Category Archives: health and safety

Nanocellulose as a biosensor

While nanocellulose always makes my antennae quiver (for anyone unfamiliar with the phrase, it means something along the lines of ‘attracts my attention’), it’s the collaboration which intrigues me most about this research. From a July 23, 2015 news item on Azonano (Note: A link has been removed),

An international team led by the ICREA Prof Arben Merkoçi has just developed new sensing platforms based on bacterial cellulose nanopaper. These novel platforms are simple, low cost and easy to produce and present outstanding properties that make them ideal for optical (bio)sensing applications. …

ICN2 [Catalan Institute of Nanoscience and Nanotechnology; Spain] researchers are going a step further in the development of simple, low cost and easy to produce biosensors. In an article published in ACS Nano they recently reported various innovative nanopaper-based optical sensing platforms. To achieve this endeavour the corresponding author ICREA Prof Arben Merkoçi, Group Leader at ICN2 and the first author, Dr Eden Morales-Narváez (from ICN2) and Hamed Golmohammadi (visiting researcher at ICN2), established an international collaboration with the Shahid Chamran University (Iran), the Gorgan University of Agricultural Sciences and Natural Resources (Iran) and the Academy of Sciences of the Czech Republic. [emphases mine]

Spain, Iran, and the Czech Republic. That’s an interesting combination of countries.

A July 23, 2015 ICN2 press release, which originated the news item, provides more explanations and detail,

Cellulose is simple, naturally abundant and low cost. However, cellulose fibres ranging at the nanoscale exhibit extraordinary properties such as flexibility, high crystallinity, biodegradability and optical transparency, among others. The nanomaterial can be extracted from plant cellulose pulp or synthetized by non-pathogenic bacteria. Currently, nanocellulose is under active research to develop a myriad of applications including filtration, wound dressing, pollution removal approaches or flexible and transparent electronics, whereas it has been scarcely explored for optical (bio)sensing applications.

The research team led by ICREA Prof Arben Merkoçi seeks to design, fabricate, and test simple, disposable and versatile sensing platforms based on this material. They designed different bacterial cellulose nanopaper based optical sensing platforms. In the article, the authors describe how the material can be tuned to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. Specifically, they have prepared two types of plasmonic nanopaper and two types of photoluminescent nanopaper using different optically active nanomaterials.

The researchers took advantage of the optical transparency, porosity, hydrophilicity, and amenability to chemical modification of the material. The bacterial cellulose employed throughout this research was obtained using a bottom-up approach and it is shown that it can be easily turned into useful devices for sensing applications using wax printing or simple punch tools. The scientific team also demonstrates how these novel sensing platforms can be modulated to detect biologically relevant analytes such as cyanide and pathogens among others.

According to the authors, this class of platforms will prove valuable for displaying analytical information in diverse fields such as diagnostics, environmental monitoring and food safety. Moreover, since bacterial cellulose is flexible, lightweight, biocompatible and biodegradable, the proposed composites could be used as wearable optical sensors and could even be integrated into novel theranostic devices. In general, paper-based sensors are known to be simple, portable, disposable, low power-consuming and inexpensive devices that might be exploited in medicine, detection of explosives or hazardous compounds and environmental studies.

Here’s a link to and a citation for the paper,

Nanopaper as an Optical Sensing Platform by Eden Morales-Narváez, Hamed Golmohammadi, Tina Naghdi, Hossein Yousefi, Uliana Kostiv, Daniel Horák, Nahid Pourreza, and Arben Merkoçi.ACS Nano, Article ASAP DOI: 10.1021/acsnano.5b03097 Publication Date (Web): July 2, 2015
Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Greening silver nanoparticles with lignin

A July 13, 2015 news item on phys.org highlights a new approach to making silver nanoparticles safer in the environment,

North Carolina State University researchers have developed an effective and environmentally benign method to combat bacteria by engineering nanoscale particles that add the antimicrobial potency of silver to a core of lignin, a ubiquitous substance found in all plant cells. The findings introduce ideas for better, greener and safer nanotechnology and could lead to enhanced efficiency of antimicrobial products used in agriculture and personal care.

A July 13, 2015 North Carolina State University (NCSU) news release (also on EurekAlert), which originated the news item, adds a bit more information,

As the nanoparticles wipe out the targeted bacteria, they become depleted of silver. The remaining particles degrade easily after disposal because of their biocompatible lignin core, limiting the risk to the environment.

“People have been interested in using silver nanoparticles for antimicrobial purposes, but there are lingering concerns about their environmental impact due to the long-term effects of the used metal nanoparticles released in the environment,” said Velev, INVISTA Professor of Chemical and Biomolecular Engineering at NC State and the paper’s corresponding author. “We show here an inexpensive and environmentally responsible method to make effective antimicrobials with biomaterial cores.”

The researchers used the nanoparticles to attack E. coli, a bacterium that causes food poisoning; Pseudomonas aeruginosa, a common disease-causing bacterium; Ralstonia, a genus of bacteria containing numerous soil-borne pathogen species; and Staphylococcus epidermis, a bacterium that can cause harmful biofilms on plastics – like catheters – in the human body. The nanoparticles were effective against all the bacteria.

The method allows researchers the flexibility to change the nanoparticle recipe in order to target specific microbes. Alexander Richter, the paper’s first author and an NC State Ph.D. candidate who won a 2015 Lemelson-MIT prize, says that the particles could be the basis for reduced risk pesticide products with reduced cost and minimized environmental impact.

“We expect this method to have a broad impact,” Richter said. “We may include less of the antimicrobial ingredient without losing effectiveness while at the same time using an inexpensive technique that has a lower environmental burden. We are now working to scale up the process to synthesize the particles under continuous flow conditions.”

I don’t quite understand how the silver nanoparticles/ions are rendered greener. I gather the lignin is harmless but where do the silver nanoparticles/ions go after they’ve been stripped of their lignin cover and have killed the bacteria? I did try reading the paper’s abstract (not much use for someone with my science level),

Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.

If you can explain what happens to the silver nanoparticles, please let me know.

Meanwhile, here’s a link to and a citation for the paper,

An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core by Alexander P. Richter, Joseph S. Brown, Bhuvnesh Bharti, Amy Wang, Sumit Gangwal, Keith Houck, Elaine A. Cohen Hubal, Vesselin N. Paunov, Simeon D. Stoyanov, & Orlin D. Velev. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.141 Published online 13 July 2015

This paper is behind a paywall.

Removing poison from cigarette smoke

Here’s what the air/smoke cleaner looks like,

Caption: This is a picture of a prototype of the air cleaning equipment for cigarette smoke installed in an actual smoking room. Credit: ©KIST

Caption: This is a picture of a prototype of the air cleaning equipment for cigarette smoke installed in an actual smoking room.
Credit: ©KIST

A July 8, 3025 ScienceDaily news item provides more details about the air cleaner,

The research team led by Dr. Jongsoo Jurng and Dr. Gwi-Nam at KIST stated that, “In cooperation with KT&G [Korea Tobacco & Ginseng Corporation], KIST [Korea Insitute of Science and Technology) has developed a nano-catalyst filter coated with a manganese oxide-based nano-catalyst, which can be used in a smoking room to reduce and purify major harmful substances of cigarette smoke. the KIST-developed catalyst removes 100% of the particle substances of cigarette smoke, such as nicotine and tar, converting those into water vapor and carbon dioxide. According to the research team, the air cleaning equipment based on the newly-developed catalyst can purify over 80% of the cigarette smoke within 30 minutes and 100% of it within 1 hour in a 30 square meter smoking room, where 10 people are simultaneously smoking

A July 8, 2015 KIST press release (also on EurekAlert), which originated the news item, describes how most air cleaners work to remove smoke and how this new technology differs,

Activated charcoal-based filters have been mostly used in a smoking room to remove gaseous materials in cigarette smoke. However, those filters are not effective in removing gaseous materials such as acetaldehyde, their absorbtion performance decreases fast in a closed facility such as a smoking room, and they need to be replaced at least every other week, which is rather inconvenient.

The research team has developed a nano-catalyst filter by evenly coating a manganese oxide-based (Mn/TiO2)) nano-catalyst powder onto a ceramic-based filter media. The nano-catalyst filter uses a technology that decomposes elements of cigarette smoke using oxygen radical, which is generated by decomposing ozone in the air on the surface of the manganese-oxide-based nano-catalyst filter. An evaluation test with total volatile organic compounds (TVOC), such as acetaldehyde, nicotine and tar, which account for the largest volume of gaseous materials in cigarette smoke, is conducted to evaluate the performance of the newly-developed catalyst. The results show that the new catalyst decomposes over 98% of the aforementioned harmful substances (refer to Fig. 3).

For the performance evaluation test, the research team made an air cleaning equipment prototype using the nano-catalyst filter. The equipment was installed in an actual smoking room in the size of 30 square meters (with processing capacity of 4 CMM [cubic metres per minute]). About 80% of cigarette smoke elements were processed and decomposed to water vapor and carbon dioxide, within 30 minutes, and 100% of them within 1 hour. The test condition was designed based on the processing capacity which could circulate the air inside the entire 30 square meter smoking room once every 15 minutes.

The research team expected that it would take a year or so to commercialize this technology as the nano-catalyst and the filter coating technologies had been developed already.

The lead researcher Dr. Jurng mentioned that “this research holds a significance since the new air cleaning equipment based on a simple catalyst successfully processes and removes gaseous materials in cigarette smoke, which are not easily removed with the existing air cleaning technologies. If the new equipment can be simplified and is economically feasible, it will be an important tool for keeping smoking room pleasant and clean. Also, from the convergence perspective, the new nanometer catalyst filter can be integrated with other air cleaning products such as air purifiers and air conditioners.”

Research overview

Ozone (O3) decomposition method using a catalyst can be utilized as a permanent decomposition technology. When O3 interacts with a metal oxide (Mn/TiO2), O3 is decomposed by the following reactivity formula on the surface of manganese (See Figure 1), generating reactive oxygen species, i.e., oxygen radical. The right side of Figure 1 shows the oxidation process of acetaldehyde (CH3CHO), a substance that accounts for the biggest portion of gaseous materials in cigarette smoke. Acetaldehyde is oxidized and turns into innocuous CO2 and H2O by reactive oxygen species generated in the O3 decomposition process. Other VOCs go through similar oxidation reaction.

The performance of the newly developed catalyst (Mn/TiO2) was evaluated using testing devices at the research lab. The decomposition performance was 98% at maximum in the range from low concentration (10ppm) to high concentration (200ppm). Ozone, which was used for processing reaction, was not discharged or detected after the decomposition reaction as it was completely decomposed by the catalyst.

The air cleaning equipment based on the present technology can be used to clean up cigarette smoke in smoking rooms, etc., and can be utilized in various products such as air conditioners and air purifiers. Also, the technology has great potential and values as it can be converged with other technologies.

###

Glossary of terms

1. Catalytic oxidation and oxygen radical

Catalytic oxidation is known to have high efficiency to oxidize and convert organic substances into innocuous final oxides such as CO2 and H2O. Particularly, with a manganese (Mn)-based catalyst, ozone is decomposed to produce oxygen radical as a reaction intermediate. The oxygen radical is a chemically reactive molecule, which includes oxygen atoms. It has high oxidizing power with high reactivity, and is reported to be effective to process pollutants in the air. Oxygen radicals that fail to react with pollutants are joined together after reaction and are converted to innocuous oxygen (O2) before being discharged into the surrounding.

2. Oxygen radical

Oxygen radical is an oxygen atom in the atomic state prior to being combined into a molecule.

3. Total volatile organic compounds (TVOC)

Total volatile organic compounds (TVOC) is a comprehensive term referring to liquid or gas phase organic compounds that are vaporized into the air at the room temperature. TVOC is known as a carcinogen that can cause disability in the nervous system from skin contact or from inhalation through respiratory organs.

For anyone interested in the diagrams/figures mentioned in the press release, please click the link, July 8, 2015 KIST press release.

Final comment: I love the fact that some of the Korean institutions are including glossaries with their press releases. Thank you!

Hong Kong, MosquitNo, and Dengue fever

The most substantive piece I’ve written on dengue fever and a nanotechnology-enabled approach to the problem was a 2013 post explaining why the fever is of such concern, which also included information about a proposed therapeutic intervention by Nanoviricides. From the July 2, 2013 posting, here’s more about the magnitude of the problem,

… the WHO (World Health Organization) fact sheet no. 117,

The incidence of dengue has grown dramatically around the world in recent decades. Over 2.5 billion people – over 40% of the world’s population – are now at risk from dengue. WHO currently estimates there may be 50–100 million dengue infections worldwide every year.

Before 1970, only nine countries had experienced severe dengue epidemics. The disease is now endemic in more than 100 countries in Africa, the Americas, the Eastern Mediterranean, South-east Asia and the Western Pacific. The American, South-east Asia and the Western Pacific regions are the most seriously affected.

Cases across the Americas, South-east Asia and Western Pacific have exceeded 1.2 million cases in 2008 and over 2.3 million in 2010 (based on official data submitted by Member States). Recently the number of reported cases has continued to increase. In 2010, 1.6 million cases of dengue were reported in the Americas alone, of which 49 000 cases were severe dengue.

Not only is the number of cases increasing as the disease spreads to new areas, but explosive outbreaks are occurring. The threat of a possible outbreak of dengue fever now exists in Europe and local transmission of dengue was reported for the first time in France and Croatia in 2010 and imported cases were detected in three other European countries. A recent (2012) outbreak of dengue on Madeira islands of Portugal has resulted in over 1800 cases and imported cases were detected in five other countries in Europe apart from mainland Portugal.

An estimated 500 000 people with severe dengue require hospitalization each year, a large proportion of whom are children. About 2.5% of those affected die.

Fast forwarding to 2015, this latest information about dengue fever features a preventative approach being taken in Hong Kong according to a July 5, 2015 article by Timmy Sung  for the South China Morning Post,

Dutch insect repellent innovator Mosquitno targets Hong Kong as dengue fever cases rise

A Dutch company says it has invented an insect repellent using nanotechnology which can keep clothes and homes mosquito-free for up to three months.

Mosquitno has been invited by a government body to begin trading in Hong Kong as the number of cases reported in the city of the deadly mosquito-borne dengue fever rises.

The new repellent does not include the active ingredient used in many insect repellents, DEET, which has question marks surrounding its safety.

Figures from the Department of Health show the number of dengue fever cases reported rose 8 per cent last year, to 112. There were 34 cases in the first five months of this year, 36 per cent more than in the same period last year. Mosquitoes are most active in the summer months.

MosquitNo does use an ingredient, IR3535, which has caused concern (from Sung’s article),

The Consumer Council has previously warned that IR3535-based mosquito repellents can break down plastic materials and certain synthetic fibres, but Wijnen [Erwin Wijnen, director of the {Mosqutino’s} brand development and global travel retailing] said the ingredient combined with nanotechnology is safe and there was no possibility it would damage clothes.

I was not able to find out more about the company’s nanotechnology solution as applied to MosquitNo,

The NANO Series is a revolutionary, innovative technology designed by scientists especially for MosquitNo. This line utilizes this-breaking insect repellent technology in various products including wipes, textile spray, fabric softener and bracelets. This technology and our trendy applications are truly industry-changing and MosquitNo is at the leading edge!

The active component in all our awesome products within this range is IR3535.

That’s it for technical detail. At least, for now.

Nanotechnology research protocols for Environment, Health and Safety Studies in US and a nanomedicine characterization laboratory in the European Union

I have two items relating to nanotechnology and the development of protocols. The first item concerns the launch of a new web portal by the US National Institute of Standards and Technology.

US National Institute of Standards and Technology (NIST)

From a July 1, 2015 news item on Azonano,

As engineered nanomaterials increasingly find their way into commercial products, researchers who study the potential environmental or health impacts of those materials face a growing challenge to accurately measure and characterize them. These challenges affect measurements of basic chemical and physical properties as well as toxicology assessments.

To help nano-EHS (Environment, Health and Safety)researchers navigate the often complex measurement issues, the National Institute of Standards and Technology (NIST) has launched a new website devoted to NIST-developed (or co-developed) and validated laboratory protocols for nano-EHS studies.

A July 1, 2015 NIST news release on EurekAlert, which originated the news item, offers more details about the information available through the web portal,

In common lab parlance, a “protocol” is a specific step-by-step procedure used to carry out a measurement or related activity, including all the chemicals and equipment required. Any peer-reviewed journal article reporting an experimental result has a “methods” section where the authors document their measurement protocol, but those descriptions are necessarily brief and condensed, and may lack validation of any sort. By comparison, on NIST’s new Protocols for Nano-EHS website the protocols are extraordinarily detailed. For ease of citation, they’re published individually–each with its own unique digital object identifier (DOI).

The protocols detail not only what you should do, but why and what could go wrong. The specificity is important, according to program director Debra Kaiser, because of the inherent difficulty of making reliable measurements of such small materials. “Often, if you do something seemingly trivial–use a different size pipette, for example–you get a different result. Our goal is to help people get data they can reproduce, data they can trust.”

A typical caution, for example, notes that if you’re using an instrument that measures the size of nanoparticles in a solution by how they scatter light, it’s important also to measure the transmission spectrum of the particles if they’re colored, because if they happen to absorb light strongly at the same frequency as your instrument, the result may be biased.

“These measurements are difficult because of the small size involved,” explains Kaiser. “Very few new instruments have been developed for this. People are adapting existing instruments and methods for the job, but often those instruments are being operated close to their limits and the methods were developed for chemicals or bulk materials and not for nanomaterials.”

“For example, NIST offers a reference material for measuring the size of gold nanoparticles in solution, and we report six different sizes depending on the instrument you use. We do it that way because different instruments sense different aspects of a nanoparticle’s dimensions. An electron microscope is telling you something different than a dynamic light scattering instrument, and the researcher needs to understand that.”

The nano-EHS protocols offered by the NIST site, Kaiser says, could form the basis for consensus-based, formal test methods such as those published by ASTM and ISO.

NIST’s nano-EHS protocol site currently lists 12 different protocols in three categories: sample preparation, physico-chemical measurements and toxicological measurements. More protocols will be added as they are validated and documented. Suggestions for additional protocols are welcome at nanoprotocols@nist.gov.

The next item concerns European nanomedicine.

CEA-LETI and Europe’s first nanomedicine characterization laboratory

A July 1, 2015 news item on Nanotechnology Now describes the partnership which has led to launch of the new laboratory,

CEA-Leti today announced the launch of the European Nano-Characterisation Laboratory (EU-NCL) funded by the European Union’s Horizon 2020 research and innovation programm[1]e. Its main objective is to reach a level of international excellence in nanomedicine characterisation for medical indications like cancer, diabetes, inflammatory diseases or infections, and make it accessible to all organisations developing candidate nanomedicines prior to their submission to regulatory agencies to get the approval for clinical trials and, later, marketing authorization.

“As reported in the ETPN White Paper[2], there is a lack of infrastructure to support nanotechnology-based innovation in healthcare,” said Patrick Boisseau, head of business development in nanomedicine at CEA-Leti and chairman of the European Technology Platform Nanomedicine (ETPN). “Nanocharacterisation is the first bottleneck encountered by companies developing nanotherapeutics. The EU-NCL project is of most importance for the nanomedicine community, as it will contribute to the competiveness of nanomedicine products and tools and facilitate regulation in Europe.”

EU-NCL is partnered with the sole international reference facility, the Nanotechnology Characterization Lab of the National Cancer Institute in the U.S. (US-NCL)[3], to get faster international harmonization of analytical protocols.

“We are excited to be part of this cooperative arrangement between Europe and the U.S.,” said Scott E. McNeil, director of U.S. NCL. “We hope this collaboration will help standardize regulatory requirements for clinical evaluation and marketing of nanomedicines internationally. This venture holds great promise for using nanotechnologies to overcome cancer and other major diseases around the world.”

A July 2, 2015 EMPA (Swiss Federal Laboratories for Materials Science and Technology) news release on EurekAlert provides more detail about the laboratory and the partnerships,

The «European Nanomedicine Characterization Laboratory» (EU-NCL), which was launched on 1 June 2015, has a clear-cut goal: to help bring more nanomedicine candidates into the clinic and on the market, for the benefit of patients and the European pharmaceutical industry. To achieve this, EU-NCL is partnered with the sole international reference facility, the «Nanotechnology Characterization Laboratory» (US-NCL) of the US-National Cancer Institute, to get faster international harmonization of analytical protocols. EU-NCL is also closely connected to national medicine agencies and the European Medicines Agency to continuously adapt its analytical services to requests of regulators. EU-NCL is designed, organized and operated according to the highest EU regulatory and quality standards. «We are excited to be part of this cooperative project between Europe and the U.S.,» says Scott E. McNeil, director of US-NCL. «We hope this collaboration will help standardize regulatory requirements for clinical evaluation and marketing of nanomedicines internationally. This venture holds great promise for using nanotechnologies to overcome cancer and other major diseases around the world.»

Nine partners from eight countries

EU-NCL, which is funded by the EU for a four-year period with nearly 5 million Euros, brings together nine partners from eight countries: CEA-Tech in Leti and Liten, France, the coordinator of the project; the Joint Research Centre of the European Commission in Ispra, Italy; European Research Services GmbH in Münster Germany; Leidos Biomedical Research, Inc. in Frederick, USA; Trinity College in Dublin, Ireland; SINTEF in Oslo, Norway; the University of Liverpool in the UK; Empa, the Swiss Federal Laboratories for Materials Science and Technology in St. Gallen, Switzerland; Westfälische Wilhelms-Universität (WWU) and Gesellschaft für Bioanalytik, both in Münster, Germany. Together, the partnering institutions will provide a trans-disciplinary testing infrastructure covering a comprehensive set of preclinical characterization assays (physical, chemical, in vitro and in vivo biological testing), which will allow researchers to fully comprehend the biodistribution, metabolism, pharmacokinetics, safety profiles and immunological effects of their medicinal nano-products. The project will also foster the use and deployment of standard operating procedures (SOPs), benchmark materials and quality management for the preclinical characterization of medicinal nano-products. Yet another objective is to promote intersectoral and interdisciplinary communication among key drivers of innovation, especially between developers and regulatory agencies.

The goal: to bring safe and efficient nano-therapeutics faster to the patient

Within EU-NCL, six analytical facilities will offer transnational access to their existing analytical services for public and private developers, and will also develop new or improved analytical assays to keep EU-NCL at the cutting edge of nanomedicine characterization. A complementary set of networking activities will enable EU-NCL to deliver to European academic or industrial scientists the high-quality analytical services they require for accelerating the industrial development of their candidate nanomedicines. The Empa team of Peter Wick at the «Particles-Biology Interactions» lab will be in charge of the quality management of all analytical methods, a key task to guarantee the best possible reproducibility and comparability of the data between the various analytical labs within the consortium. «EU-NCL supports our research activities in developing innovative and safe nanomaterials for healthcare within an international network, which will actively shape future standards in nanomedicine and strengthen Empa as an enabler to facilitate the transfer of novel nanomedicines from bench to bedside», says Wick.

You can find more information about the laboratory on the Horizon 2020 (a European Union science funding programme) project page for the EU-NCL laboratory. For anyone curious about CEA-Leti, it’s a double-layered organization. CEA is France’s Commission on Atomic Energy and Alternative Energy (Commissariat à l’énergie atomique et aux énergies alternatives); you can go here to their French language site (there is an English language clickable option on the page). Leti is one of the CEA’s institutes and is known as either Leti or CEA-Leti. I have no idea what Leti stands for. Here’s the Leti website (this is the English language version).

New US government nano commercialization effort: nanosensors

The latest announcement (this one about nanosensors) from the US National Nanotechnology Coordination Office (NNCO) on behalf of the US National Nanotechnology (NNI) gets a little confusing but hopefully I’ve managed to clarify things.

It starts off simply enough, from a June 22, 2015 news item on Azonano,

The National Nanotechnology Coordination Office (NNCO) is pleased to announce the launch of a workshop report and a web portal, efforts coordinated through and in support of the Nanotechnology Signature Initiative ‘Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment’ (Sensors NSI). Together, these resources help pave the path forward for the development and commercialization of nanotechnology-enabled sensors and sensors for nanotechnology.

A June 19, 2015 NNCO news release on EurekAlert, which originated the news item, provides details about the report, the new portal, and the new series of webinars,

The workshop report is a summary of the National Nanotechnology Initiative (NNI)-sponsored event held September 11-12, 2014, entitled ‘Sensor Fabrication, Integration, and Commercialization Workshop.’ The goal of the workshop was to identify and discuss challenges that are faced by the sensor development community during the fabrication, integration, and commercialization of sensors, particularly those employing or addressing issues of nanoscale materials and technologies.

Workshop attendees, including sensor developers and representative from Federal agencies, identified ways to help facilitate the commercialization of nanosensors, which include:

  • Enhancing communication among researchers, developers, manufacturers, customers, and the Federal Government agencies that support and regulate sensor development.
  • Leveraging resources by building testbeds for sensor developers.
  • Improving access of university and private researchers to federally supported facilities.
  • Encouraging sensor developers to consider and prepare for market and regulatory requirements early in the development process.

In response to discussions at the workshop, the NNI has also launched an NSI Sensors web portal to share information on the sensors development landscape, including funding agencies and opportunities, federally supported facilities, regulatory guidance, and published standards. Ongoing dialogue and collaboration among various stakeholder groups will be critical to effectively transitioning nanosensors to market and to meeting the U.S. need for a reliable and robust sensor infrastructure.

On Thursday June 25, 2015, from noon to 1 pm EDT, NNCO will host a webinar to summarize the highlights from the 2014 ‘Sensor Fabrication, Integration, and Commercialization Workshop’ and to introduce the newly developed Sensors NSI Web Portal. The webinar will also feature a Q&A segment with members of the public. Questions for the panel can be submitted to webinar@nnco.nano.gov from June 18 through the end of the webinar at 1 pm EDT on June 25, 2015.

Here’s the portal for what they’ve called the NSI [Nanotechnology Signature Initiative]: Nanotechnology for Sensors and Sensors for Nanotechnology — Improving and Protecting, Health Safety, and the Environment, also known as, Sensors NSI Web Portal.

Here’s the report titled, “Sensor Fabrication, Integration, and Commercialization Workshop [2014].”

As for the first webinar in this new series, from the National Signature Webinar Series: Resources for the Development of Nanosensors webpage,

The National Nanotechnology Coordination Office (NNCO) will host a webinar to summarize the highlights from the September 2014 Sensor Fabrication, Integration, and Commercialization Workshop and to introduce the newly developed Sensors NSI Web Portal, which was created to share information on the sensors development landscape, including Federal program and funding opportunities, federally supported facilities, regulatory guidance, and published standards.

On Thursday, June 25, 2015, from 12 noon to 1 pm EDT, Federal panelists will begin the event with a discussion of the findings from the Sensor Fabrication, Integration, and Commercialization Workshop, as well as a demonstration of the resources available on the Sensors NSI Portal.  [emphasis mine]

Federal panelists at the event will include:

This event will feature a Q&A segment with members of the public. Questions for the panel can be submitted to webinar@nnco.nano.gov from June 18 through the end of the webinar at 1 pm on June 25, 2015. The moderator reserves the right to group similar questions and to omit questions that are either repetitive or not directly related to the topic. Due to time constraints, it may not be possible to answer all questions.

You can find the link to register at the end/bottom of the event page.

The NNCO does have one other Public Webinar series, ‘NNCO Small- and Medium-sized Business Enterprise (SME) Webinar Series’. They have archived previously held webinars in this series. There are no upcoming webinars in this series currently scheduled.

Tobacco Indemnification and Community Revitalization Commission supports nanomaterial development with a $2M grant

Tobacco growing is not as lucrative as it once was. Worldwide anti-smoking legislation and health campaigns against smoking have had an effect on the industry and the farmers who grow tobacco. With that in mind, the June 10, 2015 news item on Azonano suggests that the industry and the farmers might be trying to find other uses for tobacco,

The Tobacco Commission [aka Tobacco Indemnification and Community Revitalization Commission] voted unanimously to award the Center for Advanced Engineering & Research a $2 million research and development grant, 100% of which will directly support NanoTouch Materials’ continued development of their NanoSeptic surfaces. This funding will be used to research new materials and advanced manufacturing processes, and build a dedicated fabrication facility in Bedford County [state of Virginia].

A June 9, 2015 NanoTouch news release on prnewswire.com, which originated the news item, describes the deal in more detail but offers no indication as to how tobacco might factor into the research (Note: A link has been removed),

“What makes research and development of NanoSeptic products complex and expensive is the multiple areas of scientific expertise required,” says NanoTouch co-founder Mark Sisson. “This funding will allow us to continue working with some of the best scientific minds in material science, nanotechnology, polymers and biotechnology.”

The research component of this grant will be focused on the development of the 5th generation of the NanoSeptic surface. Initial lab testing on early prototypes of the technology resulted in a surface that was 1,000 times more effective than the previous generation, achieving almost a six-log reduction.

Effectiveness of the current NanoSeptic surface has been extensively studied both by an independent FDA compliant lab and university research centers worldwide, including Saudi Arabia and South Korea. These studies utilize internationally recognized standard testing protocols against a variety of pathogens including E. coli, MRSA, Staph, Norovirus and the human Coronavirus, a strain of which is causing MERS outbreaks in the Middle East and Korea.

“NanoSeptic products present a great growth opportunity for this region,” says Bob Bailey, executive director of CAER. “The Center for Advanced Engineering and Research [this appears to be a wholly NanoTouch-owned research group] is excited to be part of this project and we believe that our strong research partnerships with multiple Virginia universities will prove to be a significant asset.”

As part of this three-year initiative, NanoTouch Materials is expected to grow their workforce in Bedford County, VA to a total of 14 employees, and an estimated 37 employees in five years. NanoTouch is also expected to invest $1 million in facilities and advanced manufacturing equipment.

“Virtually every firm or project with which the Tobacco Commission partners has a common characteristic: a tremendous potential to grow.  NanoSeptic is an ideal example of this.  It’s easy to see how big the potential is in healthcare, public and commercial transportation, and the hospitality industry,” says Delegate Kathy Byron, Chair of the Research & Development Committee. “That potential is emblematic of our entire region, and the reestablishment of our manufacturing community.  Once again, companies in Central and Southside Virginia are making products that are being used worldwide.”

While an entire line of NanoSeptic products have been developed and are being distributed to 29 countries, the company also plans to spend significant funding to conduct market research in the healthcare, education, facility management, commercial janitorial and food service industries. This market research will guide future product development and uncover specific ways that self-cleaning surfaces can be used to improve healthcare outcomes, reduce employee and student absenteeism, and broadly improve community health.

“While the vetting process for the grant was exhaustive, we’re grateful for the support of the Tobacco Commission and the Economic Development Authority of Bedford County in our mission of providing cleaner, healthier places in which to live, work and play,” says NanoTouch co-founder Dennis Hackemeyer. “And our investors couldn’t be happier with the company receiving funding that will accelerate growth without diluting their investment.”

The news release goes on to describe the funding agency,

The Tobacco Indemnification and Community Revitalization Commission is a 31-member body whose mission is to promote economic growth and development in tobacco-dependent communities using proceeds of the national tobacco settlement.  The Commission has awarded 1,831 grants totaling more than $1,072,922,288 across the tobacco region of the Commonwealth. http://www.tic.virginia.gov

I have mentioned NanoTouch before in an April 24, 2013 posting where I also expressed some interest in getting more technical information about the company’s products. In 2013, the company was introducing its product, NanoSeptic, into schools in the Bellmore-Merrick School District of New York.

Could engineered nanoparticles be behind rise in obesity and metabolic disorders?

The researchers haven’t published a study and they have used fruit flies as their testing mechanism (animal models) so, it’s a little difficult (futile) to analyze the work at this stage but it is intriguing. A June 9, 2015 news item on Azonano announces a research collaboration  designed to examine the impact engineered nanoparticles have on the gut and the gut microbiome,

Researchers at Binghamton University believe understanding nano particles’ ability to influence our metabolic processing may be integral to mediating metabolic disorders and obesity, both of which are on the rise and have been linked to processed foods.

Anthony Fiumera, associate professor of biological sciences, and Gretchen Mahler, assistant professor of biomedical engineering, are collaborating on a research project funded by a Binghamton University Transdisciplinary Areas of Excellence (TAE) grant to discover the role ingested nanoparticles play in the physiology and function of the gut and gut microbiome.

A June 8, 2015 Binghamton University news release, which originated the news item, describes the reasoning behind the research,

The gut microbiome is the population of microbes living within the human intestine, consisting of tens of trillions of microorganisms (including at least 1,000 different species of known bacteria). Nanoparticles, which are often added to processed foods to enhance texture and color, have been linked to changes in gut function. As processed foods become more common elements of our diet, there has been a significant increase in concentrations of these particles found in the human body.

Fiumera works in vivo with fruit flies while Mahler works in vitro using a 3-D cell-culture model of the gastrointestinal (GI) tract to understand how ingesting nanoparticles influences glucose processing and the gut microbiome. By using complementary research methods, the researchers have helped advance each other’s understanding of nanoparticles.

Using fruit flies, Fiumera looks at the effects of nanoparticles on development, physiology and biochemical composition, as well as the microbial community in the GI tract of the fly. The fly model offers two advantages: 1) research can be done on a wide range of traits that might be altered by changes in metabolism and 2) the metabolic processes within the fly are similar to those in humans. Fiumera also aims to investigate which genes are associated with responses to the nanoparticles, which ultimately may help us understand why individuals react differently to nanoparticles.

For this project, Mahler expanded her GI tract model to include a commensal intestinal bacterial species and used the model to determine a more detailed mechanism of the role of nanoparticle exposure on gut bacteria and intestinal function. Early results have shown that nanoparticle ingestion alters glucose absorption, and that the presence of beneficial gut bacteria eliminates these effects.

Mahler was already investigating nanoparticles when she reached out to Fiumera and proposed they combine their respective expertise. With the help of undergraduate students Gabriella Shull and John Fountain and graduate student Jonathan Richter, Fiumera and Mahler have begun to uncover some effects of ingesting nanoparticles. Since they are using realistic, low concentrations of nanoparticles, the effects are slight, but eventually may be additive.

The most interesting aspect of this research (to me) is the notion that the impact may be additive. In short, you might be able to tolerate a few more nanoparticles in your gut but as more engineered nanoparticles become part of our food and drink (including water) and your gut receives more and more that tolerance may no longer possible.

There is increasing concern about engineered nanoparticles as they cycle through environment and the US Environmental Protection Agency (EPA) funded a programed by Arizona State University (ASU), LCnano Network (part of the EPA’s larger Life Cycle of Nanomaterials project). You can find out more about the ASU program in my April 8, 2014 post (scroll down about 50% of the way).

Getting back to Binghamton, I look forward to hearing more about the research as it progresses.

Opportunity for companies to take a survey on risk management and nanotechnology

A June 8, 2015 news item on Nanowerk features a European Union (EU) Framework Programme 7 (FP7) nanotechnology risk management project and survey,

The EU FP7 Sustainable Nanotechnologies (SUN) project is based on the idea that the current knowledge on environmental and health risks of nanomaterials – while limited – can nevertheless guide nanomanufacturing to avoid liabilities if an integrated approach addressing the complete product lifecycle is applied. SUN aims to evaluate the risks along the supply chains of engineered nanomaterials and incorporate the results into tools and guidelines for sustainable nanomanufacturing.

A May 26, 2015 SUN press release by Stella Stoycheva, which originated the news item, provides more details,

… A key objective of  Sustainable Nanotechnologies (SUN) is to build the SUN Decision Support System (SUNDS) to facilitate safe and sustainable nanomanufacturing and risk management. It will integrate tools for ecological and human health risk assessment, lifecycle assessment, economic assessment and social impact assessment within a sustainability assessment framework. We are currently developing the Technological Alternatives and Risk Management Measures (TARMM) inventory and are looking for companies to fill in a short survey.

… We would appreciate responses from personnel of companies involved in nanotechnology-related activities who are familiar with the risk management practices.

You can go here to take the survey. The focus is on companies and there don’t seem to be any geographic requirements such as only EU companies can participate.

New US platform for nanocellulose and occupational health and safety research

There’ve been quite a few (more than two) news items about nanocellulose in the last weeks. This latest one from the US National Institute for Occupational Safety and Health (NIOSH) concerns a memorandum of understanding (MOU) on a new research platform, from a May 28, 2015 news item on Nanowerk,

The National Institute for Occupational Safety and Health (NIOSH) has signed a memorandum of understanding (MOU) with the Partnership to Advance Research and Guidance for Occupational Safety and Health in Nanotechnology (P3NANO). The partnership between NIOSH and P3NANO will serve as a platform for occupational safety and health research as well as educational and business initiatives leading to the development of new risk management guidance, recommendations, and findings relating to the potential human health impacts of exposure to nanoscale cellulose materials.

I found more information about P3NANO in a Sept. 27, 2014 post by Michael Goergen for the Forest Business Network blog,

The U.S. Endowment for Forestry and Communities (Endowment) today announced the selection of nine scientific proposals designed to advance the commercialization of Cellulosic Nanomaterials (CN). The projects are being funded through P3Nano – a public-private partnership founded by the Endowment and the USDA Forest Service (USFS) with federal matching funds being provided by the Forest Service’s State and Private Forestry and Research and Develop branches and work coordinated with the USFS Forest Products Laboratory. The initial projects total more than $3 million in partnership funding.

Through a review process that included experts in business, government, and academia with extensive experience in CN, proposals were selected from 65 submissions requesting more than $20 million.

Carlton Owen, Chair of the P3Nano Steering Committee and President of the Endowment stated, “Our partnership is committed to finding new high-value products that build on the renewability of the nation’s forests. Cellulosic nanomaterials offer the promise of not only advanced green products for a more sustainable future but they do so while putting Americans to work in family-wage jobs at the same time that we advance the health and vitality of forests.”

P3Nano had previously awarded its foundational grant focusing on the environmental health and safety of cellulosic nanomaterials ensuring that priority one is the understanding of the environmental impacts and public safety.

The P3Nano (P3NANO) partnership does not seem to have its own website but there is this webpage on the US Endowment for Forestry & Communities, Inc.

One final comment, I’m surprised this initiative didn’t make the list published by the US White House of its new initiatives to commercialize nanotechnology (see my May 27, 2015 post for a full list).