Category Archives: health and safety

Lungs: EU SmartNanoTox and Pneumo NP

I have three news bits about lungs one concerning relatively new techniques for testing the impact nanomaterials may have on lungs and two concerning developments at PneumoNP; the first regarding a new technique for getting antibiotics to a lung infected with pneumonia and the second, a new antibiotic.

Predicting nanotoxicity in the lungs

From a June 13, 2016 news item on Nanowerk,

Scientists at the Helmholtz Zentrum München [German Research Centre for Environmental Health] have received more than one million euros in the framework of the European Horizon 2020 Initiative [a major European Commission science funding initiative successor to the Framework Programme 7 initiative]. Dr. Tobias Stöger and Dr. Otmar Schmid from the Institute of Lung Biology and Disease and the Comprehensive Pneumology Center (CPC) will be using the funds to develop new tests to assess risks posed by nanomaterials in the airways. This could contribute to reducing the need for complex toxicity tests.

A June 13, 2016 Helmholtz Zentrum München (German Research Centre for Environmental Health) press release, which originated the news item, expands on the theme,

Nanoparticles are extremely small particles that can penetrate into remote parts of the body. While researchers are investigating various strategies for harvesting the potential of nanoparticles for medical applications, they could also pose inherent health risks*. Currently the hazard assessment of nanomaterials necessitates a complex and laborious procedure. In addition to complete material characterization, controlled exposure studies are needed for each nanomaterial in order to guarantee the toxicological safety.

As a part of the EU SmartNanoTox project, which has now been funded with a total of eight million euros, eleven European research partners, including the Helmholtz Zentrum München, want to develop a new concept for the toxicological assessment of nanomaterials.

Reference database for hazardous substances

Biologist Tobias Stöger and physicist Otmar Schmid, both research group heads at the Institute of Lung Biology and Disease, hope that the use of modern methods will help to advance the assessment procedure. “We hope to make more reliable nanotoxicity predictions by using modern approaches involving systems biology, computer modelling, and appropriate statistical methods,” states Stöger.

The lung experts are concentrating primarily on the respiratory tract. The approach involves defining a representative selection of toxic nanomaterials and conducting an in-depth examination of their structure and the various molecular modes of action that lead to their toxicity. These data are then digitalized and transferred to a reference database for new nanomaterials. Economical tests that are easy to conduct should then make it possible to assess the toxicological potential of these new nanomaterials by comparing the test results s with what is already known from the database. “This should make it possible to predict whether or not a newly developed nanomaterial poses a health risk,” Otmar Schmid says.

* Review: Schmid, O. and Stoeger, T. (2016). Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. Journal of Aerosol Science, DOI:10.1016/j.jaerosci.2015.12.006

The SmartNanoTox webpage is here on the European Commission’s Cordis website.

Carrying antibiotics into lungs (PneumoNP)

I received this news from the European Commission’s PneumoNP project (I wrote about PneumoNP in a June 26, 2014 posting when it was first announced). This latest development is from a March 21, 2016 email (the original can be found here on the How to pack antibiotics in nanocarriers webpage on the PneumoNP website),

PneumoNP researchers work on a complex task: attach or encapsulate antibiotics with nanocarriers that are stable enough to be included in an aerosol formulation, to pass through respiratory tracts and finally deliver antibiotics on areas of lungs affected by pneumonia infections. The good news is that they finally identify two promising methods to generate nanocarriers.

So far, compacting polymer coils into single-chain nanoparticles in water and mild conditions was an unsolved issue. But in Spain, IK4-CIDETEC scientists developed a covalent-based method that produces nanocarriers with remarkable stability under those particular conditions. Cherry on the cake, the preparation is scalable for more industrial production. IK4-CIDETEC patented the process.

Fig.: A polymer coil (step 1) compacts into a nanocarrier with cross-linkers (step 2). Then, antibiotics get attached to the nanocarrier (step 3).

Fig.: A polymer coil (step 1) compacts into a nanocarrier with cross-linkers (step 2). Then, antibiotics get attached to the nanocarrier (step 3).

At the same time, another route to produce lipidic nanocarriers have been developed by researchers from Utrecht University. In particular, they optimized the method consisting in assembling lipids directly around a drug. As a result, generated lipidic nanocarriers show encouraging stability properties and are able to carry sufficient quantity of antibiotics.

Fig.: On presence of antibiotics, the lipidic layer (step 1) aggregates the the drug (step 2) until the lipids forms a capsule around the antibiotics (step 3).

Fig.: On presence of antibiotics, a lipidic layer (step 1) aggregates the drug (step 2) until the lipids forms a capsule around antibiotics (step 3).

Assays of both polymeric and lipidic nanocarriers are currently performed by ITEM Fraunhofer Institute in Germany, Ingeniatrics Tecnologias in Spain and Erasmus Medical Centre in the Netherlands. Part of these tests allows to make sure that the nanocarriers are not toxic to cells. Other tests are also done to verify that the efficiency of antibiotics on Klebsiella Pneumoniae bacteria when they are attached to nanocarriers.

A new antibiotic for pneumonia (PneumoNP)

A June 14, 2016 PneumoNP press release (received via email) announces work on a promising new approach to an antibiotic for pneumonia,

The antimicrobial peptide M33 may be the long-sought substitute to treat difficult lung infections, like multi-drug resistant pneumonia.

In 2013, the European Respiratory Society predicted 3 millions cases of pneumonia in Europe every year [1]. The standard treatment for pneumonia is an intravenous administration of a combination of drugs. This leads to the development of antibiotic resistance in the population. Gradually, doctors are running out of solutions to cure patients. An Italian company suggests a new option: the M33 peptide.

Few years ago, the Italian company SetLance SRL decided to investigate the M33 peptide. The antimicrobial peptide is an optimized version of an artificial peptide sequence selected for its efficacy and stability. So far, it showed encouraging in-vitro results against multidrug-resistant Gram-negative bacteria, including Klebsiella Pneumoniae. With the support of EU funding to the PneumoNP project, SetLance SRL had the opportunity to develop a new formulation of M33 that enhances its antimicrobial activity.

The new formulation of M33 fights Gram-negative bacteria in three steps. First of all, the M33 binds with the lipopolysaccharides (LPS) on the outer membrane of bacteria. Then, the molecule forms a helix and finally disrupts the membrane provoking cytoplasm leaking. The peptide enabled up to 80% of mices to survive Pseudomonas Aeruginosa-based lung infections. Beyond these encouraging results, toxicity to the new M33 formulation seems to be much lower than antimicrobial peptides currently used in clinical practice like colistin [2].

Lately, SetLance scaled-up the synthesis route and is now able to produce several hundred milligrams per batch. The molecule is robust enough for industrial production. We may expect this drug to go on clinical development and validation at the beginning of 2018.

[1] http://www.erswhitebook.org/chapters/acute-lower-respiratory-infections/pneumonia/
[2] Ceccherini et al., Antimicrobial activity of levofloxacin-M33 peptide conjugation or combination, Chem Med Comm. 2016; Brunetti et al., In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Scientific Reports 2016

I believe all the references are open access.

Brief final comment

The only element linking these news bits together is that they concern the lungs.

Introducing the LIFE project NanoMONITOR

I believe LIFE in the project title refers to life cycle. Here’s more from a June 9, 2016 news item from Nanowerk (Note: A link has been removed),

The newly started European Commission LIFE project NanoMONITOR addresses the challenges of supporting the risk assessment of nanomaterials under REACH by development of a real-time information and monitoring system. At the project’s kickoff meeting held on the 19th January 2016 in Valencia (Spain) participants discussed how this goal could be achieved.

Despite the growing number of engineered nanomaterials (ENMs) already available on the market and in contract to their benefits the use, production, and disposal of ENMs raises concerns about their environmental impact.

A REACH Centre June 8, 2016 press release, which originated the news item, expands on the theme,

Within this context, the overall aim of LIFE NanoMONITOR is to improve the use of environmental monitoring data to support the implementation of REACH regulation and promote the protection of human health and the environment when dealing with ENMs. Within the EU REACH Regulation, a chemical safety assessment report, including risk characterisation ratio (RCR), must be provided for any registered ENMs. In order to address these objectives, the project partners have developed a rigorous methodology encompassing the following aims:

  • Develop a novel software application to support the acquisition, management and processing of data on the concentration of ENMs.
  • Develop an on-line environmental monitoring database (EMD) to support the sharing of information.
  • Design and develop a proven monitoring station prototype for continuous monitoring of particles below 100 nm in air (PM0.1).
  • Design and develop standardized sampling and data analysis procedures to ensure the quality, comparability and reliability of the monitoring data used for risk assessment.
  • Support the calculation of the predicted environmental concentration (PEC) of ENMs in the context of REACH.

Throughout the project’s kick off meeting, participants discussed the status of the research area, project goals, and expectations of the different stakeholders with respect to the project outcome.

The project has made this graphic available,

LIFE_NanoMONITOR

You can find the LIFE project NanoMONITOR website here.

June 2016: time for a post on nanosunscreens—risks and perceptions

In the years since this blog began (2006), there’ve been pretty regular postings about nanosunscreens. While there are always concerns about nanoparticles and health, there has been no evidence to support a ban (personal or governmental) on nanosunscreens. A June 2016 report  by Paul FA Wright (full reference information to follow) in an Australian medical journal provides the latest insights on safety and nanosunscreens. Wright first offers a general introduction to risks and nanomaterials (Note: Links have been removed),

In reality, a one-size-fits-all approach to evaluating the potential risks and benefits of nanotechnology for human health is not possible because it is both impractical and would be misguided. There are many types of engineered nanomaterials, and not all are alike or potential hazards. Many factors should be considered when evaluating the potential risks associated with an engineered nanomaterial: the likelihood of being exposed to nanoparticles (ranging in size from 1 to 100 nanometres, about one-thousandth of the width of a human hair) that may be shed by the nanomaterial; whether there are any hotspots of potential exposure to shed nanoparticles over the whole of the nanomaterial’s life cycle; identifying who or what may be exposed; the eventual fate of the shed nanoparticles; and whether there is a likelihood of adverse biological effects arising from these exposure scenarios.1

The intrinsic toxic properties of compounds contained in the nanoparticle are also important, as well as particle size, shape, surface charge and physico-chemical characteristics, as these greatly influence their uptake by cells and the potential for subsequent biological effects. In summary, nanoparticles are more likely to have higher toxicity than bulk material if they are insoluble, penetrate biological membranes, persist in the body, or (where exposure is by inhalation) are long and fibre-like.1 Ideally, nanomaterial development should incorporate a safety-by-design approach, as there is a marketing edge for nano-enabled products with a reduced potential impact on health and the environment.1

Wright also covers some of nanotechnology’s hoped for benefits but it’s the nanosunscreen which is the main focus of this paper (Note: Links have been removed),

Public perception of the potential risks posed by nanotechnology is very different in certain regions. In Asia, where there is a very positive perception of nanotechnology, some products have been marketed as being nano-enabled to justify charging a premium price. This has resulted in at least four Asian economies adopting state-operated, user-financed product testing schemes to verify nano-related marketing claims, such as the original “nanoMark” certification system in Taiwan.4

In contrast, the negative perception of nanotechnology in some other regions may result in questionable marketing decisions; for example, reducing the levels of zinc oxide nanoparticles included as the active ingredient in sunscreens. This is despite their use in sunscreens having been extensively and repeatedly assessed for safety by regulatory authorities around the world, leading to their being widely accepted as safe to use in sunscreens and lip products.5

Wright goes on to describe the situation in Australia (Note: Links have been removed),

Weighing the potential risks and benefits of using sunscreens with UV-filtering nanoparticles is an important issue for public health in Australia, which has the highest rate of skin cancer in the world as the result of excessive UV exposure. Some consumers are concerned about using these nano-sunscreens,6 despite their many advantages over conventional organic chemical UV filters, which can cause skin irritation and allergies, need to be re-applied more frequently, and are absorbed by the skin to a much greater extent (including some with potentially endocrine-disrupting activity). Zinc oxide nanoparticles are highly suitable for use in sunscreens as a physical broad spectrum UV filter because of their UV stability, non-irritating nature, hypo-allergenicity and visible transparency, while also having a greater UV-attenuating capacity than bulk material (particles larger than 100 nm in diameter) on a per weight basis.7

Concerns about nano-sunscreens began in 2008 with a report that nanoparticles in some could bleach the painted surfaces of coated steel.8 This is a completely different exposure situation to the actual use of nano-sunscreen by people; here they are formulated to remain on the skin’s surface, which is constantly shedding its outer layer of dead cells (the stratum corneum). Many studies have shown that metal oxide nanoparticles do not readily penetrate the stratum corneum of human skin, including a hallmark Australian investigation by Gulson and co-workers of sunscreens containing only a less abundant stable isotope of zinc that allowed precise tracking of the fate of sunscreen zinc.9 The researchers found that there was little difference between nanoparticle and bulk zinc oxide sunscreens in the amount of zinc absorbed into the body after repeated skin application during beach trials. The amount absorbed was also extremely small when compared with the normal levels of zinc required as an essential mineral for human nutrition, and the rate of skin absorption was much lower than that of the more commonly used chemical UV filters.9 Animal studies generally find much higher skin absorption of zinc from dermal application of zinc oxide sunscreens than do human studies, including the meticulous studies in hairless mice conducted by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) using both nanoparticle and bulk zinc oxide sunscreens that contained the less abundant stable zinc isotope.10 These researchers reported that the zinc absorbed from sunscreen was distributed throughout several major organs, but it did not alter their total zinc concentrations, and that overall zinc homeostasis was maintained.10

He then discusses titanium dioxide nanoparticles (also used in nanosunscreens, Note: Links have been removed),

The other metal oxide UV filter is titanium dioxide. Two distinct crystalline forms have been used: the photo-active anatase form and the much less photo-active rutile form,7 which is preferable for sunscreen formulations. While these insoluble nanoparticles may penetrate deeper into the stratum corneum than zinc oxide, they are also widely accepted as being safe to use in non-sprayable sunscreens.11

Investigation of their direct effects on human skin and immune cells have shown that sunscreen nanoparticles of zinc oxide and rutile titanium dioxide are as well tolerated as zinc ions and conventional organic chemical UV filters in human cell test systems.12 Synchrotron X-ray fluorescence imaging has also shown that human immune cells break down zinc oxide nanoparticles similar to those in nano-sunscreens, indicating that immune cells can handle such particles.13 Cytotoxicity occurred only at very high concentrations of zinc oxide nanoparticles, after cellular uptake and intracellular dissolution,14 and further modification of the nanoparticle surface can be used to reduce both uptake by cells and consequent cytotoxicity.15

The ongoing debate about the safety of nanoparticles in sunscreens raised concerns that they may potentially increase free radical levels in human skin during co-exposure to UV light.6 On the contrary, we have seen that zinc oxide and rutile titanium dioxide nanoparticles directly reduce the quantity of damaging free radicals in human immune cells in vitro when they are co-exposed to the more penetrating UV-A wavelengths of sunlight.16 We also identified zinc-containing nanoparticles that form immediately when dissolved zinc ions are added to cell culture media and pure serum, which suggests that they may even play a role in natural zinc transport.17

Here’s a link to and a citation for Wright’s paper,

Potential risks and benefits of nanotechnology: perceptions of risk in sunscreens by Paul FA Wright. Med J Aust 2016; 204 (10): 369-370. doi:10.5694/mja15.01128 Published June 6, 2016

This paper appears to be open access.

The situation regarding perceptions of nanosunscreens in Australia was rather unfortunate as I noted in my Feb. 9, 2012 posting about a then recent government study which showed that some Australians were avoiding all sunscreens due to fears about nanoparticles. Since then Friends of the Earth seems to have moderated its stance on nanosunscreens but there is a July 20, 2010 posting (includes links to a back-and-forth exchange between Dr. Andrew Maynard and Friends of the Earth representatives) which provides insight into the ‘debate’ prior to the 2012 ‘debacle’. For a briefer overview of the situation you could check out my Oct. 4, 2012 posting.

UK and US issue documents nanomaterial safety to support safe work with nanomaterials

I am featuring two bits of information about nanosafety first from the UK and then from the US.

UK and nanosafety

A May 30, 2016 news item on Nanowerk announces a not particularly exciting but necessary report on handling nanomaterials safely (Note: A link has been removed),

The UK Nanosafety Group (UKNSG) has updated and published a 2nd edition of guidance (pdf) to support safe and responsible working practices with nanomaterials in research and development laboratories.

A May 25, 2016 UK Nanosafety Group press release, which originated the news item, provides more detail,

The document aims to provide guidance on factors relating to establishing a safe workplace and good safety practice when working with particulate nanomaterials. It is applicable to a wide range of nanomaterials, including particles, fibres, powders, tubes and wires as well as aggregates and agglomerates, and recognises previous and current uncertainty in developing effective risk management when dealing with nanomaterials and advocates a precautionary strategy to minimise potential exposure.

The 2nd edition of the guidance provides updates to account for changes in legislation, recent studies in the literature, and best practice since 2012. In particular, specific sections have been revised to account for the full implementation of Global Harmonised System (GHS) which came into force on 1 June 2015 through the CLP [Classification, Labelling and Packaging] regulations. The document explains the approaches that are presently being used to select effective control measures for the management of nanomaterials, more specifically control banding tools presently in use. Significant changes can be found in the following sections: ‘Hazard Banding’, ‘Exposure Control’, ‘Toxicology’, and ‘Monitoring’.

Of relevance to employers, managers, health and safety advisors, and users of particulate nanomaterials in research and development, the guidance should be read in conjunction with the Approved Code of Practice on COSHH [Control of Substances Hazardous to Health], together with the other literature referred to in the document. The document has been produced taking account of the safety information currently available and is presented in the format of guidance and recommendations to support implementation of suitable protocols and control measures by employers and employees. It is intended that the document will be reviewed and updated on a periodic basis to keep abreast of the evolving nature of the content.

The guidance titled “Working Safely with Nanomaterials in Research & Development” is about 48 pp. and can be found here.

Tidbit about US nano environmental, health, and safety

Sylvia Palmer has written a May 27, 2016 update for ChemicalWatch on reports about or including information about environmental, health, and safety measures being taken in the US,

Three reports released recently by the National Nanotechnology Initiative (NNI) highlight the US government’ investments and initiatives in nanotechnology. They also detail current progress and the need for further understanding of exposure to nanomaterials in consumer products –and how companies can protect their nanotechnology workforce.

NNI’s Quantifying exposure to engineered nanomaterials (QEEN) from manufactured products: addressing environmental, health, and safety implications notes significant progress has been made in the ability to quantify nanomaterial exposures. However, it says greater understanding of exposure risks in “real-world” scenarios is needed. Alternative testing models and high-throughput methods for rapidly estimating exposures will be further explored, it adds.

You can find the report, Quantifying exposure to engineered nanomaterials (QEEN) from manufactured products: addressing environmental, health, and safety implications, here. Palmer’s article briefly describes the other two reports which contain information about US nano environmental, health, and safety efforts.

There is more about the three reports in an April 11, 2016 posting by Lloyd Whitman (Assistant Director for Nanotechnology and Advanced Materials, White House Office of Science and Technology Policy) and Treye Thomas (leader of the Chemical Hazards Program team in the U.S. Consumer Product Safety Commission, and Coordinator for Environmental, Health, and Safety Research under the National Nanotechnology Initiative) on the White House blog,

The recently released NNI Supplement to the President’s Budget for Fiscal Year 2017, which serves as the annual report for the NNI, highlights the programs and coordinated activities taking place across the many departments, independent agencies, and commissions participating today in the NNI—an initiative that continues to serve as a model for effective coordination of Federal science and technology R&D. As detailed in this report, nanoEHS activities continue to account for about 10 percent of the annual NNI budget, with cumulative Federal R&D investments in this area exceeding $1 billion over the past decade. This report includes descriptions of a wide variety of individual agency and coordinated activities supporting the responsible development of nanotechnology.

To understand and control the risks of using any new materials in consumer products, it is important to understand the potential for exposure and any associated hazards across product life cycles. Last month, the NNI released a report, Quantifying Exposure to Engineered Nanomaterials (QEEN) from Manufactured Products: Addressing Environmental, Health, and Safety Implications, summarizing a workshop on this topic sponsored by the U.S. Consumer Product Safety Commission (CPSC). The main goals of the workshop were to assess progress in developing tools and methods for quantifying exposure to engineered nanomaterials across the product life cycle, and to identify new research needed to advance exposure assessment for nanotechnology-enabled products. …

The technical experts who participated in CPSC’s workshop recommended that future work focus on the complex issue of determining biomarkers of exposure linked to disease, which will require substantive public–private collaboration, partnership, and knowledge sharing. Recognizing these needs, the President’s 2017 Budget request for CPSC includes funds for a new nanotechnology center led by the National Institute of Environmental Health Sciences (NIEHS) to develop test methods and to quantify and characterize the presence, release, and mechanisms of consumer exposure to nanomaterials in consumer products. This cost-effective, interagency collaboration will enable CPSC—through NIEHS—to collect the needed data to inform the safety of nanotechnology in consumer products and allow CPSC to benefit from NIEHS’s scientific network and experience.

Managing EHS risks across a product’s lifecycle includes protecting the workers who manufacture those products. The National Institute for Occupational Safety and Health has issued a series of documents providing guidance to this emerging industry, including the recently released publication Building a Safety Program to Protect the Nanotechnology Workforce: A Guide for Small to Medium-Sized Enterprises. This guide provides business owners with the tools necessary to develop and implement a written health and safety program to protect their employees.

Whitman also mentions a June 2016 international conference in the context of this news,

The responsible development of nanotechnology is a goal that the United States shares with many countries. The United States and the European Union are engaged in notable cooperation on this front. European and American scientists engaged in nanoEHS research convene annually for a joint workshop to identify areas of shared interest and mechanisms for collaboration to advance nanoEHS science. The 2016 joint workshop will be held on June 6–7, 2016 in Arlington, VA, and is free and open to the public. …

More from PETA (People for the Ethical Treatment of Animals) about nanomaterials and lungs

Science progress by increments. First, there was this April 27, 2016 post featuring some recent work by the organization, People for the Ethical Treatment of Animals (PETA) focused on nanomaterials and lungs. Now approximately one month later, PETA announces a new paper on the topic according to a May 26, 2016 news item on phys.org,

A scientist from the PETA International Science Consortium Ltd. is the lead author of a review on pulmonary fibrosis that results from inhaling nanomaterials, which has been published in Archives of Toxicology. The coauthors are scientists from Health Canada, West Virginia University, and the University of Fribourg in Switzerland.

A May 26, 2016 PETA news release on EurekAlert, which originated the news item, provides more detail (Note: Links have been removed),

The increasing use of nanomaterials in consumer goods such as paint, building materials, and food products has increased the likelihood of human exposure. Inhalation is one of the most prominent routes by which exposure can occur, and because inhalation of nanomaterials may be linked to lung problems such as pulmonary fibrosis, testing is conducted to assess the safety of these materials.

The review is one part of the proceedings of a 2015 workshop [mentioned in my Sept. 3, 2015 posting] organized by the PETA International Science Consortium, at which scientists discussed recommendations for designing an in vitro approach to assessing the toxicity of nanomaterials in the human lung. The workshop also produced another report that was recently published in Archives of Toxicology (Clippinger et al. 2016) and a review published in Particle and Fibre Toxicology (Polk et al. 2016) [mentioned in my April 27, 2016 posting] on exposing nanomaterials to cells grown in vitro.

The expert recommendations proposed at the workshop are currently being used to develop an in vitro system to predict the development of lung fibrosis in humans, which is being funded by the Science Consortium.

“International experts who took part in last year’s workshop have advanced the understanding and application of non-animal methods of studying nanomaterial effects in the lung,” says Dr. Monita Sharma, nanotoxicology specialist at the Consortium and lead author of the review in Archives of Toxicology. “Good science is leading the way toward more humane testing of nanomaterials, which, in turn, will lead to better protection of human health.”

Here’s a link to and a citation for the paper,

Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs) by Monita Sharma, Jake Nikota, Sabina Halappanavar, Vincent Castranova, Barbara Rothen-Rutishauser, Amy J. Clippinger. Archives of Toxicology pp 1-18 DOI: 10.1007/s00204-016-1742-7 First online: 23 May 2016

This paper is behind a paywall.

Implications of nanoplastic in the aquatic food chain

As plastic breaks down in the oceans into plastic nanoparticles, they enter the food chain when they are ingested by plankton. Researchers in Sweden have published a study about the process. From a May 23, 2016 news item on ScienceDaily,

Plastic accounts for nearly eighty per cent of all waste found in our oceans, gradually breaking down into smaller and smaller particles. New research from Lund University in Sweden investigates how nanosized plastic particles affect aquatic animals in different parts of the food chain.

“Not very many studies have been done on this topic before. Plastic particles of such a small size are difficult to study,” says Karin Mattsson.

A May 23, 2016 Lund University press release, which originated the news item, provides more detail,

“We tested how polystyrene plastic particles of different sizes, charge and surface affect the zooplankton Daphnia. It turned out that the size of the nanoparticles that were most toxic to the Daphnia in our study was 50 nanometers”, says Karin Mattsson.

Because zooplankton like Daphnia are also food for many other aquatic animals, the researchers wanted to study the effect of plastic particles higher up in the food chain. They found that fish that ate Daphnia containing nanoplastics experienced a change in their predatory behaviour and poor appetite. In several studies, researchers also discovered that the nanoparticles had the ability to cross biological barriers, such as the intestinal wall and brain.

“Although in our study we used much larger amounts of nanoplastic than those present in oceans today, we suspect that plastic particles may be accumulated inside the fish. This means that even low doses could ultimately have a negative effect”, says Karin Mattsson.

Plastic breaks down very slowly in nature, and once the microscopically small plastic particles reach lakes and oceans they are difficult to remove. Plastic particles also bind environmental toxins that can become part of the food chain when consumed accidentally.

“Our research indicates the need for more studies and increased caution in the use of nanoplastics”, she says.

Karin Mattsson is a physicist and her research project was produced in collaboration between the Centre for Environmental and Climate Research, the Division Biochemistry and Structural Biology and the Division of Aquatic Biology at Lund University. Karin Mattsson is also affiliated with NanoLund, where several studies are currently conducted to evaluate the safety of nanoparticles.

Here’s a link to and a citation for a paper published online in 2014 and in print in 2015,

Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles by Karin Mattsson, Mikael T. Ekvall, Lars-Anders Hansson, Sara Linse, Anders Malmendal, and Tommy Cedervall. Environ. Sci. Technol., 2015, 49 (1), pp 553–561 DOI: 10.1021/es5053655
Publication Date (Web): November 07, 2014

Copyright © 2014 American Chemical Society

More recently, Karin Mattson has published her PhD thesis on the topic (I believe it is written in Swedish).

Nanoparticles in baby formula

Needle-like particles of hydroxyapatite found in infant formula by ASU researchers. Westerhoff and Schoepf/ASU, CC BY-ND

Needle-like particles of hydroxyapatite found in infant formula by ASU [Arizona State University] researchers. Westerhoff and Schoepf/ASU, CC BY-ND

Nanowerk is featuring an essay about hydroxyapatite nanoparticles in baby formula written by Dr. Andrew Maynard in a May 17, 2016 news item (Note: A link has been removed),

There’s a lot of stuff you’d expect to find in baby formula: proteins, carbs, vitamins, essential minerals. But parents probably wouldn’t anticipate finding extremely small, needle-like particles. Yet this is exactly what a team of scientists here at Arizona State University [ASU] recently discovered.

The research, commissioned and published by Friends of the Earth (FoE) – an environmental advocacy group – analyzed six commonly available off-the-shelf baby formulas (liquid and powder) and found nanometer-scale needle-like particles in three of them. The particles were made of hydroxyapatite – a poorly soluble calcium-rich mineral. Manufacturers use it to regulate acidity in some foods, and it’s also available as a dietary supplement.

Andrew’s May 17, 2016 essay first appeared on The Conversation website,

Looking at these particles at super-high magnification, it’s hard not to feel a little anxious about feeding them to a baby. They appear sharp and dangerous – not the sort of thing that has any place around infants. …

… questions like “should infants be ingesting them?” make a lot of sense. However, as is so often the case, the answers are not quite so straightforward.

Andrew begins by explaining about calcium and hydroxyapatite (from The Conversation),

Calcium is an essential part of a growing infant’s diet, and is a legally required component in formula. But not necessarily in the form of hydroxyapatite nanoparticles.

Hydroxyapatite is a tough, durable mineral. It’s naturally made in our bodies as an essential part of bones and teeth – it’s what makes them so strong. So it’s tempting to assume the substance is safe to eat. But just because our bones and teeth are made of the mineral doesn’t automatically make it safe to ingest outright.

The issue here is what the hydroxyapatite in formula might do before it’s digested, dissolved and reconstituted inside babies’ bodies. The size and shape of the particles ingested has a lot to do with how they behave within a living system.

He then discusses size and shape, which are important at the nanoscale,

Size and shape can make a difference between safe and unsafe when it comes to particles in our food. Small particles aren’t necessarily bad. But they can potentially get to parts of our body that larger ones can’t reach. Think through the gut wall, into the bloodstream, and into organs and cells. Ingested nanoscale particles may be able to interfere with cells – even beneficial gut microbes – in ways that larger particles don’t.

These possibilities don’t necessarily make nanoparticles harmful. Our bodies are pretty well adapted to handling naturally occurring nanoscale particles – you probably ate some last time you had burnt toast (carbon nanoparticles), or poorly washed vegetables (clay nanoparticles from the soil). And of course, how much of a material we’re exposed to is at least as important as how potentially hazardous it is.

Yet there’s a lot we still don’t know about the safety of intentionally engineered nanoparticles in food. Toxicologists have started paying close attention to such particles, just in case their tiny size makes them more harmful than otherwise expected.

Currently, hydroxyapatite is considered safe at the macroscale by the US Food and Drug Administration (FDA). However, the agency has indicated that nanoscale versions of safe materials such as hydroxyapatite may not be safe food additives. From Andrew’s May 17, 2016 essay,

Hydroxyapatite is a tough, durable mineral. It’s naturally made in our bodies as an essential part of bones and teeth – it’s what makes them so strong. So it’s tempting to assume the substance is safe to eat. But just because our bones and teeth are made of the mineral doesn’t automatically make it safe to ingest outright.

The issue here is what the hydroxyapatite in formula might do before it’s digested, dissolved and reconstituted inside babies’ bodies. The size and shape of the particles ingested has a lot to do with how they behave within a living system. Size and shape can make a difference between safe and unsafe when it comes to particles in our food. Small particles aren’t necessarily bad. But they can potentially get to parts of our body that larger ones can’t reach. Think through the gut wall, into the bloodstream, and into organs and cells. Ingested nanoscale particles may be able to interfere with cells – even beneficial gut microbes – in ways that larger particles don’t.These possibilities don’t necessarily make nanoparticles harmful. Our bodies are pretty well adapted to handling naturally occurring nanoscale particles – you probably ate some last time you had burnt toast (carbon nanoparticles), or poorly washed vegetables (clay nanoparticles from the soil). And of course, how much of a material we’re exposed to is at least as important as how potentially hazardous it is.Yet there’s a lot we still don’t know about the safety of intentionally engineered nanoparticles in food. Toxicologists have started paying close attention to such particles, just in case their tiny size makes them more harmful than otherwise expected.

Putting particle size to one side for a moment, hydroxyapatite is classified by the US Food and Drug Administration (FDA) as “Generally Regarded As Safe.” That means it considers the material safe for use in food products – at least in a non-nano form. However, the agency has raised concerns that nanoscale versions of food ingredients may not be as safe as their larger counterparts.Some manufacturers may be interested in the potential benefits of “nanosizing” – such as increasing the uptake of vitamins and minerals, or altering the physical, textural and sensory properties of foods. But because decreasing particle size may also affect product safety, the FDA indicates that intentionally nanosizing already regulated food ingredients could require regulatory reevaluation.In other words, even though non-nanoscale hydroxyapatite is “Generally Regarded As Safe,” according to the FDA, the safety of any nanoscale form of the substance would need to be reevaluated before being added to food products.Despite this size-safety relationship, the FDA confirmed to me that the agency is unaware of any food substance intentionally engineered at the nanoscale that has enough generally available safety data to determine it should be “Generally Regarded As Safe.”Casting further uncertainty on the use of nanoscale hydroxyapatite in food, a 2015 report from the European Scientific Committee on Consumer Safety (SCCS) suggests there may be some cause for concern when it comes to this particular nanomaterial.Prompted by the use of nanoscale hydroxyapatite in dental products to strengthen teeth (which they consider “cosmetic products”), the SCCS reviewed published research on the material’s potential to cause harm. Their conclusion?

The available information indicates that nano-hydroxyapatite in needle-shaped form is of concern in relation to potential toxicity. Therefore, needle-shaped nano-hydroxyapatite should not be used in cosmetic products.

This recommendation was based on a handful of studies, none of which involved exposing people to the substance. Researchers injected hydroxyapatite needles directly into the bloodstream of rats. Others exposed cells outside the body to the material and observed the effects. In each case, there were tantalizing hints that the small particles interfered in some way with normal biological functions. But the results were insufficient to indicate whether the effects were meaningful in people.

As Andrew also notes in his essay, none of the studies examined by the SCCS OEuropean Scientific Committee on Consumer Safety) looked at what happens to nano-hydroxyapatite once it enters your gut and that is what the researchers at Arizona State University were considering (from the May 17, 2016 essay),

The good news is that, according to preliminary studies from ASU researchers, hydroxyapatite needles don’t last long in the digestive system.

This research is still being reviewed for publication. But early indications are that as soon as the needle-like nanoparticles hit the highly acidic fluid in the stomach, they begin to dissolve. So fast in fact, that by the time they leave the stomach – an exceedingly hostile environment – they are no longer the nanoparticles they started out as.

These findings make sense since we know hydroxyapatite dissolves in acids, and small particles typically dissolve faster than larger ones. So maybe nanoscale hydroxyapatite needles in food are safer than they sound.

This doesn’t mean that the nano-needles are completely off the hook, as some of them may get past the stomach intact and reach more vulnerable parts of the gut. But the findings do suggest these ultra-small needle-like particles could be an effective source of dietary calcium – possibly more so than larger or less needle-like particles that may not dissolve as quickly.

Intriguingly, recent research has indicated that calcium phosphate nanoparticles form naturally in our stomachs and go on to be an important part of our immune system. It’s possible that rapidly dissolving hydroxyapatite nano-needles are actually a boon, providing raw material for these natural and essential nanoparticles.

While it’s comforting to know that preliminary research suggests that the hydroxyapatite nanoparticles are likely safe for use in food products, Andrew points out that more needs to be done to insure safety (from the May 17, 2016 essay),

And yet, even if these needle-like hydroxyapatite nanoparticles in infant formula are ultimately a good thing, the FoE report raises a number of unresolved questions. Did the manufacturers knowingly add the nanoparticles to their products? How are they and the FDA ensuring the products’ safety? Do consumers have a right to know when they’re feeding their babies nanoparticles?

Whether the manufacturers knowingly added these particles to their formula is not clear. At this point, it’s not even clear why they might have been added, as hydroxyapatite does not appear to be a substantial source of calcium in most formula. …

And regardless of the benefits and risks of nanoparticles in infant formula, parents have a right to know what’s in the products they’re feeding their children. In Europe, food ingredients must be legally labeled if they are nanoscale. In the U.S., there is no such requirement, leaving American parents to feel somewhat left in the dark by producers, the FDA and policy makers.

As far as I’m aware, the Canadian situation is much the same as the US. If the material is considered safe at the macroscale, there is no requirement to indicate that a nanoscale version of the material is in the product.

I encourage you to read Andrew’s essay in its entirety. As for the FoE report (Nanoparticles in baby formula: Tiny new ingredients are a big concern), that is here.

Titanium dioxide nanoparticles have subtle effects on oxidative stress genes?

There’s research from the Georgia Institute of Technology (Georgia Tech; US) suggesting that titanium dioxide nanoparticles may have long term side effects. From a May 10, 2016 news item on ScienceDaily,

A nanoparticle commonly used in food, cosmetics, sunscreen and other products can have subtle effects on the activity of genes expressing enzymes that address oxidative stress inside two types of cells. While the titanium dioxide (TiO2) nanoparticles are considered non-toxic because they don’t kill cells at low concentrations, these cellular effects could add to concerns about long-term exposure to the nanomaterial.

A May 9, 2016 Georgia Tech news release on Newswire (also on EurekAlert), which originated the news item, describes the research in more detail,

Researchers at the Georgia Institute of Technology used high-throughput screening techniques to study the effects of titanium dioxide nanoparticles on the expression of 84 genes related to cellular oxidative stress. Their work found that six genes, four of them from a single gene family, were affected by a 24-hour exposure to the nanoparticles.

The effect was seen in two different kinds of cells exposed to the nanoparticles: human HeLa* cancer cells commonly used in research, and a line of monkey kidney cells. Polystyrene nanoparticles similar in size and surface electrical charge to the titanium dioxide nanoparticles did not produce a similar effect on gene expression.

“This is important because every standard measure of cell health shows that cells are not affected by these titanium dioxide nanoparticles,” said Christine Payne, an associate professor in Georgia Tech’s School of Chemistry and Biochemistry. “Our results show that there is a more subtle change in oxidative stress that could be damaging to cells or lead to long-term changes. This suggests that other nanoparticles should be screened for similar low-level effects.”

The research was reported online May 6 in the Journal of Physical Chemistry C. The work was supported by the National Institutes of Health (NIH) through the HERCULES Center at Emory University, and by a Vasser Woolley Fellowship.

Titanium dioxide nanoparticles help make powdered donuts white, protect skin from the sun’s rays and reflect light in painted surfaces. In concentrations commonly used, they are considered non-toxic, though several other studies have raised concern about potential effects on gene expression that may not directly impact the short-term health of cells.

To determine whether the nanoparticles could affect genes involved in managing oxidative stress in cells, Payne and colleague Melissa Kemp – an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University – designed a study to broadly evaluate the nanoparticle’s impact on the two cell lines.

Working with graduate students Sabiha Runa and Dipesh Khanal, they separately incubated HeLa cells and monkey kidney cells with titanium oxide at levels 100 times less than the minimum concentration known to initiate effects on cell health. After incubating the cells for 24 hours with the TiO2, the cells were lysed and their contents analyzed using both PCR and Western Blot techniques to study the expression of 84 genes associated with the cells’ ability to address oxidative processes.

Payne and Kemp were surprised to find changes in the expression of six genes, including four from the peroxiredoxin family of enzymes that helps cells degrade hydrogen peroxide, a byproduct of cellular oxidation processes. Too much hydrogen peroxide can create oxidative stress which can damage DNA and other molecules.

The effect measured was significant – changes of about 50 percent in enzyme expression compared to cells that had not been incubated with nanoparticles. The tests were conducted in triplicate and produced similar results each time.

“One thing that was really surprising was that this whole family of proteins was affected, though some were up-regulated and some were down-regulated,” Kemp said. “These were all related proteins, so the question is why they would respond differently to the presence of the nanoparticles.”

The researchers aren’t sure how the nanoparticles bind with the cells, but they suspect it may involve the protein corona that surrounds the particles. The corona is made up of serum proteins that normally serve as food for the cells, but adsorb to the nanoparticles in the culture medium. The corona proteins have a protective effect on the cells, but may also serve as a way for the nanoparticles to bind to cell receptors.

Titanium dioxide is well known for its photo-catalytic effects under ultraviolet light, but the researchers don’t think that’s in play here because their culturing was done in ambient light – or in the dark. The individual nanoparticles had diameters of about 21 nanometers, but in cell culture formed much larger aggregates.

In future work, Payne and Kemp hope to learn more about the interaction, including where the enzyme-producing proteins are located in the cells. For that, they may use HyPer-Tau, a reporter protein they developed to track the location of hydrogen peroxide within cells.

The research suggests a re-evaluation may be necessary for other nanoparticles that could create subtle effects even though they’ve been deemed safe.

“Earlier work had suggested that nanoparticles can lead to oxidative stress, but nobody had really looked at this level and at so many different proteins at the same time,” Payne said. “Our research looked at such low concentrations that it does raise questions about what else might be affected. We looked specifically at oxidative stress, but there may be other genes that are affected, too.”

Those subtle differences may matter when they’re added to other factors.

“Oxidative stress is implicated in all kinds of inflammatory and immune responses,” Kemp noted. “While the titanium dioxide alone may just be modulating the expression levels of this family of proteins, if that is happening at the same time you have other types of oxidative stress for different reasons, then you may have a cumulative effect.”

*HeLa cells are named for Henrietta Lacks who unknowingly donated her immortal cell line to medical research. You can find more about the  story on the Oprah Winfrey website, which features an excerpt from the Rebecca Skloot book “The Immortal Life of Henrietta Lacks.” By the way, on May 2, 2016 it was announced that Oprah Winfrey would star in a movie for HBO as Henrietta Lacks’ daughter in an adaptation of the Rebecca Skloot book. You can read more about the proposed production in a May 3, 2016 article by Benjamin Lee for the Guardian.

Getting back to titanium dioxide nanoparticles and their possible long term effects, here’s a link to and a citation for the Georgia Tech team’s paper,

TiO2 Nanoparticles Alter the Expression of Peroxiredoxin Antioxidant Genes by Sabiha Runa, Dipesh Khanal, Melissa L. Kemp‡, and Christine K. Payne. J. Phys. Chem. C, Article ASAP DOI: 10.1021/acs.jpcc.6b01939 Publication Date (Web): April 21, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Nanosafety Cluster newsletter—excerpts from the Spring 2016 issue

The European Commission’s NanoSafety Cluster Newsletter (no.7) Spring 2016 edition is some 50 pp. long and it provides a roundup of activities and forthcoming events. Here are a few excerpts,

“Closer to the Market” Roadmap (CTTM) now finalised

Hot off the press! the Cluster’s “Closer to the Market” Roadmap (CTTM)  is  a  multi-dimensional,  stepwise  plan  targeting  a framework to deliver safe nano-enabled products to the market. After some years of discussions, several consultations of a huge number of experts in the nanosafety-field, conferences at which the issue of market implementation of nanotechnologies was talked  about,  writing  hours/days,  and  finally  two public consultation rounds, the CTTM is now finalized.

As stated in the Executive Summary: “Nano-products and nano-enabled applications need a clear and easy-to-follow human and environmental safety framework for the development along the innovation chain from initial idea to market and beyond that facilitates  navigation  through  the  complex  regulatory and approval processes under which different product categories fall.

Download it here, and get involved in its implementation through the Cluster!
Authors: Andreas Falk* 1, Christa Schimpel1, Andrea Haase3, Benoît Hazebrouck4, Carlos Fito López5, Adriele Prina-Mello6, Kai Savolainen7, Adriënne Sips8, Jesús M. Lopez de Ipiña10, Iseult Lynch11, Costas Charitidis12, Visser Germ13

NanoDefine hosts Synergy Workshop with NSC projects

NanoDefine  organised  the  2nd Nanosafety  Cluster  (NSC)  Synergy Workshop  at  the  Netherlands  House  for Education  and  Research  in Brussels  on  2nd  February  2016. The  aim  was  to  identify  overlaps and synergies existing between different projects that could develop into
outstanding cooperation opportunities.

One central issue was the building of a common ontology and a European framework for data management and analysis, as planned within eNanoMapper, to facilitate a closer interdisciplinary collaboration between  NSC projects and to better address the need for proper data storage, analysis and sharing (Open Access).

Unexpectedly, there’s a Canadian connection,

Discovering protocols for nanoparticles: the soils case
NanoFASE WP7 & NanoSafety Cluster WG3 Exposure

In NanoFASE, of course, we focus on the exposure to nanomaterials. Having consistent and meaningful protocols to characterize the fate of nanomaterials in different environments is therefore of great interest to us. Soils and sediments are in this respect very cumbersome. Also in the case of conventional chemicals has the development of  protocols for fate description in terrestrial systems been a long route.

The special considerations of nanomaterials make this job even harder. For instance, how does one handle the fact that the interaction between soils and nanoparticles is always out of equilibrium? How does one distinguish between the nanoparticles that are still mobile and those that are attached to soil?

In the case of conventional chemicals, a single measurement of a filtered soil suspension often suffices to find the mobile fraction, as long one is sure that equilibrium has been attained. Equilibrium never occurs in the case of  nanoparticles, and the distinction between attached/suspended particles is analytically less clear to do.

Current activity in NanoFASE is focusing at finding protocols to characterize this interaction. Not only does the protocol have to provide meaningful parameters that can be used, e.g. in modelling, but also the method itself should be fast and cheap enough so that a lot of data can be collected in a reasonable amount of time. NanoFASE is  in a good position to do this, because of its focus on fate and because of the many international collaborators.

For  instance,  the Swedish  Agricultural  University (Uppsala)  is  collaborating  with  McGill  University (Montreal, Canada [emphasis mine]), an advisory partner to NanoFASE, in developing the OECD [Organization for Economic Cooperation and Development] protocol for column tests (OECD test nr 312:  “Leaching in soil columns”). The effort is led by Yasir Sultan from Environment Canada and by Karlheinz Weinfurtner from the Frauenhofer institute in Germany. Initial results show the transport of nanomaterials in soil columns to be very limited.

The OECD protocol therefore does not often lead to measurable breakthrough curves that can be modelled to provide information about  nanomaterial  mobility  in  soils  and  most  likely  requires adaptations  to  account  for  the  relatively  low mobility  of  typical pristine nanomaterials.

OECD 312 prescribes to use 40 cm columns, which is most likely too long to show a breakthrough in the case of nanoparticles. Testing in NanoFASE will therefore focus on working with shorter columns and also investigating the effect of the flow speed.

The progress and the results of this action will be reported on our website (www.nanofase.eu).

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

Now, wastewater,

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

WP5 led by Ralf Kaegi of EAWAG [Swiss Federal Institute of Aquatic Science and Technology] (Switzerland) will establish transformation and release rates of ENM during their passage through different reactors. We are focusing on wastewater treatment plants (WWTPs), solid waste and dedicated sewage sludge incinerators as well as landfills (see figure below). Additionally, lab-scale experiments using pristine and well characterized materials, representing the realistic fate relevant forms at each stage, will allow us to obtain a mechanistic understanding of the transformation processes in waste treatment reactors. Our experimental results will feed directly into the development of a mathematical model describing the transformation and transfer of ENMs through the investigated reactors.

I’m including this since I’ve been following the ‘silver nanoparticle story’ for some time,

NanoMILE publication update: NanoMILE on the air and on the cover

Dramatic  differences  in  behavior  of  nano-silver during  the  initial  wash  cycle  and  for  its  further dissolution/transformation potential over time depending on detergent composition and form.

In an effort to better relate nanomaterial aging procedures to those which they are most likely to undergo during the life cycle of nano-enhanced products, in this paper we describe the various transformations which are possible when exposing Ag engineered nanoparticles (ENPs) to a suite of commercially available washing detergents (Figure 1). While Ag ENP transformation and washing of textiles has received considerable attention in recent years, our study is novel in that we (1) used several commercially available detergents allowing us to estimate the various changes possible in individual homes and commercial washing settings; (2) we have continued  method  development  of  state  of  the  art nanometrology techniques, including single particle ICP-MS, for the detection and characterization of ENPs in complex media; and (3) we were able to provide novel additions to the knowledge base of the environmental nanotechnology research community both in terms of the analytical methods (e.g. the first time ENP aggregates have been definitively analyzed via single particle ICP-MS) and broadening the scope of “real world” conditions that should be considered when understanding AgENP through their life cycle.

Our findings, which were recently published in Environmental Science and Toxicology (2015, 49: 9665), indicate that the washing detergent chemistry causes dramatic differences in ENP behavior during the initial wash cycle and has ramifications for the dissolution/transformation potential of the Ag ENPs over time (see Figure 2). The use of silver as an  antimicrobial  treatment  in  textiles  continues  to garner  considerable  attention.  Last  year  we  published  a manuscript in ACS Nano that considered how various silver treatments to textiles (conventional and nano) both release  nano-sized  material  after  the  wash  cycle  with  similar chemical  characteristics.  That  study  essentially conveyed that multiple silver treatments would become more similar through the product life cycle. Our newest  work expands this by investigating one silver ENP under various washing conditions thereby creating more varied silver products as an end result.

Fascinating stuff if you’ve been following the issues around nanotechnology and safety.

Towards the end of the newsletter on pp. 46-48, they list opportunities for partnerships, collaboration, and research posts and they list websites where you can check out job opportunities. Good Luck!

Arbro Pharmaceuticals and its bioavailable curcumin

Curcumin (a constituent of the spice turmeric) is reputed to have health benefits and has been used in traditional medicine in Asia (notably India) for millenia. Recently scientists have been trying to render curcumin more effective which means increasing its bioavailability (my Nov. 7, 2014 posting features some of that research). According to an April 29, 2016 Arbro Pharmaceuticals press release, the goal of increased bioavailability has been reached and a product is now available commercially,

Arbro Pharmaceuticals has launched SNEC30, a patented highly bioavailable self-nanoemulsifying curcumin formulation in the dosage of 30mg.

Curcumin is the active ingredient of turmeric or haldi, which has been widely used in traditional medicine and home remedies in India for hundreds of years.

Clinical research conducted over the last 25 years has shown curcumin to be effective against various diseases like cancer, pain, inflammation, arthritis, ulcers, psoriasis, arteriosclerosis, diabetes and many more pro-inflammatory conditions.

Despite its effectiveness against so many medical conditions, scientists have come to believe that curcumin’s true potential has been limited by its poor bioavailability which is caused by the fact that it has poor solubility and extensive pre-systemic metabolism.

Arbro Pharmaceuticals partnered with Jamia Hamdard University to carry out research and develop a novel formulation, which can overcome curcumin’s poor bioavailability. The development project was jointly funded by Arbro and the Department of Science and Technology, Government of India under its DPRP (Drug and Pharmaceutical Research Programme) scheme.

SNEC30 is the outcome of this joint research and is based on a novel self-nanoemulsifying drug delivery systems (SNEDDS) for which patents have been filed and the US patent has been granted.

“There has been tremendous interest in the therapeutic potential of curcumin but its poor bioavailability was a limiting factor, our research group together with Arbro took the challenge and applied nanotechnology to overcome this limitation and achieve highest ever bioavailability for curcumin,” said Dr. Kanchan Kohli, Asst. Prof, Faculty of Pharmacy, Jamia Hamdard University, who is one of the main developers of the formulation.

Nanotechnology is the engineering of functional systems at the molecular scale (CRN – Centre for Responsible Nanotechnology). The name stems from the fact that the structures are in the nano-metre (10-9 mm) in range. In pharmaceutics, nano-formulations are used for targeted drug-delivery, particularly in cancer therapy. It also finds numerous other applications in medicine.

“Just 30mg of curcumin that is contained in one capsule of SNEC30 has shown higher blood levels than what can be achieved by consuming the curcumin content of 1kg of raw haldi or turmeric,” said Mr. Vijay Kumar Arora, Managing Director, Arbro Pharmaceuticals.

About Arbro Pharmaceuticals:

Arbro Pharmaceuticals is a 30-year-old research oriented company with its own research and development, testing and manufacturing facilities. Arbro has been manufacturing and exporting hundreds of formulations under its own brand name to more than 10 countries.

I am not endorsing this product but if you are interested the SNEC30 website is here. I believe Arbro Pharmaceuticals’ headquarters, the company which produces SNEC30, are located in India.