Category Archives: health and safety

Germany has released a review of their research strategy for nanomaterials

A Sept. 24, 2016 posting by Lynn L. Bergeson and Carla N. Hutton on The National Law Review blog features a new report from German authorities (Note: A link has been removed),

On September 19, 2016, the Federal Institute for Occupational Safety and Health (BAuA) published a report entitled Review of the joint research strategy of the higher federal authorities — Nanomaterials and other advanced materials:  Application safety and environmental compatibility.  The report states that in a long-term research strategy, the higher federal authorities responsible for human and environmental safety — the German Environment Agency (UBA), the Federal Institute for Risk Assessment (BfR), BAuA, the Federal Institute for Materials Research and Testing (BAM), and the National Metrology Institute (PTB) — are accompanying the rapid pace of development of new materials from the points of view of occupational safety and health, consumer protection, and environmental protection.

Here’s a link to Review of the joint research strategy of the higher federal authorities — Nanomaterials and other advanced materials:  Application safety and environmental compatibility (PDF) and excerpts from the foreword (Note: There are some differences in formatting between what you see here and what you’ll see in the report),

The research strategy builds on the outcomes so far of the joint research strategy of the higher federal authorities launched in 2008 and first evaluated in 2013, “Nanotechnology: Health and Environmental Risks of Nanomaterials”1, while additionally covering other advanced materials where these pose similar risks to humans and the environment or where such risks need to be studied. It also takes up the idea of application safety of chemical products 2 from the New Quality of Work (INQA) initiative of the Federal Ministry of Labour and Social Affairs (BMAS) and the concept of sustainable
chemistry 3 endorsed by the Federal  Ministry  for  the  Environment, Nature Conservation, Building  and Nuclear Safety (BMUB). Application safety and environmental compatibility are aimed for advanced materials and derived products in order to largely rule out unacceptable risks to humans and the environment. This can be achieved by:

Using safe materials without hazardous properties for humans and the environment (direct application safety); or

Product design for low emissions and environmental compatibility over the entire product lifecycle (integrated application safety); or

Product stewardship, where producers support users in taking technical, organizational, and personal safety measures for the safe use and disposal of products (supported application safety).

As a comprising part of the Federal Government’s Nanotechnology Action Plan 2020, the update of the joint research strategy aims to contribute to governmental research in the following main areas:

 characterising and assessing the human and environmental risks of advanced materials
 Supporting research institutions and business enterprises
 Science-based revision of legal requirements and recommendations
 Public acceptance

The research strategy is to be implemented in projects and other research-related activities. These  include  governmental  research,  tendering  and  extramural  research  funding, and participation in mostly publicly supported projects with third-party funding. Additional activities will take place as part of policy advice and the ongoing work of the sovereign tasks of agencies involved. Interdisciplinary and transdisciplinary approaches will be used to better connect risk and safety research with innovation research and material development. In keeping up with the rapid pace of development, the time horizon for the research strategy is up to 2020. The research objectives address the research approaches likely to be actionable in this period. The research strategy will be supported by a working group and be evaluated and revised by the end of the Nanotechnology Action Plan 2020. tegy will be implemented in projects and other research-related activities, including governmental research, tendering and extramural research funding, and participation in mostly publicly supported projects with third-party funding.  Agencies will use interdisciplinary and transdisciplinary approaches to connect better risk and safety research with innovation research and material development. To keep up with the pace of development, the time horizon for the research strategy extends to 2020.  The research objectives in the report address the research approaches likely to be actionable in this period.  The research strategy will be supported by a working group and be evaluated and revised by the end of the Nanotechnology Action Plan 2020.

It’s always interesting to find out what’s happening elsewhere.

Walgreens (US-based pharmacy), As You Sow (civil society), and engineered hydroxyapatite (HA) nanoparticles

As You Sow has graced this blog before, notably in a March 13, 2015 posting about their success getting the corporate giant, Dunkin’ Donuts, to stop its practice of making powdered sugar whiter by adding nanoscale (and other scales) of titanium dioxide. What’s notable about As You Sow is that it files shareholder resolutions (in other words, the society owns shares of their corporate target) as one of its protest tactics.

This time, As You Sow has focused on Walgreens, a US pharmacy giant. This company has chosen a response that differs from Dunkin’ Donuts’ according to a Sept. 21, 2016 news item on Nanotechnology Now,

Rather than respond to shareholder concerns that Walgreens’ store-brand infant formula may contain harmful, “needle-like” nanomaterials, Walgreens filed a motion with the SEC [US Securities and Regulatory Commission] to block the inquiry.

A Sept. 21, 2016 As You Sow press release, which originated the news item, fills in a few details,

Walgreen’s Well Beginnings™ Advantage® infant formula has been reported to contain engineered hydroxyapatite (HA) nanoparticles, according to independent laboratory testing commissioned by nonprofit group Friends of the Earth. The E.U. Scientific Committee on Consumer Safety (SCCS) has determined that nano-HA may be toxic to humans and that the needle-form of nano-HA should not be used in products.

Walgreens’ “no-action letter” to the SEC argues that the company can exclude the shareholder proposal because “the use of nanomaterials in products … does not involve a significant social policy issue.” The company also claims its infant formula does not contain engineered nanomaterials, contrary to the independent laboratory testing.

“Walgreens is effectively silencing shareholder discussion of this subject,” said Austin Wilson, Environmental Health Program Manager of shareholder advocacy group As You Sow. “If Walgreens had responded to consumers’ and investors’ concerns, there would be no need for shareholders to file a proposal.”

“Shareholders will ultimately bear the burden of litigation if infants are harmed,” said Danielle Fugere, President and Chief Counsel of As You Sow. “Walgreens’ attempt to silence, rather than address, shareholder concerns raises red flags. To be successful, Walgreens must remain a trusted name for consumers and it can’t do that by sweeping new health studies under the rug.”

Nanoparticles are extremely small particles that can permeate cell membranes and travel throughout the body, including into organs, in ways that larger ingredients cannot. The extremely small size of nanoparticles may result in greater toxicity for human health and the environment.

The shareholder proposal asks the company to issue a report about actions the company is taking to reduce or eliminate the risk of nanoparticles.

In 2014, Dunkin’ Donuts reached an agreement with As You Sow to remove the nanoparticle titanium dioxide from its donuts. Starbucks plans to remove it from all products by 2017, and Krispy Kreme is reformulating its products to exclude titanium dioxide and other nanoparticles.

To seemingly dismiss concerns about their brand infant formula appears to be an odd tactic for Walgreens. After all this is infant safety and it’s the kind of thing that makes people very, very angry. On the other hand, Friends of the Earth has not always been scrupulous in its presentation of ‘facts’ (see my Feb. 9, 2012 posting).

2016 hasn’t been a good year for Walgreens. In June they ended their high profile partnership with blood testing startup, Theranos. From a June 13, 2016 article by Abigail Tracy for Vanity Fair,

After months of getting pummeled at the hands of regulators and the media over its questionable blood-testing technology, Theranos may have just been dealt its final blow. Walgreens, the main source of Theranos’s customers, has officially ended its partnership with the embattled biotech company, cutting off a critical revenue stream for founder Elizabeth Holmes’s once-promising start-up.

In a statement issued Sunday [June 12, 2016], the drugstore chain announced that it was terminating its nearly three-year-long relationship with the once $9 billion company and would immediately close all 40 Theranos-testing locations in its Arizona stores, The Wall Street Journal reports. Like so many in Silicon Valley, Walgreens fell victim to Holmes’s claims that Theranos’s technology, and its proprietary diagnostic product, Edison, would revolutionize blood testing and put its rivals, Laboratory Corporation of America and Quest Diagnostics, out of business. When it inked its deal with Holmes in 2013, Walgreens failed to properly vet the Edison technology, which was billed as being capable of conducting hundreds of diagnostics tests with just a few drops of blood.

You can read more about the Theranos situation in Tracy’s June 13, 2016 article and I have some details in a Sept. 2, 2016 posting where I feature the scandal and the proposed movie about Theranos (and other ‘science’ movies).

Getting back to Walgreens, you can find the As You Sow resolution here.

‘Potalyzer’ for roadside sobriety tests

Given the drive to legalize marijuana in Canada and in the US and the current crop of marijuana dispensaries in Vancouver (if nowhere else), this new ‘potalyzer’ test from Stanford University (California, US) seems quite timely and destined for popularity in police departments everywhere. From a Sept. 13, 2016 news item on Nanowerk,

This November [2016], several states will vote whether to legalize marijuana use, joining more than 20 states that already allow some form of cannabis use. This has prompted a need for effective tools for police to determine on the spot whether people are driving under the influence. Cars stopped while police interview drivers

Stanford researchers have devised a potential solution, applying magnetic nanotechnology, previously used as a cancer screen, to create what could be the first practical roadside test for marijuana intoxication.

While police are trying out potential tools, no device currently on the market has been shown to quickly provide a precise measurement of a driver’s marijuana intoxication as effectively as a breathalyzer gauges alcohol intoxication. THC, the drug’s most potent psychoactive agent, is commonly screened for in laboratory blood or urine tests – not very helpful for an officer in the field.

The Stanford device might function as a practical “potalyzer” because it can quickly detect not just the presence of THC in a person’s saliva, but also measure its concentration.

A Sept, 8, 2016 Stanford University news release by Carrie Kirby, which originated the news item, describes the technology in a little more detail,

Led by Shan Wang, a professor of materials science and engineering and of electrical engineering, the Stanford team created a mobile device that uses magnetic biosensors to detect tiny THC molecules in saliva. Officers could collect a spit sample with a cotton swab and read the results on a smartphone or laptop in as little as three minutes.

Researchers tackling the “potalyzer” problem have zeroed in on saliva because testing it is less invasive and because THC in saliva may correlate with impairment better than THC in urine or blood. The big challenge is that these spit tests may be called upon to detect superlatively tiny concentrations of THC. Some states have no set limit of THC in the body for drivers, while others set a limit of 0 or 5 nanograms (a billionth of a gram) per milliliter of blood.

Wang’s device can detect concentrations of THC in the range of 0 to 50 nanograms per milliliter of saliva. While there’s still no consensus on how much THC in a driver’s system is too much, previous studies have suggested a cutoff between 2 and 25 ng/mL, well within the capability of Wang’s device.

Repurposing biomedical tools

The researchers achieved such precision by harnessing the behavior of magnetism in nanoparticles, which measure just a few tens of billionths of a meter.

The Wang Group has been exploring magnetic nanotechnology for years, using it to attack such diverse problems as in vitro cancer diagnostics and magnetic information storage. In this case, they’re combining magnetic nanotechnology with the time-tested biochemical technique of the immunoassay. Immunoassays detect a certain molecule in a solution by introducing an antibody that will bind only to that molecule.

In the test, saliva is mixed with THC antibodies, which bind to any THC molecules in the sample. Then the sample is placed on a disposable chip cartridge, which contains magnetoresistive (GMR) sensors pre-coated with THC, and inserted into the handheld reader.

This sets in motion a “competition” between the THC pre-coated on the sensor and THC in the saliva to bind with the antibodies; the more THC in the saliva, the fewer antibodies will be available to bind to the THC on the sensor surface.

The number of antibodies bound to THC molecules on the sensor tells the device how many antibodies the THC in the sample used up, and therefore how many THC molecules were present in the sample.

Next, magnetic nanoparticles, specially made to bind only to the antibodies, are introduced to the sample. Each nanoparticle binds onto a THC-antibody pair like a sticky beacon, but only the molecules on the sensor surface will be close enough to trip the GMR biosensors in the reader. The device then uses Bluetooth to communicate results to the screen of a smartphone or laptop.

“To the best of our knowledge, this is the first demonstration that GMR biosensors are capable of detecting small molecules,” Wang wrote in a paper describing the device, published in Analytical Chemistry.

Beyond marijuana

The platform has potential usefulness beyond THC. Just as they do with THC, the GMR biosensors in the device could detect any small molecule, meaning that the platform could also test for morphine, heroin, cocaine or other drugs.

In fact, with 80 sensors built into it, the GMR biosensor chip could screen a single sample for multiple substances. The team has already tried screening for morphine with promising results.

Students are currently working on creating a user-friendly form factor for the device, which would need to go through field tests and be approved by regulators before it can be deployed by police.

Another thing that would have to happen before the device would be useful to law enforcement: State laws must set limits for the concentration of THC allowed in a driver’s saliva.

Here too, the Wang Group’s device could be helpful. For example, the next generation of the device could screen both the blood and saliva of a subject to establish an understanding of the correlation between blood THC level and saliva THC level at the same degree of intoxication.

Here’s a link to and a citation for the paper,

Small Molecule Detection in Saliva Facilitates Portable Tests of Marijuana Abuse by Jung-Rok Lee, Joohong Choi, Tyler O. Shultz, and Shan X. Wang. Anal. Chem., 2016, 88 (15), pp 7457–7461 DOI: 10.1021/acs.analchem.6b01688 Publication Date (Web): July 19, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Nanoscale elements that govern the behaviour of our teeth

Are we going to be adopting atomically correct dental hygiene practices in the future? It’s certainly a possibility given the latest Australian research announced in a Sept. 7, 2016 news item on Nanowerk (Note: A link has been removed),

With one in two Australian children reported to have tooth decay in their permanent teeth by age 12, researchers from the University of Sydney believe they have identified some nanoscale elements that govern the behaviour of our teeth.

Material and structures engineers worked with dentists and bioengineers to map the exact composition and structure of tooth enamel at the atomic scale.

Using a relatively new microscopy technique called atom probe tomography, their work produced the first-ever three-dimensional maps showing the positions of atoms critical in the decay process.

The new knowledge on atom composition at the nanolevel has the potential to aid oral health hygiene and caries prevention, and has been published today in the journal Science Advances(“Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel”).

A Sept. 8, 2016 University of Sydney press release, which originated the news item, expands on the theme (Note: A link has been removed),

Professor Julie Cairney, Material and Structures Engineer in the Faculty of Engineering and Information Technologies, said:

“The dental professionals have known that certain trace ions are important in the tough structure of tooth enamel but until now it had been impossible to map the ions in detail.

“The structure of human tooth enamel is extremely intricate and while we have known that magnesium, carbonate and fluoride ions influence enamel properties scientists have never been able to capture its structure at a high enough resolution or definition.”

“What we have found are the magnesium-rich regions between the hydroxyapatite nanorods that make up the enamel.”

“This means we have the first direct evidence of the existence of a proposed amorphous magnesium-rich calcium phosphate phase that plays an essential role in governing the behaviour of teeth. “

Co-lead researcher on the study, Dr Alexandre La Fontaine from the University’s Australian Centre for Microscopy and Microanalysis, said:

“We were also able to see nanoscale ‘clumps’ of organic material, which indicates that proteins and peptides are heterogeneously distributed within the enamel rather than present along all the nanorod interfaces, which was what was previously suggested.

“The mapping has the potential for new treatments designed around protecting against the dissolution of this specific amorphous phase.

“The new understanding of how enamel forms will also help in tooth remineralisation research.”

Here’s a link to and a citation for the paper,

Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel by Alexandre La Fontaine, Alexander Zavgorodniy, Howgwei Liu, Rongkun Zheng, Michael Swain, and Julie Cairney. Science Advances  07 Sep 2016: Vol. 2, no. 9, e1601145 DOI: 10.1126/sciadv.1601145

This paper is open access.

Breathing nanoparticles into your brain

Thanks to Dexter Johnson and his Sept. 8, 2016 posting (on the Nanoclast blog on the IEEE [Institute for Electrical and Electronics Engineers]) for bringing this news about nanoparticles in the brain to my attention (Note: Links have been removed),

An international team of researchers, led by Barbara Maher, a professor at Lancaster University, in England, has found evidence that suggests that the nanoparticles that were first detected in the human brain over 20 years ago may have an external rather an internal source.

These magnetite nanoparticles are an airborne particulate that are abundant in urban environments and formed by combustion or friction-derived heating. In other words, they have been part of the pollution in the air of our cities since the dawn of the Industrial Revolution.

However, according to Andrew Maynard, a professor at Arizona State University, and a noted expert on the risks associated with nanomaterials,  the research indicates that this finding extends beyond magnetite to any airborne nanoscale particles—including those deliberately manufactured.

“The findings further support the possibility of these particles entering the brain via the olfactory nerve if inhaled.  In this respect, they are certainly relevant to our understanding of the possible risks presented by engineered nanomaterials—especially those that are iron-based and have magnetic properties,” said Maynard in an e-mail interview with IEEE Spectrum. “However, ambient exposures to airborne nanoparticles will typically be much higher than those associated with engineered nanoparticles, simply because engineered nanoparticles will usually be manufactured and handled under conditions designed to avoid release and exposure.”

A Sept. 5, 2016 University of Lancaster press release made the research announcement,

Researchers at Lancaster University found abundant magnetite nanoparticles in the brain tissue from 37 individuals aged three to 92-years-old who lived in Mexico City and Manchester. This strongly magnetic mineral is toxic and has been implicated in the production of reactive oxygen species (free radicals) in the human brain, which are associated with neurodegenerative diseases including Alzheimer’s disease.

Professor Barbara Maher, from Lancaster Environment Centre, and colleagues (from Oxford, Glasgow, Manchester and Mexico City) used spectroscopic analysis to identify the particles as magnetite. Unlike angular magnetite particles that are believed to form naturally within the brain, most of the observed particles were spherical, with diameters up to 150 nm, some with fused surfaces, all characteristic of high-temperature formation – such as from vehicle (particularly diesel) engines or open fires.

The spherical particles are often accompanied by nanoparticles containing other metals, such as platinum, nickel, and cobalt.

Professor Maher said: “The particles we found are strikingly similar to the magnetite nanospheres that are abundant in the airborne pollution found in urban settings, especially next to busy roads, and which are formed by combustion or frictional heating from vehicle engines or brakes.”

Other sources of magnetite nanoparticles include open fires and poorly sealed stoves within homes. Particles smaller than 200 nm are small enough to enter the brain directly through the olfactory nerve after breathing air pollution through the nose.

“Our results indicate that magnetite nanoparticles in the atmosphere can enter the human brain, where they might pose a risk to human health, including conditions such as Alzheimer’s disease,” added Professor Maher.

Leading Alzheimer’s researcher Professor David Allsop, of Lancaster University’s Faculty of Health and Medicine, said: “This finding opens up a whole new avenue for research into a possible environmental risk factor for a range of different brain diseases.”

Damian Carrington’s Sept. 5, 2016 article for the Guardian provides a few more details,

“They [the troubling magnetite particles] are abundant,” she [Maher] said. “For every one of [the crystal shaped particles] we saw about 100 of the pollution particles. The thing about magnetite is it is everywhere.” An analysis of roadside air in Lancaster found 200m magnetite particles per cubic metre.

Other scientists told the Guardian the new work provided strong evidence that most of the magnetite in the brain samples come from air pollution but that the link to Alzheimer’s disease remained speculative.

For anyone who might be concerned about health risks, there’s this from Andrew Maynard’s comments in Dexter Johnson’s Sept. 8, 2016 posting,

“In most workplaces, exposure to intentionally made nanoparticles is likely be small compared to ambient nanoparticles, and so it’s reasonable to assume—at least without further data—that this isn’t a priority concern for engineered nanomaterial production,” said Maynard.

While deliberate nanoscale manufacturing may not carry much risk, Maynard does believe that the research raises serious questions about other manufacturing processes where exposure to high concentrations of airborne nanoscale iron particles is common—such as welding, gouging, or working with molten ore and steel.

It seems everyone is agreed that the findings are concerning but I think it might be good to remember that the percentage of people who develop Alzheimer’s Disease is much smaller than the population of people who have crystals in their brains. In other words, these crystals might (they don’t know) be a factor and likely there would have to be one or more factors to create the condition for developing Alzheimer’s.

Here’s a link to and a citation for the paper,

Magnetite pollution nanoparticles in the human brain by Barbara A. Maher, Imad A. M. Ahmed, Vassil Karloukovski, Donald A. MacLaren, Penelope G. Fouldsd, David Allsop, David M. A. Mann, Ricardo Torres-Jardón, and Lilian Calderon-Garciduenas. PNAS [Proceedings of the National Academy of Sciences] doi: 10.1073/pnas.1605941113

This paper is behind a paywall but Dexter’s posting offers more detail for those who are still curious.

Reliable findings on the presence of synthetic (engineered) nanoparticles in bodies of water

An Aug. 29, 2016 news item on Nanowerk announces research into determining the presence of engineered (synthetic) nanoparticles in bodies of water,

For a number of years now, an increasing number of synthetic nanoparticles have been manufactured and incorporated into various products, such as cosmetics. For the first time, a research project at the Technical University of Munich and the Bavarian Ministry of the Environment provides reliable findings on their presence in water bodies.

An Aug. 29, 2016 Technical University of Munich (TUM) press release, which originated the news item, provides more information,

Nanoparticles can improve the properties of materials and products. That is the reason why an increasing number of nanoparticles have been manufactured over the past several years. The worldwide consumption of silver nanoparticles is currently estimated at over 300 metric tons. These nanoparticles have the positive effect of killing bacteria and viruses. Products that are coated with these particles include refrigerators and surgical instruments. Silver nanoparticles can even be found in sportswear. This is because the silver particles can prevent the smell of sweat by killing the bacteria that cause it.

Previously, it was unknown whether and in what concentration these nanoparticles enter the environment and e.g. enter bodies of water. If they do, this poses a problem. That is because the silver nanoparticles are toxic to numerous aquatic organisms, and can upset sensitive ecological balances.

Analytical challenge

In the past, however, nanoparticles have not been easy to detect. That is because they measure only 1 to 100 nanometers across [nanoparticles may be larger than 100nm or smaller than 1nm but the official definitions usually specify up to 100nm although some definitions go up to 1000nm] – a nanometer is a millionth of a millimeter. “In order to know if a toxicological hazard exists, we need to know how many of these particles enter the environment, and in particular bodies of water”, explains Michael Schuster, Professor for Analytical Chemistry at the TU Munich.

This was an analytical challenge for the researchers charged with solving the problem on behalf of the Bavarian Ministry of the Environment. In order to overcome this issue, they used a well-known principle that utilizes the effect of surfactants to separate and concentrate the particles. “Surfactants are also found in washing and cleaning detergents”, explains Schuster. “Basically, what they do is envelop grease and dirt particles in what are called micelles, making it possible for them to float in water.” One side of the surfactant is water-soluble, the other fat-soluble. The fat-soluble ends collect around non-polar, non-water soluble compounds such as grease or around particles, and “trap” them in a micelle. The water-soluble, polar ends of the surfactants, on the other hand, point towards the water molecules, allowing the microscopically small micelle to float in water.

A box of sugar cubes in the Walchensee lake

The researchers applied this principle to the nanoparticles. “When the micelles surrounding the particles are warmed slightly, they start to clump”, explains Schuster. This turns the water cloudy. Using a centrifuge, the surfactants and the nanoparticles trapped in them can then be separated from the water. This procedure is called cloud point extraction. The researchers then use the surfactants that have been separated out in this manner – which contain the particles in an unmodified, but highly concentrated form – to measure how many silver nanoparticles are present. To do this, they use a highly sensitive atomic spectrometer configured to only detect silver. In this manner, concentrations in a range of less than one nanogram per liter can be detected. To put this in perspective, this would be like detecting a box of sugar cubes that had dissolved in the Walchensee lake.

With the help of this analysis procedure, it is possible to gain new insight into the concentration of nanoparticles in drinking and waste water, sewage sludge, rivers, and lakes. In Bavaria, the measurements yielded good news: The concentrations measured in the water bodies were extremely low. In was only in four of the 13 Upper Bavarian lakes examined that the concentration even exceeded the minimum detection limit of 0.2 nanograms per liter. No measured value exceeded 1.3 nanograms per liter. So far, no permissible values have been established for silver nanoparticles.

Representative for watercourses, the Isar river was examined from its source to its mouth at around 30 locations. The concentration of silver nanoparticles was also measured in the inflow and outflow of sewage treatment plants. The findings showed that at least 94 percent of silver nanoparticles are filtered out by the sewage treatment plants.

Unfortunately, the researchers have not published their results.

Harvard University announced new Center on Nano-safety Research

The nano safety center at Harvard University (Massachusetts, US) is a joint center with the US National Institute of Environmental Health  Sciences according to an Aug. 29, 2016 news item on Nanowerk,

Engineered nanomaterials (ENMs)—which are less than 100 nanometers (one millionth of a millimeter) in diameter—can make the colors in digital printer inks pop and help sunscreens better protect against radiation, among many other applications in industry and science. They may even help prevent infectious diseases. But as the technology becomes more widespread, questions remain about the potential risks that ENMs may pose to health and the environment.

Researchers at the new Harvard-NIEHS [US National Institute of Environmental Health Sciences] Nanosafety Research Center at Harvard T.H. Chan School of Public Health are working to understand the unique properties of ENMs—both beneficial and harmful—and to ultimately establish safety standards for the field.

An Aug. 16, 2016 Harvard University press release, which originated the news item, provides more detail (Note: Links have been removed),

“We want to help nanotechnology develop as a scientific and economic force while maintaining safeguards for public health,” said Center Director Philip Demokritou, associate professor of aerosol physics at Harvard Chan School. “If you understand the rules of nanobiology, you can design safer nanomaterials.”

ENMs can enter the body through inhalation, ingestion, and skin contact, and toxicological studies have shown that some can penetrate cells and tissues and potentially cause biochemical damage. Because the field of nanoparticle science is relatively new, no standards currently exist for assessing the health risks of exposure to ENMs—or even for how studies of nano-biological interactions should be conducted.

Much of the work of the new Center will focus on building a fundamental understanding of why some ENMs are potentially more harmful than others. The team will also establish a “reference library” of ENMs, each with slightly varied properties, which will be utilized in nanotoxicology research across the country to assess safety. This will allow researchers to pinpoint exactly what aspect of an ENM’s properties may impact health. The researchers will also work to develop standardized methods for nanotoxicology studies evaluating the safety of nanomaterials.

The Center was established with a $4 million dollar grant from the National Institute of Environmental Health Science (NIEHS) last month, and is the only nanosafety research center to receive NIEHS funding for the next five years. It will also play a coordinating role with existing and future NIEHS nanotoxicology research projects nantionwide. Scientists from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), MIT, University of Maine, and University of Florida will collaborate on the new effort.

The Center builds on the existing Center for Nanotechnology and Nanotoxicology at Harvard Chan School, established by Demokritou and Joseph Brain, Cecil K. and Philip Drinker Professor of Environmental Physiology, in the School’s Department of Environmental Health in 2010.

A July 5, 2016 Harvard University press release announcing the $4M grant provides more information about which ENMs are to be studied,

The main focus of the new HSPH-NIEHS Center is to bring together  scientists from across disciplines- material science, chemistry, exposure assessment, risk assessment, nanotoxicology and nanobiology- to assess the potential  environmental Health and safety (EHS) implications of engineered nanomaterials (ENMs).

The $4 million dollar HSPH based Center  which is the only Nanosafety Research  Center to be funded by NIEHS this funding cycle, … The new HSPH-NIEHS Nanosafety Center builds upon the nano-related infrastructure in [the] collaborating Universities, developed over the past 10 years, which includes an inter-disciplinary research group of faculty, research staff and students, as well as state-of-the-art platforms for high throughput synthesis of ENMs, including metal and metal oxides, cutting edge 2D/3D ENMs such as CNTs [carbon nanotubes] and graphene, nanocellulose, and advanced nanocomposites, [emphasis mine] coupled with innovative tools to assess the fate and transport of ENMs in biological systems, statistical and exposure assessment tools, and novel in vitro and in vivo platforms for nanotoxicology research.

“Our mission is to integrate material/exposure/chemical sciences and nanotoxicology-nanobiology   to facilitate assessment of potential risks from emerging nanomaterials.  In doing so, we are bringing together the material synthesis/applications and nanotoxicology communities and other stakeholders including industry,   policy makers and the general public to maximize innovation and growth and minimize environmental and public health risks from nanotechnology”, quoted by  Dr Philip Demokritou, …

This effort certainly falls in line with the current emphasis on interdisciplinary research and creating standards and protocols for researching the toxicology of engineered nanomaterials.

Canada’s consultation on nanoscale forms of substances on the Domestic Substances List (DSL)

Yes, there’s a redundancy in the head but there doesn’t seem to be a way around it. Ah well, it seems about seven weeks after Peter Julian (Member of Parliament) introduced his bill in the Canadian House of Commons to regulate nanotechnology (Aug. 29, 2016 posting), Environment and Climate Change Canada (ECCC) and Health Canada (HC) have announced a consultation on nanoscale materials. From an Aug. 4, 2016 posting by Lynn L. Bergeson on Nanotechnology Now (Note: Links have been removed),

On July 27, 2016, Environment and Climate Change Canada (ECCC) and Health Canada (HC) began a consultation on a proposed prioritization approach for nanoscale forms of substances on the Domestic Substances List (DSL). See Canada will use the proposed approach to: (1) establish a list of existing nanomaterials in Canada for prioritization; (2) identify how the information available will be used to inform prioritization of nanomaterials for risk assessment; and (3) outline the proposed outcomes of the prioritization process. In 2015, Canada conducted a mandatory survey under Section 71 of the Canadian Environmental Protection Act, 1999 (CEPA). The survey applied to persons who manufactured or imported any of 206 nanomaterials at a quantity greater than 100 kilograms (kg) during the 2014 calendar year. See Based on the results of the survey, ECCC and HC will prepare a final list of confirmed existing nanomaterials in Canada and will use the list for subsequent prioritization. ECCC and HC propose that, where possible, the substances identified via the survey be “rolled up into” their broader parent nanomaterial groups for the purposes of prioritization. According to ECCC and HC, this will allow, when possible, a more robust look at the hazard, volume, and use data as appropriate, rather than considering an individual substance-by-substance approach. ECCC and HC state that further consideration for sub-grouping (such as by use, unique property, or functionalization) may need to be considered for prioritization and/or risk assessment. …

You can find the Government of Canada’s 2015 Consultation Document: Proposed Approach to Address Nanoscale Forms of Substances on the Domestic Substances List page here, which set the stage for this prioritization exercise.

You can also find the Proposed prioritization approach for nanoscale forms of substances on the Domestic substances list page here where you’ll find information such as this,

Possible nanomaterial groupings, based on parent substance

Aluminum oxide
Iron (II)/(II/III) oxide
Modified silica
Bismuth oxide
Magnesium oxide
Silicon oxide
Calcium carbonate
Manganese (II & III) oxide
Cerium oxide
Titanium dioxide
Cobalt (II) oxide
Yttrium oxide
Copper (II) oxide
Nickel (II) oxide
Zinc oxide
Quantum dots
Zirconium oxide

You can also find information on how to submit comments,

Stakeholders are invited to submit comments on the content of this consultation document and provide other information that would help inform decision making. Please submit comments to one of the addresses provided below by September 25, 2016 [emphasis mine]. ECCC and HC will respond to comments and adapt the proposed approach based on the feedback received on this document, as described in Section 1.2.

Comments on this consultation document can be submitted to one of the following addresses:

By Mail:
Environment and Climate Change Canada
Substances Management Information Line
Chemicals Management Plan
351 St. Joseph Boulevard
Gatineau, Québec
K1A 0H3

By Email:
Please type “Consultation on Prioritization Approach for Nanomaterials” in the subject line of your message.

By Fax:

Suddenly, there’s lots (relative to the last few years) of action on nanotechnology regulation in Canada.

Everything old is new again: Canadian Parliament holds first reading of another bill to regulate nanotechnlogy

Back in March 2010, Canadian New Democratic Party (NDP) Member of Parliament (MP) Peter Julian introduced a bill to regulate nanotechnology (Bill C-494) in Canada. The Conservative government was in power at the time. I can’t remember how many readings it received but it never did get passed into legislation. Now, Mr. Julian is trying again and, coincidentally or not, the Liberals are in power this time. A July 26, 2016 post by Lynn L. Bergeson and Carla N. Hutton for the National Law Review (Note: Links have been removed),

On June 8, 2016, the Canadian House of Commons held its first reading of an Act to amend the Canadian Environmental Protection Act, 1999 (CEPA) (nanotechnology) (C-287).  The bill would add Part 6.1 to CEPA primarily to implement procedures for the investigation and assessment of nanomaterials. …

The bill would define nanomaterial as any manufactured substance or product or any component material, ingredient, device or structure that:  (a) is within the nanoscale (one nanometer (nm) up to and including 100 nm), in at least one external dimension; or (b) if it is not within the nanoscale, exhibits one or more properties that are attributable to the size of a substance and size effects.  The bill mandates a risk assessment process to identify the potential benefits and possible risks of nanotechnologies before nanoproducts enter the market.  It would also create a national inventory regarding nanotechnology, including nanomaterials and nanoparticles, using information collected under CEPA Sections 46 and 71 and “any other information to which the Ministers have access.” On July 25, 2015, Canada published a notice announcing a mandatory survey under CEPA Section 71(1)(b) with respect to certain nanomaterials in Canadian commerce.  …

I do have a few observations about the proposed bill. First, it’s more specific than what we have in place now. As I understand current CEPA regulations, they do not cover materials at the nanoscale which are already imported and/or produced at the macroscale and are considered safe, e.g. titanium dioxide. It is assumed that if they’re safe at the macroscale, they will be safe at the nanoscale. I gather this bill is designed to change that status.

Second, there is no mention in Julian’s press release (text to follow) of the joint Canada-United States Regulatory Cooperation Council (RCC) Nanotechnology Initiative which was designed to harmonize US and Canadian regulatory approaches to nanotechnology. Would bill C-287 introduce less harmony or was it designed to harmonize our approaches?

Third, I don’t see a big problem with the idea of an inventory, the issue is always implementation.

Finally, it appears that this bill means more bureaucrats or computerized systems and I’m not sure it addresses the problem that I believe it is trying to address: how to deal with uncertainty about the risks and hazards of an emerging technology while meeting demands for economic progress.

Very finally, here’s Peter Julian’s June 8, 2016 press release,

Julian’s bill to include Nanotechnology under Environmental Protection Act

You can watch the video here:…

OTTAWA – Today [June 8, 2016], Peter Julian, MP (New Westminster-Burnaby) re-introduced Bill C-287 in the House of Commons, which aims to include a framework that would regulate nanotechnology in the Canadian Environmental Protection Act.

“I first introduced this Bill in 2010. I am pleased to see that some of the aspects of this Bill are being considered by Health Canada and Environment Canada, such as the development of a registry for nanomaterials in commerce and use in Canada. However, there is much more that needs to be done to ensure the responsible use of nanotechnologies in Canada”, said Julian.

Nanotechnology is the application of science and technology to manipulate matter at the atomic or molecular level. Nanomaterials are any ingredient, device, or structure that is between 1 and 100 nm. These materials are present in more than 1000 consumer products, including food and cosmetics. The increasing proliferation of nanoproducts has not been met with an adequate regulatory framework.

Julian’s Bill C-287 would establish a balanced approach ensuring the responsible development of nanotechnology and the safe use off nanomaterials in Canada. The Bill mandates a risk assessment process to identify the potential benefits and possible risks of nanotechnologies before nanoproducts enter the market. It would also require a comprehensive, publicly accessible database that lists existing nanomaterials identified by the Government of Canada.

“While nanotechnology can be very beneficial to people, there are certain risks to it as well. We must identify and mitigate possible risks to better protect the environment and human health before they become an issue. Canada must ensure our regulatory processes ensure nanomaterial safety before the introduction of these substances in Canada”, said Julian.

I’m including links to my 2010 email interview with Peter Julian (published in three parts),

March 24, 2010 (Part one)

March 25, 2010 (Part two)

March 26, 2010 (Part three)

I also covered a hearing on nanomaterials and safety held by the Canadian House of Commons Standing Committee on Health on June 10, 2010 in a June 23, 2010 posting.

Two nano workshops precede OpenTox Euro conference

The main conference OpenTox Euro is focused on novel materials and it’s being preceded by two nano workshops. All of of these events will be taking place in Germany in Oct. 2016. From an Aug. 11, 2016 posting by Lynn L. Bergeson on Nanotechnology Now,

The OpenTox Euro Conference, “Integrating Scientific Evidence Supporting Risk Assessment and Safer Design of Novel Substances,” will be held October 26-28, 2016. … The current topics for the Conference include: (1) computational modeling of mechanisms at the nanoscale; (2) translational bioinformatics applied to safety assessment; (3) advances in cheminformatics; (4) interoperability in action; (5) development and application of adverse outcome pathways; (6) open science applications showcase; (7) toxicokinetics and extrapolation; and (8) risk assessment.

On Oct. 24, 2016, two days before OpenTox Euro, the EU-US Nano EHS [Environmental Health and Safety] 2016 workshop will be held in Germany. The theme is: ‘Enabling a Sustainable Harmonised Knowledge Infrastructure supporting Nano Environmental and Health Safety Assessment’ and the objectives are,

The objective of the workshop is to facilitate networking, knowledge sharing and idea development on the requirements and implementation of a sustainable knowledge infrastructure for Nano Environmental and Health Safety Assessment and Communications. The infrastructure should support the needs required by different stakeholders including scientific researchers, industry, regulators, workers and consumers.

The workshop will also identify funding opportunities and financial models within and beyond current international and national programs. Specifically, the workshop will facilitate active discussions but also identify potential partners for future EU-US cooperation on the development of knowledge infrastructure in the NanoEHS field. Advances in the Nano Safety harmonisation process, including developing an ongoing working consensus on data management and ontology, will be discussed:

– Information needs of stakeholders and applications
– Data collection and management in the area of NanoEHS
– Developments in ontologies supporting NanoEHS goals
– Harmonisation efforts between EU and US programs
– Identify practice and infrastructure gaps and possible solutions
– Identify needs and solutions for different stakeholders
– Propose an overarching sustainable solution for the market and society

The presentations will be focused on the current efforts and concrete achievements within EU and US initiatives and their potential elaboration and extension.

The second workshop is being held by the eNanoMapper (ENM) project on Oct. 25, 2016 and concerns Nano Modelling. The objectives and workshop sessions are:

1. Give the opportunity to research groups working on computational nanotoxicology to disseminate their modelling tools based on hands-on examples and exercises
2. Present a collection of modelling tools that can span the entire lifecycle of nanotox research, starting from the design of experiments until use of models for risk assessment in biological and environmental systems.
3. Engage the workshop participants in using different modelling tools and motivate them to contribute and share their knowledge.

Indicative workshop sessions

• Preparation of datasets to be used for modelling and risk assessment
• Ontologies and databases
• Computation of theoretical descriptors
• NanoQSAR Modelling
• Ab-initio modelling
• Mechanistic modelling
• Modelling based on Omics data
• Filling data gaps-Read Across
• Risk assessment
• Experimental design

We would encourage research teams that have developed tools in the areas of computational nanotoxicology and risk assessment to demonstrate their tools in this workshop.

That’s going to be a very full week in Germany.

You can register for OpenTox Euro and more here.