Category Archives: health and safety

The Organization for Economic and Cooperative Development’s (OECD) test guidelines for nanomaterials

An Oct. 13, 2017 news item on Nanowerk announced news test guidelines from the Organization for Cooperation and Economic Development (OECD),

The OECD has released a first set of Test Guidelines developed specifically for nanomaterials, in response to their increased production and usage. The guidelines will help standardise the way countries test the safety of manufactured nanomaterials, whose near atomic-sized particles mean they may require more than regular chemical testing to understand their impact on health and the environment.

An Oct. 13, 2017 OECD press release (received via email), which originated the news item, provides more detail,

Test Guideline 318: Dispersion Stability of Nanomaterials in Simulated Environmental Media will help to assess how a particular nanomaterial would behave in contact with water or other liquids, making it applicable for testing nanomaterials likely to enter the natural environment, agriculture and food production, or to be in everyday skin contact with people through clothing or toiletries.

Additionally, updates to two existing Test Guidelines for inhalation toxicity studies (Guideline 412 and Guideline 413) mean they can now be used to determine the toxicity of inhaled nanomaterials.

The use of nanomaterials has skyrocketed of late, with manufacturers using them to improve performance in everything from tennis rackets to deodorant, yet nanoparticles can more easily penetrate skin, cells and the environment than larger compounds, and the increased likelihood of them entering the environment and human and animal bodies has raised concerns over their safety.

Working for 45 years to standardise methodologies for hazard testing and assessment, the OECD has produced over 160 harmonised test methods for determining physical and chemical properties, the effects of chemicals on health, wildlife and the environment, the efficacy of biocides and the chemistry of pesticide residues.

OECD Test Guidelines are used on a daily basis to test and assess the safety of industrial chemicals, pesticides and personal care products. They are part of the OECD’s Mutual Acceptance of Data programme, which saves over 150 million euros a year for its 42 signatory countries by avoiding duplication, as test data generated in one country is accepted by others having the same data requirement.

Journalists can download the new Test Guidelines for free on the OECD iLibrary at the links below using the OECD’s media log-in and password (available to media on request) or by email on request.

Test Guideline 318

Test Guideline 412

Test Guideline 413

OECD work on safety of manufactured nanomaterials

OECD work on chemical testing:

For anyone who’s unaware of just how pervasive nanotechnology-enabled products have become, this brief OECD video illustrates the point nicely,

Nanopatch more effective with poliovirus

No more needles or syringes that’s the Nanopatch promise and its one I’ve been writing about since 2009. It seems 2017 marks another step closer to seeing this idea become a product. From an Oct. 5, 2017 news item on ScienceDaily,

Efforts to rid the world of polio have taken another significant step, thanks to research led by University of Queensland [UQ] bioscience experts and funding from the World Health Organisation (WHO).

A fresh study of the Nanopatch — a microscopic vaccine delivery platform first developed by UQ researchers — has shown the device more effectively combats poliovirus than needles and syringes.

Here’s a prototype,

Caption: This is an image of the intended commercial product. Credit: Courtesy Vaxxas Pty Ltd

An Oct. 5, 2017 University of Queensland press release (also on EurekAlert), which originated the news item, provides more detail (Note: Links have been removed),

Head of UQ’s School of Chemistry and Molecular Biosciences Professor Paul Young said the breakthrough provided the next step in consigning polio to history.

“Polio was one of the most dreaded childhood diseases of the 20th century, resulting in limb disfigurement and irreversible paralysis in tens of millions of cases,” Professor Young said.

“This most recent study showed the Nanopatch enhanced responses to all three types of inactivated poliovirus vaccines (IPV) – a necessary advancement from using the current live oral vaccine.

“We are extremely grateful to the WHO for providing funding to Vaxxas Pty Ltd, the biotechnology company commercialising the Nanopatch.

“The support specifically assists pre-clinical studies and good manufacturing practices.”

Patch inventor Professor Mark Kendall said the study exhibited a key advantage of the Nanopatch.

“It targets the abundant immune cell populations in the skin’s outer layers, rather than muscle, resulting in a more efficient vaccine delivery system,” Professor Kendall said.

“The ease of administration, coupled with dose reduction observed in this study suggests that the Nanopatch could facilitate inexpensive vaccination of inactivated poliovirus vaccines.”

UQ Australian Institute for Biotechnology and Nanotechnology researcher Dr David Muller said effectively translating the dose could dramatically reduce the cost.

“A simple, easy-to-administer polio Nanopatch vaccine could increase the availability of the IPV vaccine and facilitate its administration in door-to-door and mass vaccination campaigns,” said Dr Muller.

“As recently as 1988, more than 350,000 cases occurred every year in more than 125 endemic countries.

“Concerted efforts to eradicate the disease have reduced incidence by more than 99 per cent.”

“Efforts are being intensified to eradicate the remaining strains of transmission once and for all.”

Data from the study encourages efforts by Vaxxas – established by UQ’s commercialisation company UniQuest – to bring the technology to use for human vaccinations.

“The research we are undertaking in conjunction with UQ and WHO can improve the reach of life-saving vaccines to children everywhere,” Vaxxas chief executive officer David Hoey said.

Here’s a link to and a citation for the paper,

High-density microprojection array delivery to rat skin of low doses of trivalent inactivated poliovirus vaccine elicits potent neutralising antibody responses by David A. Muller, Germain J. P. Fernando, Nick S. Owens, Christiana Agyei-Yeboah, Jonathan C. J. Wei, Alexandra C. I. Depelsenaire, Angus Forster, Paul Fahey, William C. Weldon, M. Steven Oberste, Paul R. Young, & Mark A. F. Kendall. Scientific Reports 7, Article number: 12644 (2017) doi:10.1038/s41598-017-13011-0 Published online: 03 October 2017

This paper is open access.

Should you be interested in seeing previous posts, just use ‘Nanopatch’ as your search term in the blog search engine.

Plastic nanoparticles and brain damage in fish

Researchers in Sweden suggest plastic nanoparticles may cause brain damage in fish according to a Sept. 25, 2017 news item on,

Calculations have shown that 10 per cent of all plastic produced around the world ultimately ends up in the oceans. As a result, a large majority of global marine debris is in fact plastic waste. Human production of plastics is a well-known environmental concern, but few studies have studied the effects of tiny plastic particles, known as nanoplastic particles.

“Our study is the first to show that nanosized plastic particles can accumulate in fish brains”, says Tommy Cedervall, a chemistry researcher at Lund University.

A Sept. 25, 2017 Lund University press release, which originated the news item, provides more detail about the research,

The Lund University researchers studied how nanoplastics may be transported through different organisms in the aquatic ecosystem, i.e. via algae and animal plankton to larger fish. Tiny plastic particles in the water are eaten by animal plankton, which in turn are eaten by fish.

According to Cedervall, the study includes several interesting results on how plastic of different sizes affects aquatic organisms. Most importantly, it provides evidence that nanoplastic particles can indeed cross the blood-brain barrier in fish and thus accumulate inside fish’s brain tissue.

In addition, the researchers involved in the present study have demonstrated the occurrence of behavioural disorders in fish that are affected by nanoplastics. They eat slower and explore their surroundings less. The researchers believe that these behavioural changes may be linked to brain damage caused by the presence of nanoplastics in the brain.

Another result of the study is that animal plankton die when exposed to nanosized plastic particles, while larger plastic particles do not affect them. Overall, these different effects of nanoplastics may have an impact on the ecosystem as a whole.

“It is important to study how plastics affect ecosystems and that nanoplastic particles likely have a more dangerous impact on aquatic ecosystems than larger pieces of plastics”, says Tommy Cedervall.

However, he does not dare to draw the conclusion that plastic nanoparticles could accumulate in other tissues in fish and thus potentially be transmitted to humans through consumption.

“No, we are not aware of any such studies and are therefore very cautious about commenting on it”, says Tommy Cedervall.

Here’s a link to and a citation for the paper,

Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain by Karin Mattsson, Elyse V. Johnson, Anders Malmendal, Sara Linse, Lars-Anders Hansson & Tommy Cedervall. Scientific Reports 7, Article number: 11452 (2017) doi:10.1038/s41598-017-10813-0 Published online: 13 September 2017

This paper is open access.

Could CRISPR (clustered regularly interspaced short palindromic repeats) be weaponized?

On the occasion of an American team’s recent publication of research where they edited the germline (embryos), I produced a three-part series about CRISPR (clustered regularly interspaced short palindromic repeats), sometimes referred to as CRISPR/Cas9, (links offered at end of this post).

Somewhere in my series, there’s a quote about how CRISPR could be used as a ‘weapon of mass destruction’ and it seems this has been a hot topic for the last year or so as James Revill, research fellow at the University of Sussex, references in his August 31, 2017 essay on (h/t August 31, 2017 news item), Note: Links have been removed,

The gene editing technique CRISPR has been in the limelight after scientists reported they had used it to safely remove disease in human embryos for the first time. This follows a “CRISPR craze” over the last couple of years, with the number of academic publications on the topic growing steadily.

There are good reasons for the widespread attention to CRISPR. The technique allows scientists to “cut and paste” DNA more easily than in the past. It is being applied to a number of different peaceful areas, ranging from cancer therapies to the control of disease carrying insects.

Some of these applications – such as the engineering of mosquitoes to resist the parasite that causes malaria – effectively involve tinkering with ecosystems. CRISPR has therefore generated a number of ethical and safety concerns. Some also worry that applications being explored by defence organisations that involve “responsible innovation in gene editing” may send worrying signals to other states.

Concerns are also mounting that gene editing could be used in the development of biological weapons. In 2016, Bill Gates remarked that “the next epidemic could originate on the computer screen of a terrorist intent on using genetic engineering to create a synthetic version of the smallpox virus”. More recently, in July 2017, John Sotos, of Intel Health & Life Sciences, stated that gene editing research could “open up the potential for bioweapons of unimaginable destructive potential”.

An annual worldwide threat assessment report of the US intelligence community in February 2016 argued that the broad availability and low cost of the basic ingredients of technologies like CRISPR makes it particularly concerning.

A Feb. 11, 2016 news item on offers a précis of some of the reactions while a February 9, 2016 article by Antonio Regalado for the Massachusetts Institute of Technology’s MIT Technology Review delves into the matter more deeply,

Genome editing is a weapon of mass destruction.

That’s according to James Clapper, [former] U.S. director of national intelligence, who on Tuesday, in the annual worldwide threat assessment report of the U.S. intelligence community, added gene editing to a list of threats posed by “weapons of mass destruction and proliferation.”

Gene editing refers to several novel ways to alter the DNA inside living cells. The most popular method, CRISPR, has been revolutionizing scientific research, leading to novel animals and crops, and is likely to power a new generation of gene treatments for serious diseases (see “Everything You Need to Know About CRISPR’s Monster Year”).

It is gene editing’s relative ease of use that worries the U.S. intelligence community, according to the assessment. “Given the broad distribution, low cost, and accelerated pace of development of this dual-use technology, its deliberate or unintentional misuse might lead to far-reaching economic and national security implications,” the report said.

The choice by the U.S. spy chief to call out gene editing as a potential weapon of mass destruction, or WMD, surprised some experts. It was the only biotechnology appearing in a tally of six more conventional threats, like North Korea’s suspected nuclear detonation on January 6 [2016], Syria’s undeclared chemical weapons, and new Russian cruise missiles that might violate an international treaty.

The report is an unclassified version of the “collective insights” of the Central Intelligence Agency, the National Security Agency, and half a dozen other U.S. spy and fact-gathering operations.

Although the report doesn’t mention CRISPR by name, Clapper clearly had the newest and the most versatile of the gene-editing systems in mind. The CRISPR technique’s low cost and relative ease of use—the basic ingredients can be bought online for $60—seems to have spooked intelligence agencies.


However, one has to be careful with the hype surrounding new technologies and, at present, the security implications of CRISPR are probably modest. There are easier, cruder methods of creating terror. CRISPR would only get aspiring biological terrorists so far. Other steps, such as growing and disseminating biological weapons agents, would typically be required for it to become an effective weapon. This would require additional skills and places CRISPR-based biological weapons beyond the reach of most terrorist groups. At least for the time being.

A July 5, 2016 opinion piece by Malcolm Dando for Nature argues for greater safeguards,

In Geneva next month [August 2016], officials will discuss updates to the global treaty that outlaws the use of biological weapons. The 1972 Biological Weapons Convention (BWC) was the first agreement to ban an entire class of weapons, and it remains a crucial instrument to stop scientific research on viruses, bacteria and toxins from being diverted into military programmes.

The BWC is the best route to ensure that nations take the biological-weapons threat seriously. Most countries have struggled to develop and introduce strong and effective national programmes — witness the difficulty the United States had in agreeing what oversight system should be applied to gain-of-function experiments that created more- dangerous lab-grown versions of common pathogens.

As scientific work advances — the CRISPR gene-editing system has been flagged as the latest example of possible dual-use technology — this treaty needs to be regularly updated. This is especially important because it has no formal verification system. Proposals for declarations, monitoring visits and inspections were vetoed by the United States in 2001, on the grounds that such verification threatened national security and confidential business information.

Even so, issues such as the possible dual-use threat from gene-editing systems will not be easily resolved. But we have to try. Without the involvement of the BWC, codes of conduct and oversight systems set up at national level are unlikely to be effective. The stakes are high, and after years of fumbling, we need strong international action to monitor and assess the threats from the new age of biological techniques.

Revill notes the latest BWC agreement and suggests future directions,

This convention is imperfect and lacks a way to ensure that states are compliant. Moreover, it has not been adequately “tended to” by its member states recently, with the last major meeting unable to agree a further programme of work. Yet it remains the cornerstone of an international regime against the hostile use of biology. All 178 state parties declared in December of 2016 their continued determination “to exclude completely the possibility of the use of (biological) weapons, and their conviction that such use would be repugnant to the conscience of humankind”.

These states therefore need to address the hostile potential of CRISPR. Moreover, they need to do so collectively. Unilateral national measures, such as reasonable biological security procedures, are important. However, preventing the hostile exploitation of CRISPR is not something that can be achieved by any single state acting alone.

As such, when states party to the convention meet later this year, it will be important to agree to a more systematic and regular review of science and technology. Such reviews can help with identifying and managing the security risks of technologies such as CRISPR, as well as allowing an international exchange of information on some of the potential benefits of such technologies.

Most states supported the principle of enhanced reviews of science and technology under the convention at the last major meeting. But they now need to seize the opportunity and agree on the practicalities of such reviews in order to prevent the convention being left behind by developments in science and technology.

Experts (military, intelligence, medical, etc.) are not the only ones concerned about CRISPR according to a February 11, 2016 article by Sharon Begley for (Note: A link has been removed),

Most Americans oppose using powerful new technology to alter the genes of unborn babies, according to a new poll — even to prevent serious inherited diseases.

They expressed the strongest disapproval for editing genes to create “designer babies” with enhanced intelligence or looks.

But the poll, conducted by STAT and Harvard T.H. Chan School of Public Health, found that people have mixed, and apparently not firm, views on emerging genetic techniques. US adults are almost evenly split on whether the federal government should fund research on editing genes before birth to keep children from developing diseases such as cystic fibrosis or Huntington’s disease.

“They’re not against scientists trying to improve [genome-editing] technologies,” said Robert Blendon, professor of health policy and political analysis at Harvard’s Chan School, perhaps because they recognize that one day there might be a compelling reason to use such technologies. An unexpected event, such as scientists “eliminating a terrible disease” that a child would have otherwise inherited, “could change people’s views in the years ahead,” Blendon said.

But for now, he added, “people are concerned about editing the genes of those who are yet unborn.”

A majority, however, wants government regulators to approve gene therapy to treat diseases in children and adults.

The STAT-Harvard poll comes as scientists and policy makers confront the ethical, social, and legal implications of these revolutionary tools for changing DNA. Thanks to a technique called CRISPR-Cas9, scientists can easily, and with increasing precision, modify genes through the genetic analog of a computer’s “find and replace” function.

I find it surprising that there’s resistance to removing diseases found in the germline (embryos). When they were doing public consultations on nanotechnology, the one area where people tended to be quite open to research was health and medicine. Where food was concerned however, people had far more concerns.

If you’re interested in the STAT-Harvard poll, you can find it here. As for James Revill, he has written a more substantive version of this essay as a paper, which is available here.

On a semi-related note, I found STAT ( to be a quite interesting and accessibly written online health science journal. Here’s more from the About Us page (Note: A link has been removed),

What’s STAT all about?
STAT is a national publication focused on finding and telling compelling stories about health, medicine, and scientific discovery. We produce daily news, investigative articles, and narrative projects in addition to multimedia features. We tell our stories from the places that matter to our readers — research labs, hospitals, executive suites, and political campaigns.

Why did you call it STAT?
In medical parlance, “stat” means important and urgent, and that’s what we’re all about — quickly and smartly delivering good stories. Read more about the origins of our name here.

Who’s behind the new publication?
STAT is produced by Boston Globe Media. Our headquarters is located in Boston but we have bureaus in Washington, New York, Cleveland, Atlanta, San Francisco, and Los Angeles. It was started by John Henry, the owner of Boston Globe Media and the principal owner of the Boston Red Sox. Rick Berke is executive editor.

So is STAT part of The Boston Globe?
They’re distinct properties but the two share content and complement one another.

Is it free?
Much of STAT is free. We also offer STAT Plus, a premium subscription plan that includes exclusive reporting about the pharmaceutical and biotech industries as well as other benefits. Learn more about it here.

Who’s working for STAT?
Some of the best-sourced science, health, and biotech journalists in the country, as well as motion graphics artists and data visualization specialists. Our team includes talented writers, editors, and producers capable of the kind of explanatory journalism that complicated science issues sometimes demand.

Who’s your audience?
You. Even if you don’t work in science, have never stepped foot in a hospital, or hated high school biology, we’ve got something for you. And for the lab scientists, health professionals, business leaders, and policy makers, we think you’ll find coverage here that interests you, too. The world of health, science, and medicine is booming and yielding fascinating stories. We explore how they affect us all.


As promised, here are the links to my three-part series on CRISPR,

Part 1 opens the series with a basic description of CRISPR and the germline research that occasioned the series along with some of the other (non-weapon) ethical issues and patent disputes that are arising from this new technology. CRISPR and editing the germline in the US (part 1 of 3): In the beginning

Part 2 covers three critical responses to the reporting and between them describe the technology in more detail and the possibility of ‘designer babies’.  CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?

Part 3 is all about public discussion or, rather, the lack of and need for according to a couple of social scientists. Informally, there is some discussion via pop culture and Joelle Renstrom notes although she is focused on the larger issues touched on by the television series, Orphan Black and as I touch on in my final comments. CRISPR and editing the germline in the US (part 3 of 3): public discussions and pop culture

Finally, I hope to stumble across studies from other countries about how they are responding to the possibilities presented by CRISPR/Cas9 so that I can offer a more global perspective than this largely US perspective. At the very least, it would be interesting to find it if there differences.

Nanoparticles from tattoo inks circulate through your body

English: Tattoo of Hand of Fatima,. Model: Casini. Date: 4 July 2017, 18:13:41. Source : Own work. Author: Stephencdickson.

For those who like their news in video format, there’s this Canadian Broadcasting Corporation (CBC) news item broadcast on Sep. 11, 2017 (after the commercials),

For those who like text and more detail, scientists at the European Synchrotron Radiation Facility (ESRF) have produced a study of the (at the nanoparticle scale) inks in tattoos. From a Sept. 12, 2017 news item on,

The elements that make up the ink in tattoos travel inside the body in micro and nanoparticle forms and reach the lymph nodes, according to a study published in Scientific Reports on 12 September [2017] by scientists from Germany and the ESRF, the European Synchrotron, Grenoble (France). It is the first time researchers have found analytical evidence of the transport of organic and inorganic pigments and toxic element impurities as well as in depth characterization of the pigments ex vivo in tattooed tissues. Two ESRF beamlines were crucial in this breakthrough.

A Sept. 12, 2017 ESRF press release (also on EurkeAlert), which originated the news item, explains further,

The reality is that little is known about the potential impurities in the colour mixture applied to the skin. Most tattoo inks contain organic pigments, but also include preservatives and contaminants like nickel, chromium, manganese or cobalt. Besides carbon black, the second most common ingredient used in tattoo inks is titanium dioxide (TiO2), a white pigment usually applied to create certain shades when mixed with colorants. Delayed healing, along with skin elevation and itching, are often associated with white tattoos, and by consequence with the use of TiO2. TiO2 is also commonly used in food additives, sun screens and paints. Scientists from the ESRF, the German Federal Institute for Risk Assessment, Ludwig-Maximilians University, and the Physikalisch-Technische Bundesanstalt have managed to get a very clear picture on the location of titanium dioxide once it gets in the tissue. This work was done on the ESRF beamlines ID21 and ID16B.

drawing tattookinetics.jpg

Translocation of tattoo particles from skin to lymph nodes. Upon injection of tattoo inks, particles can be either passively transported via blood and lymph fluids or phagocytized by immune cells and subsequently deposited in regional lymph nodes. After healing, particles are present in the dermis and in the sinusoids of the draining lymph nodes. Credits: C. Seim.

The hazards that potentially derive from tattoos were, until now, only investigated by chemical analysis of the inks and their degradation products in vitro. “We already knew that pigments from tattoos would travel to the lymph nodes because of visual evidence: the lymph nodes become tinted with the colour of the tattoo. It is the response of the body to clean the site of entrance of the tattoo. What we didn’t know is that they do it in a nano form, which implies that they may not have the same behaviour as the particles at a micro level. And that is the problem: we don’t know how nanoparticles react”, explains Bernhard Hesse, one of the two first authors of the study (together with Ines Schreiver, from the German Federal Institute for Risk Assessment) and ESRF visiting scientist.


Particle mapping and size distribution of different tattoo pigment elements.  a, d) Ti and the Br containing pigment phthalocyanine green 36 are located next to each other. b, e) Log scale mappings of Ti, Br and Fe in the same areas as displayed in a) and d) reveal primary particle sizes of different pigment species. c, f) Magnifications of the indicated areas in b) and e), respectively. Credits: C. Seim.

X-ray fluorescence measurements on ID21 allowed the team to locate titanium dioxide at the micro and nano range in the skin and the lymphatic environment. They found a broad range of particles with up to several micrometres in size in human skin, but only smaller (nano) particles transported to the lymph nodes. This can lead to the chronic enlargement of the lymph nodes and lifelong exposure. Scientists also used the technique of Fourier transform infrared spectroscopy to assess biomolecular changes in the tissues in the proximity of the tattoo particles.


Ines Schreiver doing experiments on ID16B with Julie Villanova. Credits: B. Hesse.

Altogether the scientists report strong evidence for both migration and long-term deposition of toxic elements and tattoo pigments as well as for conformational alterations of biomolecules that are sometimes linked to cutaneous adversities upon tattooing.

Then next step for the team is to inspect further samples of patients with adverse effects in their tattoos in order to find links with chemical and structural properties of the pigments used to create these tattoos.

Here’s a link to and  a citation for the paper,

Synchrotron-based ν-XRF mapping and μ-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin by Ines Schreiver, Bernhard Hesse, Christian Seim, Hiram Castillo-Michel, Julie Villanova, Peter Laux, Nadine Dreiack, Randolf Penning, Remi Tucoulou, Marine Cotte, & Andreas Luch. Scientific Reports 7, Article number: 11395 (2017) doi:10.1038/s41598-017-11721-z Published online: 12 September 2017

This paper is open access.

Adopting robots into a health care system, Finnish style

The Finns have been studying the implementation of a logistics robotic system in a hospital setting according to an August 30, 2017 news item on,

VTT Technical Research Centre of Finland studied the implementation of a logistics robot system at the Seinäjoki Central Hospital in South Ostrobothnia. The aim is to reduce transportation costs, improve the availability of supplies and alleviate congestion on hospital hallways by running deliveries around the clock on every day of the week. Joint planning and dialogue between the various occupational groups and stakeholders involved was necessary for a successful change process.

This study is part of a larger project as the August 30, 2017 VTT press release (also on EurekAlert), which originated the news item, makes clear,

As the population ages, the need for robotic services is on the increase. Adopting new technology to support care and nursing work is not straightforward, however. Autonomous service robots and robot systems raise questions about safety as well as about their impact on care quality and jobs, among others.

VTT has studied the implementation of a next-generation logistics robot system at the Seinäjoki Central Hospital. First steps are being taken in Finland to introduce automated delivery systems in hospitals, with Seinäjoki Central Hospital acting as one of the pioneers. The Seinäjoki hospital’s robot system will include a total of 5–8 automated delivery robots, two of which were deployed during the study.

With deliveries running 24/7, the system will help to improve the availability of supplies and alleviate congestion on hallways. Experiences gained during the first six months show that transport personnel expenses and the physical strain of transport work have been reduced. The personnel’s views on the delivery robots have developed favourably and other hospitals have shown plenty of interest in the Seinäjoki hospital’s experiences.

From the perspective of various occupational groups, adoption of the system has had a varied effect on their perceived level of sense of control and appreciation of their work, as well as competence requirements. This study by VTT, employing work research approaches and a systems-oriented view, highlights the importance of taking into account in the change process the interdependencies between various players, along with their roles in the hospital’s core task.

Careful planning, piloting and implementation are required to ensure that the adoption of new robots runs smoothly as a whole. “As the system is expanded with new robots and types of deliveries, even more guidance, communication and dialogue is needed. Joint planning that brings various players to the same table ensures that the system’s implementation goes as smoothly as possible, making it easier to achieve the desired overall benefits”, says Senior Scientist Inka Lappalainen of the ROSE project.

VTT’s study is part of the Robots and the Future of Welfare Services project (ROSE), running from 2015 to 2020. The project investigates Finland’s opportunities for adopting assisting robotics to support the ageing population’s independent living, wellbeing and care. There is also a blog post on the topic:


Intermediate results of the project are presented in the publication Robotics in Care Services: A Finnish Roadmap, providing recommendations for both policy making and research. The roadmap is available on the ROSE project website, at or

The roadmap has been compiled by the project consortium comprising Aalto University, the project’s coordinator, and research organisations Laurea University of Applied Sciences, Lappeenranta University of Technology, Tampere University of Technology, University of Tampere and VTT.

 Photo: a logistics robot at the Seinäjoki Central Hospital (photo Marketta Niemelä, VTT)

To make it easier for those without Finnish language reading skills, I have a link to the English language version of the ROSE website. In looking at the ROSE website’s video page, I found this amongst others,

This reminded me of an initiative in Canada introducing a robot designed for use in clinical settings. In a July 4, 2017 posting, I posed this question,

A Canadian project to introduce robots like Pepper into clinical settings (aside: can seniors’ facilities be far behind?) is the subject of a June 23, 2017 news item on, …

There’s also been some work on robots and seniors in Holland (Netherlands) and Japan although I don’t have any details.

US Dept. of Agriculture announces its nanotechnology research grants

I don’t always stumble across the US Department of Agriculture’s nanotechnology research grant announcements but I’m always grateful when I do as it’s good to find out about  nanotechnology research taking place in the agricultural sector. From a July 21, 2017 news item on Nanowerk,,

The U.S. Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA) today announced 13 grants totaling $4.6 million for research on the next generation of agricultural technologies and systems to meet the growing demand for food, fuel, and fiber. The grants are funded through NIFA’s Agriculture and Food Research Initiative (AFRI), authorized by the 2014 Farm Bill.

“Nanotechnology is being rapidly implemented in medicine, electronics, energy, and biotechnology, and it has huge potential to enhance the agricultural sector,” said NIFA Director Sonny Ramaswamy. “NIFA research investments can help spur nanotechnology-based improvements to ensure global nutritional security and prosperity in rural communities.”

A July 20, 2017 USDA news release, which originated the news item, lists this year’s grants and provides a brief description of a few of the newly and previously funded projects,

Fiscal year 2016 grants being announced include:

Nanotechnology for Agricultural and Food Systems

  • Kansas State University, Manhattan, Kansas, $450,200
  • Wichita State University, Wichita, Kansas, $340,000
  • University of Massachusetts, Amherst, Massachusetts, $444,550
  • University of Nevada, Las Vegas, Nevada,$150,000
  • North Dakota State University, Fargo, North Dakota, $149,000
  • Cornell University, Ithaca, New York, $455,000
  • Cornell University, Ithaca, New York, $450,200
  • Oregon State University, Corvallis, Oregon, $402,550
  • University of Pennsylvania, Philadelphia, Pennsylvania, $405,055
  • Gordon Research Conferences, West Kingston, Rhode Island, $45,000
  • The University of Tennessee,  Knoxville, Tennessee, $450,200
  • Utah State University, Logan, Utah, $450,200
  • The George Washington University, Washington, D.C., $450,200

Project details can be found at the NIFA website (link is external).

Among the grants, a University of Pennsylvania project will engineer cellulose nanomaterials [emphasis mine] with high toughness for potential use in building materials, automotive components, and consumer products. A University of Nevada-Las Vegas project will develop a rapid, sensitive test to detect Salmonella typhimurium to enhance food supply safety.

Previously funded grants include an Iowa State University project in which a low-cost and disposable biosensor made out of nanoparticle graphene that can detect pesticides in soil was developed. The biosensor also has the potential for use in the biomedical, environmental, and food safety fields. University of Minnesota (link is external) researchers created a sponge that uses nanotechnology to quickly absorb mercury, as well as bacterial and fungal microbes from polluted water. The sponge can be used on tap water, industrial wastewater, and in lakes. It converts contaminants into nontoxic waste that can be disposed in a landfill.

NIFA invests in and advances agricultural research, education, and extension and promotes transformative discoveries that solve societal challenges. NIFA support for the best and brightest scientists and extension personnel has resulted in user-inspired, groundbreaking discoveries that combat childhood obesity, improve and sustain rural economic growth, address water availability issues, increase food production, find new sources of energy, mitigate climate variability and ensure food safety. To learn more about NIFA’s impact on agricultural science, visit, sign up for email updates (link is external) or follow us on Twitter @USDA_NIFA (link is external), #NIFAImpacts (link is external).

Given my interest in nanocellulose materials (Canada was/is a leader in the production of cellulose nanocrystals [CNC] but there has been little news about Canadian research into CNC applications), I used the NIFA link to access the table listing the grants and clicked on ‘brief’ in the View column in the University of Pennsylania row to find this description of the project,


NON-TECHNICAL SUMMARY: Cellulose nanofibrils (CNFs) are natural materials with exceptional mechanical properties that can be obtained from renewable plant-based resources. CNFs are stiff, strong, and lightweight, thus they are ideal for use in structural materials. In particular, there is a significant opportunity to use CNFs to realize polymer composites with improved toughness and resistance to fracture. The overall goal of this project is to establish an understanding of fracture toughness enhancement in polymer composites reinforced with CNFs. A key outcome of this work will be process – structure – fracture property relationships for CNF-reinforced composites. The knowledge developed in this project will enable a new class of tough CNF-reinforced composite materials with applications in areas such as building materials, automotive components, and consumer products.The composite materials that will be investigated are at the convergence of nanotechnology and bio-sourced material trends. Emerging nanocellulose technologies have the potential to move biomass materials into high value-added applications and entirely new markets.

It’s not the only nanocellulose material project being funded in this round, there’s this at North Dakota State University, from the NIFA ‘brief’ project description page,


NON-TECHNICAL SUMMARY: Synthetic polymers are quite vulnerable to fire.There are 2.4 million reported fires, resulting in 7.8 billion dollars of direct property loss, an estimated 30 billion dollars of indirect loss, 29,000 civilian injuries, 101,000 firefighter injuries and 6000 civilian fatalities annually in the U.S. There is an urgent need for a safe, potent, and reliable fire retardant (FR) system that can be used in commodity polymers to reduce their flammability and protect lives and properties. The goal of this project is to develop a novel, safe and biobased FR system using agricultural and woody biomass. The project is divided into three major tasks. The first is to manufacture zinc oxide (ZnO) coated cellulose nanoparticles and evaluate their morphological, chemical, structural and thermal characteristics. The second task will be to design and manufacture polymer composites containing nano sized zinc oxide and cellulose crystals. Finally the third task will be to test the fire retardancy and mechanical properties of the composites. Wbelieve that presence of zinc oxide and cellulose nanocrystals in polymers will limit the oxygen supply by charring, shielding the surface and cellulose nanocrystals will make composites strong. The outcome of this project will help in developing a safe, reliable and biobased fire retardant for consumer goods, automotive, building products and will help in saving human lives and property damage due to fire.

One day, I hope to hear about Canadian research into applications for nanocellulose materials. (fingers crossed for good luck)

DISCmini: world’s smallest handheld nanoparticle counter

DISCmini: a handheld diffusion size classifier for nanoparticle measurement Courtesy: Testo

They’/re claiming this is the world’s smallest in a July 12, 2017 news item on Nanowerk,

Testo, Inc., the world’s leading manufacturer of test and measurement instruments, announces the DiSCmini, the smallest handheld instrument for the measurement of nanoparticle. DiSCmini measures: particle number, average particle diameter and lung-deposited surface area (LDSA) with time resolution and logging at 1 second (1 Hz).

Testo’s DISCmini product page offers a video and more details,

Negative health effects due to nanoparticles appear to correlate particularly well with number concentration or surface. Epidemiological and toxicological studies are still mainly based on total mass, or they use fuzzy proxies like “distance from a busy road” to describe personal exposure, although the health-related effects of particle number concentration are well known. We believe that this contradictory situation is due to the lack of adequate sensors on the market.

This gap is now closed with Testo Particle´s handheld version of the “Diffusion Size Classifier”, testo DiSCmini.  The testo DiSCmini is a portable sensor for the measurement of particle number and average diameter with a time resolution of up to 1 second (1 Hz). The simultaneous capture of number concentration and particle size allows the specification of other characteristic parameters, such as the particles surface (Lung Deposited Surface Area, LDSA). The instrument is battery powered with a lifetime of up to 8 hours; data can be recorded on a memory card, and transferred to a external computer via USB cable.

The testo DiSCmini is particularly efficient for personal exposure monitoring in particle-loaded work space with toxic air contaminants such as diesel soot, welding fumes, or industrial nanomaterials.

The testo DiSCmini is based on the electrical charging of the aerosols. Positive air ions generated in a corona discharge are mixed with the aerosol. The charged particles are then detected in two stages by electrometers. The first detector stage is a pile of steel grids; small particles will preferably deposit on it by diffusion. The second stage is a high-efficiency particle filter which captures all the other particles. The mean particle size can be obtained by analysis of the two currents measured on the stages. The particle count is determined with the total current. The testo DiSCmini detects particles ranging in size from 10 to about 700 nm, while the modal value should lie below 300 nm. The concentration range is from about 1’000 to over 1’000’000 particles per cubic centimetre. The accuracy of the measurement depends on the shape of the particle size distribution and number concentration, and is usually around 15-20% compared to a reference CPC. The unit should be serviced and calibrated once a year.

Unlike other instruments the testo DiSCmini needs neither working liquid of any kind nor radioactive sources. Therefore, it can be operated in any position and over extended periods without requiring a liquid refill. Typical applications include the determination of personal exposure in particle-loaded jobs (diesel soot, welding fumes, industrial nanomaterials) or in vulnerable groups (asthmatics, COPD patients). The development of large area survey grids of ambient air is becoming possible. The small size of  the testo DiSCmini makes the instrument particularly suitable for personal carry-on measurement campaigns. The high measurement frequency of 1 Hz allows the instrument to monitor rapid changes in the aerosol. This feature is particularly interesting to local or defined sources of particle generation. The equipment is designed for situations and applications where quick and easy access to particle number concentration and average diameter is desired.

For anyone interested in the technical specifications, there’s the DISCmini product brochure.

Nano with green tea for sensitive teeth

The future will be beautiful if scientists are successful with a new DNA (deoxyribonucleic acid) sunscreen (my Aug. 3, 2017 posting) and a new dental material for people with sensitive teeth. From an Aug. 2, 2017 news item on,

An ice cold drink is refreshing in the summer, but for people with sensitive teeth, it can cause a painful jolt in the mouth. This condition can be treated, but many current approaches don’t last long. Now researchers report in the journal ACS [American Chemical Society] Applied Materials & Interfaces the development of a new material with an extract from green tea that could fix this problem—and help prevent cavities in these susceptible patients.

An Aug. 2, 2017 ACS news release, which originated the news item, describes the problem and the work in more detail,

Tooth sensitivity commonly occurs when the protective layers of teeth are worn away, revealing a bony tissue called dentin. This tissue contains microscopic hollow tubes that, when exposed, allow hot and cold liquids and food to contact the underlying nerve endings in the teeth, causing pain. Unprotected dentin is also vulnerable to cavity formation. Plugging these tubes with a mineral called nanohydroxyapatite is a long-standing approach to treating sensitivity. But the material doesn’t stand up well to regular brushing, grinding, erosion or acid produced by cavity-causing bacteria. Cui Huang and colleagues wanted to tackle sensitivity and beat the bacteria at the same time.

The researchers encapsulated nanohydroxyapatite and a green tea polyphenol — epigallocatechin-3-gallate, or EGCG — in silica nanoparticles, which can stand up to acid and wear and tear. EGCG has been shown in previous studies to fight Streptococcus mutans, which forms biofilms that cause cavities. Testing on extracted wisdom teeth showed that the material plugged the dentin tubules, released EGCG for at least 96 hours, stood up to tooth erosion and brushing and prevented biofilm formation. It also showed low toxicity. Based on these findings, the researchers say the material could indeed be a good candidate for combating tooth sensitivity and cavities.

The authors acknowledge funding from the National Natural Science Foundation of China, the Natural Science Foundation of Hubei Province of China and the Fundamental Research Funds for the Central Universities.

Here’s a link to and a citation for the paper,

Development of Epigallocatechin-3-gallate-Encapsulated Nanohydroxyapatite/Mesoporous Silica for Therapeutic Management of Dentin Surface by Jian Yu, Hongye Yang, Kang Li, Hongyu Ren, Jinmei Lei, and Cui Huang. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.7b06597 Publication Date (Web): July 13, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

DNA sunscreen: the longer you wear it, the better it gets due to its sacrificial skin

Using this new sunscreen does mean slathering on salmon sperm, more or lees, (read the Methods section of the academic paper cited later in this post). Considering that you’ve likely eaten (insect parts in chocolate) and slathered on more discomfiting stuff already and this development gives you access to an all natural, highly effective sunscreen, if it ever makes its way out of the laboratory, it might not be so bad. From a July 26, 2017 article by Sarah Knapton for The Telegraph,

Sunscreen made from DNA [deoxyribonucleic acid] which acts like a second skin to prevent sun damage is on the horizon.

Scientists in the US have developed a film from the DNA of salmon which gets better at protecting the skin from ultraviolet light the more it is exposed to the Sun.

It also helps lock in moisture beneath the surface which is usually lost during tanning.

Exciting, yes? A July 27, 2017 Binghamton University news release (also on EurekAlert but dated July 26, 2017) provides more detail,

“Ultraviolet (UV) light can actually damage DNA, and that’s not good for the skin,” said Guy German, assistant professor of biomedical engineering at Binghamton University. “We thought, let’s flip it. What happens instead if we actually used DNA as a sacrificial layer? So instead of damaging DNA within the skin, we damage a layer on top of the skin.”

German and a team of researchers developed thin and optically transparent crystalline DNA films and irradiated them with UV light. They found that the more they exposed the film to UV light, the better the film got at absorbing it.

“If you translate that, it means to me that if you use this as a topical cream or sunscreen, the longer that you stay out on the beach, the better it gets at being a sunscreen,” said German.

As an added bonus, the DNA coatings are also hygroscopic, meaning that skin coated with the DNA films can store and hold water much more than uncoated skin. When applied to human skin, they are capable of slowing water evaporation and keeping the tissue hydrated for extended periods of time.

German intends to see next if these materials might be good as a wound covering for hostile environments where 1) you want to be able to see the wound healing without removing the dressing, 2) you want to protect the wound from the sun and 3) you want to keep the wound in a moist environment, known to promote faster wound healing rates.

“Not only do we think this might have applications for sunscreen and moisturizers directly, but if it’s optically transparent and prevents tissue damage from the sun and it’s good at keeping the skin hydrated, we think this might be potentially exploitable as a wound covering for extreme environments,” he said.

Here’s a link to and a citation for the paper,

Non-ionising UV light increases the optical density of hygroscopic self assembled DNA crystal films by Alexandria E. Gasperini, Susy Sanchez, Amber L. Doiron, Mark Lyles & Guy K. German. Scientific Reports 7, Article number: 6631 (2017) doi:10.1038/s41598-017-06884-8 Published online: 26 July 2017

This paper is open access.