Category Archives: business

Nanotechnology-enabled electronic tattoo from Tel Aviv University (Israel)

This is the first stick-on, nanotechnology-enabled tattoo I’ve seen that’s designed for the face. From a July 11, 2016 news item on ScienceDaily,

A new temporary “electronic tattoo” developed by Tel Aviv University [TAU] that can measure the activity of muscle and nerve cells researchers is poised to revolutionize medicine, rehabilitation, and even business and marketing research.

A July 11, 2016 American Friends of Tel Aviv University news release (also on EurekAlert), which originated the news item, provides more detail (Note: Some formatting has been changed),

The tattoo consists of a carbon electrode, an adhesive surface that attaches to the skin, and a nanotechnology-based conductive polymer coating that enhances the electrode’s performance. It records a strong, steady signal for hours on end without irritating the skin.

The electrode, developed by Prof. Yael Hanein, head of TAU’s Center for Nanoscience and Nanotechnology, may improve the therapeutic restoration of damaged nerves and tissue — and may even lead to new insights into our emotional life.

Prof. Hanein’s research was published last month in Scientific Reports and presented at an international nanomedicine program held at TAU.

“Stick it on and forget about it”

One major application of the new electrode is the mapping of emotion by monitoring facial expressions through electric signals received from facial muscles. “The ability to identify and map people’s emotions has many potential uses,” said Prof. Hanein. “Advertisers, pollsters, media professionals, and others — all want to test people’s reactions to various products and situations. Today, with no accurate scientific tools available, they rely mostly on inevitably subjective questionnaires.

“Researchers worldwide are trying to develop methods for mapping emotions by analyzing facial expressions, mostly via photos and smart software,” Prof. Hanein continued. “But our skin electrode provides a more direct and convenient solution.”

The device was first developed as an alternative to electromyography, a test that assesses the health of muscles and nerve cells. It’s an uncomfortable and unpleasant medical procedure that requires patients to lie sedentary in the lab for hours on end. Often a needle is stuck into muscle tissue to record its electrical activity, or patients are swabbed with a cold, sticky gel and attached to unwieldy surface electrodes.

“Our tattoo permits patients to carry on with their daily routines, while the electrode monitors their muscle and nerve activity,” said Prof. Hanein. “The idea is: stick it on and forget about it.”

Applications for rehabilitation and more

According to Prof. Hanein, the new skin electrode has other important therapeutic applications. The tattoo will be used to monitor the muscle activity of patients with neurodegenerative diseases in a study at Tel Aviv Medical Center.

“But that’s not all,” said Prof. Hanein. “The physiological data measured in specific muscles may be used in the future to indicate the alertness of drivers on the road; patients in rehabilitation following stroke or brain injury may utilize the ‘tattoo’ to improve muscle control; and amputees may employ it to move artificial limbs with remaining muscles.”

As it often is, the funding sources prove to be interesting (from the news release),

The electrode is the product of a European Research Council (ERC) project and received support from the BSMT Consortium of Israel’s Ministry of Economy.

The involvement of the European Research Council underlines the very close relationship Israel has to the European Union even though it is not an official member.

Here’s a link to and a citation for the paper,

Temporary-tattoo for long-term high fidelity biopotential recordings by Lilach Bareket, Lilah Inzelberg, David Rand, Moshe David-Pur, David Rabinovich, Barak Brandes & Yael Hanein. Scientific Reports 6, Article number: 25727 (2016)  doi:10.1038/srep25727 Published online: 12 May 2016

This paper is open access.

RUSNANO commended for its strategies

A June 29, 2016 Frost & Sullivan press release on PR Newswire provides an overview of RUSNANO’s (Russian Nanotechnologies Corporation) current status and a few brief historical notes,

Based on its recent analysis of the nanotechnology investment market, Frost & Sullivan recognizes RUSNANO with the 2015 Frost & Sullivan Award for Enabling Technology Leadership in Russia. RUSNANO has played a significant role in transforming scientific developments in nanotechnology to commercial businesses that attract private investments. By rolling out innovative nanotechnology-based products, it facilitates the diversification and modernization of the Russian economy.

“When investing in companies during their growth stage, RUSNANO may acquire a significant stake in the charter capital,” said Frost & Sullivan Best Practices Analyst Lidia Szypulska.  This allows its investment team, along with the management of the portfolio company, to define the strategic direction of the company’s development and take the steps required to improve its operational performance. RUSNANO executes its long-term business plan ahead of schedule. For the second year in a row, it has a profit (according to IFRS) despite the fact that it was not forecast to turn a profit before 2018, demonstrating high performance.

The combined turnover of RUSNANO’s portfolio companies was RUB 341 billion in 2015 while the overall Russian nanoindustry turnover was more than 1 trillion RUB, more than one-third of its total production. To extend its dominance, RUSNANO fosters relations with international investment funds and manufacturing companies in high-development locations such as the United States, Europe, Israel, Japan, India, and China.

“RUSNANO’s future strategy involves setting up 100 plants and R&D centres by 2020. It expects revenues from its portfolio companies to reach RUB 600 billion by the same time,” noted Szypulska. “Already, more than 20 of RUSNANO’s portfolio companies are applying nanotechnologies transferred to Russia from the US, France, Germany, the Netherlands, and Israel. RUSNANO also invests in several foreign companies that base their research or manufacturing in Russia.”

As for the history,

RUSNANO is one of the largest technology investors in Russia, focusing mainly on raising private capital to finance promising hi-tech enterprises that need capital to boost production or sales volume. In 2013 [emphasis mine], RUSNANO optimized its business model by separating the functions of asset management and asset ownership by incorporating a management company, RUSNANO Management Company LLC. The company aligns its priorities with the Russian government for developing the nanotechnology industry. With a significant government investment of RUB 101 billion, RUSNANO hopes to match global nanotechnology developments and lead the international hi-tech investment sector by 2020.

The most promising end-user sectors for nanotechnology are power production, nanomaterials, nanoelectronics and optoelectronics, telecommunications, healthcare, biotechnology, construction, mechanical and instrumental engineering, and chemically and petrolchemical industries. RUSNANO has so far invested in 105 projects and launched 68 plants and research and development (R&D) centres in 28 regions of Russia.

Yes, 2013 was an interesting year for RUSNANO as I noted in my May 17, 2013 post titled: Russia’s nanotechnology efforts falter? Apparently. Putin was not thrilled with RUSNANO’s results up to that time and there were rumblings. After all that, it must be nice to have the efforts be recognized. One minor niggle, I can’t tell whether or not RUSNANO is a client of Frost & Sullivan’s.

For anyone curious about Frost & Sullivan, from the About page (A Message from Our Chairman),

We’ve spent more than 50 years guiding our clients toward transformational growth strategies by focusing on innovation opportunities driven by disruptive technologies, mega trends, emerging markets and new business models. Today, more than ever before, companies must innovate, not only to survive, but thrive in the future. The risks of resisting change – the “innovator’s dilemma” – massively outweigh outweigh [sic] pursuing the safe and predictable. The consequences are too great to ignore.

Ooops (“outweigh outweigh” in the Chairman’s message)! Everyone makes mistakes.

IXOS™ nanotechnology gold-attracting bead for the gold mining industry

The nanotechnology-enabled IXOS™ bead promises to increase gold mining profits by $100/oz. according to a July 7, 2016 6th Wave Innovations news release (received by email and available on Business Wire),

-6th Wave Innovations Corp. has announced the launch of its game-changing IXOS™ nanotechnology bead for the gold mining industry. The Company estimates that its molecularly imprinted polymer (MIP) ion exchange resin can increase gold mining
loading/unloading cycles), and high capacity (~30g/kg) and selectivity for gold (>95%). Moreover, the capacity and selectivity does not degrade with successive cycles. The unloading (“elution”) process is simple, straightforward and inexpensive when compared to activated carbon. The beads require no activation step for re-use. The resin is supplied ready-to-use, with a range of particle sizes available to accommodate heap leach and resin-in-leach/pulp circuits.

Each patent-pending IXOS bead is imprinted at the molecular level to attract gold and ignore the other elements leached off in mining operations. Unlike conventional ion exchange resins, the IXOS resin has a long life (>50 loading/unloading cycles), and high capacity (~30g/kg) and selectivity for gold (>95%). Moreover, the capacity and selectivity does not degrade with successive cycles. The unloading (“elution”) process is simple, straightforward and inexpensive when compared to activated carbon. The beads require no activation step for re-use. The resin is supplied ready-to-use, with a range of particle sizes available to accommodate heap leach and resin-in-leach/pulp circuits.

“6th Wave’s resin technology has great potential,” said Susan Ritz, Principal Process Engineer and President of Jack Rabbit Consulting, a prominent gold mining engineering firm. “It works well under very challenging conditions and appears to be more highly selective for gold than carbon. I can see it replacing carbon as the adsorbent of choice.”

IXOS has consistently and thoroughly outperformed activated carbon and conventional ion-exchange resins in laboratory and field trials conducted over the past three years. These trials were done in partnership with some of the world’s largest gold mining companies under a wide variety of conditions, including high grade, low grade, and refractory (“preg-robbing”) ores. In the trials, IXOS also demonstrated a variety of advantages to activated carbon, including capacity, selectivity, elution time and temperature, adsorption efficiency, durability, and re-use. These advantages directly translate to lower costs and more gold recovered.

Use of IXOS also requires fewer chemicals, reduces waste, has no toxic emissions, and uses less power — making it a “greener” technology.

Dr. Jonathan Gluckman, Chairman and CEO of 6th Wave, noted that, “Working with our mining partners has allowed us to field-test the IXOS beads in harsh conditions that are impossible to synthesize. We have clearly demonstrated that the beads work consistently and predictably, and display all of the positive attributes we have seen in the lab. We are confident that IXOS will substantially increase our customers’ profitability.”

I wish there was a little more technical information about the technology and the testing but have not been able to find any additional details or any technical publications on the company website.

It can be said that there is great interesting in better recovery methods in the mining industry and 6th Wave Innovations has an interesting portfolio of products ranging from IXOS to Explosives Detection Products (in their Homeland Security category) and to Biogene Amine Detection (in their Medical Diagnostics category).

Note: This post is not an endorsement of the product or the company.

*ETA July 8, 2016 at 1215 hours: It belatedly occurred to me that I should add this from the news release,

Safe Harbor Language: This news release includes “forward-looking statements” within the meaning of the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. These statements are based upon the current beliefs and expectations of 6th Wave’s management and are subject to significant risks and uncertainties. If underlying assumptions prove inaccurate or risks or uncertainties materialize, actual results may differ materially from those set forth in the forward-looking statements. The Company undertakes no obligation to publicly update any forward-looking statement, whether as a result of new information, future events or otherwise.

Cientifica’s “Wearables, Smart Textiles and Nanotechnology Applications Technologies and Markets” report

It’s been a long time since I’ve received notice of a report from Cientifica Research and I’m glad to see another one. This is titled, Wearables, Smart Textiles and Nanotechnologies and Markets, and has just been published according to the May 26,  2016 Cientifica announcement received by email.

Here’s more from the report’s order page on the Cientifica site,

Wearables, Smart Textiles and Nanotechnology: Applications, Technologies and Markets

Price GBP 1995 / USD 2995

The past few years have seen the introduction of a number of wearable technologies, from fitness trackers to “smart watches” but with the increasing use of smart textiles wearables are set to become ‘disappearables’ as the devices merge with textiles.

The textile industry will experience a growing demand for high-tech materials driven largely by both technical textiles and the increasing integration of smart textiles to create wearable devices based on sensors.  This will enable the transition of the wearable market away from one dominated by discrete hardware based on MEMS accelerometers and smartphones. Unlike today’s ‘wearables’ tomorrow’s devices will be fully integrated into the the garment through the use of conductive fibres, multilayer 3D printed structures and two dimensional materials such as graphene.

Largely driven by the use of nanotechnologies, this sector will be one of the largest end users of nano- and two dimensional materials such as graphene, with wearable devices accounting for over half the demand by 2022. Products utilizing two dimensional materials such as graphene inks will be integral to the growth of wearables, representing a multi-billion dollar opportunity by 2022.

This represents significant opportunities for both existing smart textiles companies and new entrants to create and grow niche markets in sectors currently dominated by hardware manufacturers such Apple and Samsung.

The market for wearables using smart textiles is forecast to grow at a CAGR [compound annual growth rate] of 132% between 2016 and 2022 representing a $70 billion market. Largely driven by the use of nanotechnologies, this sector has the potential to be one of the largest end users of nano and two dimensional materials such as graphene, with wearable devices accounting for over half the demand by 2022.

“Wearables, Smart Textiles and Nanotechnologies: Applications, Technologies and Markets” looks at the technologies involved from antibacterial silver nanoparticles to electrospun graphene fibers, the companies applying them, and the impact on sectors including wearables, apparel, home, military, technical, and medical textiles.

This report is based on an extensive research study of the smart textile market backed with over a decade of experience in identifying, predicting and sizing markets for nanotechnologies and smart textiles. Detailed market figures are given from 2016-2022, along with an analysis of the key opportunities, and illustrated with 120 figures and 15 tables.

I always love to view the table of contents (from the report’s order page),

Table of Contents      

Executive Summary  

Why Wearable Technologies Need More than Silicon + Software

The Solution Is in Your Closet

The Shift To Higher Value Textiles

Nanomaterials Add Functionality and Value

Introduction   

Objectives of the Report

World Textiles and Clothing

Overview of Nanotechnology Applications in the EU Textile Industry

Overview of Nanotechnology Applications in the US Textile Industry

Overview of Nanotechnology Applications in the Chinese Textile Industry

Overview of Nanotechnology Applications in the Indian Textile Industry

Overview of Nanotechnology Applications in the Japanese Textile Industry

Overview of Nanotechnology Applications in the Korean Textile Industry

Textiles in the Rest of the World

Macro and Micro Value Chain of Textiles Industry

Common Textiles Industry Classifications

End Markets and Value Chain Actors

Why Textiles Adopt Nanotechnologies        

Nanotechnology in Textiles

Examples of Nanotechnology in Textiles

Nanotechnology in Some Textile-related Categories

Technical & Smart Textiles

Multifunctional Textiles

High Performance Textiles

Smart/Intelligent Textiles

Nanotechnology Hype

Current Applications of Nanotechnology in Textile Production       

Nanotechnology in Fibers and Yarns

Nano-Structured Composite Fibers

Nanotechnology in Textile Finishing, Dyeing and Coating

Nanotechnology In Textile Printing

Green Technology—Nanotechnology In Textile Production Energy Saving

Electronic Textiles and Wearables   

Nanotechnology in Electronic Textiles

Concept

Markets and Impacts

Conductive Materials

Carbon Nanotube Composite Conductive Fibers

Carbon Nanotube Yarns

Nano-Treatment for Conductive Fiber/Sensors

Textile-Based Wearable Electronics

Conductive Coatings On Fibers For Electronic Textiles

Stretchable  Electronics

Memory-Storing Fiber

Transistor Cotton for Smart Clothing

Embedding Transparent, Flexible Graphene Electrodes Into Fibers

Organic Electronic Fibers

‘Temperature Regulating Smart Fabric’

Digital System Built Directly on a Fiber

Sensors    

Shirt Button Sensors

An integrated textile heart monitoring solution

OmSignal’s  Smart Bra

Printed sensors to track movement

Textile Gas Sensors

Smart Seats To Curtail Fatigued Driving.

Wireless Brain and Heart Monitors

Chain Mail Fabric for Smart Textiles

Graphene-Based Woven Fabric

Anti-Counterfeiting and Drug Delivery Nanofiber

Batteries and Energy Storage

Flexible Batteries

Cable Batteries

Flexible Supercapacitors

Energy Harvesting Textiles

Light Emitting Textiles  

Data Transmission 

Future and Challenges of Electronic Textiles and Wearables

Market Forecast

Smart Textiles, Nanotechnology and Apparel          

Nano-Antibacterial Clothing Textiles

Nanosilver Safety Concerns

UV/Sun/Radiation Protective

Hassle-free Clothing: Stain/Oil/Water Repellence, Anti-Static, Anti-Wrinkle

Anti-Fade

Comfort Issues: Perspiration Control, Moisture Management

Creative Appearance and Scent for High Street Fashions

Nanobarcodes for Clothing Combats Counterfeiting

High Strength, Abrasion-Resistant Fabric Using Carbon Nanotube

Nanotechnology For Home Laundry

Current Adopters of Nanotechnology in Clothing/Apparel Textiles

Products and Markets

Market Forecast

Nanotechnology in Home Textiles   

Summary of Nanotechnology Applications in Home Textiles

Current Applications of Nanotechnology in Home Textiles

Current Adopters of Nanotechnology in Home Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Military/Defence Textiles

Summary of Nanotechnology Applications in Military/Defence Textiles

Military Textiles

Current Applications of Nanotechnology in Military/Defence Textiles

Current Adopters of Nanotechnology in Military/Defence Textiles

Light Weight, Multifunctional Nanostructured Fibers and Materials

Costs and Benefits

Market Forecast

Nanotechnology Applications in Medical Textiles   

Summary of Nanotechnology Applications in Medical Textiles

Current Applications of Nanotechnology in Medical Textiles

Current Adopters of Nanotechnology in Medical Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Sports/Outdoor Textiles   

Summary of Nanotechnology Applications in Sports/Outdoor Textiles

Current Applications of Nanotechnology in Sports/Outdoor Textiles

Current Adopters of Nanotechnology in Sports/Outdoor Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Technical Textiles 

Summary of Nanotechnology Applications in Technical and smart textiles

Current Applications of Nanotechnology in Technical Textiles

Current Adopters of Nanotechnology in Technical and smart textiles

Products and Markets

Costs and Benefits

Market Forecast

APPENDIX I: Companies/Research Institutes Applying Nanotechnologies to the Textile Industry

Companies Working on Nanofiber Applications

Companies Working on Nanofabric Applications

Companies Working on Nano Finishing, Coating, Dyeing and Printing Applications

Companies Working on Green Nanotechnology In Textile Production Energy Saving Applications

Companies Working on E-textile Applications

Companies Working on Nano Applications in Clothing/Apparel Textiles

Companies Working on Nano Applications in Home Textiles

Companies Working on Nano Applications in Sports/Outdoor Textile

Companies Working on Nano Applications in Military/Defence Textiles

Companies Working on Nano Applications in Technical Textiles

APPENDIX II: Selected Company Profiles     

APPENDIX III: Companies Mentioned in This Report 

The report’s order page has a form you can fill out to get more information but, as far as I can tell, there is no purchase button or link to a shopping cart for purchase.

Afterthought

Recently, there was an email in my inbox touting a Canadian-based company’s underclothing made with the founder’s Sweat-Secret fabric technology (I have not been able to find any details about the technology). As this has some of the qualities being claimed for the nanotechnology-enabled textiles described in the report and the name for the company amuses me, Noody Patooty, I’m including it in this posting (from the homepage),

Organic Bamboo Fabric
The soft, breathable and thermoregulation benefits of organic bamboo fabric keep you comfortable throughout all your busy days.

Sweat-Secret™ Technology
The high performance fabric in the underarm wicks day-to-day sweat and moisture from the body preventing sweat and odour stains.

Made in Canada
From fabric to finished garment our entire collection is made in Canada using sustainable and ethical manufacturing processes.

This is not an endorsement of the Noody Patooty undershirts. I’ve never tried one.

As for the report, Tim Harper who founded Cientifica Research has in my experience always been knowledgeable and well-informed (although I don’t always agree with him). Presumably, he’s still with the company but I’m not entirely certain.

NanoMech get $10M investment from Saudi company

This news comes from the US state of Arkansas (not often featured here). The company, NanoMech, seems to be focused on lubricants and coatings according to an April 13, 2013 news release on Business Wire,

NanoMech announced today that it has secured $10 million in capital for leading its Series C Financing round from Saudi Aramco Energy Ventures (SAEV), the corporate venturing subsidiary of Saudi Arabia’s national oil company. This capital infusion and relationship will significantly accelerate NanoMech’s manufacturing, sales and product development. NanoMech uses nanotechnology to develop advanced products for industrial and mechanical applications – such as lubricants, coatings and specialty chemicals. These products have enabled a step change in performance, efficiency and reliability in multiple industries such as energy, transportation, aerospace, manufacturing, automotive, agricultural equipment and military.

An April 11, 2013 NanoMech news release, which originated the item on Business Wire, provides a few more details and some quotes,

“NanoMech is honored to achieve this recognition and investment by the world’s largest energy company,” said NanoMech Chairman and CEO Jim Phillips. “Building on current momentum, NanoMech will use this financing and relationship to expand our global reach, invest in additional sales and marketing resources. We will also increase investment in our market-leading nanotechnology platforms, nGlide, GuardX, TuffTek, and nGuard.”

This capital infusion and relationship will significantly improve NanoMech’s manufacturing, sales and product development. Today’s announcement represents NanoMech’s most significant milestone in the continued validation and authentication of its unique technology.

“Response to NanoMech’s technology at Saudi Aramco and several of our major suppliers has been very positive,” said Cory Steffek, Managing Director, North America for SAEV. “A platform technology like NanoMech’s has significant potential to bring innovation, not only to the energy sector, but also to many other critical industries.”

NanoMech has validated and commercialized its innovations to iconic world-leading businesses and has completed an upgrade of its smart factory and labs. Several Fortune 100 and emerging companies have incorporated NanoMech’s nano-engineered solutions to create high-performance products.

“After more than a decade of extensive research and development, and recent large-scale commercialization successes,” said Dr. Ajay P. Malshe, CTO and Founder of NanoMech. “Our industry is leading disruptive nanoscience and is light years ahead of the competition. We are transforming entire industries.

The big talk is rooted not just in hype but also in a major US government push to commercialize nanotechnology research, which has received billions of dollars in government funding (from the NanoMech news release),

“Aramco’s strategic investment in NanoMech will transform the productivity paradigm for sustainable global energy production,” said Deborah Wince-Smith, CEO of the U.S. Council on Competitiveness and NanoMech board member. “It will accelerate NanoMech’s position as the global leader in advanced nanotechnology.”

The Canadian nano scene as seen by the OECD (Organization for Economic Cooperation and Development)

I’ve grumbled more than once or twice about the seemingly secret society that is Canada’s nanotechnology effort (especially health, safety, and environment issues) and the fact that I get most my information from Organization for Economic Cooperation and Development (OECD) documents. That said, thank you to Lynne Bergeson’s April 8, 2016 post on Nanotechnology Now for directions to the latest OECD nano document,

The Organization for Economic Cooperation and Development recently posted a March 29, 2016, report entitled Developments in Delegations on the Safety of Manufactured Nanomaterials — Tour de Table. … The report compiles information, provided by Working Party on Manufactured Nanomaterials (WPMN) participating delegations, before and after the November 2015 WPMN meeting, on current developments on the safety of manufactured nanomaterials.

It’s an international roundup that includes: Australia, Austria, Belgium, Canada, Germany, Japan, Korea, the Netherlands, Switzerland, Turkey, United Kingdom, U.S., and the European Commission (EC), as well as the Business and Industry Advisory Committee to the OECD (BIAC) and International Council on Animal Protection in OECD Programs (ICAPO).

As usual, I’m focusing on Canada. From the DEVELOPMENTS IN DELEGATIONS ON THE SAFETY OF MANUFACTURED NANOMATERIALS – TOUR DE TABLE Series on the Safety of Manufactured Nanomaterials No. 67,

CANADA
National  developments  on  human  health  and  environmental  safety  including  recommendations, definitions, or discussions related to adapting or applying existing regulatory systems or the drafting of new laws/ regulations/amendments/guidance materials A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with  a  public  comment  period  ending on  May  17,  2015. The proposed approach outlines the Government’s plan to address nanomaterials considered in commerce in Canada (on  Canada’s  public inventory).  The  proposal is a stepwise  approach to  acquire  and  evaluate information,  followed  by  any  necessary  action. A  follow-up  stakeholder  workshop  is  being  planned  to discuss  next  steps  and  possible  approaches  to prioritize  future  activities. The  consultation document  is available at: http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=1D804F45-1

A mandatory information gathering survey was published on July 25, 2015. The purpose of the survey is to collect information to determine the commercialstatus of certain nanomaterials in Canada. The survey targets  206  substances  considered  to  be  potentially  in commerce  at  the  nanoscale. The  list  of  206 substances was developed using outcomes from the Canada-United States Regulatory Cooperation Council (RCC)  Nanotechnology  Initiative  to  identify nanomaterial  types. These  nanomaterial  types  were  cross-referenced  with  the Domestic  Substances  List to  develop  a  preliminary  list  of  substances  which are potentially intentionally manufactured at the nanoscale. The focus of the survey aligns with the Proposed Approach to  Address  Nanoscale  Forms  of  Substances  on  the Domestic  Substances  List (see  above)  and certain  types  of  nanomaterials  were  excluded  during the  development  of  the  list  of  substances. The information  being  requested  by  the  survey  includes substance  identification,  volumes,  and  uses.  This information will feed into the Government’s proposed approach to address nanomaterials on the Domestic Substances List. Available at: http://gazette.gc.ca/rp-pr/p1/2015/2015-07-25/html/notice-avis-eng.php

Information on:

a.risk  assessment  decisions, including  the  type  of:  (a)  nanomaterials  assessed; (b) testing recommended; and (c) outcomes of the assessment;

Four substances were notified to the program since the WPMN14 – three surface modified substances and  one  inorganic  substance.  No  actions,  including  additional  data requests,  were  taken  due  to  low expected  exposures  in  accordance  with  the New  Substances  Notifications  Regulations  (Chemicals and Polymers) (NSNR) for two of the substances.  Two of the substances notified were subject to a Significant New Activity Notice. A Significant New Activity notice is an information gathering tool used to require submission  of  additional  information  if  it  is suspected  that  a  significant  new  activity  may  result in  the substance becoming toxic under the Canadian Environmental Protection Act, 1999.

b.Proposals, or modifications to previous regulatory decisions

As  part  of  the  Government’s  Chemicals  Management Plan,  a  review  is  being  undertaken  for  all substances  which  have  been  controlled through  Significant  New  Activity  (SNAc)  notices (see  above).  As part  of  this  activity,  the  Government  is  reviewing past  nanomaterials  SNAc  notices  to  see  if  new information  is  available  to  refine  the  scope  and information  requirements.    As  a  result  of  this  review, 9 SNAc  notices  previously  in  place  for  nanomaterials have  been  rescinded.    This  work  is  ongoing,  and  a complete review of all nanomaterial SNAcs is currently planned to be completed in 2016.

Information related to good practice documents

The Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals, [emphasis mine] initiated  in  April 2014, is  now at Committee  Draft  (CD)  3-month  ISO ballot, closing    Aug 31, 2015. Ballot comments will be addressed during JWG2 Measurement and Characterization working  group meetings  at  the 18th Plenary  of  ISO/TC229, Nanotechnologies,  being held in Edmonton, Alberta, Sep. 28 – Oct. 2, 2015.

Research   programmes   or   strategies   designed   to  address   human   health   and/   or environmental safety aspects of nanomaterials

Scientific research

Environment Canada continues to support various academic and departmental research projects. This research has to date included studying fate and effects of nanomaterials in the aquatic, sediment, soil, and air  compartments. Funding  in  fiscal  2015-16  continues  to  support  such  projects,  including  sub-surface transportation, determining key physical-chemical parameters to predict ecotoxicity, and impacts of nano-silver [silver nanoparticles]  addition  to  a  whole  lake  ecosystem [Experimental Lakes Area?]. Environment  Canada  has  also  partnered  with  the National Research  Council  of  Canada  recently  to  initiate  a project  on  the  development  of  test  methods  to identify surfaces of nanomaterials for the purposes of regulatory identification and to support risk assessments. In addition,  Environment  Canada  is  working  with  academic laboratories in  Canada  and  Germany  to  prepare guidance to support testing of nanoparticles using the OECD Test Guideline for soil column leaching.

Health  Canada  continues  its  research  efforts  to  investigate  the  effects  of  surface-modified  silica nanoparticles. The   aims   of   these   projects   are  to:   (1) study the importance of size and surface functionalization;  and  (2)  provide a genotoxic profile and  to  identify  mechanistic  relationships  of  particle properties  to  elicited  toxic  responses.  A manuscript reporting  the in  vitro genotoxic,  cytotoxic and transcriptomic  responses  following  exposure  to  silica  nanoparticles  has  recently  been  submitted to  a  peer reviewed journal and is currently undergoing review. Additional manuscripts reporting the toxicity results obtained to date are in preparation.

Information on public/stakeholder consultations;

A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with a  public  comment  period ending  on May  17,  2015  (see Question  1).  Comments  were  received  from approximately  20  stakeholders  representing  industry and industry  associations,  as  well  as  non-governmental  organizations. These  comments  will  inform  decision making to address nanomaterials in commerce in Canada.

Information on research or strategies on life cycle aspects of nanomaterials

Canada, along with Government agencies in the United States, Non-Governmental Organizations and Industry,  is  engaged  in  a  project  to  look  at releases  of  nanomaterials  from  industrial  consumer  matrices (e.g., coatings). The objectives of the NanoRelease Consumer Products project are to develop protocols or
methods (validated  through  interlaboratory  testing) to  measure  releases  of  nanomaterials  from  solid matrices as a result of expected uses along the material life cycle for consumer products that contain the nanomaterials. The  project  is  currently  in  the  advanced  stages  of Phase  3  (Interlaboratory  Studies).  The objectives of Phase 3 of the project are to develop robust methods for producing and collecting samples of CNT-epoxy  and  CNT-rubber  materials  under  abrasion  and  weathering scenarios,  and  to  detect  and quantify, to the extent possible, CNT release fractions. Selected laboratories in the US, Canada, Korea and the European Community are finalising the generation and analysis of sanding and weathering samples and the    results    are    being    collected    in    a   data    hub    for    further    interpretation    and    analysis.

Additional details about the project can be found at the project website: http://www.ilsi.org/ResearchFoundation/RSIA/Pages/NanoRelease1.aspx

Under the OECD Working Party on Resource Productivity and Waste (WPRPW), the expert group on waste containing nanomaterials has developed four reflection papers on the fate of nanomaterials in waste treatment  operations.  Canada  prepared the  paper  on  the  fate  of  nanomaterials in  landfills;  Switzerland on the  recycling  of  waste  containing  nanomaterials;  Germany  on  the  incineration  of  waste  containing nanomaterials;  and  France  on  nanomaterials  in wastewater  treatment.  The  purpose  of  these  papers is to provide  an  overview  of  the  existing  knowledge  on the  behaviour  of  nanomaterials  during  disposal operations and identify the information gaps. At the fourth meeting of the WPRPW that took place on 12-14 November 2013, three of the four reflection papers were considered by members. Canada’s paper was presented and discussed at the fifth meeting of the WPRPRW that took place on 8-10 December 2014. The four  papers  were  declassified  by  EPOC  in  June  2015, and  an  introductory  chapter  was  prepared  to  draw these  papers  together. The introductory  chapter  and accompanying  papers  will  be  published in  Fall  2015. At  the sixth  meeting  of  the  WPRPW  in  June – July  2015,  the  Secretariat  presented  a  proposal  for an information-sharing  platform  that  would  allow  delegates  to  share research  and  documents  related  to nanomaterials. During a trial phase, delegates will be asked to use the platform and provide feedback on its use at the next meeting of the WPRPW in December 2015. This information-sharing platform will also be accessible to delegates of the WPMN.

Information related to exposure measurement and exposure mitigation.

Canada and the Netherlands are co-leading a project on metal impurities in carbon nanotubes. A final version  of  the  report  is  expected  to  be ready for WPMN16. All  research has  been completed (e.g. all components are published or in press and there was a presentation by Pat Rasmussen to SG-08 at the Face-to-Face Meeting in Seoul June 2015). The first draft will be submitted to the SG-08 secretariat in autumn 2015. Revisions  will  be  based  on  early  feedback  from  SG-08  participants.  The  next  steps  depend  on  this feedback and amount of revision required.

Information on past, current or future activities on nanotechnologies that are being done in co-operation with non-OECD countries.

A webinar between ECHA [European Chemicals Agency], the US EPA [Environmental Protection Agency] and Canada was hosted by Canada on April 16, 2015. These are  regularly  scheduled  trilateral  discussions  to keep  each  other  informed  of  activities  in  respective jurisdictions.

In  March 2015, Health  Canada  hosted  3  nanotechnology knowledge  transfer sessions  targeting Canadian  government  research  and  regulatory  communities  working  in  nanotechnology.  These  sessions were  an  opportunity  to  share  information  and perspectives  on  the  current  state  of  science supporting  the regulatory  oversight  of  nanomaterials with  Government.  Presenters  provided  detailed  outputs  from  the OECD WPMN including: updates on OECD test methods and guidance documents; overviews of physical-chemical properties, as well as their relevance to toxicological testing and risk assessment; ecotoxicity and fate   test   methods;   human   health   risk   assessment   and   alternative   testing   strategies;   and exposure measurement  and  mitigation.  Guest  speakers  included  Dr  Richard  C.  Pleus  Managing  Director  and  Director of Intertox, Inc and Dr. Vladimir Murashov Special Assistant on Nanotechnology to the Director of National Institute for Occupational Safety and Health (NIOSH).

On   March   4-5, 2015, Industry   Canada   and   NanoCanada co-sponsored  “Commercializing Nanotechnology  in  Canada”,  a  national  workshop  that brought  together  representatives  from  industry, academia and government to better align Canada’s efforts in nanotechnology.  This workshop was the first of  its  kind  in  Canada. It  also  marked  the  official  launch  of  NanoCanada (http://nanocanada.com/),  a national  initiative  that  is  bringing  together stakeholders  from  across  Canada  to  bridge  the  innovation  gap and stimulates emerging technology solutions.

It’s nice to get an update about what’s going on. Despite the fact this report was published in 2016 the future tense is used in many of the verbs depicting actions long since accomplished. Maybe this was a cut-and-paste job?

Moving on, I note the mention of the Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals (CNC). For those not familiar with CNC, the Canadian government has invested hugely in this material derived mainly from trees, in Canada. Other countries and jurisdictions have researched nanocellulose derived from carrots, bananas, pineapples, etc.

Finally, it was interesting to find out about the existence of  NanoCanada. In looking up the Contact Us page, I noticed Marie D’Iorio’s name. D’Iorio, as far as I’m aware, is still the Executive Director for Canada’s National Institute of Nanotechnology (NINT) or here (one of the National Research Council of Canada’s institutes). I have tried many times to interview someone from the NINT (Nils Petersen, the first NINT ED and Martha Piper, a member of the advisory board) and more recently D’Iorio herself only to be be met with a resounding silence. However, there’s a new government in place, so I will try again to find out more about the NINT, and, this time, NanoCanada.

UK’s National Graphene Institute kerfuffle gets bigger

First mentioned here in a March 18, 2016 posting titled: Tempest in a teapot or a sign of things to come? UK’s National Graphene Institute kerfuffle, the ‘scandal’ seems to be getting bigger, from a March 29, 2016 posting on Dexter Johnson’s Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website (Note: A link has been removed),

Since that news story broke, damage control from the NGI [UK National Graphene Institute], the University of Manchester, and BGT Materials, the company identified in the Times article, has been coming fast and furious. Even this blog’s coverage of the story has gotten comments from representatives of BGT Materials and the University of Manchester.

There was perhaps no greater effort in this coordinated defense than getting Andre Geim, a University of Manchester researcher who was a co-discoverer of graphene, to weigh in. …

Despite Geim’s recent public defense, and a full-on PR campaign to turn around the perception that the UK government was investing millions into UK research only to have the fruits of that research sold off to foreign interests, there was news last week that the UK Parliament would be launching an inquiry into the “benefits and disbenefits of the way that graphene’s intellectual property and commercialisation has been managed, including through research and innovation collaborations.”

The timing for the inquiry is intriguing but there have been no public comments or hints that the NGI kerfuffle precipitated the Graphene Inquiry,

The Science and Technology Committee issues a call for written submissions for its inquiry on graphene.

Send written submissions

The inquiry explores the lessons from graphene for research and innovation in other areas, as well as the management and commercialisation of graphene’s intellectual property. Issues include:

  • The research obstacles that have had to be overcome for graphene, including identifying research priorities and securing research funding, and the lessons from this for other areas of research.
  • The factors that have contributed to the successful development of graphene and how these might be applied in other areas, including translating research into innovation, managing/sharing intellectual property, securing development funding, and bringing key stakeholders together.
  • The benefits and disbenefits of the way that graphene’s intellectual property and commercialisation has been managed, including through research and innovation collaborations, and the lessons from this for other areas.

The deadline for submissions is midday on Monday 18 April 2016.

The Committee expects to take oral evidence later in April 2016.

Getting back to the NGI, BGT Materials, and University of Manchester situation, there’s a forceful comment from Daniel Cochlin (identified as a graphene communications and marketing manager at the University of Manchester in an April 2, 2015 posting on Nanoclast) in Dexter’s latest posting about the NGI. From the comments section of a March 29, 2016 posting on the Nanoclast blog,

Maybe the best way to respond is to directly counter some of your assertions.

1. The NGI’s comments on this blog were to counter factual inaccuracies contained in your story. Your Editor-in-Chief and Editorial Director, Digital were also emailed to complain about the story, with not so much as an acknowledgement of the email.
2. There was categorically no ‘coaxing’ of Sir Andre to make comments. He was motivated to by the inaccuracies and insinuations of the Sunday Times article.
3. Members of the Science and Technology Select Committee visited the NGI about ten days before the Sunday Times article and this was followed by their desire to hold an evidence session to discuss graphene commercialisation.
4. The matter of how many researchers work in the NGI is not ‘hotly contested’. The NGI is 75% full with around 130 researchers regularly working there. We would expect this figure to grow by 10-15% within the next few days as other facilities are closed down.
5. Graphene Lighting PLC is the spin-out company set up to produce and market the lightbulb. To describe them as a ‘shadowy spin-out’ is unjustified and, I would suggest, libelous [emphasis mine].
6. Your question about why, if BGT Materials is a UK company, was it not mentioned [emphasis mine] in connection with the lightbulb is confusing – as stated earlier the company set up to manage the lightbulb was Graphene Lighting PLC.

Let’s hope it doesn’t take three days for this to be accepted by your moderators, as it did last time.

*ETA March 31, 2016 at 1530 hours PDT: Dexter has posted response comments in answer to Cochlin’s. You can read them for youself here .* I have a couple of observations (1) The use of the word ‘libelous’ seems a bit over the top. However, it should be noted that it’s much easier to sue someone for libel in England where the University of Manchester is located than it is in most jurisdictions. In fact, there’s an industry known as ‘libel tourism’ where litigious companies and individuals shop around for a jurisdiction such as England where they can easily file suit. (2) As for BGT Materials not being mentioned in the 2015 press release for the graphene lightbulb, I cannot emphasize how unusual that is. Generally speaking, everyone and every agency that had any involvement in developing and bringing to market a new product, especially one that was the ‘first consumer graphene-based product’, is mentioned. When you consider that BGT Materials is a newish company according to its About page,

BGT Materials Limited (BGT), established in 2013, is dedicated to the development of graphene technologies that utilize this “wonder material” to enhance our lives. BGT has pioneered the mass production of large-area, high-quality graphene rapidly achieving the first milestone required for the commercialization of graphene-enhanced applications.

the situation grows more peculiar. A new company wants and needs that kind of exposure to attract investment and/or keep current stakeholders happy. One last comment about BGT Materials and its public relations, Thanasis Georgiou, VP BGT Materials, Visiting scientist at the University of Manchester (more can be found on his website’s About page), waded into the comments section of Dexter’s March 15, 2016 posting and the first about the kerfuffle. Gheorgiou starts out in a relatively friendly fashion but his followup has a sharper tone,

I appreciate your position but a simple email to us and we would clarify most of the issues that you raised. Indeed your article carries the same inaccuracies that the initial Sunday Times article does, which is currently the subject of a legal claim by BGT Materials. [emphasis mine]

For example, BGT Materials is a UK registered company, not a Taiwanese one. A quick google search and you can confirm this. There was no “shadowy Canadian investor”, the company went through a round of financing, as most technology startups do, in order to reach the market quickly.

It’s hard to tell if Gheorgiou is trying to inform Dexter or threaten him in his comment to the March 15, 2016 posting but taken together with Daniel Cochlin’s claim of libel in his comment to the March 29, 2016 posting, it suggests an attempt at intimidation.

These are understandable responses given the stakes involved but moving to the most damaging munitions in your arsenal is usually not a good choice for your first  or second response.

Nanotech Security Corp. stock declining but Cantor Fitzgerald Canada analyst Ralph Garcea gives the stock a buy rating

Linda Rogers has written a Feb. 29, 2016 article about a Vancouver-based company rather perturbingly titled ‘What’s Propelling Nanotech Security Corp to Decline So Much?‘ for Small Cap Wired,

The stock of Nanotech Security Corp (CVE:NTS) is a huge mover today! The stock is down 3.23% or $0.04 after the news [Nanotech Security announced its first quarter fiscal 2016 results in a Feb. 29, 2016 news release], hitting $1.2 per share. … The move comes after 7 months negative chart setup for the $68.48M company. It was reported on Feb, 29 [2016] by Barchart.com. We have $1.06 PT which if reached, will make CVE:NTS worth $8.22 million less.

The Feb. 29, 2016 Nanotech Security news release (summary version) highlights the good news first,

  • Revenue of $1.5 million consistent with the same period last year.  Security Features contributed revenues of $569,000 largely from development contracts and Surveillance delivered $940,000.
  • Gross margin improved to 50% up from 34% in the same period last year.  The improvement reflects the increased mix of higher margin Security Features revenue.
  • Renewed a $1.0 million banknote security feature development contract. The Company successfully renewed the third and final phase of a banknote development contract with a top ten issuing authority to develop a unique Optically Variable Device (“OVD”) security feature for incorporation into future banknotes.  The final phase is expected to generate revenues of approximately $1.0 million.
  • Signed new $3.0 million KolourOptik banknote development contract. The Company signed a new three phase development contract to use the KolourOptik™ nanotechnology to develop a unique OVD security features with another G8 country for incorporation into future banknotes.
  • Strategic meetings with large international banknote issuing authority.  The Company continues to work with a large international banknote issuing authority to deliver a significant volume of colour shifting Optical Thin Film (“OTF”), and partner with our KolourOptik™ technology.  Management continues to devote a significant amount of time and resources in advancing these opportunities.
  • Signed a Memorandum of Understanding (“MOU”) with Hueck Folien, a European manufacturer to supply OTF to the banknote market.  The MOU contemplates an operational agreement to collaborate in the volume production of a colour shifting OTF security feature.  The OTF product is anticipated to initially be used in banknotes as threads and then expand into other markets in the future.

Doug Blakeway, Nanotech’s Chairman and CEO commented, “These two development contracts are material achievements.  Issuing authorities are paying us – something not common in the industry – to design unique banknote security features with our OTF and KolourOptik™ technologies.”  He further added, “Nanotech’s team has scaled the Hueck Folien production facility to where we believe together we can provide the initial volumes demanded by a top-ten issuing authority.  Our relationship with Hueck Folien continues to funnel security feature opportunities to Nanotech.”

The company’s sadder news can be found in their seven-page Feb. 29, 2016 news release (PDF). Their net earnings for the final quarter of 2015 and 2014 were both losses but in 2014 their loss was (931,271) and in 2015 it was (1,746,335). Still, the company’s gross profit from revenue for the same time periods was 50% in 2015 as opposed to 34% in 2014 despite slightly less revenue in 2015.

Assuming I’ve read this information correctly, Nanotech Security does seem to be in a fragile situation but that can change. After all, IBM was in serious trouble for a number of years during the 1990s when there was even talk the company might go bankrupt. As far as I’m aware, IBM is no longer in imminent danger of disappearing from the scene. *ETA March 9, 2016: It seems I used the wrong example if Robert X. Cringley’s March 9, 2016 article ‘What’s happening at IBM? (It’s dying)‘ for Beta News is to be believed.)* Getting back to my point, companies do go through cycles and it can be difficult to determine exactly what’s happening at some of the earlier stages.

Certainly, Cantor Fitzgerald Canada analyst Ralph Garcea has an optimistic view of Nanotech Security’s prospects according to a March 1, 2016 article by Nick Waddell for cantech letter,

Nanotech Security (TSXV:NTS) offers a better and more secure solution in multiple market segments that together are worth billions of dollars per year, says Cantor Fitzgerald Canada analyst Ralph Garcea.

This morning [March 1, 2016], Garcea initiated coverage of Nanotech with a “Buy” rating and a one-year price target of $2.50, implying a return of 110 per cent at the time of publication.

Garcea notes that Nanotech has already created solutions for the consumer electronics, brand identification and currency segments. He points out that one of the company’s biggest differentiators is that its solution can be embedded onto almost any material. This is important, he says, because it means that security can be embedded into places it previously could not go, such as directly onto a pharmaceutical pill.

Shares of Nanotech Security closed today [March 1, 2016] up 2.5 per cent to $1.22.

I have written about Nanotech Security frequently and believe the most recent is a Dec. 29, 2015 posting. For those unfamiliar with the company’s technology, it’s based on the structures found on the blue morpho butterfly. The holes in the butterfly’s wings lend it certain optical properties which the company mimics for its anti-counterfeiting technology.

One final comment, I am not endorsing the company or any of the analysis of the company’s financial situation and prospects.