Category Archives: business

Commercializing nanotechnology: Peter Thiel’s Breakout Labs and Argonne National Laboratories

Breakout Labs

I last wrote about entrepreneur Peter Thiel’s Breakout Labs project in an Oct. 26, 2011 posting announcing its inception. An Oct. 6, 2015 Breakout Labs news release (received in my email) highlights a funding announcement for four startups of which at least three are nanotechnology-enabled,

Breakout Labs, a program of Peter Thiel’s philanthropic organization, the Thiel Foundation, announced today that four new companies advancing scientific discoveries in biomedical, chemical engineering, and nanotechnology have been selected for funding.

“We’re always hearing about bold new scientific research that promises to transform the world, but far too often the latest discoveries are left withering in a lab,” said Lindy Fishburne, Executive Director of Breakout Labs. “Our mission is to help a new type of scientist-entrepreneur navigate the startup ecosystem and build lasting companies that can make audacious scientific discoveries meaningful to everyday life. The four new companies joining the Breakout Labs portfolio – nanoGriptech, Maxterial, C2Sense, and CyteGen – embody that spirit and we’re excited to be working with them to help make their vision a reality.”

The future of adhesives: inspired by geckos

Inspired by the gecko’s ability to scuttle up walls and across ceilings due to their millions of micro/nano foot-hairs,nanoGriptech (, based in Pittsburgh, Pa., is developing a new kind of microfiber adhesive material that is strong, lightweight, and reusable without requiring glues or producing harmful residues. Currently being tested by the U.S. military, NASA, and top global brands, nanoGriptech’s flagship product Setex™ is the first adhesive product of its kind that is not only strong and durable, but can also be manufactured at low cost, and at scale.

“We envision a future filled with no-leak biohazard enclosures, ergonomic and inexpensive car seats, extremely durable aerospace adhesives, comfortable prosthetic liners, high performance athletic wear, and widely available nanotechnology-enabled products manufactured less expensively — all thanks to the grippy little gecko,” said Roi Ben-Itzhak, CFO and VP of Business Development for nanoGriptech.

A sense of smell for the digital world

Despite the U.S. Department of Agriculture’s recent goals to drastically reduce food waste, most consumers don’t realize the global problem created by 1.3 billion metric tons of food wasted each year — clogging landfills and releasing unsustainable levels of methane gas into the atmosphere. Using technology developed at MIT’s Swager lab, Cambridge, Ma.-based C2Sense( is developing inexpensive, lightweight hand-held sensors based on carbon nanotubes which can detect fruit ripeness and meat, fish and poultry freshness. Smaller than a half of a business card, these sensors can be developed at very low cost, require very little power to operate, and can be easily integrated into most agricultural supply chains, including food storage packaging, to ensure that food is picked, stored, shipped, and sold at optimal freshness.

“Our mission is to bring a sense of smell to the digital world. With our technology, that package of steaks in your refrigerator will tell you when it’s about to go bad, recommend some recipe options and help build out your shopping list,” said Jan Schnorr, Chief Technology Officer of C2Sense.

Amazing metals that completely repel water

MaxterialTM, Inc. develops amazing materials that resist a variety of detrimental environmental effects through technology that emulates similar strategies found in nature, such as the self-cleaning lotus leaf and antifouling properties of crabs. By modifying the surface shape or texture of a metal, through a method that is very affordable and easy to introduce into the existing manufacturing process, Maxterial introduces a microlayer of air pockets that reduce contact surface area. The underlying material can be chemically the same as ever, retaining inherent properties like thermal and electrical conductivity. But through Maxterial’s technology, the metallic surface also becomes inherently water repellant. This property introduces the superhydrophobic maxterial as a potential solution to a myriad of problems, such as corrosion, biofouling, and ice formation. Maxterial is currently focused on developing durable hygienic and eco-friendly anti-corrosion coatings for metallic surfaces.

“Our process has the potential to create metallic objects that retain their amazing properties for the lifetime of the object – this isn’t an aftermarket coating that can wear or chip off,” said Mehdi Kargar, Co-founder and CEO of Maxterial, Inc. “We are working towards a day when shipping equipment can withstand harsh arctic environments, offshore structures can resist corrosion, and electronics can be fully submersible and continue working as good as new.”

New approaches to combat aging

CyteGen ( wants to dramatically increase the human healthspan, tackle neurodegenerative diseases, and reverse age-related decline. What makes this possible now is new discovery tools backed by the dream team of interdisciplinary experts the company has assembled. CyteGen’s approach is unusually collaborative, tapping into the resources and expertise of world-renowned researchers across eight major universities to focus different strengths and perspectives to achieve the company’s goals. By approaching aging from a holistic, systematic point of view, rather than focusing solely on discrete definitions of disease, they have developed a new way to think about aging, and to develop treatments that can help people live longer, healthier lives.

“There is an assumption that aging necessarily brings the kind of physical and mental decline that results in Parkinson’s, Alzheimer’s, and other diseases. Evidence indicates otherwise, which is what spurred us to launch CyteGen,” said George Ugras, Co-Founder and President of CyteGen.

To date, Breakout Labs has invested in more than two dozen companies at the forefront of science, helping radical technologies get beyond common hurdles faced by early stage companies, and advance research and development to market much more quickly. Portfolio companies have raised more than six times the amount of capital invested in the program by the Thiel Foundation, and represent six Series A valuations ranging from $10 million to $60 million as well as one acquisition.

You can see the original Oct. 6, 2015 Breakout Labs news release here or in this Oct. 7, 2015 news item on Azonano.

Argonne National Labs and Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS)

The US Department of Energy’s Argonne National Laboratory’s Oct. 6, 2015 press release by Greg Cunningham announced two initiatives meant to speed commercialization of nanotechnology-enabled products for the energy storage and other sectors,

Few technologies hold more potential to positively transform our society than energy storage and nanotechnology. Advances in energy storage research will revolutionize the way the world generates and stores energy, democratizing the delivery of electricity. Grid-level storage can help reduce carbon emissions through the increased adoption of renewable energy and use of electric vehicles while helping bring electricity to developing parts of the world. Nanotechnology has already transformed the electronics industry and is bringing a new set of powerful tools and materials to developers who are changing everything from the way energy is generated, stored and transported to how medicines are delivered and the way chemicals are produced through novel catalytic nanomaterials.

Recognizing the power of these technologies and seeking to accelerate their impact, the U.S. Department of Energy’s Argonne National Laboratory has created two new collaborative centers that provide an innovative pathway for business and industry to access Argonne’s unparalleled scientific resources to address the nation’s energy and national security needs. These centers will help speed discoveries to market to ensure U.S. industry maintains a lead in this global technology race.

“This is an exciting time for us, because we believe this new approach to interacting with business can be a real game changer in two areas of research that are of great importance to Argonne and the world,” said Argonne Director Peter B. Littlewood. “We recognize that delivering to market our breakthrough science in energy storage and nanotechnology can help ensure our work brings the maximum benefit to society.”

Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS) will provide central points of contact for companies — ranging from large industrial entities to smaller businesses and startups, as well as government agencies — to benefit from Argonne’s world-class expertise, scientific tools and facilities.

NDW and ACCESS represent a new way to collaborate at Argonne, providing a single point of contact for businesses to assemble tailored interdisciplinary teams to address their most challenging R&D questions. The centers will also provide a pathway to Argonne’s fundamental research that is poised for development into practical products. The chance to build on existing scientific discovery is a unique opportunity for businesses in the nano and energy storage fields.

The center directors, Andreas Roelofs of NDW and Jeff Chamberlain of ACCESS, have both created startups in their careers and understand the value that collaboration with a national laboratory can bring to a company trying to innovate in technologically challenging fields of science. While the new centers will work with all sizes of companies, a strong emphasis will be placed on helping small businesses and startups, which are drivers of job creation and receive a large portion of the risk capital in this country.

“For a startup like mine to have the ability to tap the resources of a place like Argonne would have been immensely helpful,” said Roelofs. “We”ve seen the power of that sort of access, and we want to make it available to the companies that need it to drive truly transformative technologies to market.”

Chamberlain said his experience as an energy storage researcher and entrepreneur led him to look for innovative approaches to leveraging the best aspects of private industry and public science. The national laboratory system has a long history of breakthrough science that has worked its way to market, but shortening that journey from basic research to product has become a growing point of emphasis for the national laboratories over the past couple of decades. The idea behind ACCESS and NDW is to make that collaboration even easier and more powerful.

“Where ACCESS and NDW will differ from the conventional approach is through creating an efficient way for a business to build a customized, multi-disciplinary team that can address anything from small technical questions to broad challenges that require massive resources,” Chamberlain said. “That might mean assembling a team with chemists, physicists, computer scientists, materials engineers, imaging experts, or mechanical and electrical engineers; the list goes on and on. It’s that ability to tap the full spectrum of cross-cutting expertise at Argonne that will really make the difference.”

Chamberlain is deeply familiar with the potential of energy storage as a transformational technology, having led the formation of Argonne’s Joint Center for Energy Storage Research (JCESR). The center’s years-long quest to discover technologies beyond lithium-ion batteries has solidified the laboratory’s reputation as one of the key global players in battery research. ACCESS will tap Argonne’s full battery expertise, which extends well beyond JCESR and is dedicated to fulfilling the promise of energy storage.

Energy storage research has profound implications for energy security and national security. Chamberlain points out that approximately 1.3 billion people across the globe do not have access to electricity, with another billion having only sporadic access. Energy storage, coupled with renewable generation like solar, could solve that problem and eliminate the need to build out massive power grids. Batteries also have the potential to create a more secure, stable grid for countries with existing power systems and help fight global climate disruption through adoption of renewable energy and electric vehicles.

Argonne researchers are pursuing hundreds of projects in nanoscience, but some of the more notable include research into targeted drugs that affect only cancerous cells; magnetic nanofibers that can be used to create more powerful and efficient electric motors and generators; and highly efficient water filtration systems that can dramatically reduce the energy requirements for desalination or cleanup of oil spills. Other researchers are working with nanoparticles that create a super-lubricated state and other very-low friction coatings.

“When you think that 30 percent of a car engine’s power is sacrificed to frictional loss, you start to get an idea of the potential of these technologies,” Roelofs said. “But it’s not just about the ideas already at Argonne that can be brought to market, it’s also about the challenges for businesses that need Argonne-level resources. I”m convinced there are many startups out there working on transformational ideas that can greatly benefit from the help of a place Argonne to bring those ideas to fruition. That is what has me excited about ACCESS and NDW.”

For more information on ACCESS, see:

For more information on NDW, see:

You can read more about the announcement in an Oct. 6, 2015 article by Greg Watry for R&D magazine featuring an interview with Andreas Roelofs.

Cleaning up carbon dioxide pollution in the oceans and elsewhere

I have a mini roundup of items (3) concerning nanotechnology and environmental applications with a special focus on carbon materials.

Carbon-capturing motors

First up, there’s a Sept. 23, 2015 news item on ScienceDaily which describes work with tiny carbon-capturing motors,

Machines that are much smaller than the width of a human hair could one day help clean up carbon dioxide pollution in the oceans. Nanoengineers at the University of California, San Diego have designed enzyme-functionalized micromotors that rapidly zoom around in water, remove carbon dioxide and convert it into a usable solid form.

The proof of concept study represents a promising route to mitigate the buildup of carbon dioxide, a major greenhouse gas in the environment, said researchers. …

A Sept 22, 2015 University of California at San Diego (UCSD) news release by Liezel Labios, which originated the news release, provides more details about the scientists’ hopes and the technology,

“We’re excited about the possibility of using these micromotors to combat ocean acidification and global warming,” said Virendra V. Singh, a postdoctoral scientist in Wang’s [nanoengineering professor and chair Joseph Wang] research group and a co-first author of this study.

In their experiments, nanoengineers demonstrated that the micromotors rapidly decarbonated water solutions that were saturated with carbon dioxide. Within five minutes, the micromotors removed 90 percent of the carbon dioxide from a solution of deionized water. The micromotors were just as effective in a sea water solution and removed 88 percent of the carbon dioxide in the same timeframe.

“In the future, we could potentially use these micromotors as part of a water treatment system, like a water decarbonation plant,” said Kevin Kaufmann, an undergraduate researcher in Wang’s lab and a co-author of the study.

The micromotors are essentially six-micrometer-long tubes that help rapidly convert carbon dioxide into calcium carbonate, a solid mineral found in eggshells, the shells of various marine organisms, calcium supplements and cement. The micromotors have an outer polymer surface that holds the enzyme carbonic anhydrase, which speeds up the reaction between carbon dioxide and water to form bicarbonate. Calcium chloride, which is added to the water solutions, helps convert bicarbonate to calcium carbonate.

The fast and continuous motion of the micromotors in solution makes the micromotors extremely efficient at removing carbon dioxide from water, said researchers. The team explained that the micromotors’ autonomous movement induces efficient solution mixing, leading to faster carbon dioxide conversion. To fuel the micromotors in water, researchers added hydrogen peroxide, which reacts with the inner platinum surface of the micromotors to generate a stream of oxygen gas bubbles that propel the micromotors around. When released in water solutions containing as little as two to four percent hydrogen peroxide, the micromotors reached speeds of more than 100 micrometers per second.

However, the use of hydrogen peroxide as the micromotor fuel is a drawback because it is an extra additive and requires the use of expensive platinum materials to build the micromotors. As a next step, researchers are planning to make carbon-capturing micromotors that can be propelled by water.

“If the micromotors can use the environment as fuel, they will be more scalable, environmentally friendly and less expensive,” said Kaufmann.

The researchers have provided an image which illustrates the carbon-capturing motors in action,

Nanoengineers have invented tiny tube-shaped micromotors that zoom around in water and efficiently remove carbon dioxide. The surfaces of the micromotors are functionalized with the enzyme carbonic anhydrase, which enables the motors to help rapidly convert carbon dioxide to calcium carbonate. Image credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.

Nanoengineers have invented tiny tube-shaped micromotors that zoom around in water and efficiently remove carbon dioxide. The surfaces of the micromotors are functionalized with the enzyme carbonic anhydrase, which enables the motors to help rapidly convert carbon dioxide to calcium carbonate. Image credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.

Here’s a link to and a citation for the paper,

Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers by Murat Uygun, Virendra V. Singh, Kevin Kaufmann, Deniz A. Uygun, Severina D. S. de Oliveira, and oseph Wang. Angewandte Chemie DOI: 10.1002/ange.201505155 Article first published online: 4 SEP 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

Carbon nanotubes for carbon dioxide capture (carbon capture)

In a Sept. 22, 2015 posting by Dexter Johnson on his Nanoclast blog (located on the IEEE [Institute for Electrical and Electronics Engineers] website) describes research where carbon nanotubes are being used for carbon capture,

Now researchers at Technische Universität Darmstadt in Germany and the Indian Institute of Technology Kanpur have found that they can tailor the gas adsorption properties of vertically aligned carbon nanotubes (VACNTs) by altering their thickness, height, and the distance between them.

“These parameters are fundamental for ‘tuning’ the hierarchical pore structure of the VACNTs,” explained Mahshid Rahimi and Deepu Babu, doctoral students at the Technische Universität Darmstadt who were the paper’s lead authors, in a press release. “This hierarchy effect is a crucial factor for getting high-adsorption capacities as well as mass transport into the nanostructure. Surprisingly, from theory and by experiment, we found that the distance between nanotubes plays a much larger role in gas adsorption than the tube diameter does.”

Dexter provides a good and brief summary of the research.

Here’s a link to and a citation for the paper,

Double-walled carbon nanotube array for CO2 and SO2 adsorption by Mahshid Rahimi, Deepu J. Babu, Jayant K. Singh, Yong-Biao Yang, Jörg J. Schneider, and Florian Müller-Plathe. J. Chem. Phys. 143, 124701 (2015);

This paper is open access.

The market for nanotechnology-enabled environmental applications

Coincident with stumbling across these two possible capture solutions, I found this Sept. 23, 2015 BCC Research news release,

A groundswell of global support for developing nanotechnology as a pollution remediation technique will continue for the foreseeable future. BCC Research reveals in its new report that this key driver, along with increasing worldwide concerns over removing pollutants and developing alternative energy sources, will drive growth in the nanotechnology environmental applications market.

The global nanotechnology market in environmental applications is expected to reach $25.7 billion by 2015 and $41.8 billion by 2020, conforming to a five-year (2015-2020) compound annual growth rate (CAGR) of 10.2%. Air remediation as a segment will reach $10.2 billion and $16.7 billion in 2015 and 2020, respectively, reflecting a five-year CAGR of 10.3%. Water remediation as a segment will grow at a five-year CAGR of 12.4% to reach $10.6 billion in 2020.

As nanoparticles push the limits and capabilities of technology, new and better techniques for pollution control are emerging. Presently, nanotechnology’s greatest potential lies in air pollution remediation.

“Nano filters could be applied to automobile tailpipes and factory smokestacks to separate out contaminants and prevent them from entering the atmosphere. In addition, nano sensors have been developed to sense toxic gas leaks at extremely low concentrations,” says BCC research analyst Aneesh Kumar. “Overall, there is a multitude of promising environmental applications for nanotechnology, with the main focus area on energy and water technologies.”

You can find links to the report, TOC (table of contents), and report overview on the BCC Research Nanotechnology in Environmental Applications: The Global Market report webpage.

Business in Vancouver discovers nanotechnology

There’ve been two articles in the Vancouver (Canada) newspaper, Business in Vancouver by Tyler Orton about a Simon Fraser University spin-off (start up) company, Nanotech Security. I first mentioned the not-yet-named company in a January 17, 2011 posting about proposed anti-counterfeiting measures based on the structures present on the Blue Morpho butterfly’s wings.

Orton’s Feb. 24, 2015 piece for Business in Vancouver provides an update on the company and on some of the business issues associated with a new technology and the strategy being used to introduce it,

Colour-shifting optical film has been the industry standard for banknote security since the 1990s. Depending on the angle of view, colours change on security features printed on bills in a way that the average person can recognize.

Because the nanotechnology has yet to be fully commercialized, the optical film side of the business is growing the most.

… increased demand for the optical film products prompted Nanotech to add a second shift at its Quebec cellulose facility, which was acquired – along with the legacy business – from North Vancouver’s Fortress Paper (TSX:FTP) in August.

Fortress Paper CEO Chad Wasilenkoff said when discussions began over the sale of Fortress Optical Features (FOF) he was immediately drawn to Nanotech’s butterfly technology.

“Getting a brand-new security feature that has not been used anywhere before … [banks] are just not willing to take a chance on new things in general when it comes to banknotes,” he told Business in Vancouver.

“It will take a little while to come to fruition, but we think putting these two entities [Nanotech and FOF] together will definitely fast-track that.”

Counterfeiting hit its most recent peak in 2004, when 470 fake notes per million were detected across the country, according to a 2011 Bank of Canada (BoC) study.

Wasilenkoff, whose company operates another banknote security firm in Switzerland, said he was happy with the return on investment after Fortress bought the BoC assets for  $750,000 and sold them to Nanotech three years later for $17.5 million.

“We were able to find a solution that was really synergistic for both companies,” he said, adding that Fortress will receive preferential treatment on new security features Nanotech develops.

LeRoux [Nanotech chief development officer Igi LeRoux] added that acquiring the legacy business was necessary if the nanotechnology was to be taken seriously in an industry that greets upstart companies with skepticism.

“[Now] We have an established network, we have an established market base, we have an existing product and – most importantly – we have an existing reputation in the industry.”

Orton’s Aug. 28, 2015 piece for Business in Vancouver builds on his Feb. work (Note: Links have been removed),

Banknotes implanted with nanotechnology, bills printed with pinhead-sized images at maximum resolution or even coins that can store of data.

… it’s not the kind of out-there concepts that only exists in the mind of the CEO of Nanotech Security [Doug Blakeway].

The Burnaby-based banknote security firm has been working non-stop to get these anti-counterfeiting measures onto the streets as quickly as possible and is preparing to ramp up production and sales of its technology after securing $2.6 million in its latest round of fundraising that closed Wednesday (August 26 [2015]).

Blakeway said the plan is to converge the nanotechnology and the optical film technology soon. It’s a measure he said is necessary to introduce the nanotechnology to issuing authorities that may be skeptical about the new product.

It probably won’t be until November before Nanotech discloses which countries are using its technology. Issuing authorities, Blakeway said, are reluctant to reveal exactly what measures they’re taking to fight counterfeiting.

“You can talk about the top 10 issuing authorities or the G8 issuing authorities,” he said.

But Nanotech isn’t stopping only at imprinting bills with the microscopic holes.

Mints began asking last year if it could transfer its technology onto coins in a stamping operation without any extra cost, save for the dye they use.

Moving forward, the coins will be able to store data through an image that’s carried through light waves.

I trust someone will notify the US government about this proposed nanotechnology-enabled coinage. There have been concerns about Canadian coinage in the past as noted in a May 7, 2007 article in by Ted Bridis (Associated Press),

An odd-looking Canadian coin with a bright red flower was the culprit behind the U.S. Defence Department’s false espionage warning earlier this year, the Associated Press has learned.

The odd-looking – but harmless – “poppy coin” was so unfamiliar to suspicious U.S. Army contractors travelling in Canada that they filed confidential espionage accounts about them. The worried contractors described the coins as “anomalous” and “filled with something man-made that looked like nano-technology,” according to once-classified U.S. government reports and e-mails obtained by the AP.

The silver-coloured 25-cent piece features the red image of a poppy – Canada’s flower of remembrance – inlaid over a maple leaf. The unorthodox quarter is identical to the coins pictured and described as suspicious in the contractors’ accounts.

The supposed nano-technology actually was a conventional protective coating the Royal Canadian Mint applied to prevent the poppy’s red color from rubbing off. The mint produced nearly 30 million such quarters in 2004 commemorating Canada’s 117,000 war dead.

“It did not appear to be electronic (analog) in nature or have a power source,” wrote one U.S. contractor, who discovered the coin in the cup holder of a rental car. “Under high power microscope, it appeared to be complex consisting of several layers of clear, but different material, with a wire like mesh suspended on top.”

The confidential accounts led to a sensational warning from the Defence Security Service, an agency of the Defence Department, that mysterious coins with radio frequency transmitters were found planted on U.S. contractors with classified security clearances on at least three separate occasions between October 2005 and January 2006 as the contractors travelled through Canada.

It seems those army contractors were prescient about nanotechnology-enabled coins. As for the potential to use these coins for spying, I leave that speculation to those who know more about the technology.

Self-assembling copper and physiology

An Aug. 24, 2015 news item on Nanowerk highlights work at Louisiana Tech University (US) on self-assembling copper nanocomposites in liquid form,

Faculty at Louisiana Tech University have discovered, for the first time, a new nanocomposite formed by the self-assembly of copper and a biological component that occurs under physiological conditions, which are similar those found in the human body and could be used in targeted drug delivery for fighting diseases such as cancer.

The team, led by Dr. Mark DeCoster, the James E. Wyche III Endowed Associate Professor in Biomedical Engineering at Louisiana Tech, has also discovered a way for this synthesis to be carried out in liquid form. This would allow for controlling the scale of the synthesis up or down, and to grow structures with larger features, so they can be observed.

An Aug. 24, 2015 Louisiana Tech University news release by Dave Guerin, which originated the news item, describes possible future  applications and the lead researcher’s startup company,

“We are currently investigating how this new material interacts with cells,” said DeCoster. “It may be used, for example for drug delivery, which could be used in theory for fighting diseases such as cancer. Also, as a result of the copper component that we used, there could be some interesting electronics, energy, or optics applications that could impact consumer products. In addition, copper has some interesting and useful antimicrobial features.

“Finally, as the recent environmental spill of mining waste into river systems showed us, metals, including copper, can sometimes make their way into freshwater systems, so our newly discovered metal-composite methods could provide a way to “bind up” unwanted copper into a useful or more stable form.”

DeCoster said there were two aspects of this discovery that surprised him and his research team. First, they found that once formed, these copper nanocomposites were incredibly stable both in liquid or dried form, and remained stable for years. “We have been carrying out this research for at least four years and have a number of samples that are at least two years old and still stable,” DeCoster said.

Second, DeCoster’s group was very surprised that these composites are resistant to agglomeration, which is the process by which material clumps or sticks together.

“This is of benefit because it allows us to work with individual structures in order to separate or modify them chemically,” explains DeCoster. “When materials stick together and clump, as many do, it is much harder to work with them in a logical way. Both of these aspects, however, fit with our hypothesis that the self-assembly that we have discovered is putting positively charged copper together with negatively charged sulfur-containing cystine.”

The research discovery was a team effort that included DeCoster and Louisiana Tech students at the bachelor, master and doctoral level. “The quality of my team in putting together a sustained effort to figure out what was needed to reproducibly carry out the new self-assembly methods and to simplify them really speaks well as to what can be accomplished at Louisiana Tech University,” DeCoster said. “Furthermore, the work is very multi-disciplinary, meaning that it required nanotechnology as well as biological and biochemical insights to make it all work, as well as some essential core instrumentation that we have at Louisiana Tech.”

DeCoster says the future of this research has some potentially high impacts. He and his team are speaking with colleagues and collaborators about how to test these new nanocomposites for applications in bioengineering and larger composites such as materials that would be large enough to be hand-held.

“Our recent publication of the work could generate some interest and new ideas,” said DeCoster. “We are working on new proposals to fund the research and to keep it moving forward. We are currently making these materials on an ‘as needed’ basis, knowing that they can be stored once generated, and if we discover new uses for the nanocomposites, then applications for the materials could lead to income generation through a start-up company that I have formed.”

Here’s a link to and a citation for the paper,

MediumGeneration of Scalable, Metallic High-Aspect Ratio Nanocomposites in a Biological Liquid Medium by Kinsey Cotton Kelly, Jessica R. Wasserman, Sneha Deodhar, Justin Huckaby, and Mark A. DeCoster. J. Vis. Exp. [Journal of Visual Experimentation; JoVE] (101), e52901, doi:10.3791/52901 (2015).

This paper/video is behind a paywall.

Scaling graphene production up to industrial strength

If graphene is going to be a ubiquitous material in the future, production methods need to change. An Aug. 7, 2015 news item on Nanowerk announces a new technique to achieve that goal,

Producing graphene in bulk is critical when it comes to the industrial exploitation of this exceptional two-dimensional material. To that end, [European Commission] Graphene Flagship researchers have developed a novel variant on the chemical vapour deposition process which yields high quality material in a scalable manner. This advance should significantly narrow the performance gap between synthetic and natural graphene.

An Aug. 7, 2015 European Commission Graphene Flagship press release by Francis Sedgemore, which originated the news item, describes the problem,

Media-friendly Nobel laureates peeling layers of graphene from bulk graphite with sticky tape may capture the public imagination, but as a manufacturing process the technique is somewhat lacking. Mechanical exfoliation may give us pristine graphene, but industry requires scalable and cost-effective production processes with much higher yields.

On to the new method (from the press release),

Flagship-affiliated physicists from RWTH Aachen University and Forschungszentrum Jülich have together with colleagues in Japan devised a method for peeling graphene flakes from a CVD substrate with the help of intermolecular forces. …

Key to the process is the strong van der Waals interaction that exists between graphene and hexagonal boron nitride, another 2d material within which it is encapsulated. The van der Waals force is the attractive sum of short-range electric dipole interactions between uncharged molecules.

Thanks to strong van der Waals interactions between graphene and boron nitride, CVD graphene can be separated from the copper and transferred to an arbitrary substrate. The process allows for re-use of the catalyst copper foil in further growth cycles, and minimises contamination of the graphene due to processing.

Raman spectroscopy and transport measurements on the graphene/boron nitride heterostructures reveals high electron mobilities comparable with those observed in similar assemblies based on exfoliated graphene. Furthermore – and this comes as something of a surprise to the researchers – no noticeable performance changes are detected between devices developed in the first and subsequent growth cycles. This confirms the copper as a recyclable resource in the graphene fabrication process.

“Chemical vapour deposition is a highly scalable and cost-efficient technology,” says Christoph Stampfer, head of the 2nd Institute of Physics A in Aachen, and co-author of the technical article. “Until now, graphene synthesised this way has been significantly lower in quality than that obtained with the scotch-tape method, especially when it comes to the material’s electronic properties. But no longer. We demonstrate a novel fabrication process based on CVD that yields ultra-high quality synthetic graphene samples. The process is in principle suitable for industrial-scale production, and narrows the gap between graphene research and its technological applications.”

With their dry-transfer process, Banszerus and his colleagues have shown that the electronic properties of CVD-grown graphene can in principle match those of ultrahigh-mobility exfoliated graphene. The key is to transfer CVD graphene from its growth substrate in such a way that chemical contamination is avoided. The high mobility of pristine graphene is thus preserved, and the approach allows for the substrate material to be recycled without degradation.

Here’s a link to and citation for the paper,

Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper by Luca Banszerus, Michael Schmitz, Stephan Engels, Jan Dauber, Martin Oellers, Federica Haupt, Kenji Watanabe, Takashi Taniguchi, Bernd Beschoten, and Christoph Stampfer. Science Advances  31 Jul 2015: Vol. 1, no. 6, e1500222 DOI: 10.1126/sciadv.1500222

This article appears to be open access.

For those interested in finding out more about chemical vapour deposition (CVD), David Chandler has written a June 19, 2015 article for the Massachusetts Institute of Technology (MIT) titled:  Explained: chemical vapor deposition (Technique enables production of pure, uniform coatings of metals or polymers, even on contoured surfaces.)

Carrot-based helmets: a nanocellulose commercialization story

NanoCelluComp, a European Commission-funded project, whose name bears a close resemblance to a Scottish company, CelluComp, ended last year (my March 5, 2014 post). Both, NanoCelluComp and CelluComp, were/are involved in research featuring carrots and nanocellulose.

An Aug. 6, 2015 news item on ScienceDaily describes some Swiss/Scottish research into using carrot nanofibers in helmets,

Crackpot idea or recipe for success? This is a question entrepreneurs often face. Is it worth converting the production process to a new, ecologically better material? Empa [Swiss Federal Laboratories for Materials Science and Technology or Eidgenössische Materialprüfungs- und Forschungsansta] has developed an analysis method that enables companies to simulate possible scenarios — and therefore avoid bad investments. Here’s an example: Nanofibers made of carrot waste from the production of carrot juice, which can be used to reinforce synthetic parts.

All over the world, research is being conducted into biodegradable and recyclable synthetics. However, fiber-reinforced components remain problematic — if glass or carbon fibers are used. Within the scope of an EU research project, the Scottish company Cellucomp Limited has now developed a method to obtain nanofibers from carrot waste. [emphasis mine] These fibers would be both cost-effective and biodegradable. However, is the method, which works in the lab, also marketable on a large scale?

Here’s a composite image illustrating the notion of a carrot-based helmet,

Motorcycle helmets consist of fiber-reinforced synthetic material. Instead of glass fibers, a biological alternative is now also possible: plant fibers from the production of carrot juice. Empa researchers are now able to analyze whether this kind of production makes sense from an ecological and economical perspective – before money is actually invested in production plants.  Photo:, composite photo: Empa

Motorcycle helmets consist of fiber-reinforced synthetic material. Instead of glass fibers, a biological alternative is now also possible: plant fibers from the production of carrot juice. Empa researchers are now able to analyze whether this kind of production makes sense from an ecological and economical perspective – before money is actually invested in production plants.
Photo:, composite photo: Empa

An Aug. 6, 2015 Empa press release (also on EurekAlert), which originated the news item, provides more details abut the drive to commercialize this nanocellulose product,

An MPAS (multi-perspective application selection) method developed at Empa helps identify the industrial sectors where new materials might be useful from a technical and economical perspective. At the same time, MPAS also considers the ecological aspect of these new materials. The result for our example: Nanofibers made of carrot waste might be used in the production of motorcycle helmets or side walls for motorhomes in the future.

Three-step analysis

In order to clarify a new material’s market potential, Empa researchers Fabiano Piccinno, Roland Hischier and Claudia Som proceed in three steps for the MPAS method. First of all, the field of possible applications is defined: Which applications come into question based on the technical properties and what categories can they be divided into? Can the new material replace an existing one?

The second step concerns the technical feasibility and market potential: Can the material properties required be achieved with the technical process? Might the product quality vary from one production batch to the next? Can the lab process be upgraded to an industrial scale cost-effectively? Is the material more suited to the low-cost sector or expensive luxury goods? And finally: Does the product meet the legal standards and the customers’ certification needs?

In the third step, the ecological aspect is eventually examined: Is this new material for the products identified really more environmentally friendly – once all the steps from product creation to recycling have been factored in? Which factors particularly need to be considered during production stage to manufacture the material in as environmentally friendly a way as possible?

Industrial production on a five-ton scale – calculated theoretically

The MPAS approach enables individual scenarios for a future production to be calculated with an extremely high degree of accuracy. In the case of the carrot waste nanofibers, for instance, it is crucial whether five tons of fresh carrots or only 209 kilograms of carrot waste (fiber waste from the juicing process) are used as the base material for their production. The issue of whether the solvent is ultimately recycled or burned affects the production costs. And the energy balance depends on how the enzymes that loosen the fibers from the carrots are deactivated. In the lab, this takes place via heat; for production on an industrial level, the use of bleaching agents would be more cost-effective.

Conclusion: six possible applications for “carrot fibers“

For fiber production from carrot waste, the MPAS analysis identified six possible customer segments for the Scottish manufacturer Cellucomp that are worth taking a closer look at: Protective equipment and devices for recreational sport, special vehicles, furniture, luxury consumer goods and industrial manufacturing. The researchers listed the following examples: Motorcycle helmets and surfboards, side walls for motorhomes, dining tables, high-end loudspeaker boxes and product protection mats for marble-working businesses. Similarly detailed analyses can also be conducted for other renewable materials – before a lot of money is actually invested in production plants.

There are other attempts to commercialize nanocellulose (as I understand it, cellulose is one of the most common materials on earth and can be derived from several sources including trees, bananas, pineapples, and more) mentioned in my July 30, 2015 post. I will repeat a question from that post, where are the Canadian research efforts to develop and commercialize nanocellulose? If you have information, please do let me know.

Time Warner Cable donates $10,000 for Boys and Girls Clubs’ nanotechnology workshops

Time Warner Cable (TWC) has partnered with Omni Nano to deliver nanotechnology education workshops to children, ages 11 to 17. From an Aug. 4, 2015 news item on Azonano,

Omni Nano is honored to announce a partnership with Time Warner Cable’s (TWC) Connect a Million Minds initiative to educate our youth about nanotechnology and opportunities in STEM (science, technology, engineering, and math) careers.

This program will deliver a nanotechnology workshop to twenty Boys & Girls Clubs in Los Angeles County, reaching about 500 kids from ages 11-17 (grades 7-12) and from diverse ethnic and socioeconomic backgrounds.

Nanotechnology is a highly interdisciplinary STEM field. Growing rapidly, nanotechnology has been forecasted to become a trillion dollar industry and provide 6 million jobs by 2020.

An Aug. 3, 2015 Omni Nano news release on MarketWired, which originated the news item, provides a few more details about the workshop, which has been presented previously,

“Nanotechnology will make a serious impact on our world. Omni Nano teaches students about ‘life-changing’ applications of nanotechnology — including personalized medicine, new cancer treatments, clean and sustainable energy, widely-accessible clean water, and high-tech electronics,” said Dr. Marco Curreli, Founder and Executive Director of Omni Nano. “Our goal is to inspire students to continue learning STEM in order to become the next generation of scientists and engineers that America needs.”

The workshop program provides a 60 minute, multimedia presentation with hands on activities introducing nanotechnology to the participants. These workshops focus on the practical applications of nanotechnology, engaging students by explaining cutting-edge technologies using basic science concepts. By teaching youth about new products, developments, and discoveries, they learn the science and engineering behind innovation.

Since its start in 2013, Omni Nano’s Discover Nanotechnology program has offered over 70 workshops, inspiring over 2,200 students, at public and private schools, after-school programs, and youth conferences.

The Los Angeles County Alliance for Boys and Girls Clubs has already provided several Clubs with this program with outstanding success and will be assisting with coordinating and scheduling these workshops for the feature. Support from TWC for the STEM nanotechnology program will run until the end of February 2016.

Dr. Curreli commented, “Support from technology companies like Time Warner Cable is critical to disseminate and explain the science behind modern technologies to our youth, and put them on a path to pursue STEM careers. This is certainly an important investment TWC is putting into our local youth.”

There is some additional information in the news release about the the partners in this initiative,

About Omni Nano:

Omni Nano creates educational resources and programs to teach nanotechnology at the high school level and inspire today’s youth to become the scientists and engineers of tomorrow. Omni Nano believes that introducing nanotechnology to students while they are still enrolled in their secondary studies will better prepare them for their professional careers in the globalized, high-tech economy of the 21st Century. Omni Nano provides nanotechnology workshops to public and private schools, after-school programs, and youth conferences through their Discover Nanotechnology program. Discover Nanotechnology workshops expose students to modern uses of STEM/nanotechnology, showing them the innovative, exciting, creative, and explorative side of STEM that can make real and significant impacts on our world. To learn more about Omni Nano and their nanotechnology educational resources, visit

About Time Warner Cable:

Time Warner Cable Inc. TWC, +0.98% [link removed] is among the largest providers of video, high-speed data, and voice services in the United States, connecting 15 million customers to entertainment, information and each other. Time Warner Cable Business Class offers data, video, and voice services to businesses of all sizes, cell tower backhaul services to wireless carriers and enterprise-class, cloud-enabled hosting, managed applications and services. Time Warner Cable Media, the advertising sales arm of Time Warner Cable, offers national, regional and local companies innovative advertising solutions. More information about the services of Time Warner Cable is available at, and

About Connect a Million Minds:

Time Warner Cable’s (TWC) Connect a Million Minds (CAMM) is a five-year, $100 million cash and in-kind philanthropic initiative to address America’s declining proficiency in science, technology and math (STEM), which puts our children at risk of not competing successfully in a global economy. Using its media assets, TWC creates awareness of the issue and inspires students to develop the STEM skills they need to become the problem solvers of tomorrow. TWC’s national CAMM partners are CSAS (Coalition for Science After School) and FIRST (For Inspiration and Recognition of Science and Technology). Local TWC markets are activating CAMM across the country with community-specific programs and partnerships. To learn more about Connect a Million Minds, visit

About Los Angeles County Alliance for Boys and Girls Clubs:

The Los Angeles County Alliance for Boys & Girls Clubs is made up of 27 Boys & Girls Club organizations serving over 140,000 youth ages 6-18 throughout Los Angeles County. Boys and Girls Clubs provide youth development programs during critical non-school hours. Los Angeles County Alliance for Boys & Girls Clubs is a unified and collaborative force representing all 27 Clubs with the purpose of securing resources, marketing, and financial support to further the efforts of individual Clubs and increase the impact and reach in their communities. More information about the Los Angeles County Alliance for Boys & Girls Clubs is available at

While I’m intrigued by a news release concerning an educational initiative that includes a link to a webpage tracking the corporate partner’s (TWC) stock price, I see no need to include the link here.

Brazilian company encapsulates silver nanoparticles in milk packaging for longer product life

They’ve managed to double the shelf life for fresh milk from seven days to 15 be encapsulating silver nanoparticles in ceramic microparticles in packaging for fresh milk. From an Aug. 4, 2015 news item on Nanowerk,

Agrindus, an agribusiness company located in São Carlos, São Paulo state, Brazil, has increased the shelf life of grade A pasteurized fresh whole milk from seven to 15 days.

This feat was achieved by incorporating silver-based microparticles with bactericidal, antimicrobial and self-sterilizing properties into the rigid plastic bottles used as packaging for the milk.

The technology was developed by Nanox, also located in São Carlos. Supported by FAPESP’s Innovative Research in Small Business (PIPE) program, the nanotechnology company is a spinoff from the Center for Research and Development of Functional Materials (CDFM), one of the Research, Innovation and Dissemination Centers (RIDCs) supported by São Paulo Research Foundation (FAPESP).

“We already knew use of our antimicrobial and bactericidal material in rigid or flexible plastic food packaging improves conservation and extends shelf life. So we decided to test it in the polyethylene used to bottle grade A fresh milk in Brazil. The result was that we more than doubled the product’s shelf life solely by adding the material to the packaging, without mixing any additives with the milk”, said the Nanox CEO, Luiz Pagotto Simões.

An Aug. 4, 2015 Fundação de Amparo à Pesquisa do Estado de São Paulo news release on EurekAlert, which originated the news item, expands on the theme,

According to Simões, the microparticles are included as a powder in the polyethylene preform that is used to make plastic bottles by blow or injection molding. The microparticles are inert, so there is no risk of their detaching from the packaging and coming into contact with the milk.

Tests of the material’s effectiveness in extending the shelf life of fresh milk were performed for a year by Agrindus, Nanox and independent laboratories. “Only after shelf life extension had been certified did we decide to bring the material to market,” Simões said.

In addition to Agrindus, the material is also being tested by two other dairies that distribute fresh milk in plastic bottles in São Paulo and Minas Gerais and by dairies in the Brazilian southern region that sell fresh milk in flexible plastic packaging.

“In milk bags, the material is capable of extending shelf life from four to ten days,” he said.

Nanox plans to market the product in Europe and the United States, where much larger volumes of fresh milk are consumed than in Brazil.

The kind of milk most consumed in Brazil is ultra-high temperature (UHT), or “long life” milk, which is sterilized at temperatures ranging from 130°C to 150°C for two to four seconds to kill most of the bacterial spores. Unopened UHT milk has a shelf life of up to four months at room temperature.

Whole milk, known as grade A in Brazil, is pasteurized at much lower temperatures by the farmer and requires refrigeration. “Doubling the shelf life of whole milk translates into significant benefits in terms of logistics, storage, quality and food safety,” Simões said.

Countless applications

The silver-based microparticles developed by Nanox are currently being used in several other products other than packaging for fresh milk, including plastic utensils, PVC film for wrapping food, toilet seats, shoe insoles, hair dryers and flatirons, paints, resins, and ceramics, as well as coatings for medical and dental instruments such as grippers, drills and scalpels.

But the company’s largest markets today are makers of rugs, carpets, and white goods, such as refrigerators, drinking fountains and air conditioners.

“We’ve supplied several products to white goods manufacturers since 2007,” Simões said. “This material is shipped to the leading players in the market.” Nanox currently exports the product to 12 countries via local distributors in Chile, China, Colombia, Italy, Mexico and Japan, among others.

The company now wants to enter the United States, having won approval in 2013 from the Food & Drug Administration (FDA) to market the bactericidal material for use in food packaging.

“We’ve applied for clearance by the EPA [the Environmental Protection Agency] so that we can sell to a larger proportion of the US market,” Simões said.

Neither Brazil nor the US has clear legislation on the use of particles at the nanometer scale [a billionth of a meter] in products that involve contact with food, so the company uses nanotechnology processes that result in silver-based particles at the micrometer scale [a millionth of a meter], he said.

The core of the technology consists of coating ceramic particles made of silica with silver nanoparticles. The silver nanoparticles bond with the ceramic matrix to form a micrometre scale composite with bactericidal properties.

“The combination of silver particles with a ceramic matrix produces synergistic effects. Silver has bactericidal properties, and while silica doesn’t, it boosts those of the silver and helps control the release of silver particles to kill bacteria,” he said.

I wonder if they’ve done any ‘life cycle’ analysis. In other words, what happens to the packaging and those encapsulated silver nanoparticles when the milk jugs (and Nanox’s other silver-based products) are recycled or put in the garbage dump?

You can find out more about Nanox (English language version) here and about Agrindus, a division of Letti?, (you will need Portuguese language reading skills) here.

Hopes for Malaysia’s electrical and electronics industry and the opening of the Nano Semiconductor Technology Centre

A July 31, 2015 article for The Sun Daily by Ee Ann Nee announces four memorandums of understanding (MOU) featuring nanotechnology and signed by Malaysia’s Science, Technology and Innovation Ministry deputy secretary-general Dr Zulkifli Mohamed Hashim,

The export for Malaysia’s electrical and electronics (E&E) products is expected to increase by 20-30% by 2020 with nanotechnology and the rise of Internet of Things (IoT).

Science, Technology and Innovation Ministry deputy secretary-general Dr Zulkifli Mohamed Hashim said in 2014, the total export for E&E products was RM256 billion [Malaysian Ringgit], driven by strong global demand for new semiconductor applications and the rapid emergence of IoT.

The first MoU signed yesterday was for a technology partnership between nanotechnology commercialisation agency NanoMalaysia Bhd and Mimos will see the two agencies jointly undertake R&D and commercialisation of technology products.

The second MoU was a tripartite collaboration between NanoMalaysia, Mimos and Penchem Technologies Sdn Bhd for R&D and commercialisation of smart sensors and advanced material applications for electronic products.

The third and fourth MoU were signed between Mimos and the University of Malaya and Multimedia University respectively for research, design and development of grapheme, a carbon-based nanomaterial with superlative properties.

Good luck to them!

The most recent posting here featuring Malaysia was a Jan. 26, 2015 piece about a Malaysian nanotechnology scientist’s award from an Islamic organization (Islamic Educational Scientific and Cultural Organization [ISESCO])  that parallels UNESCO (United Nations Educational, Scientific and Cultural Organization)

The Australians talk about wood and nanotechnology

It’s a bit of a mystery but somehow a wood product from Australia is nanotechnology-enabled. The company is RT Holdings (apparently no website) and the speaker, Albert Golier, is the chairman of the board for the company (since April 2015). According to the interview on the Breakfast with Stuart Stansfield programme for 891 ABC (Australian Broadcasting Corporation) Adelaide, the idea for the product was inspired by bamboo, which is woven and glued together to create flooring products. Golier whose previous experience is in the field of electronics was surprised (and somewhat horrified) to learn that only about 30% of a tree is actually used after processing, the rest being waste. The first part of the July 14, 2015 interview was posted here. The second part (July 15, 2015) is here. The third and final part (July 16, 2015) of the interview is here.

I have found some company information for RT Holdings, it was officially registered in 2014 according to There’s also this 2014 RT Holdings slide deck on the Forest & Wood Products of Australia website.