things for different bodies – and the types of joys and sufferings associated with it are radically different for each individual body. We are only just beginning to understand and know these stories. But with Europe’s first sex robot brothel open in Barcelona and the building of “Harmony”, a talking sex robot in California, it is clear that humans are already contemplating imposing our barely understood sexual ethic upon machines.

I think that most of us will experience some discomfort on hearing Samantha’s story. And it’s important that, just because she’s a machine, we do not let ourselves “off the hook” by making her yet another victim and heroine who survived an encounter, only for it to be repeated. Yes, she is a machine, but does this mean it is justifiable to act destructively towards her? Surely the fact that she is in a human form makes her a surface on which human sexuality is projected, and symbolic of a futuristic human sexuality. If this is the case, then Samatha’s [sic] case is especially sad.

It is Devlin who has asked the crucial question: whether sex robots will have rights. “Should we build in the idea of consent,” she asks? In legal terms, this would mean having to recognise the robot as human – such is the limitation of a law made by and for humans.

Suffering is a way of knowing that you, as a body, have come out on the “wrong” side of an ethical dilemma. [emphasis mine] This idea of an “embodied” ethic understood through suffering has been developed on the basis of the work of the famous philosopher Spinoza and is of particular use for legal thinkers. It is useful as it allows us to judge rightness by virtue of the real and personal experience of the body itself, rather than judging by virtue of what we “think” is right in connection with what we assume to be true about their identity.

This helps us with Samantha’s case, since it tells us that in accordance with human desire, it is clear she would not have wanted what she got. The contact Samantha received was distinctly human in the sense that this case mirrors some of the most violent sexual offences cases. While human concepts such as “law” and “ethics” are flawed, we know we don’t want to make others suffer. We are making these robot lovers in our image and we ought not pick and choose whether to be kind to our sexual partners, even when we choose to have relationships outside of the “norm”, or with beings that have a supposedly limited consciousness, or even no (humanly detectable) consciousness.

Brooks makes many interesting points not all of them in the excerpts seen here but one question not raised in the essay is whether or not the bot itself suffered. It’s a point that I imagine proponents of ‘treating your sex bot however you like’ are certain to raise. It’s also a question Canadians may need to answer sooner rather than later now that a ‘sex doll brothel’ is about to open Toronto. However, before getting to that news bit, there’s an interview with a man, his sexbot, and his wife.

The sexbot at home

In fact, I have two interviews the first I’m including here was with CBC (Canadian Broadcasting Corporation) radio and it originally aired October 29, 2017. Here’s a part of the transcript (Note: A link has been removed),

“She’s [Samantha] quite an elegant kind of girl,” says Arran Lee Squire, who is sales director for the company that makes her and also owns one himself.

And unlike other dolls like her, she’ll resist sex if she isn’t in the mood.

“If you touch her, say, on her sensitive spots on the breasts, for example, straight away, and you don’t touch her hands or kiss her, she might say, ‘Oh, I’m not ready for that,'” Arran says.

He says she’ll even synchronize her orgasm to the user’s.

But Arran emphasized that her functions go beyond the bedroom.

Samantha has a “family mode,” in which she can can talk about science, animals and philosophy. She’ll give you motivational quotes if you’re feeling down.

At Arran’s house, Samantha interacts with his two kids. And when they’ve gone to bed, she’ll have sex with him, but only with his wife involved.

There’s also this Sept. 12, 2017 ITV This Morning with Phillip & Holly broadcast interview  (running time: 6 mins. 19 secs.),

I can imagine that if I were a child in that household I’d be tempted to put the sexbot into ‘sexy mode’, preferably unsupervised by my parents. Also, will the parents be using it, at some point, for sex education?

Canadian perspective 1: Sure, it could be good for your marriage

Prior to the potential sex doll brothel in Toronto (more about that coming up), there was a flurry of interest in Marina Adshade’s contribution to the book, Robot Sex: Social and Ethical Implications, from an April 18, 2018 news item on The Tyee,

Sex robots may soon be a reality. However, little research has been done on the social, philosophical, moral and legal implications of robots specifically designed for sexual gratification.

In a chapter written for the book Robot Sex: Social and Ethical Implications, Marina Adshade, professor in the Vancouver School of Economics at the University of British Columbia, argues that sex robots could improve marriage by making it less about sex and more about love.

In this Q&A, Adshade discusses her predictions.

Could sex robots really be a viable replacement for marriage with a human? Can you love a robot?

I don’t see sex robots as substitutes for human companionship but rather as complements to human companionship. Just because we might enjoy the company of robots doesn’t mean that we cannot also enjoy the company of humans, or that having robots won’t enhance our relationships with humans. I see them as very different things — just as one woman (or one man) is not a perfect substitute for another woman (or man).

Is there a need for modern marriage to improve?

We have become increasingly demanding in what we want from the people that we marry. There was a time when women were happy to have a husband that supported the family and men were happy to have a caring mother to his children. Today we still want those things, but we also want so much more — we want lasting sexual compatibility, intense romance, and someone who is an amazing co-parent. That is a lot to ask of one person. …

Adshade adapted part of her text  “Sexbot-Induced Social Change: An Economic Perspective” in Robot Sex: Social and Ethical Implications edited by John Danaher and Neil McArthur for an August 14, 2018 essay on Slate.com,

Technological change invariably brings social change. We know this to be true, but rarely can we make accurate predictions about how social behavior will evolve when new technologies are introduced. …we should expect that the proliferation of robots designed specifically for human sexual gratification means that sexbot-induced social change is on the horizon.

Some elements of that social change might be easier to anticipate than others. For example, the share of the young adult population that chooses to remain single (with their sexual needs met by robots) is very likely to increase. Because social change is organic, however, adaptations in other social norms and behaviors are much more difficult to predict. But this is not virgin territory [I suspect this was an unintended pun]. New technologies completely transformed sexual behavior and marital norms over the second half of the 20th century. Although getting any of these predictions right will surely involve some luck, we have decades of technology-induced social change to guide our predictions about the future of a world confronted with wholesale access to sexbots.

The reality is that marriage has always evolved alongside changes in technology. Between the mid-1700s and the early 2000s, the role of marriage between a man and a woman was predominately to encourage the efficient production of market goods and services (by men) and household goods and services (by women), since the social capacity to earn a wage was almost always higher for husbands than it was for wives. But starting as early as the end of the 19th century, marriage began to evolve as electrification in the home made women’s work less time-consuming, and new technologies in the workplace started to decrease the gender wage gap. Between 1890 and 1940, the share of married women working in the labor force tripled, and over the course of the century, that share continued to grow as new technologies arrived that replaced the labor of women in the home. By the early 1970s, the arrival of microwave ovens and frozen foods meant that a family could easily be fed at the end of a long workday, even when the mother worked outside of the home.

Some elements of that social change might be easier to anticipate than others. For example, the share of the young adult population that chooses to remain single (with their sexual needs met by robots) is very likely to increase. Because social change is organic, however, adaptations in other social norms and behaviors are much more difficult to predict. But this is not virgin territory. New technologies completely transformed sexual behavior and marital norms over the second half of the 20th century. Although getting any of these predictions right will surely involve some luck, we have decades of technology-induced social change to guide our predictions about the future of a world confronted with wholesale access to sexbots.

The reality is that marriage has always evolved alongside changes in technology. Between the mid-1700s and the early 2000s, the role of marriage between a man and a woman was predominately to encourage the efficient production of market goods and services (by men) and household goods and services (by women), since the social capacity to earn a wage was almost always higher for husbands than it was for wives. But starting as early as the end of the 19th century, marriage began to evolve as electrification in the home made women’s work less time-consuming, and new technologies in the workplace started to decrease the gender wage gap. Between 1890 and 1940, the share of married women working in the labor force tripled, and over the course of the century, that share continued to grow as new technologies arrived that replaced the labor of women in the home. By the early 1970s, the arrival of microwave ovens and frozen foods meant that a family could easily be fed at the end of a long workday, even when the mother worked outside of the home.

There are those who argue that men only “assume the burden” of marriage because marriage allows men easy sexual access, and that if men can find sex elsewhere they won’t marry. We hear this prediction now being made in reference to sexbots, but the same argument was given a century ago when the invention of the latex condom (1912) and the intrauterine device (1909) significantly increased people’s freedom to have sex without risking pregnancy and (importantly, in an era in which syphilis was rampant) sexually transmitted disease. Cosmopolitan magazine ran a piece at the time by John B. Watson that asked the blunt question, will men marry 50 years from now? Watson’s answer was a resounding no, writing that “we don’t want helpmates anymore, we want playmates.” Social commentators warned that birth control technologies would destroy marriage by removing the incentives women had to remain chaste and encourage them to flood the market with nonmarital sex. Men would have no incentive to marry, and women, whose only asset is sexual access, would be left destitute.

Fascinating, non? Should you be interested, “Sexbot-Induced Social Change: An Economic Perspective” by Marina Adshade  can be found in Robot Sex: Social and Ethical Implications (link to Amazon) edited by John Danaher and Neil McArthur. © 2017 by the Massachusetts Institute of Technology, reprinted courtesy of the MIT Press

Canadian perspective 2: What is a sex doll brothel doing in Toronto?

Sometimes known as Toronto the Good (although not recently; find out more about Toronto and its nicknames here) and once a byword for stodginess, the city is about to welcome a sex doll brothel according to an August 28, 2018 CBC Radio news item by Katie Geleff and John McGill,

On their website, Aura Dolls claims to be, “North America’s first known brothel that offers sexual services with the world’s most beautiful silicone ladies.”

Nestled between a massage parlour, nail salon and dry cleaner, Aura Dolls is slated to open on Sept. 8 [2018] in an otherwise nondescript plaza in Toronto’s north end.

The company plans to operate 24 hours a day, seven days a week, and will offer customers six different silicone dolls. The website describes the life-like dolls as, “classy, sophisticated, and adventurous ladies.” …

They add that, “the dolls are thoroughly sanitized to meet your expectations.” But that condoms are still “highly recommended.”

Toronto city councillor John Filion says people in his community are concerned about the proposed business.

Filion spoke to As It Happens guest host Helen Mann. Here is part of their conversation.

Councillor Filion, Aura Dolls is urging people to have “an open mind” about their business plan. Would you say that you have one?

Well, I have an open mind about what sort of behaviours people want to do, as long as they don’t harm anybody else. It’s a totally different matter once you bring that out to the public. So I think I have a fairly closed mind about where people should be having sex with [silicone] dolls.

So, what’s wrong with a sex doll brothel?

It’s where it is located, for one thing. Where it’s being proposed happens to be near an intersection where about 25,000 people live, all kinds of families, four elementary schools are very near by. And you know, people shouldn’t really need to be out on a walk with their families and try to explain to their kids why someone is having sex with a [silicone] doll.

But Aura Dolls says that they are going to be doing this very discreetly, that they won’t have explicit signage, and that they therefore won’t be bothering anyone.

They’ve hardly been discreet. They were putting illegal posters all over the neighbourhood. They’ve probably had a couple of hundred of thousands of dollars of free publicity already. I don’t think there’s anything at all discreet about what they are doing. They’re trying to be indiscreet to drum up business.

Can you be sure that there aren’t constituents in your area that think this is a great idea?

I can’t be sure that there aren’t some people who might think, “Oh great, it’s just down the street from me. Let me go there.” I would say that might be a fraction of one per cent of my constituents. Most people are appalled by this.

And it’s not a narrow-minded neighbourhood. Whatever somebody does in their home, I don’t think we’re going to pass moral judgment on it, again, as long as it’s not harming anyone else. But this is just kind of scuzzy. ..

….

Aura Dolls says that it’s doing nothing illegal. They say that they are being very clear that the dolls they are using represent adult women and that they are actually providing a service. Do you agree that they are doing this legally?

No, they’re not at all legal. It’s an illegal use. And if there’s any confusion about that, they will be getting a letter from the city very soon. It is clearly not a legal use. It’s not permitted under the zoning bylaw and it fits the definition of adult entertainment parlour, for which you require a license — and they certainly would not get one. They would not get a license in this neighbourhood because it’s not a permitted use.

The audio portion runs for 5 mins. 31 secs.

I believe these dolls are in fact sexbots, likely enhanced with AI. An August 29, 2018 article by Karlton Jahmal for hotnewhiphop.com describes the dolls as ‘fembots’ and provides more detail (Note: Links have been removed),

Toronto has seen the future, and apparently, it has to do with sex dolls. The Six [another Toronto nickname] is about to get blessed with the first legal sex doll brothel, and the fembots look too good to be true. If you head over to Aura Dolls website, detailed biographies for the six available sex dolls are on full display. You can check out the doll’s height, physical dimensions, heritage and more.

Aura plans to introduce more dolls in the future, according to a statement in the Toronto Star by Claire Lee, a representative for the compnay. At the moment, the ethnicities of the sex dolls feature Japanese, Caucasian American, French Canadian, Irish Canadian, Colombian, and Korean girls. Male dolls will be added in the near future. The sex dolls look remarkably realistic. Aura’s website writes, “Our dolls are made from the highest quality of TPE silicone which mimics the feeling of natural human skin, pores, texture and movement giving the user a virtually identical experience as being with a real partner.”

There are a few more details about the proposed brothel and more comments from Toronto city councillor John Filion in an August 28, 2018 article by Claire Floody and Jenna Moon with Alexandra Jones and Melanie Green for thestar.com,

Toronto will soon be home to North America’s [this should include Canada, US, and Mexico] first known sex doll brothel, offering sexual services with six silicone-made dolls.

According to the website for Aura Dolls, the company behind the brothel, the vision is to bring a new way to achieve sexual needs “without the many restrictions and limitations that a real partner may come with.”

The brothel is expected to open in a shopping plaza on Yonge St., south of Sheppard Ave., on Sept. 8 [2018]. The company doesn’t give the exact location on its website, stating it’s announced upon booking.

Spending half an hour with one doll costs $80, with two dolls running $160. For an hour, the cost is $120 with one doll. The maximum listed time is four hours for $480 per doll.

Doors at the new brothel for separate entry and exit will be used to ensure “maximum privacy for customers.” While the business does plan on having staff on-site, they “should not have any interaction,” Lee said.

“The reason why we do that is to make sure that everyone feels comfortable coming in and exiting,” she said, noting that people may feel shy or awkward about visiting the site.

… Lee said that the business is operating within the law. “The only law stating with anything to do with the dolls is that it has to meet a height requirement. It can’t resemble a child,” she said. …

Councillor John Filion, Ward 23 Willowdale, said his staff will be “throwing the book at (Aura Dolls) for everything they can.”

“I’ve still got people studying to see what’s legal and what isn’t,” Filion said. He noted that a bylaw introduced in North York in the ’90s prevents retail sex shops operating outside of industrial areas. Filion said his office is still confirming that the bylaw is active following harmonization, which condensed the six boroughs’ bylaws after amalgamation in 1998.

“If the bylaw that I brought in 20 years ago still exists, it would prohibit this,” Filion said.

“There’s legal issues,” he said, suggesting that people interested in using the sex dolls might consider doing so at home, rather than at a brothel.

The councillor said he’s received complaints from constituents about the business. “The phone’s ringing off the hook today,” Filion said.

It should be an interesting first week at school for everyone involved. I wonder what Ontario Premier, Doug Ford who recently rolled back the sex education curriculum for the province by 20 years will make of these developments.

As for sexbots/fembots/sex dolls or whatever you want to call them, they are here and it’s about time Canadians had a frank discussion on the matter. Also, I’ve been waiting for quite some time for any mention of male sexbots (malebots?). Personally, I don’t think we’ll be seeing male sexbots appear in either brothels or homes anytime soon.

Robot radiologists (artificially intelligent doctors)

Mutaz Musa, a physician at New York Presbyterian Hospital/Weill Cornell (Department of Emergency Medicine) and software developer in New York City, has penned an eyeopening opinion piece about artificial intelligence (or robots if you prefer) and the field of radiology. From a June 25, 2018 opinion piece for The Scientist (Note: Links have been removed),

Although artificial intelligence has raised fears of job loss for many, we doctors have thus far enjoyed a smug sense of security. There are signs, however, that the first wave of AI-driven redundancies among doctors is fast approaching. And radiologists seem to be first on the chopping block.

Andrew Ng, founder of online learning platform Coursera and former CTO of “China’s Google,” Baidu, recently announced the development of CheXNet, a convolutional neural net capable of recognizing pneumonia and other thoracic pathologies on chest X-rays better than human radiologists. Earlier this year, a Hungarian group developed a similar system for detecting and classifying features of breast cancer in mammograms. In 2017, Adelaide University researchers published details of a bot capable of matching human radiologist performance in detecting hip fractures. And, of course, Google achieved superhuman proficiency in detecting diabetic retinopathy in fundus photographs, a task outside the scope of most radiologists.

Beyond single, two-dimensional radiographs, a team at Oxford University developed a system for detecting spinal disease from MRI data with a performance equivalent to a human radiologist. Meanwhile, researchers at the University of California, Los Angeles, reported detecting pathology on head CT scans with an error rate more than 20 times lower than a human radiologist.

Although these particular projects are still in the research phase and far from perfect—for instance, often pitting their machines against a limited number of radiologists—the pace of progress alone is telling.

Others have already taken their algorithms out of the lab and into the marketplace. Enlitic, founded by Aussie serial entrepreneur and University of San Francisco researcher Jeremy Howard, is a Bay-Area startup that offers automated X-ray and chest CAT scan interpretation services. Enlitic’s systems putatively can judge the malignancy of nodules up to 50 percent more accurately than a panel of radiologists and identify fractures so small they’d typically be missed by the human eye. One of Enlitic’s largest investors, Capitol Health, owns a network of diagnostic imaging centers throughout Australia, anticipating the broad rollout of this technology. Another Bay-Area startup, Arterys, offers cloud-based medical imaging diagnostics. Arterys’s services extend beyond plain films to cardiac MRIs and CAT scans of the chest and abdomen. And there are many others.

Musa has offered a compelling argument with lots of links to supporting evidence.

[downloaded from https://www.the-scientist.com/news-opinion/opinion–rise-of-the-robot-radiologists-64356]

And evidence keeps mounting, I just stumbled across this June 30, 2018 news item on Xinhuanet.com,

An artificial intelligence (AI) system scored 2:0 against elite human physicians Saturday in two rounds of competitions in diagnosing brain tumors and predicting hematoma expansion in Beijing.

The BioMind AI system, developed by the Artificial Intelligence Research Centre for Neurological Disorders at the Beijing Tiantan Hospital and a research team from the Capital Medical University, made correct diagnoses in 87 percent of 225 cases in about 15 minutes, while a team of 15 senior doctors only achieved 66-percent accuracy.

The AI also gave correct predictions in 83 percent of brain hematoma expansion cases, outperforming the 63-percent accuracy among a group of physicians from renowned hospitals across the country.

The outcomes for human physicians were quite normal and even better than the average accuracy in ordinary hospitals, said Gao Peiyi, head of the radiology department at Tiantan Hospital, a leading institution on neurology and neurosurgery.

To train the AI, developers fed it tens of thousands of images of nervous system-related diseases that the Tiantan Hospital has archived over the past 10 years, making it capable of diagnosing common neurological diseases such as meningioma and glioma with an accuracy rate of over 90 percent, comparable to that of a senior doctor.

All the cases were real and contributed by the hospital, but never used as training material for the AI, according to the organizer.

Wang Yongjun, executive vice president of the Tiantan Hospital, said that he personally did not care very much about who won, because the contest was never intended to pit humans against technology but to help doctors learn and improve [emphasis mine] through interactions with technology.

“I hope through this competition, doctors can experience the power of artificial intelligence. This is especially so for some doctors who are skeptical about artificial intelligence. I hope they can further understand AI and eliminate their fears toward it,” said Wang.

Dr. Lin Yi who participated and lost in the second round, said that she welcomes AI, as it is not a threat but a “friend.” [emphasis mine]

AI will not only reduce the workload but also push doctors to keep learning and improve their skills, said Lin.

Bian Xiuwu, an academician with the Chinese Academy of Science and a member of the competition’s jury, said there has never been an absolute standard correct answer in diagnosing developing diseases, and the AI would only serve as an assistant to doctors in giving preliminary results. [emphasis mine]

Dr. Paul Parizel, former president of the European Society of Radiology and another member of the jury, also agreed that AI will not replace doctors, but will instead function similar to how GPS does for drivers. [emphasis mine]

Dr. Gauden Galea, representative of the World Health Organization in China, said AI is an exciting tool for healthcare but still in the primitive stages.

Based on the size of its population and the huge volume of accessible digital medical data, China has a unique advantage in developing medical AI, according to Galea.

China has introduced a series of plans in developing AI applications in recent years.

In 2017, the State Council issued a development plan on the new generation of Artificial Intelligence and the Ministry of Industry and Information Technology also issued the “Three-Year Action Plan for Promoting the Development of a New Generation of Artificial Intelligence (2018-2020).”

The Action Plan proposed developing medical image-assisted diagnostic systems to support medicine in various fields.

I note the reference to cars and global positioning systems (GPS) and their role as ‘helpers’;, it seems no one at the ‘AI and radiology’ competition has heard of driverless cars. Here’s Musa on those reassuring comments abut how the technology won’t replace experts but rather augment their skills,

To be sure, these services frame themselves as “support products” that “make doctors faster,” rather than replacements that make doctors redundant. This language may reflect a reserved view of the technology, though it likely also represents a marketing strategy keen to avoid threatening or antagonizing incumbents. After all, many of the customers themselves, for now, are radiologists.

Radiology isn’t the only area where experts might find themselves displaced.

Eye experts

It seems inroads have been made by artificial intelligence systems (AI) into the diagnosis of eye diseases. It got the ‘Fast Company’ treatment (exciting new tech, learn all about it) as can be seen further down in this posting. First, here’s a more restrained announcement, from an August 14, 2018 news item on phys.org (Note: A link has been removed),

An artificial intelligence (AI) system, which can recommend the correct referral decision for more than 50 eye diseases, as accurately as experts has been developed by Moorfields Eye Hospital NHS Foundation Trust, DeepMind Health and UCL [University College London].

The breakthrough research, published online by Nature Medicine, describes how machine-learning technology has been successfully trained on thousands of historic de-personalised eye scans to identify features of eye disease and recommend how patients should be referred for care.

Researchers hope the technology could one day transform the way professionals carry out eye tests, allowing them to spot conditions earlier and prioritise patients with the most serious eye diseases before irreversible damage sets in.

An August 13, 2018 UCL press release, which originated the news item, describes the research and the reasons behind it in more detail,

More than 285 million people worldwide live with some form of sight loss, including more than two million people in the UK. Eye diseases remain one of the biggest causes of sight loss, and many can be prevented with early detection and treatment.

Dr Pearse Keane, NIHR Clinician Scientist at the UCL Institute of Ophthalmology and consultant ophthalmologist at Moorfields Eye Hospital NHS Foundation Trust said: “The number of eye scans we’re performing is growing at a pace much faster than human experts are able to interpret them. There is a risk that this may cause delays in the diagnosis and treatment of sight-threatening diseases, which can be devastating for patients.”

“The AI technology we’re developing is designed to prioritise patients who need to be seen and treated urgently by a doctor or eye care professional. If we can diagnose and treat eye conditions early, it gives us the best chance of saving people’s sight. With further research it could lead to greater consistency and quality of care for patients with eye problems in the future.”

The study, launched in 2016, brought together leading NHS eye health professionals and scientists from UCL and the National Institute for Health Research (NIHR) with some of the UK’s top technologists at DeepMind to investigate whether AI technology could help improve the care of patients with sight-threatening diseases, such as age-related macular degeneration and diabetic eye disease.

Using two types of neural network – mathematical systems for identifying patterns in images or data – the AI system quickly learnt to identify 10 features of eye disease from highly complex optical coherence tomography (OCT) scans. The system was then able to recommend a referral decision based on the most urgent conditions detected.

To establish whether the AI system was making correct referrals, clinicians also viewed the same OCT scans and made their own referral decisions. The study concluded that AI was able to make the right referral recommendation more than 94% of the time, matching the performance of expert clinicians.

The AI has been developed with two unique features which maximise its potential use in eye care. Firstly, the system can provide information that helps explain to eye care professionals how it arrives at its recommendations. This information includes visuals of the features of eye disease it has identified on the OCT scan and the level of confidence the system has in its recommendations, in the form of a percentage. This functionality is crucial in helping clinicians scrutinise the technology’s recommendations and check its accuracy before deciding the type of care and treatment a patient receives.

Secondly, the AI system can be easily applied to different types of eye scanner, not just the specific model on which it was trained. This could significantly increase the number of people who benefit from this technology and future-proof it, so it can still be used even as OCT scanners are upgraded or replaced over time.

The next step is for the research to go through clinical trials to explore how this technology might improve patient care in practice, and regulatory approval before it can be used in hospitals and other clinical settings.

If clinical trials are successful in demonstrating that the technology can be used safely and effectively, Moorfields will be able to use an eventual, regulatory-approved product for free, across all 30 of their UK hospitals and community clinics, for an initial period of five years.

The work that has gone into this project will also help accelerate wider NHS research for many years to come. For example, DeepMind has invested significant resources to clean, curate and label Moorfields’ de-identified research dataset to create one of the most advanced eye research databases in the world.

Moorfields owns this database as a non-commercial public asset, which is already forming the basis of nine separate medical research studies. In addition, Moorfields can also use DeepMind’s trained AI model for future non-commercial research efforts, which could help advance medical research even further.

Mustafa Suleyman, Co-founder and Head of Applied AI at DeepMind Health, said: “We set up DeepMind Health because we believe artificial intelligence can help solve some of society’s biggest health challenges, like avoidable sight loss, which affects millions of people across the globe. These incredibly exciting results take us one step closer to that goal and could, in time, transform the diagnosis, treatment and management of patients with sight threatening eye conditions, not just at Moorfields, but around the world.”

Professor Sir Peng Tee Khaw, director of the NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology said: “The results of this pioneering research with DeepMind are very exciting and demonstrate the potential sight-saving impact AI could have for patients. I am in no doubt that AI has a vital role to play in the future of healthcare, particularly when it comes to training and helping medical professionals so that patients benefit from vital treatment earlier than might previously have been possible. This shows the transformative research than can be carried out in the UK combining world leading industry and NIHR/NHS hospital/university partnerships.”

Matt Hancock, Health and Social Care Secretary, said: “This is hugely exciting and exactly the type of technology which will benefit the NHS in the long term and improve patient care – that’s why we fund over a billion pounds a year in health research as part of our long term plan for the NHS.”

Here’s a link to and a citation for the study,

Clinically applicable deep learning for diagnosis and referral in retinal disease by Jeffrey De Fauw, Joseph R. Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Sam Blackwell, Harry Askham, Xavier Glorot, Brendan O’Donoghue, Daniel Visentin, George van den Driessche, Balaji Lakshminarayanan, Clemens Meyer, Faith Mackinder, Simon Bouton, Kareem Ayoub, Reena Chopra, Dominic King, Alan Karthikesalingam, Cían O. Hughes, Rosalind Raine, Julian Hughes, Dawn A. Sim, Catherine Egan, Adnan Tufail, Hugh Montgomery, Demis Hassabis, Geraint Rees, Trevor Back, Peng T. Khaw, Mustafa Suleyman, Julien Cornebise, Pearse A. Keane, & Olaf Ronneberger. Nature Medicine (2018) DOI: https://doi.org/10.1038/s41591-018-0107-6 Published 13 August 2018

This paper is behind a paywall.

And now, Melissa Locker’s August 15, 2018 article for Fast Company (Note: Links have been removed),

In a paper published in Nature Medicine on Monday, Google’s DeepMind subsidiary, UCL, and researchers at Moorfields Eye Hospital showed off their new AI system. The researchers used deep learning to create algorithm-driven software that can identify common patterns in data culled from dozens of common eye diseases from 3D scans. The result is an AI that can identify more than 50 diseases with incredible accuracy and can then refer patients to a specialist. Even more important, though, is that the AI can explain why a diagnosis was made, indicating which part of the scan prompted the outcome. It’s an important step in both medicine and in making AIs slightly more human

The editor or writer has even highlighted the sentence about the system’s accuracy—not just good but incredible!

I will be publishing something soon [my August 21, 2018 posting] which highlights some of the questions one might want to ask about AI and medicine before diving headfirst into this brave new world of medicine.

SIGGRAPH (Special Interest Group on Computer GRAPHics and Interactive Techniques) and their art gallery from Aug. 12 – 16, 2018 (making the world synthetic) in Vancouver (Canada)

While my main interest is the group’s temporary art gallery, I am providing a brief explanatory introduction and a couple of previews for SIGGRAPH 2018.

Introduction

For anyone unfamiliar with the Special Interest Group on Computer GRAPHics and Interactive Techniques (SIGGRAPH) and its conferences, from the SIGGRAPH Wikipedia entry Note: Links have been removed),

Some highlights of the conference are its Animation Theater and Electronic Theater presentations, where recently created CG films are played. There is a large exhibition floor, where several hundred companies set up elaborate booths and compete for attention and recruits. Most of the companies are in the engineering, graphics, motion picture, or video game industries. There are also many booths for schools which specialize in computer graphics or interactivity.

Dozens of research papers are presented each year, and SIGGRAPH is widely considered the most prestigious forum for the publication of computer graphics research.[1] The recent paper acceptance rate for SIGGRAPH has been less than 26%.[2] The submitted papers are peer-reviewed in a single-blind process.[3] There has been some criticism about the preference of SIGGRAPH paper reviewers for novel results rather than useful incremental progress.[4][5] …

This is the third SIGGRAPH Vancouver has hosted; the others were in 2011 and 2014.  The theme for the 2018 iteration is ‘Generations’; here’s more about it from an Aug. 2, 2018 article by Terry Flores for Variety,

While its focus is firmly forward thinking, SIGGRAPH 2018, the computer graphics, animation, virtual reality, games, digital art, mixed reality, and emerging technologies conference, is also tipping its hat to the past thanks to its theme this year: Generations. The conference runs Aug. 12-16 in Vancouver, B.C.

“In the literal people sense, pioneers in the computer graphics industry are standing shoulder to shoulder with researchers, practitioners and the future of the industry — young people — mentoring them, dabbling across multiple disciplines to innovate, relate, and grow,” says SIGGRAPH 2018 conference chair Roy C. Anthony, VP of creative development and operations at software and technology firm Ventuz. “This is really what SIGGRAPH has always been about. Generations really seemed like a very appropriate way of looking back and remembering where we all came from and how far we’ve come.”

SIGGRAPH 2018 has a number of treats in store for attendees, including the debut of Disney’s first VR film, the short “Cycles”; production sessions on the making of “Blade Runner 2049,” “Game of Thrones,” “Incredibles 2” and “Avengers: Infinity War”; as well as sneak peeks of Disney’s upcoming “Ralph Breaks the Internet: Wreck-It Ralph 2” and Laika’s “Missing Link.”

That list of ‘treats’ in the last paragraph makes the conference seem more like an iteration of a ‘comic-con’ than a technology conference.

Previews

I have four items about work that will be presented at SIGGRAPH 2018, First up, something about ‘redirected walking’ from a June 18, 2018 Association for Computing Machinery news release on EurekAlert,

CHICAGO–In the burgeoning world of virtual reality (VR) technology, it remains a challenge to provide users with a realistic perception of infinite space and natural walking capabilities in the virtual environment. A team of computer scientists has introduced a new approach to address this problem by leveraging a natural human phenomenon: eye blinks.

All humans are functionally blind for about 10 percent of the time under normal circumstances due to eye blinks and saccades, a rapid movement of the eye between two points or objects. Eye blinks are a common and natural cause of so-called “change blindness,” which indicates the inability for humans to notice changes to visual scenes. Zeroing in on eye blinks and change blindness, the team has devised a novel computational system that effectively redirects the user in the virtual environment during these natural instances, all with undetectable camera movements to deliver orientation redirection.

“Previous RDW [redirected walking] techniques apply rotations continuously while the user is walking. But the amount of unnoticeable rotations is limited,” notes Eike Langbehn, lead author of the research and doctoral candidate at the University of Hamburg. “That’s why an orthogonal approach is needed–we add some additional rotations when the user is not focused on the visuals. When we learned that humans are functionally blind for some time due to blinks, we thought, ‘Why don’t we do the redirection during eye blinks?'”

Human eye blinks occur approximately 10 to 20 times per minute, about every 4 to 19 seconds. Leveraging this window of opportunity–where humans are unable to detect major motion changes while in a virtual environment–the researchers devised an approach to synchronize a computer graphics rendering system with this visual process, and introduce any useful motion changes in virtual scenes to enhance users’ overall VR experience.

The researchers’ experiments revealed that imperceptible camera rotations of 2 to 5 degrees and translations of 4 to 9 cm of the user’s viewpoint are possible during a blink without users even noticing. They tracked test participants’ eye blinks by an eye tracker in a VR head-mounted display. In a confirmatory study, the team validated that participants could not reliably detect in which of two eye blinks their viewpoint was manipulated while walking a VR curved path. The tests relied on unconscious natural eye blinking, but the researchers say redirection during blinking could be carried out consciously. Since users can consciously blink multiple times a day without much effort, eye blinks provide great potential to be used as an intentional trigger in their approach.

The team will present their work at SIGGRAPH 2018, held 12-16 August in Vancouver, British Columbia. The annual conference and exhibition showcases the world’s leading professionals, academics, and creative minds at the forefront of computer graphics and interactive techniques.

“RDW is a big challenge since current techniques still need too much space to enable unlimited walking in VR,” notes Langbehn. “Our work might contribute to a reduction of space since we found out that unnoticeable rotations of up to five degrees are possible during blinks. This means we can improve the performance of RDW by approximately 50 percent.”

The team’s results could be used in combination with other VR research, such as novel steering algorithms, improved path prediction, and rotations during saccades, to name a few. Down the road, such techniques could some day enable consumer VR users to virtually walk beyond their living room.

Langbehn collaborated on the work with Frank Steinicke of University of Hamburg, Markus Lappe of University of Muenster, Gregory F. Welch of University of Central Florida, and Gerd Bruder, also of University of Central Florida. For the full paper and video, visit the team’s project page.

###

About ACM, ACM SIGGRAPH, and SIGGRAPH 2018

ACM, the Association for Computing Machinery, is the world’s largest educational and scientific computing society, uniting educators, researchers, and professionals to inspire dialogue, share resources, and address the field’s challenges. ACM SIGGRAPH is a special interest group within ACM that serves as an interdisciplinary community for members in research, technology, and applications in computer graphics and interactive techniques. SIGGRAPH is the world’s leading annual interdisciplinary educational experience showcasing the latest in computer graphics and interactive techniques. SIGGRAPH 2018, marking the 45th annual conference hosted by ACM SIGGRAPH, will take place from 12-16 August at the Vancouver Convention Centre in Vancouver, B.C.

They have provided an image illustrating what they mean (I don’t find it especially informative),

Caption: The viewing behavior of a virtual reality user, including fixations (in green) and saccades (in red). A blink fully suppresses visual perception. Credit: Eike Langbehn

Next up (2), there’s Disney Corporation’s first virtual reality (VR) short, from a July 19, 2018  Association for Computing Machinery news release on EurekAlert,

Walt Disney Animation Studios will debut its first ever virtual reality short film at SIGGRAPH 2018, and the hope is viewers will walk away feeling connected to the characters as equally as they will with the VR technology involved in making the film.

Cycles, an experimental film directed by Jeff Gipson, centers around the true meaning of creating a home and the life it holds inside its walls. The idea for the film is personal, inspired by Gipson’s childhood spending time with his grandparents and creating memories in their home, and later, having to move them to an assisted living residence.

“Every house has a story unique to the people, the characters who live there,” says Gipson. “We wanted to create a story in this single place and be able to have the viewer witness life happening around them. It is an emotionally driven film, expressing the real ups and downs, the happy and sad moments in life.”

For Cycles, Gipson also drew from his past life as an architect, having spent several years designing skate parks, and from his passion for action sports, including freestyle BMX. In Los Angeles, where Gipson lives, it is not unusual to find homes with an empty swimming pool reserved for skating or freestyle biking. Part of the pitch for Cycles came out of Gipson’s experience riding in these empty pools and being curious about the homes attached to them, the families who lived there, and the memories they made.

SIGGRAPH attendees will have the opportunity to experience Cycles at the Immersive Pavilion, a new space for this year’s conference. The Pavilion is devoted exclusively to virtual, augmented, and mixed reality and will contain: the VR Theater, a storytelling extravaganza that is part of the Computer Animation Festival; the Vrcade, a space for VR, AR, and MR games or experiences; and the well-known Village, for showcasing large-scale projects. SIGGRAPH 2018, held 12-16 August in Vancouver, British Columbia, is an annual gathering that showcases the world’s leading professionals, academics, and creative minds at the forefront of computer graphics and interactive techniques.

The production team completed Cycles in four months with about 50 collaborators as part of a professional development program at the studio. A key difference in VR filmmaking includes getting creative with how to translate a story to the VR “screen.” Pre-visualizing the narrative, for one, was a challenge. Rather than traditional storyboarding, Gipson and his team instead used a mix of Quill VR painting techniques and motion capture to “storyboard” Cycles, incorporating painters and artists to generate sculptures or 3D models of characters early on and draw scenes for the VR space. The creators also got innovative with the use of light and color saturation in scenes to help guide the user’s eyes during the film.

“What’s cool for VR is that we are really on the edge of trying to figure out what it is and how to tell stories in this new medium,” says Gipson. “In VR, you can look anywhere and really be transported to a different world, experience it from different angles, and see every detail. We want people watching to feel alive and feel emotion, and give them a true cinematic experience.”

This is Gipson’s VR directorial debut. He joined Walt Disney Animation Studios in 2013, serving as a lighting artist on Disney favorites like Frozen, Zootopia, and Moana. Of getting to direct the studio’s first VR short, he says, “VR is an amazing technology and a lot of times the technology is what is really celebrated. We hope more and more people begin to see the emotional weight of VR films, and with Cycles in particular, we hope they will feel the emotions we aimed to convey with our story.”

Apparently this is a still from the ‘short’,

Caption: Disney Animation Studios will present ‘Cycles’ , its first virtual reality (VR) short, at ACM SIGGRAPH 2018. Credit: Disney Animation Studios

There’s also something (3) from Google as described in a July 26, 2018 Association of Computing Machinery news release on EurekAlert,

Google has unveiled a new virtual reality (VR) immersive experience based on a novel system that captures and renders high-quality, realistic images from the real world using light fields. Created by a team of leading researchers at Google, Welcome to Light Fields is the tech giant’s splash into the nascent arena of light fields VR experiences, an exciting corner of VR video technology gaining traction for its promise to deliver extremely high-quality imagery and experiences in the virtual world.

Google released Welcome to Light Fields earlier this year as a free app on Steam VR for HTC Vive, Oculus Rift, and Windows Mixed Reality headsets. The creators will demonstrate the VR experience at SIGGRAPH 2018, in the Immersive Pavilion, a new space for this year’s conference. The Pavilion is devoted exclusively to virtual, augmented, and mixed reality and will contain: the Vrcade, a space for VR, AR, and MR games or experiences; the VR Theater, a storytelling extravaganza that is part of the Computer Animation Festival; and the well-known Village, for showcasing large-scale projects. SIGGRAPH 2018, held 12-16 August in Vancouver, British Columbia, is an annual gathering that showcases the world’s leading professionals, academics, and creative minds at the forefront of computer graphics and interactive techniques.

Destinations in Welcome to Light Fields include NASA’s Space Shuttle Discovery, delivering to viewers an astronaut’s view inside the flight deck, which has never been open to the public; the pristine teak and mahogany interiors of the Gamble House, an architectural treasure in Pasadena, CA; and the glorious St. Stephen’s Church in Granada Hills, CA, home to a stunning wall of more than 14,000 pieces of glimmering stained glass.

“I love that light fields in VR can teleport you to exotic places in the real world, and truly make you believe you are there,” says Ryan Overbeck, software engineer at Google who co-led the project. “To me, this is magic.”

To bring this experience to life, Overbeck worked with a team that included Paul Debevec, senior staff engineer at Google, who managed the project and led the hardware piece with engineers Xueming Yu, Jay Busch, and Graham Fyffe. With Overbeck, Daniel Erickson and Daniel Evangelakos focused on the software end. The researchers designed a comprehensive system for capturing and rendering high-quality, spherical light field still images from footage captured in the real world. They developed two easy-to-use light field camera rigs, based on the GoPro Hero4action sports camera, that efficiently capture thousands of images on the surface of a sphere. Those images were then passed through a cloud-based light-field-processing pipeline.

Among other things, explains Overbeck, “The processing pipeline uses computer vision to place the images in 3D and generate depth maps, and we use a modified version of our vp9 video codec

to compress the light field data down to a manageable size.” To render a light field dataset, he notes, the team used a rendering algorithm that blends between the thousands of light field images in real-time.

The team relied on Google’s talented pool of engineers in computer vision, graphics, video compression, and machine learning to overcome the unique challenges posed in light fields technology. They also collaborated closely with the WebM team (who make the vp9 video codec) to develop the high-quality light field compression format incorporated into their system, and leaned heavily on the expertise of the Jump VR team to help pose the images and generate depth maps. (Jump is Google’s professional VR system for achieving 3D-360 video production at scale.)

Indeed, with Welcome to Light Fields, the Google team is demonstrating the potential and promise of light field VR technology, showcasing the technology’s ability to provide a truly immersive experience with a level of unmatched realism. Though light fields technology has been researched and explored in computer graphics for more than 30 years, practical systems for actually delivering high-quality light field experiences has not yet been possible.

Part of the team’s motivation behind creating this VR light field experience is to invigorate the nascent field.

“Welcome to Light Fields proves that it is now possible to make a compelling light field VR viewer that runs on consumer-grade hardware, and we hope that this knowledge will encourage others to get involved with building light field technology and media,” says Overbeck. “We understand that in order to eventually make compelling consumer products based on light fields, we need a thriving light field ecosystem. We need open light field codecs, we need artists creating beautiful light field imagery, and we need people using VR in order to engage with light fields.”

I don’t really understand why this image, which looks like something belongs on advertising material, would be chosen to accompany a news release on a science-based distribution outlet,

Caption: A team of leading researchers at Google, will unveil the new immersive virtual reality (VR) experience “Welcome to Lightfields” at ACM SIGGRAPH 2018. Credit: Image courtesy of Google/Overbeck

Finally (4), ‘synthesizing realistic sounds’ is announced in an Aug. 6, 2018 Stanford University (US) news release (also on EurekAlert) by Taylor Kubota,

Advances in computer-generated imagery have brought vivid, realistic animations to life, but the sounds associated with what we see simulated on screen, such as two objects colliding, are often recordings. Now researchers at Stanford University have developed a system that automatically renders accurate sounds for a wide variety of animated phenomena.

“There’s been a Holy Grail in computing of being able to simulate reality for humans. We can animate scenes and render them visually with physics and computer graphics, but, as for sounds, they are usually made up,” said Doug James, professor of computer science at Stanford University. “Currently there exists no way to generate realistic synchronized sounds for complex animated content, such as splashing water or colliding objects, automatically. This fills that void.”

The researchers will present their work on this sound synthesis system as part of ACM SIGGRAPH 2018, the leading conference on computer graphics and interactive techniques. In addition to enlivening movies and virtual reality worlds, this system could also help engineering companies prototype how products would sound before being physically produced, and hopefully encourage designs that are quieter and less irritating, the researchers said.

“I’ve spent years trying to solve partial differential equations – which govern how sound propagates – by hand,” said Jui-Hsien Wang, a graduate student in James’ lab and in the Institute for Computational and Mathematical Engineering (ICME), and lead author of the paper. “This is actually a place where you don’t just solve the equation but you can actually hear it once you’ve done it. That’s really exciting to me and it’s fun.”

Predicting sound

Informed by geometry and physical motion, the system figures out the vibrations of each object and how, like a loudspeaker, those vibrations excite sound waves. It computes the pressure waves cast off by rapidly moving and vibrating surfaces but does not replicate room acoustics. So, although it does not recreate the echoes in a grand cathedral, it can resolve detailed sounds from scenarios like a crashing cymbal, an upside-down bowl spinning to a stop, a glass filling up with water or a virtual character talking into a megaphone.

Most sounds associated with animations rely on pre-recorded clips, which require vast manual effort to synchronize with the action on-screen. These clips are also restricted to noises that exist – they can’t predict anything new. Other systems that produce and predict sounds as accurate as those of James and his team work only in special cases, or assume the geometry doesn’t deform very much. They also require a long pre-computation phase for each separate object.

“Ours is essentially just a render button with minimal pre-processing that treats all objects together in one acoustic wave simulation,” said Ante Qu, a graduate student in James’ lab and co-author of the paper.

The simulated sound that results from this method is highly detailed. It takes into account the sound waves produced by each object in an animation but also predicts how those waves bend, bounce or deaden based on their interactions with other objects and sound waves in the scene.

Challenges ahead

In its current form, the group’s process takes a while to create the finished product. But, now that they have proven this technique’s potential, they can focus on performance optimizations, such as implementing their method on parallel GPU hardware, that should make it drastically faster.

And, even in its current state, the results are worth the wait.

“The first water sounds we generated with the system were among the best ones we had simulated – and water is a huge challenge in computer-generated sound,” said James. “We thought we might get a little improvement, but it is dramatically better than previous approaches even right out of the box. It was really striking.”

Although the group’s work has faithfully rendered sounds of various objects spinning, falling and banging into each other, more complex objects and interactions – like the reverberating tones of a Stradivarius violin – remain difficult to model realistically. That, the group said, will have to wait for a future solution.

Timothy Langlois of Adobe Research is a co-author of this paper. This research was funded by the National Science Foundation and Adobe Research. James is also a professor, by courtesy, of music and a member of Stanford Bio-X.

Researchers Timothy Langlois, Doug L. James, Ante Qu and Jui-Hsien Wang have created a video featuring highlights of animations with sounds synthesized using the Stanford researchers’ new system.,

The researchers have also provided this image,

By computing pressure waves cast off by rapidly moving and vibrating surfaces – such as a cymbal – a new sound synthesis system developed by Stanford researchers can automatically render realistic sound for computer animations. (Image credit: Timothy Langlois, Doug L. James, Ante Qu and Jui-Hsien Wang)

It does seem like we’re synthesizing the world around us, eh?

The SIGGRAPH 2018 art gallery

Here’s what SIGGRAPH had to say about its 2018 art gallery in Vancouver and the themes for the conference and the gallery (from a May 18, 2018 Associating for Computing Machinery news release on globalnewswire.com (also on this 2018 SIGGRAPH webpage),

SIGGRAPH 2018, the world’s leading showcase of digital art created using computer graphics and interactive techniques, will present a special Art Gallery, entitled “Origins,” and historic Art Papers in Vancouver, B.C. The 45th SIGGRAPH conference will take place 12–16 August at the Vancouver Convention Centre. The programs will also honor the generations of creators that have come before through a special, 50th anniversary edition of the Leonard journal. To register for the conference, visit S2018.SIGGRAPH.ORG.

The SIGGRAPH 2018 ART GALLERY is a curated exhibition, conceived as a dialogical space that enables the viewer to reflect on man’s diverse cultural values and rituals through contemporary creative practices. Building upon an exciting and eclectic selection of creative practices mediated through technologies that represent the sophistication of our times, the SIGGRAPH 2018 Art Gallery will embrace the narratives of the indigenous communities based near Vancouver and throughout Canada as a source of inspiration. The exhibition will feature contemporary media artworks, art pieces by indigenous communities, and other traces of technologically mediated Ludic practices.

Andrés Burbano, SIGGRAPH 2018 Art Gallery chair and professor at Universidad de los Andes, said, “The Art Gallery aims to articulate myth and technology, science and art, the deep past and the computational present, and will coalesce around a theme of ‘Origins.’ Media and technological creative expressions will explore principles such as the origins of the cosmos, the origins of life, the origins of human presence, the origins of the occupation of territories in the Americas, and the origins of people living in the vast territories of the Arctic.”

He continued, “The venue [in Vancouver] hopes to rekindle the original spark that ignited the collaborative spirit of the SIGGRAPH community of engineers, scientists, and artists, who came together to create the very first conference in the early 1970s.”

Highlights from the 2018 Art Gallery include:

Transformation Mask (Canada) [Technology Based]
Shawn Hunt, independent; and Microsoft Garage: Andy Klein, Robert Butterworth, Jonathan Cobb, Jeremy Kersey, Stacey Mulcahy, Brendan O’Rourke, Brent Silk, and Julia Taylor-Hell, Microsoft Vancouver

TRANSFORMATION MASK is an interactive installation that features the Microsoft HoloLens. It utilizes electronics and mechanical engineering to express a physical and digital transformation. Participants are immersed in spatial sounds and holographic visuals.

Somnium (U.S.) [Science Based]
Marko Peljhan, Danny Bazo, and Karl Yerkes, University of California, Santa Barbara

Somnium is a cybernetic installation that provides visitors with the ability to sensorily, cognitively, and emotionally contemplate and experience exoplanetary discoveries, their macro and micro dimensions, and the potential for life in our Galaxy. Some might call it “space telescope.”

Ernest Edmonds Retrospective – Art Systems 1968-2018 (United Kingdom) [History Based]
Ernest Edmonds, De Montfort University

Celebrating one of the pioneers of computer graphics-based art since the early 1970s, this Ernest Edmonds career retrospective will showcase snapshots of Edmonds’ work as it developed over the years. With one piece from each decade, the retrospective will also demonstrate how vital the Leonardo journal has been throughout the 50-year journey.

In addition to the works above, the Art Gallery will feature pieces from notable female artists Ozge Samanci, Ruth West, and Nicole L’Hullier. For more information about the Edmonds retrospective, read THIS POST ON THE ACM SIGGRAPH BLOG.

The SIGGRAPH 2018 ART PAPERS program is designed to feature research from artists, scientists, theorists, technologists, historians, and more in one of four categories: project description, theory/criticism, methods, or history. The chosen work was selected by an international jury of scholars, artists, and immersive technology developers.

To celebrate the 50th anniversary of LEONARDO (MIT Press), and 10 years of its annual SIGGRAPH issue, SIGGRAPH 2018 is pleased to announce a special anniversary edition of the journal, which will feature the 2018 art papers. For 50 years, Leonardo has been the definitive publication for artist-academics. To learn more about the relationship between SIGGRAPH and the journal, listen to THIS EPISODE OF THE SIGGRAPH SPOTLIGHT PODCAST.

“In order to encourage a wider range of topics, we introduced a new submission type, short papers. This enabled us to accept more content than in previous years. Additionally, for the first time, we will introduce sessions that integrate the Art Gallery artist talks with Art Papers talks, promoting richer connections between these two creative communities,” said Angus Forbes, SIGGRAPH 2018 Art Papers chair and professor at University of California, Santa Cruz.

Art Papers highlights include:

Alienating the Familiar with CGI: A Recipe for Making a Full CGI Art House Animated Feature [Long]
Alex Counsell and Paul Charisse, University of Portsmouth

This paper explores the process of making and funding an art house feature film using full CGI in a marketplace where this has never been attempted. It explores cutting-edge technology and production approaches, as well as routes to successful fundraising.

Augmented Fauna and Glass Mutations: A Dialogue Between Material and Technique in Glassblowing and 3D Printing [Long]
Tobias Klein, City University of Hong Kong

The two presented artworks, “Augmented Fauna” and “Glass Mutations,” were created during an artist residence at the PILCHUCK GLASS SCHOOL. They are examples of the qualities and methods established through a synthesis between digital workflows and traditional craft processes and thus formulate the notion of digital craftsmanship.

Inhabitat: An Imaginary Ecosystem in a Children’s Science Museum [Short]
Graham Wakefield, York University, and Haru Hyunkyung Ji, OCAD University

“Inhabitat” is a mixed reality artwork in which participants become part of an imaginary ecology through three simultaneous perspectives of scale and agency; three distinct ways to see with other eyes. This imaginary world was exhibited at a children’s science museum for five months, using an interactive projection-augmented sculpture, a large screen and speaker array, and a virtual reality head-mounted display.

What’s the what?

My father used to say that and I always assumed it meant summarize the high points, if you need to, and get to the point—fast. In that spirit, I am both fascinated and mildly appalled. The virtual, mixed, and augmented reality technologies, as well as, the others being featured at SIGGRAPH 2018 are wondrous in many ways but it seems we are coming ever closer to a world where we no longer interact with nature or other humans directly. (see my August 10, 2018 posting about the ‘extinction of experience’ for research that encourages more direct interaction with nature) I realize that SIGGRAPH is intended as a primarily technical experience but I think a little more content questioning these technologies and their applications (social implications) might be in order. That’s often the artist’s role but I can’t see anything in the art gallery descriptions that hint at any sort of fundamental critique.

More memory, less space and a walk down the cryptocurrency road

Libraries, archives, records management, oral history, etc. there are many institutions and names for how we manage collective and personal memory. You might call it a peculiarly human obsession stretching back into antiquity. For example, there’s the Library of Alexandria (Wikipedia entry) founded in the third, or possibly 2nd, century BCE (before the common era) and reputed to store all the knowledge in the world. It was destroyed although accounts differ as to when and how but its loss remains a potent reminder of memory’s fragility.

These days, the technology community is terribly concerned with storing ever more bits of data on materials that are reaching their limits for storage.I have news of a possible solution,  an interview of sorts with the researchers working on this new technology, and some very recent research into policies for cryptocurrency mining and development. That bit about cryptocurrency makes more sense when you read what the response to one of the interview questions.

Memory

It seems University of Alberta researchers may have found a way to increase memory exponentially, from a July 23, 2018 news item on ScienceDaily,

The most dense solid-state memory ever created could soon exceed the capabilities of current computer storage devices by 1,000 times, thanks to a new technique scientists at the University of Alberta have perfected.

“Essentially, you can take all 45 million songs on iTunes and store them on the surface of one quarter,” said Roshan Achal, PhD student in Department of Physics and lead author on the new research. “Five years ago, this wasn’t even something we thought possible.”

A July 23, 2018 University of Alberta news release (also on EurekAlert) by Jennifer-Anne Pascoe, which originated the news item, provides more information,

Previous discoveries were stable only at cryogenic conditions, meaning this new finding puts society light years closer to meeting the need for more storage for the current and continued deluge of data. One of the most exciting features of this memory is that it’s road-ready for real-world temperatures, as it can withstand normal use and transportation beyond the lab.

“What is often overlooked in the nanofabrication business is actual transportation to an end user, that simply was not possible until now given temperature restrictions,” continued Achal. “Our memory is stable well above room temperature and precise down to the atom.”

Achal explained that immediate applications will be data archival. Next steps will be increasing readout and writing speeds, meaning even more flexible applications.

More memory, less space

Achal works with University of Alberta physics professor Robert Wolkow, a pioneer in the field of atomic-scale physics. Wolkow perfected the art of the science behind nanotip technology, which, thanks to Wolkow and his team’s continued work, has now reached a tipping point, meaning scaling up atomic-scale manufacturing for commercialization.

“With this last piece of the puzzle now in-hand, atom-scale fabrication will become a commercial reality in the very near future,” said Wolkow. Wolkow’s Spin-off [sic] company, Quantum Silicon Inc., is hard at work on commercializing atom-scale fabrication for use in all areas of the technology sector.

To demonstrate the new discovery, Achal, Wolkow, and their fellow scientists not only fabricated the world’s smallest maple leaf, they also encoded the entire alphabet at a density of 138 terabytes, roughly equivalent to writing 350,000 letters across a grain of rice. For a playful twist, Achal also encoded music as an atom-sized song, the first 24 notes of which will make any video-game player of the 80s and 90s nostalgic for yesteryear but excited for the future of technology and society.

As noted in the news release, there is an atom-sized song, which is available in this video,

As for the nano-sized maple leaf, I highlighted that bit of whimsy in a June 30, 2017 posting.

Here’s a link to and a citation for the paper,

Lithography for robust and editable atomic-scale silicon devices and memories by Roshan Achal, Mohammad Rashidi, Jeremiah Croshaw, David Churchill, Marco Taucer, Taleana Huff, Martin Cloutier, Jason Pitters, & Robert A. Wolkow. Nature Communicationsvolume 9, Article number: 2778 (2018) DOI: https://doi.org/10.1038/s41467-018-05171-y Published 23 July 2018

This paper is open access.

For interested parties, you can find Quantum Silicon (QSI) here. My Edmonton geography is all but nonexistent, still, it seems to me the company address on Saskatchewan Drive is a University of Alberta address. It’s also the address for the National Research Council of Canada. Perhaps this is a university/government spin-off company?

The ‘interview’

I sent some questions to the researchers at the University of Alberta who very kindly provided me with the following answers. Roshan Achal passed on one of the questions to his colleague Taleana Huff for her response. Both Achal and Huff are associated with QSI.

Unfortunately I could not find any pictures of all three researchers (Achal, Huff, and Wolkow) together.

Roshan Achal (left) used nanotechnology perfected by his PhD supervisor, Robert Wolkow (right) to create atomic-scale computer memory that could exceed the capacity of today’s solid-state storage drives by 1,000 times. (Photo: Faculty of Science)

(1) SHRINKING THE MANUFACTURING PROCESS TO THE ATOMIC SCALE HAS
ATTRACTED A LOT OF ATTENTION OVER THE YEARS STARTING WITH SCIENCE
FICTION OR RICHARD FEYNMAN OR K. ERIC DREXLER, ETC. IN ANY EVENT, THE
ORIGINS ARE CONTESTED SO I WON’T PUT YOU ON THE SPOT BY ASKING WHO
STARTED IT ALL INSTEAD ASKING HOW DID YOU GET STARTED?

I got started in this field about 6 years ago, when I undertook a MSc
with Dr. Wolkow here at the University of Alberta. Before that point, I
had only ever heard of a scanning tunneling microscope from what was
taught in my classes. I was aware of the famous IBM logo made up from
just a handful of atoms using this machine, but I didn’t know what
else could be done. Here, Dr. Wolkow introduced me to his line of
research, and I saw the immense potential for growth in this area and
decided to pursue it further. I had the chance to interact with and
learn from nanofabrication experts and gain the skills necessary to
begin playing around with my own techniques and ideas during my PhD.

(2) AS I UNDERSTAND IT, THESE ARE THE PIECES YOU’VE BEEN
WORKING ON: (1) THE TUNGSTEN MICROSCOPE TIP, WHICH MAKE[s] (2) THE SMALLEST
QUANTUM DOTS (SINGLE ATOMS OF SILICON), (3) THE AUTOMATION OF THE
QUANTUM DOT PRODUCTION PROCESS, AND (4) THE “MOST DENSE SOLID-STATE
MEMORY EVER CREATED.” WHAT’S MISSING FROM THE LIST AND IS THAT WHAT
YOU’RE WORKING ON NOW?

One of the things missing from the list, that we are currently working
on, is the ability to easily communicate (electrically) from the
macroscale (our world) to the nanoscale, without the use of a scanning
tunneling microscope. With this, we would be able to then construct
devices using the other pieces we’ve developed up to this point, and
then integrate them with more conventional electronics. This would bring
us yet another step closer to the realization of atomic-scale
electronics.

(3) PERHAPS YOU COULD CLARIFY SOMETHING FOR ME. USUALLY WHEN SOLID STATE
MEMORY IS MENTIONED, THERE’S GREAT CONCERN ABOUT MOORE’S LAW. IS
THIS WORK GOING TO CREATE A NEW LAW? AND, WHAT IF ANYTHING DOES
;YOUR MEMORY DEVICE HAVE TO DO WITH QUANTUM COMPUTING?

That is an interesting question. With the density we’ve achieved,
there are not too many surfaces where atomic sites are more closely
spaced to allow for another factor of two improvement. In that sense, it
would be difficult to improve memory densities further using these
techniques alone. In order to continue Moore’s law, new techniques, or
storage methods would have to be developed to move beyond atomic-scale
storage.

The memory design itself does not have anything to do with quantum
computing, however, the lithographic techniques developed through our
work, may enable the development of certain quantum-dot-based quantum
computing schemes.

(4) THIS MAY BE A LITTLE OUT OF LEFT FIELD (OR FURTHER OUT THAN THE
OTHERS), COULD;YOUR MEMORY DEVICE HAVE AN IMPACT ON THE
DEVELOPMENT OF CRYPTOCURRENCY AND BLOCKCHAIN? IF SO, WHAT MIGHT THAT
IMPACT BE?

I am not very familiar with these topics, however, co-author Taleana
Huff has provided some thoughts:

Taleana Huff (downloaded from https://ca.linkedin.com/in/taleana-huff]

“The memory, as we’ve designed it, might not have too much of an
impact in and of itself. Cryptocurrencies fall into two categories.
Proof of Work and Proof of Stake. Proof of Work relies on raw
computational power to solve a difficult math problem. If you solve it,
you get rewarded with a small amount of that coin. The problem is that
it can take a lot of power and energy for your computer to crunch
through that problem. Faster access to memory alone could perhaps
streamline small parts of this slightly, but it would be very slight.
Proof of Stake is already quite power efficient and wouldn’t really
have a drastic advantage from better faster computers.

Now, atomic-scale circuitry built using these new lithographic
techniques that we’ve developed, which could perform computations at
significantly lower energy costs, would be huge for Proof of Work coins.
One of the things holding bitcoin back, for example, is that mining it
is now consuming power on the order of the annual energy consumption
required by small countries. A more efficient way to mine while still
taking the same amount of time to solve the problem would make bitcoin
much more attractive as a currency.”

Thank you to Roshan Achal and Taleana Huff for helping me to further explore the implications of their work with Dr. Wolkow.

Comments

As usual, after receiving the replies I have more questions but these people have other things to do so I’ll content myself with noting that there is something extraordinary in the fact that we can imagine a near future where atomic scale manufacturing is possible and where as Achal says, ” … storage methods would have to be developed to move beyond atomic-scale [emphasis mine] storage”. In decades past it was the stuff of science fiction or of theorists who didn’t have the tools to turn the idea into a reality. With Wolkow’s, Achal’s, Hauff’s, and their colleagues’ work, atomic scale manufacturing is attainable in the foreseeable future.

Hopefully we’ll be wiser than we have been in the past in how we deploy these new manufacturing techniques. Of course, before we need the wisdom, scientists, as  Achal notes,  need to find a new way to communicate between the macroscale and the nanoscale.

As for Huff’s comments about cryptocurrencies and cyptocurrency and blockchain technology, I stumbled across this very recent research, from a July 31, 2018 Elsevier press release (also on EurekAlert),

A study [behind a paywall] published in Energy Research & Social Science warns that failure to lower the energy use by Bitcoin and similar Blockchain designs may prevent nations from reaching their climate change mitigation obligations under the Paris Agreement.

The study, authored by Jon Truby, PhD, Assistant Professor, Director of the Centre for Law & Development, College of Law, Qatar University, Doha, Qatar, evaluates the financial and legal options available to lawmakers to moderate blockchain-related energy consumption and foster a sustainable and innovative technology sector. Based on this rigorous review and analysis of the technologies, ownership models, and jurisdictional case law and practices, the article recommends an approach that imposes new taxes, charges, or restrictions to reduce demand by users, miners, and miner manufacturers who employ polluting technologies, and offers incentives that encourage developers to create less energy-intensive/carbon-neutral Blockchain.

“Digital currency mining is the first major industry developed from Blockchain, because its transactions alone consume more electricity than entire nations,” said Dr. Truby. “It needs to be directed towards sustainability if it is to realize its potential advantages.

“Many developers have taken no account of the environmental impact of their designs, so we must encourage them to adopt consensus protocols that do not result in high emissions. Taking no action means we are subsidizing high energy-consuming technology and causing future Blockchain developers to follow the same harmful path. We need to de-socialize the environmental costs involved while continuing to encourage progress of this important technology to unlock its potential economic, environmental, and social benefits,” explained Dr. Truby.

As a digital ledger that is accessible to, and trusted by all participants, Blockchain technology decentralizes and transforms the exchange of assets through peer-to-peer verification and payments. Blockchain technology has been advocated as being capable of delivering environmental and social benefits under the UN’s Sustainable Development Goals. However, Bitcoin’s system has been built in a way that is reminiscent of physical mining of natural resources – costs and efforts rise as the system reaches the ultimate resource limit and the mining of new resources requires increasing hardware resources, which consume huge amounts of electricity.

Putting this into perspective, Dr. Truby said, “the processes involved in a single Bitcoin transaction could provide electricity to a British home for a month – with the environmental costs socialized for private benefit.

“Bitcoin is here to stay, and so, future models must be designed without reliance on energy consumption so disproportionate on their economic or social benefits.”

The study evaluates various Blockchain technologies by their carbon footprints and recommends how to tax or restrict Blockchain types at different phases of production and use to discourage polluting versions and encourage cleaner alternatives. It also analyzes the legal measures that can be introduced to encourage technology innovators to develop low-emissions Blockchain designs. The specific recommendations include imposing levies to prevent path-dependent inertia from constraining innovation:

  • Registration fees collected by brokers from digital coin buyers.
  • “Bitcoin Sin Tax” surcharge on digital currency ownership.
  • Green taxes and restrictions on machinery purchases/imports (e.g. Bitcoin mining machines).
  • Smart contract transaction charges.

According to Dr. Truby, these findings may lead to new taxes, charges or restrictions, but could also lead to financial rewards for innovators developing carbon-neutral Blockchain.

The press release doesn’t fully reflect Dr. Truby’s thoughtfulness or the incentives he has suggested. it’s not all surcharges, taxes, and fees constitute encouragement.  Here’s a sample from the conclusion,

The possibilities of Blockchain are endless and incentivisation can help solve various climate change issues, such as through the development of digital currencies to fund climate finance programmes. This type of public-private finance initiative is envisioned in the Paris Agreement, and fiscal tools can incentivize innovators to design financially rewarding Blockchain technology that also achieves environmental goals. Bitcoin, for example, has various utilitarian intentions in its White Paper, which may or may not turn out to be as envisioned, but it would not have been such a success without investors seeking remarkable returns. Embracing such technology, and promoting a shift in behaviour with such fiscal tools, can turn the industry itself towards achieving innovative solutions for environmental goals.

I realize Wolkow, et. al, are not focused on cryptocurrency and blockchain technology per se but as Huff notes in her reply, “… new lithographic techniques that we’ve developed, which could perform computations at significantly lower energy costs, would be huge for Proof of Work coins.”

Whether or not there are implications for cryptocurrencies, energy needs, climate change, etc., it’s the kind of innovative work being done by scientists at the University of Alberta which may have implications in fields far beyond the researchers’ original intentions such as more efficient computation and data storage.

ETA Aug. 6, 2018: Dexter Johnson weighed in with an August 3, 2018 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website),

Researchers at the University of Alberta in Canada have developed a new approach to rewritable data storage technology by using a scanning tunneling microscope (STM) to remove and replace hydrogen atoms from the surface of a silicon wafer. If this approach realizes its potential, it could lead to a data storage technology capable of storing 1,000 times more data than today’s hard drives, up to 138 terabytes per square inch.

As a bit of background, Gerd Binnig and Heinrich Rohrer developed the first STM in 1986 for which they later received the Nobel Prize in physics. In the over 30 years since an STM first imaged an atom by exploiting a phenomenon known as tunneling—which causes electrons to jump from the surface atoms of a material to the tip of an ultrasharp electrode suspended a few angstroms above—the technology has become the backbone of so-called nanotechnology.

In addition to imaging the world on the atomic scale for the last thirty years, STMs have been experimented with as a potential data storage device. Last year, we reported on how IBM (where Binnig and Rohrer first developed the STM) used an STM in combination with an iron atom to serve as an electron-spin resonance sensor to read the magnetic pole of holmium atoms. The north and south poles of the holmium atoms served as the 0 and 1 of digital logic.

The Canadian researchers have taken a somewhat different approach to making an STM into a data storage device by automating a known technique that uses the ultrasharp tip of the STM to apply a voltage pulse above an atom to remove individual hydrogen atoms from the surface of a silicon wafer. Once the atom has been removed, there is a vacancy on the surface. These vacancies can be patterned on the surface to create devices and memories.

If you have the time, I recommend reading Dexter’s posting as he provides clear explanations, additional insight into the work, and more historical detail.

Genetic engineering: an eggplant in Bangladesh and a synthetic biology grant at Concordia University (Canada)

I have two bits of genetic engineering news.

Eggplants in Bangladesh

I always marvel at their beauty,

Bt eggplant is the first genetically engineered food crop to be successfully introduced in South Asia. The crop is helping some of the world’s poorest farmers feed their families and communities while reducing the use of pesticides. Photo by Cornell Alliance for Science.

A July 17, 2018 news item on phys.org describes a genetic engineering application,

Ansar Ali earned just 11,000 taka – about $130 U.S. dollars – from eggplant he grew last year in Bangladesh. This year, after planting Bt eggplant, he brought home more than double that amount, 27,000 taka. It’s a life-changing improvement for a subsistence farmer like Ali.

Bt eggplant, or brinjal as it’s known in Bangladesh, is the first genetically engineered food crop to be successfully introduced in South Asia. Bt brinjal is helping some of the world’s poorest farmers to feed their families and communities, improve profits and dramatically reduce pesticide use. That’s according to Tony Shelton, Cornell professor of entomology and director of the Bt brinjal project funded by the United States Agency for International Development (USAID). Shelton and Jahangir Hossain, the country coordinator for the project in Bangladesh, lead the Cornell initiative to get these seeds into the hands of the small-scale, resource-poor farmers who grow a crop consumed daily by millions of Bangladeshis.

A July 11, 2018 Cornell University news release by Krisy Gashler, which originated the news item, expands on the theme (Note: Links have been removed),

Bt brinjal was first developed by the Indian seed company Mahyco in the early 2000s. Scientists inserted a gene from the bacterium Bacillus thuringiensis (thus the name, Bt) into nine brinjal varieties. The plants were engineered to resist the fruit and shoot borer, a devastating insect whose larvae bore into the stem and fruit of an eggplant. The insects cause up to 80 percent crop loss.

The Bt protein produced by the engineered eggplant causes the fruit and shoot borer larva to stop feeding, but is safe for humans consuming the eggplant, as proven through years of biosafety trials. In fact, Bt is commonly used by organic farmers to control caterpillars but has to be sprayed frequently to be effective. The Bt eggplant produces essentially the same protein as in the spray. More than 80 percent of field corn and cotton grown in the U.S. contains a Bt gene for insect control.

“Farmers growing Bt brinjal in Bangladesh are seeing three times the production of other brinjal varieties, at half the production cost, and are getting better prices at the market,” Hossain said.

A recent survey found 50 percent of farmers in Bangladesh said that they experienced illness due to the intense spraying of insecticides. Most farmers work in bare feet and without eye protection, leading to pesticide exposure that causes skin and eye irritation, and vomiting.

“It’s terrible for these farmers’ health and the health of the environment to spray so much,” said Shelton, who found that pesticide use on Bt eggplant was reduced as much as 92 percent in commercial Bt brinjal plantings. “Bt brinjal is a solution that’s really making a difference in people’s lives.”

Alhaz Uddin, a farmer in the Tangail district, made 6,000 taka growing traditional brinjal, but had to spend 4,000 taka on pesticides to combat fruit and shoot borer.

“I sprayed pesticides several times in a week,” he said. “I got sick many times during the spray.”

Mahyco initially wanted to introduce Bt brinjal in India and underwent years of successful safety testing. But in 2010, due to pressure from anti-biotechnology groups, the Indian minister of the environment placed a moratorium on the seeds. It is still in effect today, leaving brinjal farmers there without the effective and safe method of control available to their neighbors in Bangladesh.

Even before the Indian moratorium, Cornell scientists hosted delegations from Bangladesh that wanted to learn about Bt brinjal and the Agricultural Biotechnology Support Project II (ABSP II), a consortium of public and private institutions in Asia and Africa intended to help with the commercial development, regulatory approval and dissemination of bio-engineered crops, including Bt brinjal.

Cornell worked with USAID, Mahyco and the Bangladesh Agricultural Research Institute to secure regulatory approval, and in 2014 the Bangladeshi government distributed a small number of Bt brinjal plants to 20 farmers in four districts. The next year 108 farmers grew Bt brinjal, and the following year the number of farmers more than doubled to 250. In 2017 the number increased to 6,512 and in 2018 to 27,012. The numbers are likely even higher, according to Shelton, as there are no constraints against farmers saving seeds and replanting.

“Farmers who plant Bt brinjal are required to plant a small perimeter of traditional brinjal around the Bt variety; research has shown that the insects will infest plants in the buffer area, and this will slow their evolutionary development of resistance to the Bt plants,” Shelton said.

In a March 2017 workshop, Bangladeshi Agriculture Minister Begum Matia Chowdhury called Bt brinjal “a success story of local and foreign collaboration.”

“We will be guided by the science-based information, not by the nonscientific whispering of a section of people,” Chowdhury said. “As human beings, it is our moral obligation that all people in our country should get food and not go to bed on an empty stomach. Biotechnology can play an important role in this effect.”

Here’s what an infested eggplant looks like,

Non-Bt eggplant infested with fruit and shoot borer. Photo by Cornell Alliance for Science

It looks more like a fig than an eggplant.

This is part of a more comprehensive project as revealed in a March 29, 2016 Cornell University news release issued on the occasion of a $4.8M, three-year grant from the U.S. Agency for International Development (USAID),

… The award supports USAID’s work under Feed the Future, the U.S. government’s global initiative to fight hunger and improve food security using agricultural science and technology.

In the Feed the Future South Asia Eggplant Improvement Partnership, Cornell will protect eggplant farmers from yield losses and improve their livelihoods in partnership with the Bangladesh Agricultural Research Institute (BARI) and the University of the Philippines at Los Baños. Eggplant, or brinjal, is a staple crop that is an important source of income and nutrition for farmers and consumers in South Asia.

Over the past decade, Cornell has led the Agricultural Biotechnology Support Project II (ABSPII), also funded by USAID, that prompted a consortium of institutions in Asia and Africa to use the tools of modern biotechnology, particularly genetic engineering, to improve crops to address major production constraints for which conventional plant breeding tools have not been effective.

In October 2013, Bangladesh became the first country in South Asia to approve commercial cultivation of a genetically engineered food crop. In February 2014, Matia Chowdhury, the Bangladesh minister of agriculture, released four varieties of Bt brinjal to 20 farmers. With the establishment of the 20 Bt brinjal demonstration plots in 2014 and 104 more in 2015, BARI reported a noticeable decrease in fruit and shoot borer infestation, increased yields, decreased use of pesticide and improved income for farmers.

The Feed the Future South Asia Eggplant Improvement Partnership addresses and integrates all elements of the commercialization process — including technology development, regulation, marketing, seed distribution, and product stewardship. It also provides strong platforms for policy development, capacity building, gender equality, outreach and communication.

Moving on from practical applications …

Canada’s synthetic biology training centre

It seems Concordia University (Montréa) is a major Canadian centre for all things ‘synthetic biological’. (from the History and Vision webpage on Concordia University’s Centre for Applied Synthetic Biology webspace),

History and vision

Emerging in 2012 from a collaboration between the Biology and Electrical and Computer Engineering Departments, the Centre received University-wide status in 2016 growing its membership to include Biochemistry, Journalism, Communication Studies, Mechanical, Industrial and Chemical Engineering.


Timeline

T17-36393-VPRG-Timeline-graphic-promo-v4

You can see the timeline does not yet include 2018 development(s). Also it started as “a collaboration between the Biology and Electrical and Computer Engineering Departments?” This suggests a vastly different approach to genetic engineering that that employed in the “eggplant” research. From a July 16, 2018 posting on the Genome Alberta blog,

The Natural Sciences and Engineering Research Council of Canada (NSERC) has committed $1.65 million dollars over six years to establish a research and training program at Concordia’s Centre for Applied Synthetic Biology.

The funds were awarded after Malcolm Whiteway (…), professor of biology and the Canada Research Chair in Microbial Genomics, and the grant application team submitted a proposal to NSERC’s Collaborative Research and Training Experience (CREATE) program.

The Synthetic Biology Applications CREATE program — or SynBioApps — will help students acquire and develop important professional skills that complement their academic education and improve their job-readiness.

‘Concordia is a natural fit’

“As the Canadian leader in synthetic biology and as the home of the country’s only genome foundry, Concordia is a natural fit for a training program in this growing area of research,” says Christophe Guy, vice-president of Research and Graduate Studies.

“In offering a program like SynBioApps, we are providing our students with both a fundamental education in science and the business skills they’ll need to transition into their professional careers.”

The program’s aims are twofold: First, it will teach students how to design and construct cells and proteins for the development of new products related to human health, green technologies, and fundamental biological investigations. Second, it will provide cross-disciplinary training and internship opportunities through the university’s District 3 Innovation Center.

SynBioApps will be open to students from biology, biochemistry, engineering, computing, and mathematics.

“The ability to apply engineering approaches to biological systems promises to revolutionize both biology and industry,” says Whiteway, who is also a member of the Centre for Applied Synthetic Biology.

“The SynBioApps program at Concordia will provide a training program to develop the students who will both investigate the biology and build these industries.”

You can find out more about Concordia’s Centre for Applied Synthetic Biology here (there are jobs listed on their home page) and you can find information about the Synthetic Biology Applications (SynBioApps) training programme here.

Hedy Lamarr documentary

It was the tech community which brought Hedy Lamarr’s scientific and technical accomplishments to light in the 1990s. The movie actress was better known for other aspects of her work and life.

She was the first actress to portray an orgasm on screen, the movie was Ecstasy (in English), the year was 1933; and, Hedy Lamarr was 18 years-old. Shortly after the film was released, Lamarr, of Jewish descent, married Friedrich Mandl, a wealthy Austrian with ties to fascist regimes led by Adolph Hitler and Benito Mussolini. A controlling and jealous man, she eventually escaped Mandl in the middle of the night with all the jewels she could pack on her person.

That’s just the prelude for a documentary celebrating the extraordinary Lamarr. ‘Bombshell: The Hedy Lamarr Story’ (directed and written by Alexandra Dean) has been making its way around the festival circuit for the last several months. I saw it at the Vancouver International Film Festival (VIFF) in October 2017 and the house was packed.

(If you missed it on the festival circuit, don’t worry. It’s being broadcast by most, if not all PBS stations, on May 18, 2018 as part of the American Masters series.)

*ETA video clips May 18, 2018 at 0945 hours PDT*

Over the last few decades there’s been a major reevaluation of Lamarr’s place in history. She was dangerous not just for her beauty (bombshell) but also in the way that people who aren’t easily categorized are always dangerous.

Before she did her ground-breaking work as an inventor and after her dramatic middle-of-the-night escape, Lamarr made her way to London* where she sought out Louis B. Mayer in 1937 and turned down his offer of a contract at MGM. Not enough money. Instead, she booked passage n a ship bound for New York City which was also carrying Louis B. Mayer and his wife. By the time they landed, Lamarr had gotten a contract that she was happy with and a brand-new name. Hedwig Eva Maria Kiesler effectively became Hedy Lamarr for the rest of her life.

Lamarr’s famous quote: “Any girl can be glamorous. All you have to do is stand still and look stupid,” provides an interesting juxtaposition with her role (along with avant-garde musician and composer George Antheil) in developing a technology that laid the basis for secure Wi-Fi, GPS (global positioning system), and Bluetooth. Or as some of us think of it, life in the 21st century.

She claimed to have advised Howard Hughes on the design for the of his airplanes; she was inspired by the wings on birds and fins on fish. She created a tablet that when reconstituted with water became a carbonated drink (according to Lamarr, it was not very tasty). There was also her influence in the field of plastic surgery. Those incisions that are in hard-to-see places? That was at Hedy Lamarr’s suggestion.

Her inventions spanned electrical engineering (telecommunications), bio-inspired engineering and physics (airplane wings), chemistry (the drink tablets), and plastic surgery. That’s an extraordinary range and there’s more. She created her own movie production company in 1945/46* (it was a failure) and was instrumental in designing a resort (she was never fairly recompensed for that).

She suffered throughout her life in various ways.The US government shafted her and George Antheil by politely refusing their invention in 1942. To be fair, it would have been difficult to use with the technology available at the time but somebody must have recognized its potential. At some point in the 1950s the US Navy developed the technology (without informing either inventor or compensating them as had been their deal).

There was more, her achievements were ignored or, worse, attributed to anyone except her the better part of her life; the Hollywood factory is not kind to older actresses, especially those of Lamarr’s generation; and she made serious mistakes.

Ironically, one of those mistakes involved plastic surgery. It’s hard to know what the effect will be on television but in the movie house, there was a big gasp when some footage from her last years was shown. She’s not monstrous but after an hour or more of footage from her ‘glamorous’ years, it’s a bit of a shock. If you can see past the effects of some ‘bad’ plastic surgery, you’ll find a woman who despite everything kept on. She never gave up and there’s a kind of beauty in that act which is indelible in a way that her physical beauty could never hope to be.

The documentary is fascinating not only for what it includes but for what it doesn’t. You’d think she’d never had a woman friend in her life but according to J. E. Smyth’s 2018 book ‘Nobody’s Girl Friday; The Women Who Ran Hollywood’, she and Bette Davis were good friends. There’s also mention of her poverty but none of her late life litigiousness and the $3M estate she left when she died in 2000.*** At a guess, having learned from the debacle with the US Navy (she could have sued but didn’t realize she had the right), she litigated her way into some financial health. As for the ‘Time’s Up’ and ‘Me Too’ movements which have formed since the Hollywood sex scandals of 2017 – ????, one can only imagine what Lamarr’s stories might have been.

If you have the time, see the documentary. Lamarr was a helluva dame.

*’Paris’ corrected to ‘London’ and ‘1945’ changed to 1945/46′ on on May 21, 2018 after watching the PBS broadcast of the documentary on May 18, 2018.

.***ETA May 21, 2018: See the Hedy Lamarr Wikipedia entry for more about her estate and other details of her life.***

The Royal Bank of Canada reports ‘Humans wanted’ and some thoughts on the future of work, robots, and artificial intelligence

It seems the Royal Bank of Canada ((RBC or Royal Bank) wants to weigh in and influence what is to come with regard to what new technologies will bring us and how they will affect our working lives.  (I will be offering my critiques of the whole thing.)

Launch yourself into the future (if you’re a youth)

“I’m not planning on being replaced by a robot.” That’s the first line of text you’ll see if you go to the Royal Bank of Canada’s new Future Launch web space and latest marketing campaign and investment.

This whole endeavour is aimed at ‘youth’ and represents a $500M investment. Of course, that money will be invested over a 10-year period which works out to $50M per year and doesn’t seem quite so munificent given how much money Canadian banks make (from a March 1, 2017 article by Don Pittis for the Canadian Broadcasting Corporation [CBC] news website),

Yesterday [February 28, 2017] the Bank of Montreal [BMO] said it had made about $1.5 billion in three months.

That may be hard to put in context until you hear that it is an increase in profit of nearly 40 per cent from the same period last year and dramatically higher than stock watchers had been expecting.

Not all the banks have done as well as BMO this time. The Royal Bank’s profits were up 24 per cent at $3 billion. [emphasis mine] CIBC [Canadian Imperial Bank of Commerce] profits were up 13 per cent. TD [Toronto Dominion] releases its numbers tomorrow.

Those numbers would put the RBC on track to a profit of roughly $12B n 2017. This means  $500M represents approximately 4.5% of a single year’s profits which will be disbursed over a 10 year period which makes the investment work out to approximately .45% or less than 1/2 of one percent. Paradoxically, it’s a lot of money and it’s not that much money.

Advertising awareness

First, there was some advertising (in Vancouver at least),

[downloaded from http://flinflononline.com/local-news/356505]

You’ll notice she has what could be described as a ‘halo’. Is she an angel or, perhaps, she’s an RBC angel? After all, yellow and gold are closely associated as colours and RBC sports a partially yellow logo. As well, the model is wearing a blue denim jacket, RBC’s other logo colour.

Her ‘halo’ is intact but those bands of colour bend a bit and could be described as ‘rainbow-like’ bringing to mind ‘pots of gold’ at the end of the rainbow.  Free association is great fun and allows people to ascribe multiple and/or overlapping ideas and stories to the advertising. For example, people who might not approve of imagery that hearkens to religious art might have an easier time with rainbows and pots of gold. At any rate, none of the elements in images/ads are likely to be happy accidents or coincidence. They are intended to evoke certain associations, e.g., anyone associated with RBC will be blessed with riches.

The timing is deliberate, too, just before Easter 2018 (April 1), suggesting to some us, that even when the robots arrive destroying the past, youth will rise up (resurrection) for a new future. Or, if you prefer, Passover and its attendant themes of being spared and moving to the Promised Land.

Enough with the semiotic analysis and onto campaign details.

Humans Wanted: an RBC report

It seems the precursor to Future Launch, is an RBC report, ‘Humans Wanted’, which itself is the outcome of still earlier work such as this Brookfield Institute for Innovation + Entrepreneurship (BII+E) report, Future-proof: Preparing young Canadians for the future of work, March 2017 (authors: Creig Lamb and Sarah Doyle), which features a quote from RBC’s President and CEO (Chief Executive Officer) David McKay,

“Canada’s future prosperity and success will rely on us harnessing the innovation of our entire talent pool. A huge part of our success will depend on how well we integrate this next generation of Canadians into the workforce. Their confidence, optimism and inspiration could be the key to helping us reimagine traditional business models, products and ways of working.”  David McKay, President and CEO, RBC

There are a number of major trends that have the potential to shape the future of work, from climate change and resource scarcity to demographic shifts resulting from an aging population and immigration. This report focuses on the need to prepare Canada’s youth for a future where a great number of jobs will be rapidly created, altered or made obsolete by technology.

Successive waves of technological advancements have rocked global economies for centuries, reconfiguring the labour force and giving rise to new economic opportunities with each wave. Modern advances, including artificial intelligence and robotics, once again have the potential to transform the economy, perhaps more rapidly and more dramatically than ever before. As past pillars of Canada’s economic growth become less reliable, harnessing technology and innovation will become increasingly important in driving productivity and growth. 1, 2, 3

… (p. 2 print; p. 4 PDF)

The Brookfield Institute (at Ryerson University in Toronto, Ontario, Canada) report is worth reading if for no other reason than its Endnotes. Unlike the RBC materials, you can find the source for the information in the Brookfield report.

After Brookfield, there was the RBC Future Launch Youth Forums 2017: What We Learned  document (October 13, 2017 according to ‘View Page Info’),

In this rapidly changing world, there’s a new reality when it comes to work. A degree or diploma no longer guarantees a job, and some of the positions, skills and trades of today won’t exist – or be relevant – in the future.

Through an unprecedented 10-year, $500 million commitment, RBC Future LaunchTM  is focused on driving real change and preparing today’s young people for the future world of work, helping them access the skills, job experience and networks that will enable their success.

At the beginning of this 10-year journey RBC® wanted to go beyond research and expert reports to better understand the regional issues facing youth across Canada and to hear directly from young people and organizations that work with them. From November 2016 to May 2017, the RBC Future Launch team held 15 youth forums across the country, bringing together over 430 partners, including young people, to uncover ideas and talk through solutions to address the workforce gaps Canada’s youth face today.

Finally,  a March 26, 2018 RBC news release announces the RBC report: ‘Humans Wanted – How Canadian youth can thrive in the age of disruption’,

Automation to impact at least 50% of Canadian jobs in the next decade: RBC research

Human intelligence and intuition critical for young people and jobs of the future

  • Being ‘human’ will ensure resiliency in an era of disruption and artificial intelligence
  • Skills mobility – the ability to move from one job to another – will become a new competitive advantage

TORONTO, March 26, 2018 – A new RBC research paper, Humans Wanted – How Canadian youth can thrive in the age of disruption, has revealed that 50% of Canadian jobs will be disrupted by automation in the next 10 years.

As a result of this disruption, Canada’s Gen Mobile – young people who are currently transitioning from education to employment – are unprepared for the rapidly changing workplace. With 4 million Canadian youth entering the workforce over the next decade, and the shift from a jobs economy to a skills economy, the research indicates young people will need a portfolio of “human skills” to remain competitive and resilient in the labour market.

“Canada is at a historic cross-roads – we have the largest generation of young people coming into the workforce at the very same time technology is starting to impact most jobs in the country,” said Dave McKay, President and CEO, RBC. “Canada is on the brink of a skills revolution and we have a responsibility to prepare young people for the opportunities and ambiguities of the future.”

‘There is a changing demand for skills,” said John Stackhouse, Senior Vice-President, RBC. “According to our findings, if employers and the next generation of employees focus on foundational ‘human skills’, they’ll be better able to navigate a new age of career mobility as technology continues to reshape every aspect of the world around us.”

Key Findings:

  • Canada’s economy is on target to add 2.4 million jobs over the next four years, virtually all of which will require a different mix of skills.
  • A growing demand for “human skills” will grow across all job sectors and include: critical thinking, co-ordination, social perceptiveness, active listening and complex problem solving.
  • Rather than a nation of coders, digital literacy – the ability to understand digital items, digital technologies or the Internet fluently – will be necessary for all new jobs.
  • Canada’s education system, training programs and labour market initiatives are inadequately designed to help Canadian youth navigate the new skills economy, resulting in roughly half a million 15-29 year olds who are unemployed and another quarter of a million who are working part-time involuntarily.
  • Canadian employers are generally not prepared, through hiring, training or retraining, to recruit and develop the skills needed to ensure their organizations remain competitive in the digital economy.

“As digital and machine technology advances, the next generation of Canadians will need to be more adaptive, creative and collaborative, adding and refining skills to keep pace with a world of work undergoing profound change,” said McKay. “Canada’s future prosperity depends on getting a few big things right and that’s why we’ve introduced RBC Future Launch.”

RBC Future Launch is a decade-long commitment to help Canadian youth prepare for the jobs of tomorrow. RBC is committed to acting as a catalyst for change, bringing government, educators, public sector and not-for-profits together to co-create solutions to help young people better prepare for the future of the work through “human skills” development, networking and work experience.

Top recommendations from the report include:

  • A national review of post-secondary education programs to assess their focus on “human skills” including global competencies
  • A national target of 100% work-integrated learning, to ensure every undergraduate student has the opportunity for an apprenticeship, internship, co-op placement or other meaningful experiential placement
  • Standardization of labour market information across all provinces and regions, and a partnership with the private sector to move skills and jobs information to real-time, interactive platforms
  • The introduction of a national initiative to help employers measure foundational skills and incorporate them in recruiting, hiring and training practices

Join the conversation with Dave McKay and John Stackhouse on Wednesday, March 28 [2018] at 9:00 a.m. to 10:00 a.m. EDT at RBC Disruptors on Facebook Live.

Click here to read: Humans Wanted – How Canadian youth can thrive in the age of disruption.

About the Report
RBC Economics amassed a database of 300 occupations and drilled into the skills required to perform them now and projected into the future. The study groups the Canadian economy into six major clusters based on skillsets as opposed to traditional classifications and sectors. This cluster model is designed to illustrate the ease of transition between dissimilar jobs as well as the relevance of current skills to jobs of the future.

Six Clusters
Doers: Emphasis on basic skills
Transition: Greenhouse worker to crane operator
High Probability of Disruption

Crafters: Medium technical skills; low in management skills
Transition: Farmer to plumber
Very High Probability of Disruption

Technicians: High in technical skills
Transition: Car mechanic to electrician
Moderate Probability of Disruption

Facilitators: Emphasis on emotional intelligence
Transition: Dental assistant to graphic designer
Moderate Probability of Disruption

Providers: High in Analytical Skills
Transition: Real estate agent to police officer
Low Probability of Disruption

Solvers: Emphasis on management skills and critical thinking
Transition: Mathematician to software engineer
Minimal Probability of Disruption

About RBC
Royal Bank of Canada is a global financial institution with a purpose-driven, principles-led approach to delivering leading performance. Our success comes from the 81,000+ employees who bring our vision, values and strategy to life so we can help our clients thrive and communities prosper. As Canada’s biggest bank, and one of the largest in the world based on market capitalization, we have a diversified business model with a focus on innovation and providing exceptional experiences to our 16 million clients in Canada, the U.S. and 34 other countries. Learn more at rbc.com.‎

We are proud to support a broad range of community initiatives through donations, community investments and employee volunteer activities. See how at http://www.rbc.com/community-sustainability/.

– 30 – 

The report features a lot of bulleted points, airy text (large fonts and lots of space between the lines), inoffensive graphics, and human interest stories illustrating the points made elsewhere in the text.

There is no bibliography or any form of note telling you where to find the sources for the information in the report. The 2.4M jobs mentioned in the news release are also mentioned in the report on p. 16 (PDF) and is credited in the main body of the text to the EDSC. I’m not up-to-date on my abbreviations but I’m pretty sure it does not stand for East Doncaster Secondary College or East Duplin Soccer Club. I’m betting it stands for Employment and Social Development Canada. All that led to visiting the EDSC website and trying (unsuccessfully) to find the report or data sheet used to supply the figures RBC quoted in their report and news release.

Also, I’m not sure who came up with or how they developed the ‘crafters, ‘doers’, ‘technicians’, etc. categories.

Here’s more from p. 2 of their report,

CANADA, WE HAVE A PROBLEM. [emphasis mine] We’re hurtling towards the 2020s with perfect hindsight, not seeing what’s clearly before us. The next generation is entering the workforce at a time of profound economic, social and technological change. We know it. [emphasis mine] Canada’s youth know it. And we’re not doing enough about it.

RBC wants to change the conversation, [emphasis mine] to help Canadian youth own the 2020s — and beyond. RBC Future Launch is our 10-year commitment to that cause, to help young people prepare for and navigate a new world of work that, we believe, will fundamentally reshape Canada. For the better. If we get a few big things right.

This report, based on a year-long research project, is designed to help that conversation. Our team conducted one of the biggest labour force data projects [emphasis mine] in Canada, and crisscrossed the country to speak with students and workers in their early careers, with educators and policymakers, and with employers in every sector.

We discovered a quiet crisis — of recent graduates who are overqualified for the jobs they’re in, of unemployed youth who weren’t trained for the jobs that are out there, and young Canadians everywhere who feel they aren’t ready for the future of work.

Sarcasm ahead

There’s nothing like starting your remarks with a paraphrased quote from a US movie about the Apollo 13 spacecraft crisis as in, “Houston, we have a problem.” I’ve always preferred Trudeau (senior) and his comment about ‘keeping our noses out of the nation’s bedrooms’. It’s not applicable but it’s more amusing and a Canadian quote to boot.

So, we know we’re having a crisis which we know about but RBC wants to tell us about it anyway (?) and RBC wants to ‘change the conversation’. OK. So how does presenting the RBC Future Launch change the conversation? Especially in light of the fact, that the conversation has already been held, “a year-long research project … Our team conducted one of the biggest labour force data projects [emphasis mine] in Canada, and crisscrossed the country to speak with students and workers in their early careers, with educators and policymakers, and with employers in every sector.” Is the proposed change something along the lines of ‘Don’t worry, be happy; RBC has six categories (Doers, Crafters, Technicians, Facilitators, Providers, Solvers) for you.’ (Yes, for those who recognized it, I’m referencing I’m referencing Bobby McFerrin’s hit song, Don’t Worry, Be Happy.)

Also, what data did RBC collect and how do they collect it? Could Facebook and other forms of social media have been involved? (My March 29, 2018 posting mentions the latest Facebook data scandal; scroll down about 80% of the way.)

There are the people leading the way and ‘changing the conversation’ as it were and they can’t present logical, coherent points. What kind of conversation could they possibly have with youth (or anyone else for that matter)?

And, if part of the problem is that employers are not planning for the future, how does Future Launch ‘change that part of the conversation’?

RBC Future Launch

Days after the report’s release,there’s the Future Launch announcement in an RBC March 28, 2018 news release,

TORONTO, March 28, 2017 – In an era of unprecedented economic and technological change, RBC is today unveiling its largest-ever commitment to Canada’s future. RBC Future Launch is a 10-year, $500-million initiative to help young people gain access and opportunity to the skills, job experience and career networks needed for the future world of work.

“Tomorrow’s prosperity will depend on today’s young people and their ability to take on a future that’s equally inspiring and unnerving,” said Dave McKay, RBC president and CEO. “We’re sitting at an intersection of history, as a massive generational shift and unprecedented technological revolution come together. And we need to ensure young Canadians are prepared to help take us forward.”

Future Launch is a core part of RBC’s celebration of Canada 150, and is the result of two years of conversations with young Canadians from coast to coast to coast.

“Young people – Canada’s future – have the confidence, optimism and inspiration to reimagine the way our country works,” McKay said. “They just need access to the capabilities and connections to make the 21st century, and their place in it, all it should be.”

Working together with young people, RBC will bring community leaders, industry experts, governments, educators and employers to help design solutions and harness resources for young Canadians to chart a more prosperous and inclusive future.

Over 10 years, RBC Future Launch will invest in areas that help young people learn skills, experience jobs, share knowledge and build resilience. The initiative will address the following critical gaps:

  • A lack of relevant experience. Too many young Canadians miss critical early opportunities because they’re stuck in a cycle of “no experience, no job.” According to the consulting firm McKinsey & Co., 83 per cent of educators believe youth are prepared for the workforce, but only 34 per cent of employers and 44 per cent of young people agree. RBC will continue to help educators and employers develop quality work-integrated learning programs to build a more dynamic bridge between school and work.
  • A lack of relevant skills. Increasingly, young people entering the workforce require a complex set of technical, entrepreneurial and social skills that cannot be attained solely through a formal education. A 2016 report from the World Economic Forum states that by 2020, more than a third of the desired core skill-sets of most occupations will be different from today — if that job still exists. RBC will help ensure young Canadians gain the skills, from critical thinking to coding to creative design, that will help them integrate into the workplace of today, and be more competitive for the jobs of tomorrow.
  • A lack of knowledge networks. Young people are at a disadvantage in the job market if they don’t have an opportunity to learn from others and discover the realities of jobs they’re considering. Many have told RBC that there isn’t enough information on the spectrum of jobs that are available. From social networks to mentoring programs, RBC will harness the vast knowledge and goodwill of Canadians in guiding young people to the opportunities that exist and will exist, across Canada.
  • A lack of future readiness. Many young Canadians know their future will be defined by disruption. A new report, Future-proof: Preparing young Canadians for the future of work, by the Brookfield Institute for Innovation + Entrepreneurship, found that 42 per cent of the Canadian labour force is at a high risk of being affected by automation in the next 10 to 20 years. Young Canadians are okay with that: they want to be the disruptors and make the future workforce more creative and productive. RBC will help to create opportunities, through our education system, workplaces and communities at large to help young Canadians retool, rethink and rebuild as the age of disruption takes hold.

By helping young people unlock their potential and launch their careers, RBC can assist them with building a stronger future for themselves, and a more prosperous Canada for all. RBC created The Launching Careers Playbook, an interactive, digital resource focused on enabling young people to reach their full potential through three distinct modules: I am starting my career; I manage interns and I create internship programs. The Playbook shares the design principles, practices, and learnings captured from the RBC Career Launch Program over three years, as well as the research and feedback RBC has received from young people and their managers.

More information on RBC Future Launch can be found at www.rbc.com/futurelaunch.

Weirdly, this news release is the only document which gives you sources for some of RBC’s information. If you should be inclined, you can check the original reports as cited in the news release and determine if you agree with the conclusions the RBC people drew from them.

Cynicism ahead

They are planning to change the conversation, are they? I can’t help wondering what return they’re (RBC)  expecting to make on their investment ($500M over10 years). The RBC is prominently displayed not only on the launch page but in several of the subtopics listed on the page.

There appears to be some very good and helpful information although much of it leads you to using a bank for one reason or another. For example, if you’re planning to become an entrepreneur (and there is serious pressure from the government of Canada on this generation to become precisely that), then it’s very handy that you have easy access to RBC from any of the Future Launch pages. As well, you can easily apply for a job at or get a loan from RBC after you’ve done some of the exercises on the website and possibly given RBC a lot of data about yourself.

For anyone who believes I’m being harsh about the bank, you might want to check out a March 15, 2017 article by Erica Johnson for the Canadian Broadcasting Corporation’s Go Public website. It highlights just how ruthless Canadian banks can be,

Employees from all five of Canada’s big banks have flooded Go Public with stories of how they feel pressured to upsell, trick and even lie to customers to meet unrealistic sales targets and keep their jobs.

The deluge is fuelling multiple calls for a parliamentary inquiry, even as the banks claim they’re acting in customers’ best interests.

In nearly 1,000 emails, employees from RBC, BMO, CIBC, TD and Scotiabank locations across Canada describe the pressures to hit targets that are monitored weekly, daily and in some cases hourly.

“Management is down your throat all the time,” said a Scotiabank financial adviser. “They want you to hit your numbers and it doesn’t matter how.”

CBC has agreed to protect their identities because the workers are concerned about current and future employment.

An RBC teller from Thunder Bay, Ont., said even when customers don’t need or want anything, “we need to upgrade their Visa card, increase their Visa limits or get them to open up a credit line.”

“It’s not what’s important to our clients anymore,” she said. “The bank wants more and more money. And it’s leading everyone into debt.”

A CIBC teller said, “I am expected to aggressively sell products, especially Visa. Hit those targets, who cares if it’s hurting customers.”

….

Many bank employees described pressure tactics used by managers to try to increase sales.

An RBC certified financial planner in Guelph, Ont., said she’s been threatened with pay cuts and losing her job if she doesn’t upsell enough customers.

“Managers belittle you,” she said. “We get weekly emails that highlight in red the people who are not hitting those sales targets. It’s bullying.”

Some TD Bank employees told CBC’s Go Public they felt they had to break the law to keep their jobs. (Aaron Harris/Reuters)

Employees at several RBC branches in Calgary said there are white boards posted in the staff room that list which financial advisers are meeting their sales targets and which advisers are coming up short.

A CIBC small business associate who quit in January after nine years on the job said her district branch manager wasn’t pleased with her sales results when she was pregnant.

While working in Waterloo, Ont., she says her manager also instructed staff to tell all new international students looking to open a chequing account that they had to open a “student package,” which also included a savings account, credit card and overdraft.

“That is unfair and not the law, but we were told to do it for all of them.”

Go Public requested interviews with the CEOs of the five big banks — BMO, CIBC, RBC, Scotiabank and TD — but all declined.

If you have the time, it’s worth reading Johnson’s article in its entirety as it provides some fascinating insight into Canadian banking practices.

Final comments and an actual ‘conversation’ about the future of work

I’m torn, It’s good to see an attempt to grapple with the extraordinary changes we are likely to see in the not so distant future. It’s hard to believe that this Future Launch initiative is anything other than a self-interested means of profiting from fears about the future and a massive public relations campaign designed to engender good will. Doubly so since the very bad publicity the banks including RBC garnered last year (2017), as mentioned in the Johnson article.

Also, RBC and who knows how many other vested interests appear to have gathered data and information which they’ve used to draw any number of conclusions. First, I can’t find any information about what data RBC is gathering, who else might have access, and what plans, if any, they have to use it. Second, RBC seems to have predetermined how this ‘future of work’ conversation needs to be changed.

I suggest treading as lightly as possible and keeping in mind other ‘conversations’ are possible. For example, Mike Masnick at Techdirt has an April 3, 2018 posting about a new ‘future of work’ initiative,

For the past few years, there have been plenty of discussions about “the future of work,” but they tend to fall into one of two camps. You have the pessimists, who insist that the coming changes wrought by automation and artificial intelligence will lead to fewer and fewer jobs, as all of the jobs of today are automated out of existence. Then, there are the optimists who point to basically every single past similar prediction of doom and gloom due to innovation, which have always turned out to be incorrect. People in this camp point out that technology is more likely to augment than replace human-based work, and vaguely insist that “the jobs will come.” Whether you fall into one of those two camps — or somewhere in between or somewhere else entirely — one thing I’d hope most people can agree on is that the future of work will be… different.

Separately, we’re also living in an age where it is increasingly clear that those in and around the technology industry must take more responsibility in thinking through the possible consequences of the innovations they’re bringing to life, and exploring ways to minimize the harmful results (and hopefully maximizing the beneficial ones).

That brings us to the project we’re announcing today, Working Futures, which is an attempt to explore what the future of work might really look like in the next ten to fifteen years. We’re doing this project in partnership with two organizations that we’ve worked with multiples times in the past: Scout.ai and R Street.

….

The key point of this project: rather than just worry about the bad stuff or hand-wave around the idea of good stuff magically appearing, we want to really dig in — figure out what new jobs may actually appear, look into what benefits may accrue as well as what harms may be dished out — and see if there are ways to minimize the negative consequences, while pushing the world towards the beneficial consequences.

To do that, we’re kicking off a variation on the classic concept of scenario planning, bringing together a wide variety of individuals with different backgrounds, perspectives and ideas to run through a fun and creative exercise to imagine the future, while staying based in reality. We’re adding in some fun game-like mechanisms to push people to think about where the future might head. We’re also updating the output side of traditional scenario planning by involving science fiction authors, who obviously have a long history of thinking up the future, and who will participate in this process and help to craft short stories out of the scenarios we build, making them entertaining, readable and perhaps a little less “wonky” than the output of more traditional scenario plans.

There you have it; the Royal Bank is changing the conversation and Techdirt is inviting you to join in scenario planning and more.

World Science Festival May 29 – June 3, 2018 in New York City

I haven’t featured the festival since 2014 having forgotten all about it but I received (via email) an April 30, 2018 news release announcing the latest iteration,

ANNOUNCING WORLD SCIENCE FESTIVAL NEW YORK CITY

MAY 29 THROUGH JUNE 3, 2018

OVER 70 INSPIRING SCIENCE-THEMED EVENTS EXPLORE THE VERY EDGE OF
KNOWLEDGE

Over six extraordinary days in New York City, from May 29 through June
3, 2018; the world’s leading scientists will explore the very edge of
knowledge and share their insights with the public.  Festival goers of
all ages can experience vibrant discussions and debates, evocative
performances and films, world-changing research updates,
thought-provoking town hall gatherings and fireside chats, hands-on
experiments and interactive outdoor explorations.  It’s an action
adventure for your mind!

See the full list of programs here:
https://www.worldsciencefestival.com/festival/world-science-festival-2018/

This year will highlight some of the incredible achievements of Women in
Science, celebrating and exploring their impact on the history and
future of scientific discovery. Perennial favorites will also return in
full force, including WSF main stage Big Ideas programs, the Flame
Challenge, Cool Jobs, and FREE outdoor events.

The World Science Festival makes the esoteric understandable and the
familiar fascinating. It has drawn more than 2.5 million participants
since its launch in 2008, with millions more experiencing the programs
online.

THE 2018 WORLD SCIENCE FESTIVAL IS NOT TO BE MISSED, SO MARK YOUR
CALENDAR AND SAVE THE DATES!

Here are a few items from the 2018 Festival’s program page,

Thursday, May 31, 2018

6:00 pm – 9:00 pm

American Museum of Natural History

Host: Faith Salie

How deep is the ocean? Why do whales sing? How far is 20,000 leagues—and what is a league anyway? Raise a glass and take a deep dive into the foamy waters of oceanic arcana under the blue whale in the Museum’s Hall of Ocean Life. Comedian and journalist Faith Salie will regale you with a pub-style night of trivia questions, physical challenges, and hilarity to celebrate the Museum’s newest temporary exhibition, Unseen Oceans. Don’t worry. When the going gets tough, we won’t let you drown. Teams of top scientists—and even a surprise guest or two—will be standing by to assist you. Program includes one free drink and private access to the special exhibition Unseen Oceans. Special exhibition access is available to ticket holders beginning one hour before the program, from 6–7pm.

Learn More

Buy Tickets

Thursday, May 31, 2018

8:00 pm – 9:30 pm

Gerald W. Lynch Theater at John Jay College

Participants: Alvaro Pascual-Leone, Nim Tottenham, Carla Shatz, And Others

What if your brain at 77 were as plastic as it was at 7? What if you could learn Mandarin with the ease of a toddler or play Rachmaninoff without breaking a sweat? A growing understanding of neuroplasticity suggests these fantasies could one day become reality. Neuroplasticity may also be the key to solving diseases like Alzheimer’s, depression, and autism. This program will guide you through the intricate neural pathways inside our skulls, as leading neuroscientists discuss their most recent findings and both the tantalizing possibilities and pitfalls for our future cognitive selves.

The Big Ideas Series is supported in part by the John Templeton Foundation. 

Learn More

Buy Tickets

Friday, June 1, 2018

8:00 pm – 9:30 pm

NYU Skirball Center for the Performing Arts

Participants: Yann LeCun, Susan Schneider, Max Tegmark, And Others

“Success in creating effective A.I.,” said the late Stephen Hawking, “could be the biggest event in the history of our civilization. Or the worst. We just don’t know.” Elon Musk called A.I. “a fundamental risk to the existence of civilization.” Are we creating the instruments of our own destruction or exciting tools for our future survival? Once we teach a machine to learn on its own—as the programmers behind AlphaGo have done, to wondrous results—where do we draw moral and computational lines? Leading specialists in A.I, neuroscience, and philosophy will tackle the very questions that may define the future of humanity.

The Big Ideas Series is supported in part by the John Templeton Foundation. 

Learn More

Buy Tickets

Friday, June 1, 2018

8:00 pm – 9:30 pm

Gerald W. Lynch Theater at John Jay College

Participants Marcela Carena, Janet Conrad, Michael Doser, Hitoshi Murayama, Neil Turok

“If I had a world of my own,” said the Mad Hatter, “nothing would be what it is, because everything would be what it isn’t. And contrary wise, what is, it wouldn’t be.” Nonsensical as this may sound, it comes close to describing an interesting paradox: You exist. You shouldn’t. Stars and galaxies and planets exist. They shouldn’t. The nascent universe contained equal parts matter and antimatter that should have instantly obliterated each other, turning the Big Bang into the Big Fizzle. And yet, here we are: flesh, blood, stars, moons, sky. Why? Come join us as we dive deep down the rabbit hole of solving the mystery of the missing antimatter.

The Big Ideas Series is supported in part by the John Templeton Foundation.

Learn More

Buy Tickets

Saturday, June 2, 2018

10:00 am – 11:00 am

Museum of the City of New York

ParticipantsKubi Ackerman

What makes a city a city? How do you build buildings, plan streets, and design parks with humans and their needs in mind? Join architect and Future Lab Project Director, Kubi Ackerman, on an exploration in which you’ll venture outside to examine New York City anew, seeing it through the eyes of a visionary museum architect, and then head to the Future City Lab’s awesome interactive space where you will design your own park. This is a student-only program for kids currently enrolled in the 4th grade – 8th grade. Parents/Guardians should drop off their children for this event.

Supported by the Bezos Family Foundation.

Learn More

Buy Tickets

Saturday, June 2, 2018

11:00 am – 12:30 pm

NYU Global Center, Grand Hall

Kerouac called it “the only truth.” Shakespeare called it “the food of love.” Maya Angelou called it “my refuge.” And now scientists are finally discovering what these thinkers, musicians, or even any of us with a Spotify account and a set of headphones could have told you on instinct: music lights up multiple corners of the brain, strengthening our neural networks, firing up memory and emotion, and showing us what it means to be human. In fact, music is as essential to being human as language and may even predate it. Can music also repair broken networks, restore memory, and strengthen the brain? Join us as we speak with neuroscientists and other experts in the fields of music and the brain as we pluck the notes of these fascinating phenomenon.

The Big Ideas Series is supported in part by the John Templeton Foundation.

Learn More

Buy Tickets

Saturday, June 2, 2018

3:00 pm – 4:00 pm

NYU Skirball Center for the Performing Arts

Moderator“Science Bob” Pflugfelder

Participants William Clark, Matt Lanier, Michael Meacham, Casie Parish Fisher, Mike Ressler

Most people think of scientists as people who work in funny-smelling labs filled with strange equipment. But there are lots of scientists whose jobs often take them out of the lab, into the world, and beyond. Come join some of the coolest of them in Cool Jobs. You’ll get to meet a forensic scientist, a venomous snake-loving herpetologist, a NASA engineer who lands spacecrafts on Mars, and inventors who are changing the future of sports.

Learn More

Buy Tickets

Saturday, June 2, 2018

4:00 pm – 5:30 pm

NYU Global Center, Grand Hall

“We can rebuild him. We have the technology,” began the opening sequence of the hugely popular 70’s TV show, “The Six Million Dollar Man.” Forty-five years later, how close are we, in reality, to that sci-fi fantasy? More thornily, now that artificial intelligence may soon pass human intelligence, and the merging of human with machine is potentially on the table, what will it then mean to “be human”? Join us for an important discussion with scientists, technologists and ethicists about the path toward superhumanism and the quest for immortality.

The Big Ideas Series is supported in part by the John Templeton Foundation.

Learn More

Buy Tickets

Saturday, June 2, 2018

4:00 pm – 5:30 pm

Gerald W. Lynch Theater at John Jay College

Participants Brett Frischmann, Tim Hwang, Aviv Ovadya, Meredith Whittaker

“Move fast and break things,” went the Silicon Valley rallying cry, and for a long time we cheered along. Born in dorm rooms and garages, implemented by iconoclasts in hoodies, Big Tech, in its infancy, spouted noble goals of bringing us closer. But now, in its adolescence, it threatens to tear us apart. Some worry about an “Infocalypse”: a dystopian disruption so deep and dire we will no longer trust anything we see, hear, or read. Is this pessimistic vision of the future real or hyperbole? Is it time for tech to slow down, grow up, and stop breaking things? Big names in Big Tech will offer big thoughts on this massive societal shift, its terrifying pitfalls, and practical solutions both for ourselves and for future generations.

The Big Ideas Series is supported in part by the John Templeton Foundation.

Learn More

Buy Tickets

This looks like an exciting lineup and there’s a lot more for you to see on the 2018 Festival’s program page. You may also want to take a look at the list of participants which features some expected specialty speakers, an architect, a mathematician, a neuroscientist and some unexpected names such Kareem Abdul-Jabbar who I know as a basketball player and currently, a contestant on Dancing with the Stars. Bringing to mind that Walt Whitman quote, “I am large, I contain multitudes.” (from Whitman’s Song of Myself Wikipedia entry).

If you’re going, there are free events and note a few of the event are already sold out.

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (2 of 2)

Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).

Is it possible to get past Hedy?

Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.

Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an  answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.

I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.

On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),

3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]

Before I forget, there was mention of the international research scene,

Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]

Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).

As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.

Patents and intellectual property

As an inventor, Hedy got more than one patent. Much has been made of the fact that  despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.

Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.

The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

As for the patent situation in Canada (from the report released April 10, 2018),

Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.

This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]

Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)

One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.

Boxed text

While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items.  One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),

Box 4.2
The FinTech Revolution

Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%

of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.

AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).

I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),

AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).

The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.

As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]

The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too.  ’nuff said.

Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),

The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]

It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.

There is one other piece of boxed text I want to highlight (from the report released April 10, 2018),

Box 6.3
Open Science: An Emerging Approach to Create New Linkages

Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.

Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).

This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)

More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),

The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.

The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.

The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.

Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.

What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)

The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….

For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.

Subregional R&D

I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.

Here’s the conclusion (from the report released April 10, 2018),

Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.

Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.

Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp.  132-133 Print; pp. 170-171 PDF]

Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).

As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.

Final comments

My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).

While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)

Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.

***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***

There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.

More stuff

For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.

The report can be found here.

For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,

For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,

Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation,  …

There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,

6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.

There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.