Category Archives: investment

Commercializing nanotechnology: Peter Thiel’s Breakout Labs and Argonne National Laboratories

Breakout Labs

I last wrote about entrepreneur Peter Thiel’s Breakout Labs project in an Oct. 26, 2011 posting announcing its inception. An Oct. 6, 2015 Breakout Labs news release (received in my email) highlights a funding announcement for four startups of which at least three are nanotechnology-enabled,

Breakout Labs, a program of Peter Thiel’s philanthropic organization, the Thiel Foundation, announced today that four new companies advancing scientific discoveries in biomedical, chemical engineering, and nanotechnology have been selected for funding.

“We’re always hearing about bold new scientific research that promises to transform the world, but far too often the latest discoveries are left withering in a lab,” said Lindy Fishburne, Executive Director of Breakout Labs. “Our mission is to help a new type of scientist-entrepreneur navigate the startup ecosystem and build lasting companies that can make audacious scientific discoveries meaningful to everyday life. The four new companies joining the Breakout Labs portfolio – nanoGriptech, Maxterial, C2Sense, and CyteGen – embody that spirit and we’re excited to be working with them to help make their vision a reality.”

The future of adhesives: inspired by geckos

Inspired by the gecko’s ability to scuttle up walls and across ceilings due to their millions of micro/nano foot-hairs,nanoGriptech (, based in Pittsburgh, Pa., is developing a new kind of microfiber adhesive material that is strong, lightweight, and reusable without requiring glues or producing harmful residues. Currently being tested by the U.S. military, NASA, and top global brands, nanoGriptech’s flagship product Setex™ is the first adhesive product of its kind that is not only strong and durable, but can also be manufactured at low cost, and at scale.

“We envision a future filled with no-leak biohazard enclosures, ergonomic and inexpensive car seats, extremely durable aerospace adhesives, comfortable prosthetic liners, high performance athletic wear, and widely available nanotechnology-enabled products manufactured less expensively — all thanks to the grippy little gecko,” said Roi Ben-Itzhak, CFO and VP of Business Development for nanoGriptech.

A sense of smell for the digital world

Despite the U.S. Department of Agriculture’s recent goals to drastically reduce food waste, most consumers don’t realize the global problem created by 1.3 billion metric tons of food wasted each year — clogging landfills and releasing unsustainable levels of methane gas into the atmosphere. Using technology developed at MIT’s Swager lab, Cambridge, Ma.-based C2Sense( is developing inexpensive, lightweight hand-held sensors based on carbon nanotubes which can detect fruit ripeness and meat, fish and poultry freshness. Smaller than a half of a business card, these sensors can be developed at very low cost, require very little power to operate, and can be easily integrated into most agricultural supply chains, including food storage packaging, to ensure that food is picked, stored, shipped, and sold at optimal freshness.

“Our mission is to bring a sense of smell to the digital world. With our technology, that package of steaks in your refrigerator will tell you when it’s about to go bad, recommend some recipe options and help build out your shopping list,” said Jan Schnorr, Chief Technology Officer of C2Sense.

Amazing metals that completely repel water

MaxterialTM, Inc. develops amazing materials that resist a variety of detrimental environmental effects through technology that emulates similar strategies found in nature, such as the self-cleaning lotus leaf and antifouling properties of crabs. By modifying the surface shape or texture of a metal, through a method that is very affordable and easy to introduce into the existing manufacturing process, Maxterial introduces a microlayer of air pockets that reduce contact surface area. The underlying material can be chemically the same as ever, retaining inherent properties like thermal and electrical conductivity. But through Maxterial’s technology, the metallic surface also becomes inherently water repellant. This property introduces the superhydrophobic maxterial as a potential solution to a myriad of problems, such as corrosion, biofouling, and ice formation. Maxterial is currently focused on developing durable hygienic and eco-friendly anti-corrosion coatings for metallic surfaces.

“Our process has the potential to create metallic objects that retain their amazing properties for the lifetime of the object – this isn’t an aftermarket coating that can wear or chip off,” said Mehdi Kargar, Co-founder and CEO of Maxterial, Inc. “We are working towards a day when shipping equipment can withstand harsh arctic environments, offshore structures can resist corrosion, and electronics can be fully submersible and continue working as good as new.”

New approaches to combat aging

CyteGen ( wants to dramatically increase the human healthspan, tackle neurodegenerative diseases, and reverse age-related decline. What makes this possible now is new discovery tools backed by the dream team of interdisciplinary experts the company has assembled. CyteGen’s approach is unusually collaborative, tapping into the resources and expertise of world-renowned researchers across eight major universities to focus different strengths and perspectives to achieve the company’s goals. By approaching aging from a holistic, systematic point of view, rather than focusing solely on discrete definitions of disease, they have developed a new way to think about aging, and to develop treatments that can help people live longer, healthier lives.

“There is an assumption that aging necessarily brings the kind of physical and mental decline that results in Parkinson’s, Alzheimer’s, and other diseases. Evidence indicates otherwise, which is what spurred us to launch CyteGen,” said George Ugras, Co-Founder and President of CyteGen.

To date, Breakout Labs has invested in more than two dozen companies at the forefront of science, helping radical technologies get beyond common hurdles faced by early stage companies, and advance research and development to market much more quickly. Portfolio companies have raised more than six times the amount of capital invested in the program by the Thiel Foundation, and represent six Series A valuations ranging from $10 million to $60 million as well as one acquisition.

You can see the original Oct. 6, 2015 Breakout Labs news release here or in this Oct. 7, 2015 news item on Azonano.

Argonne National Labs and Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS)

The US Department of Energy’s Argonne National Laboratory’s Oct. 6, 2015 press release by Greg Cunningham announced two initiatives meant to speed commercialization of nanotechnology-enabled products for the energy storage and other sectors,

Few technologies hold more potential to positively transform our society than energy storage and nanotechnology. Advances in energy storage research will revolutionize the way the world generates and stores energy, democratizing the delivery of electricity. Grid-level storage can help reduce carbon emissions through the increased adoption of renewable energy and use of electric vehicles while helping bring electricity to developing parts of the world. Nanotechnology has already transformed the electronics industry and is bringing a new set of powerful tools and materials to developers who are changing everything from the way energy is generated, stored and transported to how medicines are delivered and the way chemicals are produced through novel catalytic nanomaterials.

Recognizing the power of these technologies and seeking to accelerate their impact, the U.S. Department of Energy’s Argonne National Laboratory has created two new collaborative centers that provide an innovative pathway for business and industry to access Argonne’s unparalleled scientific resources to address the nation’s energy and national security needs. These centers will help speed discoveries to market to ensure U.S. industry maintains a lead in this global technology race.

“This is an exciting time for us, because we believe this new approach to interacting with business can be a real game changer in two areas of research that are of great importance to Argonne and the world,” said Argonne Director Peter B. Littlewood. “We recognize that delivering to market our breakthrough science in energy storage and nanotechnology can help ensure our work brings the maximum benefit to society.”

Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS) will provide central points of contact for companies — ranging from large industrial entities to smaller businesses and startups, as well as government agencies — to benefit from Argonne’s world-class expertise, scientific tools and facilities.

NDW and ACCESS represent a new way to collaborate at Argonne, providing a single point of contact for businesses to assemble tailored interdisciplinary teams to address their most challenging R&D questions. The centers will also provide a pathway to Argonne’s fundamental research that is poised for development into practical products. The chance to build on existing scientific discovery is a unique opportunity for businesses in the nano and energy storage fields.

The center directors, Andreas Roelofs of NDW and Jeff Chamberlain of ACCESS, have both created startups in their careers and understand the value that collaboration with a national laboratory can bring to a company trying to innovate in technologically challenging fields of science. While the new centers will work with all sizes of companies, a strong emphasis will be placed on helping small businesses and startups, which are drivers of job creation and receive a large portion of the risk capital in this country.

“For a startup like mine to have the ability to tap the resources of a place like Argonne would have been immensely helpful,” said Roelofs. “We”ve seen the power of that sort of access, and we want to make it available to the companies that need it to drive truly transformative technologies to market.”

Chamberlain said his experience as an energy storage researcher and entrepreneur led him to look for innovative approaches to leveraging the best aspects of private industry and public science. The national laboratory system has a long history of breakthrough science that has worked its way to market, but shortening that journey from basic research to product has become a growing point of emphasis for the national laboratories over the past couple of decades. The idea behind ACCESS and NDW is to make that collaboration even easier and more powerful.

“Where ACCESS and NDW will differ from the conventional approach is through creating an efficient way for a business to build a customized, multi-disciplinary team that can address anything from small technical questions to broad challenges that require massive resources,” Chamberlain said. “That might mean assembling a team with chemists, physicists, computer scientists, materials engineers, imaging experts, or mechanical and electrical engineers; the list goes on and on. It’s that ability to tap the full spectrum of cross-cutting expertise at Argonne that will really make the difference.”

Chamberlain is deeply familiar with the potential of energy storage as a transformational technology, having led the formation of Argonne’s Joint Center for Energy Storage Research (JCESR). The center’s years-long quest to discover technologies beyond lithium-ion batteries has solidified the laboratory’s reputation as one of the key global players in battery research. ACCESS will tap Argonne’s full battery expertise, which extends well beyond JCESR and is dedicated to fulfilling the promise of energy storage.

Energy storage research has profound implications for energy security and national security. Chamberlain points out that approximately 1.3 billion people across the globe do not have access to electricity, with another billion having only sporadic access. Energy storage, coupled with renewable generation like solar, could solve that problem and eliminate the need to build out massive power grids. Batteries also have the potential to create a more secure, stable grid for countries with existing power systems and help fight global climate disruption through adoption of renewable energy and electric vehicles.

Argonne researchers are pursuing hundreds of projects in nanoscience, but some of the more notable include research into targeted drugs that affect only cancerous cells; magnetic nanofibers that can be used to create more powerful and efficient electric motors and generators; and highly efficient water filtration systems that can dramatically reduce the energy requirements for desalination or cleanup of oil spills. Other researchers are working with nanoparticles that create a super-lubricated state and other very-low friction coatings.

“When you think that 30 percent of a car engine’s power is sacrificed to frictional loss, you start to get an idea of the potential of these technologies,” Roelofs said. “But it’s not just about the ideas already at Argonne that can be brought to market, it’s also about the challenges for businesses that need Argonne-level resources. I”m convinced there are many startups out there working on transformational ideas that can greatly benefit from the help of a place Argonne to bring those ideas to fruition. That is what has me excited about ACCESS and NDW.”

For more information on ACCESS, see:

For more information on NDW, see:

You can read more about the announcement in an Oct. 6, 2015 article by Greg Watry for R&D magazine featuring an interview with Andreas Roelofs.

Dunkin’ Donuts and nano titanium dioxide

It’s been a busy few days for titanium dioxide, nano and otherwise, as the news about its removal from powdered sugar in Dunkin’ Donuts products ripples through the nano blogosphere. A March 6, 2015 news item on Azonano kicks off the discussion with an announcement,

Dunkin’ Brands, the parent company of the Dunkin’ Donuts chain, has agreed to remove titanium dioxide, a whitening agent that is commonly a source of nanomaterials, from all powdered sugar used to make the company’s donuts. As a result of this progress, the advocacy group As You Sow has withdrawn a shareholder proposal asking Dunkin’ to assess and reduce the risks of using nanomaterials in its food products.

Here’s a brief recent history of Dunkin’ Donuts and nano titanium dioxide from my Aug. 21, 2014 posting titled, FOE, nano, and food: part two of three (the problem with research),

Returning to the ‘debate’, a July 11, 2014 article by Sarah Shemkus for a sponsored section in the UK’s Guardian newspaper highlights an initiative taken by an environmental organization, As You Sow, concerning titanium dioxide in Dunkin’ Donuts’ products (Note: A link has been removed),

The activists at environmental nonprofit As You Sow want you to take another look at your breakfast doughnut. The organization recently filed a shareholder resolution asking Dunkin’ Brands, the parent company of Dunkin’ Donuts, to identify products that may contain nanomaterials and to prepare a report assessing the risks of using these substances in foods.

Their resolution received a fair amount of support: at the company’s annual general meeting in May, 18.7% of shareholders, representing $547m in investment, voted for it. Danielle Fugere, As You Sow’s president, claims that it was the first such resolution to ever receive a vote. Though it did not pass, she says that she is encouraged by the support it received.

“That’s a substantial number of votes in favor, especially for a first-time resolution,” she says.

The measure was driven by recent testing sponsored by As You Sow, which found nanoparticles of titanium dioxide in the powdered sugar that coats some of the donut chain’s products. [emphasis mine] An additive widely used to boost whiteness in products from toothpaste to plastic, microscopic titanium dioxide has not been conclusively proven unsafe for human consumption. Then again, As You Sow contends, there also isn’t proof that it is harmless.

“Until a company can demonstrate the use of nanomaterials is safe, we’re asking companies either to not use them or to provide labels,” says Fugere. “It would make more sense to understand these materials before putting them in our food.”

As I understand it, Dunkin’ Donuts will be removing all titanium dioxide, nano-sized or other, from powdered sugar used in its products. It seems As You Sow’s promise to withdraw its July 2104 shareholder resolution is the main reason for Dunkin’ Donuts’ decision. While I was and am critical of Dunkin’ Donuts’ handling of the situation with As You Sow, I am somewhat distressed that the company seems to have acquiesced on the basis of research which is, at best, inconclusive.

Dr. Andrew Maynard, director of the University of Michigan Risk Science Centre, has written a substantive analysis of the current situation regarding nano titanium dioxide in a March 12, 2015 post on his 2020 Science blog (Note: Links have been removed),

Titanium dioxide (which isn’t the same thing as the metal titanium) is an inert, insoluble material that’s used as a whitener in everything from paper and paint to plastics. It’s the active ingredient in many mineral-based sunscreens. And as a pigment, is also used to make food products look more appealing.

Part of the appeal to food producers is that titanium dioxide is a pretty dull chemical. It doesn’t dissolve in water. It isn’t particularly reactive. It isn’t easily absorbed into the body from food. And it doesn’t seem to cause adverse health problems. It just seems to do what manufacturers want it to do – make food look better. It’s what makes the powdered sugar coating on donuts appear so dense and snow white. Titanium dioxide gives it a boost.

And you’ve probably been consuming it for years without knowing. In the US, the Food and Drug Administration allows food products to contain up to 1% food-grade titanium dioxide without the need to include it on the ingredient label. Help yourself to a slice of bread, a bar of chocolate, a spoonful of mayonnaise or a donut, and chances are you’ll be eating a small amount of the substance.

Andrew goes on to describe the concerns that groups such as You As Sow have (Note: Links have been removed),

For some years now, researchers have recognized that some powders become more toxic the smaller the individual particles are, and titanium dioxide is no exception. Pigment grade titanium dioxide – the stuff typically used in consumer products and food – contains particles around 200 nanometers in diameter, or around one five hundredth the width of a human hair. Inhale large quantities of these titanium dioxide particles (I’m thinking “can’t see your hand in front of your face” quantities), and your lungs would begin to feel it.

If the particles are smaller though, it takes much less material to cause the same effect.

But you’d still need to inhale very large quantities of the material for it to be harmful. And while eating a powdered donut can certainly be messy, it’s highly unlikely that you’re going to end up stuck in a cloud of titanium dioxide-tinted powdered sugar coating!

… Depending on what they are made of and what shape they are, research has shown that some nanoparticles are capable of getting to parts of the body that are inaccessible to larger particles. And some particles are more chemically reactive because of their small size. Some may cause unexpected harm simply because they are small enough to throw a nano-wrench into the nano-workings of your cells.

This body of research is why organizations like As You Sow have been advocating caution in using nanoparticles in products without appropriate testing – especially in food. But the science about nanoparticles isn’t as straightforward as it seems.

As Andrew notes,

First of all, particles of the same size but made of different materials can behave in radically different ways. Assuming one type of nanoparticle is potentially harmful because of what another type does is the equivalent of avoiding apples because you’re allergic to oysters.

He describes some of the research on nano titanium dioxide (Note: Links have been removed),

… In 2004 the European Food Safety Agency carried out a comprehensive safety review of the material. After considering the available evidence on the same materials that are currently being used in products like Dunkin’ Donuts, the review panel concluded that there no evidence for safety concerns.

Most research on titanium dioxide nanoparticles has been carried out on ones that are inhaled, not ones we eat. Yet nanoparticles in the gut are a very different proposition to those that are breathed in.

Studies into the impacts of ingested nanoparticles are still in their infancy, and more research is definitely needed. Early indications are that the gastrointestinal tract is pretty good at handling small quantities of these fine particles. This stands to reason given the naturally occurring nanoparticles we inadvertently eat every day, from charred foods and soil residue on veggies and salad, to more esoteric products such as clay-baked potatoes. There’s even evidence that nanoparticles occur naturally inside the gastrointestinal tract.

He also probes the issue’s, nanoparticles, be they titanium dioxide or otherwise, and toxicity, complexity (Note: Links have been removed),

There’s a small possibility that we haven’t been looking in the right places when it comes to possible health issues. Maybe – just maybe – there could be long term health problems from this seemingly ubiquitous diet of small, insoluble particles that we just haven’t spotted yet. It’s the sort of question that scientists love to ask, because it opens up new avenues of research. It doesn’t mean that there is an issue, just that there is sufficient wiggle room in what we don’t know to ask interesting questions.

… While there is no evidence of a causal association between titanium dioxide in food and ill health, some studies – but not all by any means – suggest that large quantities of titanium dioxide nanoparticles can cause harm if they get to specific parts of the body.

For instance, there are a growing number of published studies that indicate nanometer sized titanium dioxide particles may cause DNA damage at high concentrations if it can get into cells. But while these studies demonstrate the potential for harm to occur, they lack information on how much material is needed, and under what conditions, for significant harm. And they tend to be associated with much larger quantities of material than anyone is likely to be ingesting on a regular basis.

They are also counterbalanced by studies that show no effects, indicating that there is still considerable uncertainty over the toxicity or otherwise of the material. It’s as if we’ve just discovered that paper can cause cuts, but we’re not sure yet whether this is a minor inconvenience or potentially life threatening. In the case of nanoscale titanium dioxide, it’s the classic case of “more research is needed.”

I strongly suggest reading Andrew’s post in its entirety either here on the University of Michigan website or here on The Conversation website.

Dexter Johnson in a March 11, 2015 post on his Nanoclast blog also weighs in on the discussion. He provides a very neat summary of the issues along with these observations (Note Links have been removed),

With decades of TiO2 being in our food supply and no reports of toxic reactions, it would seem that the threshold for proof is extremely high, especially when you combine the term “nano” with “asbestos”.

As You Sow makes sure to point out that asbestos is a nanoparticle. While the average diameter of an asbestos fiber is around 20 to 90 nm, their lengths varied between 200 nm and 200 micrometers.

The toxic aspect of asbestos was not its diameter, but its length. …

In addition to his summary Dexter highlights As You Sows attempt to link titanium dioxide nanoparticles to asbestos. I suggest reading his post for an informed description of what made asbestos so toxic (here) and why the linkage seems specious at this time.

For anyone interested in how As You Sow managed to introduce asbestos toxicity issues into a discussion about nano titanium dioxide and food products, there’s this from As You Sow’s FAQs (frequently asked questions) about nanomaterials in food page,

Why are nanomaterials in food important to investors?

When technology is used before ensuring that it is safe for humans and the environment, and before regulatory standards exist, companies can be exposed to significant financial, legal, and reputational risk. The limited studies that exist on nanomaterials, including nanoscale titanium dioxide*, have indicated that ingestion of these particles may pose health hazards.

The inaction of regulators does not protect companies, especially when the regulators themselves warn of the dangers of nanoparticles’ largely unknown risks. Draft guidance issued by the U.S. Food and Drug Administration raises questions about the safety of nanoparticles and demonstrates the general lack of knowledge about the technology and its effects. (1)

Asbestos litigation is a good example of the risks that can arise from using an emerging technology before it is proven safe. Use of asbestos (a nanomaterial) has created the longest, most expensive mass tort in national history with total U.S. costs now standing at over $250 billion. (2) If companies been asked to investigate and minimize or avoid risks prior to adopting asbestos technology, a sad and expensive chapter in worker harm could have been avoided.

* Titanium dioxide is a common pigment and FDA-approved food additive. It is used as a whitener, a dispersant, and a thickener.

While I don’t particularly appreciate fear-mongering as a tactic, the strategy of targeting investors and their concerns, seems to have helped As You Sow win its way.

Global graphite market predictions

A Feb. 2, 2015 Persistence Market Research (PMR) news release about the worldwide graphite market found its way into my mailbox (on Mar. 2, 2015). Not being familiar with the business investment end of things or with Persistence Market Research I am cautiously interested in their market projections.

Here’s more from the news release,

According to a new market report published by Persistence Market Research “Global Market Study on Graphite: Battery Segment To Witness Highest Growth by 2020”, the global graphite market was valued at USD 13.62 billion in 2013 and is expected to grow at a CAGR [compound annual growth rate] of 3.7% from 2014 to 2020, to reach USD 17.56 billion in 2020.

Browse the full report with TOC at:

Increasing the use of graphite in the automotive and battery industries is the major factor driving the demand for graphite. Graphite is an important material used in gaskets, clutch materials, motors, exhaust systems, and cylinder heads. In the past, asbestos was the main component of linings and disk brake pads. Graphite, with benefits such as low-noise braking, makes a good replacement for asbestos in brake pads. Moreover, it is an important element in the manufacture of ultra-lightweight carbon-fiber reinforced plastic (CFRP). Traditionally, CFRP was mainly used in the aerospace and Formula One car industries. However, CFRP is now gaining popularity in the passenger car industry due to its lightweight. This, in turn, helps reduce fuel consumption and CO2 emissions.

Asia-Pacific is the largest market for graphite globally. Rise of technologically advanced applications of graphite in pebble-bed nuclear reactors, fuel cells, solar power systems, and automotive and aerospace industries is driving the graphite market in the Asia Pacific region. China and India are the major markets for graphite in the region. Rising demand for steel and other metals has increased the demand for graphite electrodes in Asia Pacific. This, in turn, is driving the growth of the graphite market. China accounts for over 70% share of total graphite production in the world. According to China’s Twelfth Five-Year Plan, the government plans to have around 5.0 million battery-electric vehicles plying on the roads by 2020. This is expected to increase demand for graphite in the Asia Pacific market during the forecast period.

According to a research report, the sale of plug-in electric vehicles in North America is expected to rise at a CAGR of 30.0% from 2012 to 2020. The total sales of tablets in the U.S. market grew from 9.7 million in 2010 to 40.6 million in 2013. This growth in sales is expected to drive demand for lithium-ion batteries. Rising demand for electric vehicles and other electronic devices such as mobiles, tablets, laptops, and cameras offers huge potential for the growth of the lithium-ion battery industry. This, in turn, is further expected to boost demand for graphite in North America. Europe is the second-largest graphite market in the world. Growing use of carbon fiber instead of steel in the automotive and aerospace industries in Europe is leading to increasing demand for graphite. Graphite is considered as a key material for green technology. Due to this fact, it is widely used in many applications for energy storage, photovoltaics, and in various electronic products.

The graphite market is bifurcated on the basis of form (natural graphite and synthetic graphite). Synthetic graphite is further sub-segmented on the basis of form (graphite electrode, carbon fiber, graphite blocks, graphite powder, and others). Graphite market is also segmented on the basis of end-use (electrode, refractory, lubricant, foundry, battery, and others). All the segments provide market size and forecast by volume and by value. The synthetic graphite segment holds the largest share of USD 12.49 billion in the graphite market in 2013 and is expected to reach USD 16.06 billion by 2020 at a CAGR of 3.7% from 2014 to 2020.

In terms of revenue, the global graphite market grew from USD 12.30 billion in 2010 to USD 13.62 billion in 2013 at a CAGR of 3.4%. In terms of volume, the global graphite market grew from 2.19 million tons in 2010 to 2.68 million tons in 2013 at a CAGR of 7.1%. Under regional segment, the Asia Pacific graphite market (the largest market in 2013) increased by 3.8% CAGR during 2010–2013 to reach USD 9.17 billion in 2013.

Request Sample Report of Graphite Market:

I was intrigued to note Canadian businesses included in a list of the major companies in this field,

Some of the major companies operating in the global graphite market are Triton Minerals Ltd., Lamboo Resources Limited, Mason Graphite, Focus Graphite Inc., Energizer Resources Inc., Northern Graphite Corporation, Alabama Graphite Corp., Flinders Resources Ltd., Syrah Resources Limited, SGL Carbon SE, GrafTech International Holdings Inc, Graphite India Limited, Nippon Graphite Industries, Co., Ltd., Asbury Graphite Mills, Inc, Showa Denko K.K., and Tokai Carbon Co., Ltd.  [emphases mine]

The highlighted companies are Canadian and have been mentioned on this blog at least once in relation to graphite and/or graphene. One observation, Lomiko Metals (a British Columbia-based company mentioned here a few times) didn’t make the list.

Getting back to the PMR news release,

Related Published Report:

Global Market Study on Paints and Coatings: Industrial Paints and Coatings to Witness Highest Growth by 2020:

Graphite Market, by Form

  • Natural graphite
  • Synthetic graphite

Synthetic Graphite Market, by Form

  • Graphite electrode
  • Carbon fiber
  • Graphite blocks
  • Graphite powder
  • Others

Graphite Market, by End Use

  • Electrode
  • Refractory
  • Lubricant
  • Foundry
  • Battery
  • Others

Graphite Market, by Region

  • North America
  • Europe
  • Asia Pacific
  • Rest of the World

Browse PMR Chemicals and Materials Market Research Reports @

About Us

Persistence Market Research (PMR) is a U.S.-based full-service market intelligence firm specializing in syndicated research, custom research, and consulting services. PMR boasts market research expertise across the Healthcare, Chemicals and Materials, Technology and Media, Energy and Mining, Food and Beverages, Semiconductor and Electronics, Consumer Goods, and Shipping and Transportation industries. The company draws from its multi-disciplinary capabilities and high pedigree team of analysts to share data that precisely corresponds to clients’ business needs.

Again, I cannot attest to the quality of the analysis but it’s safe to say it’s interesting.

For anyone as ignorant about business and investing terminology as I am, here’s a definition for CAGR (compound annual growth rate) from the Investopedia website,

CAGR isn’t the actual return in reality. It’s an imaginary number that describes the rate at which an investment would have grown if it grew at a steady rate. You can think of CAGR as a way to smooth out the returns.

Don’t worry if this concept is still fuzzy to you – CAGR is one of those terms best defined by example. Suppose you invested $10,000 in a portfolio on Jan 1, 2005. Let’s say by Jan 1, 2006, your portfolio had grown to $13,000, then $14,000 by 2007, and finally ended up at $19,500 by 2008.

Your CAGR would be the ratio of your ending value to beginning value ($19,500 / $10,000 = 1.95) raised to the power of 1/3 (since 1/# of years = 1/3), then subtracting 1 from the resulting number:

1.95 raised to 1/3 power = 1.2493. (This could be written as 1.95^0.3333).1.2493 – 1 = 0.2493Another way of writing 0.2493 is 24.93%. [sic]

Thus, your CAGR for your three-year investment is equal to 24.93%, representing the smoothed annualized gain you earned over your investment time horizon.

More about MUSE, a Canadian company and its brain sensing headband; women and startups; Canadianess

I first wrote about Ariel Garten and her Toronto-based (Canada) company, InteraXon, in a Dec. 5, 2012 posting where I featured a product, MUSE (Muse), then described as a brainwave controller. A March 5, 2015 article by Lydia Dishman for Fast Company provides an update on the product now described as a brainwave-sensing headband and on the company (Note: Links have been removed),

The technology that had captured the imagination of millions was then incorporated to develop a headband called Muse. It sells at retail stores like BestBuy for about $300 and works in conjunction with an app called Calm as a tool to increase focus and reduce stress.

If you always wanted to learn to meditate without those pesky distracting thoughts commandeering your mind, Muse can help by taking you through a brief exercise that translates brainwaves into the sound of wind. Losing focus or getting antsy brings on the gales. Achieving calm rewards you with a flock of birds across your screen.

The company has grown to 50 employees and has raised close to $10 million from investors including Ashton Kutcher. Garten [Ariel Garten, founder and Chief Executive Founder] says they’re about to close on a Series B round, “which will be significant.”

She says that listening plays an important role at InteraXon. Reflecting back on what you think you heard is an exercise she encourages, especially in meetings. When the development team is building a tool, for example, they use their Muses to meditate and focus, which then allows for listening more attentively and nonjudgmentally.

Women and startups

Dishman references gender and high tech financing in her article about Garten,

Garten doesn’t dwell on her status as a woman in a mostly male-dominated sector. That goes for securing funding for the startup too, despite the notorious bias venture-capital investors have against women startup founders.

“I am sure I lost deals because I am a woman, but also because the idea didn’t resonate,” she says, adding, “I’m sure I gained some because I am a woman, so it is unfair to put a blanket statement on it.”

Yet Garten is the only female member of her C-suite, something she says “is just the way it happened.” Casting the net recently to fill the role of chief operating officer [COO], Garten says there weren’t any women in the running, in part because the position required hardware experience as well as knowledge of working with the Chinese.

She did just hire a woman to be senior vice president of sales and marketing, and says, “When we are hiring younger staff, we are gender agnostic.”

I can understand wanting to introduce nuance into the ‘gender bias and tech startup discussion’ by noting that some rejections could have been due to issues with the idea or implementation. But the comment about being the only female in late stage funding as “just the way it happened” suggests she is extraordinarily naïve or willfully blind. Given her followup statement about her hiring practices, I’m inclined to go with willfully blind. It’s hard to believe she couldn’t find any woman with hardware experience and China experience. It seems more likely she needed a male COO to counterbalance a company with a female CEO. As for being gender agnostic where younger staff are concerned, that’s nice but it’s not reassuring as women have been able to get more junior positions. It’s the senior positions such as COO which remain out of reach and, troublingly, Garten seems to have blown off the question with a weak explanation and a glib assurance of equality at the lower levels of the company.

For more about gender, high tech companies, and hiring/promoting practices, you can read a March 5, 2015 article titled, Ellen Pao Trial Reveals the Subtle Sexism of Silicon Valley, by Amanda Marcotte for Slate.

Getting back to MUSE, you can find out more here. You can find out more about InterAxon here. Unusually, there doesn’t seem to be any information about the management team on the website.


I thought it was interesting that InterAxon’s status as a Canada-based company was mentioned nowhere in Dishman’s article. This is in stark contrast to Nancy Owano’s  Dec. 5, 2012 article for,

A Canadian company is talking about having a window, aka computer screen, into your mind. … InteraXon, a Canadian company, is focused on making a business out of mind-control technology via a headband device, and they are planning to launch this as a $199 brainwave computer controller called Muse. … [emphases mine]

This is not the only recent instance I’ve noticed. My Sept. 1, 2014 posting mentions what was then an upcoming Margaret Atwood event at Arizona State University,

… (from the center’s home page [Note: The center is ASU’s Center for Science and the Imagination]),

Internationally renowned novelist and environmental activist Margaret Atwood will visit Arizona State University this November [2014] to discuss the relationship between art and science, and the importance of creative writing and imagination for addressing social and environmental challenges.

Atwood’s visit will mark the launch of the Imagination and Climate Futures Initiative … Atwood, author of the MaddAddam trilogy of novels that have become central to the emerging literary genre of climate fiction, or “CliFi,” will offer the inaugural lecture for the initiative on Nov. 5.

“We are proud to welcome Margaret Atwood, one of the world’s most celebrated living writers, to ASU and engage her in these discussions around climate, science and creative writing,” …  “A poet, novelist, literary critic and essayist, Ms. Atwood epitomizes the creative and professional excellence our students aspire to achieve.”

There’s not a single mention that she is Canadian there or in a recent posting by Martin Robbins about a word purge from the Oxford Junior Dictionary published by the Guardian science blog network (March 3, 2015 posting). In fact, Atwood was initially described by Robbins as one of Britain’s literary giants. I assume there were howls of anguish once Canadians woke up to read the article since the phrase was later amended to “a number of the Anglosphere’s literary giants.”

The omission of InterAxon’s Canadianness in Dishman’s article for an American online magazine and Atwood’s Canadianness on the Arizona State University website and Martin Robbins’ initial appropriation and later change to the vague-sounding “Anglospere” in his post for the British newspaper, The Guardian, means the bulk of their readers will likely assume InterAxon is American and that Margaret Atwood, depending on where you read about her, is either an American or a Brit.

It’s flattering that others want to grab a little bit of Canada for themselves.

Coda: The Oxford Junior Dictionary and its excision of ‘nature’ words


Robbins’ March 3, 2015 posting focused on a heated literary discussion about the excision of these words from the Oxford Junior Dictionary (Note:  A link has been removed),

“The deletions,” according to Robert Macfarlane in another article on Friday, “included acorn, adder, ash, beech, bluebell, buttercup, catkin, conker, cowslip, cygnet, dandelion, fern, hazel, heather, heron, ivy, kingfisher, lark, mistletoe, nectar, newt, otter, pasture and willow. The words taking their places in the new edition included attachment, block-graph, blog, broadband, bullet-point, celebrity, chatroom, committee, cut-and-paste, MP3 player and voice-mail.”

I’m surprised the ‘junior’ dictionary didn’t have “attachment,” “celebrity,” and “committee” prior to the 2007 purge. By the way, it seems no one noticed the purge till recently. Robbins has an interesting take on the issue, one with which I do not entirely agree. I understand needing to purge words but what happens a child reading a classic such as “The Wind in the Willows’ attempts to look up the word ‘willows’?  (Thanks to Susan Baxter who in a private communication pointed out the problems inherent with reading new and/or classic books and not being able to find basic vocabulary.)

Nano and the NASDAQ

First, a caveat: I know very little about stock markets and investing so I’m not offering any comments about the quality of the investment advice offered in an April 23, 2014 article by StreetAuthority for the NASDAQ stock market website. The article is being featured here for informational purposes and because it focuses on nanotechnology (Note: A link has been removed),

A couple of months ago, the fund planners at Invesco PowerShares closed the book on one of the most unusual chapters in investing history, announcing a move to shut down the PowerShares Lux Nanotech Portfolio exchange-traded fund ( ETF ). A lack of interest was the main culprit in its demise.

… For many investors, the move signaled the end of the decade-long hype around nanotechnology stocks. Back in 2006, with nanotech mania in full bloom, Businessweek predicted that this emerging technology would represent a $2.6 trillion industry by 2014 .

That prediction overestimated the industry’s potential by at least $2.5 trillion.

StreetAuthority goes on to analyse some specific ‘nano’ stocks,

… A quick snapshot of where the remaining nanotech stocks trade in relation to their all-time highs paints a sobering picture. With the exception of FEI Co. (Nasdaq: FEIC ) , not one of these firms lived up to the hype.

[downloaded from]

[downloaded from]

Just when you think all is lost the author finds reason for optimism (Note: Links have been removed),

Yet just as most investors have written off the notion of nano-investing, the underlying technology is being seeded in a widening range of applications. Many industrial firms such as 3M (NYSE: MMM ) already derive solid recurring revenue streams from nanotechnology and are spending heavily on new products , which bodes well for the companies that make the tools to help further this technology’s development.

FEI, for example, is expected to reach the $1 billion revenue mark this year for the first time. FEI’s equipment helps other firms analyze and develop nanotechnology-based products and chemistries, mostly in the semiconductor industry. The company has delivered on the promise of nanotech, but shares appear fully valued, as top-line growth is around 10% and shares trade for more than 20 times next year’s earnings.

A more intriguingly valued stock is Flamel Technologies (Nasdaq: FLML ) , a biotech firm that has developed a range of drug delivery methods to deliver nano-sized particles into the bloodstream. Though this firm could never live up to the nanohype of a decade ago — and a decade of annual operating losses will wilt any investor’s confidence — shares are starting to rebound as key products start to reach the market.

It’s nice to be able to supplement the information one gets from government reports on commercializing nanotechnology with some ‘stock market’ analysis. As for whether or not this is good advice, caveat emptor (buyer beware). I can say that the author does not seem to have a solid grasp of the term ‘nanotechnology’, e.g. “… a new and much-hyped technology known as graphene holds the same promise , and in a few years we may see huge sums of money chase after graphene companies, just as we saw with nanotechs.” [emphasis mine] Generally speaking, graphene is considered to be part of the ‘nanotechnology enterprise’.

Canadian nanobusiness news bitlets: NanoStruck and Lomiko Metals

The two items or ‘news bitlets’ about Canadian nano business don’t amount to much; one concerns a letter of intent and the other, an offer of warrants (like stock options) which likely expired today (March 13, 2014).

It seems NanoStruck Technologies is continuing to make headway in Mexico (as per my Feb. 19, 2014 posting about the company’s LOI and gold mine tailings in Zacatecas state) as the company has signed another letter of intent (LOI), this time, to treat wastewater in the region of Cabo Corrientes. From a March 11, 2014 news item on Azonano,

NanoStruck Technologies Inc. (the “Company” or “NanoStruck”) announces the signing of a Letter of Intent (LOI) with the town of El Tuito to use the Company’s NanoPure technology to treat wastewater from the municipality of Cabo Corrientes in Mexico.

The parties are in dialogue for the treatment of household residual water, which contains food, biodegradable matter, kitchen waste and organic materials. The Company’s NanoPure solution uses chemical-free processes and proprietary nano powders that can be customised to remove such contaminants.

The March 10, 2014 NanoStruck Technologies news release (which originated the news item) link on the company website leads to the full text here on (Note: Links have been removed),

Homero Romero Amaral, President of the Municipality of Cabo Corrientes said: “NanoStruck’s NanoPure technology is a proven solution for the treatment of residual water in an environmentally friendly way. Its low energy consumption means it also maintains a low carbon footprint.”

Bundeep Singh Rangar, Interim CEO and Chairman of the Board said: “We are privileged to be given the opportunity to work with the Cabo Corrientes municipality to create a long-term residual wastewater treatment solution.”

El Tuito is the capital of Cabo Corrientes, a cape on the Pacific coast of the Mexican state of Jalisco. It marks the southernmost point of the Bahía de Banderas (Bay of Flags), where the port and resort city of Puerto Vallarta is situated.

The Municipality and NanoStruck have commenced negotiation of a definitive agreement regarding the use of the NanoPure technology and hope to complete a binding agreement within 90 days.

My next bitlet concerns, Lomiko Metals and its short form prospectus and offering. From the company’s March 7, 2014 news release (also available on MarketWired),

LOMIKO METALS INC. (TSX VENTURE:LMR) (the “Company” or “Lomiko”) is pleased to announce that it has obtained a final receipt for its short form prospectus (the “Prospectus”) in each of the provinces of British Columbia, Alberta and Ontario, which qualifies the distribution (the “Public Offering”) of (i) a minimum of 6,818,182 units (the “Units”) and a maximum of 27,272,727 Units of the Company at a price of $0.11 per Unit, and (ii) a maximum of 7,692,308 flow-through units (the “Flow-Through Units”) of the Company at a price of $0.13 per Flow-Through Unit, for minimum total gross proceeds of $750,000 and maximum total gross proceeds of $4,000,000.

Each Unit consists of one common share of the Company (each, a “Common Share”) and one-half of one common share purchase warrant (each whole warrant being a “Unit Warrant”). Each Flow-Through Unit consists of one Common Share to be issued on a “flow-through” basis within the meaning of the Income Tax Act (Canada) (each a “Flow-Through Share”) and one-half of one common share purchase warrant (each whole warrant being a “Flow-Through Unit Warrant”).

Each Unit Warrant will entitle the holder thereof to purchase one common share of the Company (the “Unit Warrant Shares”) at a price of $0.15 per Unit Warrant Share at at any time before the date that is 18 months following the closing date of the Public Offering. Each Flow-Through Unit Warrant will entitle the holder thereof to purchase one common share of the Company (the “Flow-Through Unit Warrant Shares”) at a price of $0.20 per Flow-Through Unit Warrant Share at at any time before the date that is 18 months following the closing date of the Public Offering. The Public Offering will be conducted on a “best effort” agency basis through Secutor Capital Management Corporation (the “Agent”), pursuant to an agency agreement dated March 6, 2014 (the “Agency Agreement”) between the Company and the Agent in respect of the Public Offering.

Pursuant to the Agency Agreement, the Company has also granted an over-allotment option to the Agent, exercisable for a period of 30 days following the closing of the Public Offering, in whole or in part, to purchase additional Units and Flow-Through Units in a maximum number equal to up to 15% of the number of Units and Flow-Through Units respectively sold pursuant to the Public Offering. In connection with the Public Offering, the Company will pay the Agent a cash commission equal to 8% of the gross proceeds of the Public Offering and grant compensation options to the Agent entitling it to purchase that number of common shares of the Company equal to 6% of the aggregate number of Units and Flow-Through Units issued and sold under the Public Offering (including the over-allotment option) for a period of 18 months following the closing date of the Public Offering, at a price of $0.11 per common share.

The Company is also pleased to announce it has received conditional approval from the TSX Venture Exchange for its previously announced concurrent non-brokered offering of up to 15,346,231 flow-through units (the “Private Placement Units”) for additional gross proceeds of $2,000,000 (the “Private Placement”). The securities underlying the Private Placement Units will be issued on the same terms as the securities underlying the Flow-Through Units to be issued under the Public Offering. The Company has agreed to pay to Secutor Capital Management Corporation a finder’s fee of 8% in cash and the issuance of a warrant to purchase the number of common shares of the Company equal to 6%, exercisable at $0.13 per share for 18 months from the date of issuance. The securities to be issued under the Private Placement will be subject to a four-month hold period from the closing date of the Private Placement.

The net proceeds from the Public Offering and the Private Placement will be used by Lomiko primarily in connection with the exploration program on the Quatre-Milles East and West mineral properties (Quebec), for business development and for working capital and general corporate purposes. In particular, the proceeds of the flow-through shares under the Public Offering and the Private Placement will be used by the Company to incur eligible Canadian Exploration Expenses as defined by the Income Tax Act (Canada).

Closing of the Public Offering and of the Private Placement is expected to occur on or about March 13, 2014, or such other date as the Agent and the Company may determine. The TSX Venture Exchange has conditionally approved the listing of the securities to be issued pursuant to the Public Offering and the Private Placement. The Public Offering and the Private Placement are subject to customary conditions and the final approval of the TSX Venture Exchange.

The Units, the Flow-Through Units and the Private Placement Units have not been, nor will they be, registered under the United States Securities Act of 1933, as amended (the “1933 Act”), and may not be offered, sold or delivered, directly or indirectly, within the United States, or to or for the account or benefit of U.S. persons unless the Units, the Flow-Through Units and the Private Placement Units are registered under the 1933 Act or pursuant to an applicable exemption from the registration requirements of the 1933 Act. This press release does not constitute an offer to sell, nor it is a solicitation of an offer of securities, nor shall there be any sale of securities in any state of the United States in which such offer, solicitation or sale would be unlawful.

You’re on your own with regard to determining how good an investment this company might be. The company’s March 10, 2014 newsletter does point to two analyses (although, again, you’re on your own as to whether or not these are reputable analysts), The first analyst is Gary Anderson (self-described as a Investor, trader, researcher, and writer- exclusively in 3D Printing Stocks.). He writes this in a Dec. 27, 2013 posting on,

I spend a great deal of time looking for what I believe are legitimate, undiscovered stocks in the 3D printing space because I believe that’s where the major gains will be over a 3-6 month period as they undergo discovery by the broader market.

The little-known penny stock [Lomiko Metals] I’m introducing today has legitimate upside potential for 3D printing investors based on four factors:

  1. The market for their product
  2. Current and potential future value of existing assets
  3. Supply and demand imbalance predicted
  4. Entrance into 3D printing materials market with an established leader


3D printing investors looking for a materials supplier as part of their 3D printing portfolio may want to consider Lomiko Metals.  I believe there is limited downside risk at current levels due to the intrinsic value of the company’s hard assets in their Quatre Milles graphite property, and potential for significant share price appreciation due to the four factors discussed above.

Graphene has extraordinary potential as a game-changing material for 3D printing.  Early movers like Lomiko Metals in partnership with Graphene Labs could become the beneficiaries of this amazing material’s potential as it becomes commercialized and utilized in 3D printed components and products that contain revolutionary properties.

Disclosure:    I am long shares of Lomiko Metals.  I received no compensation from Lomiko Metals or any third party for this article.

Russia’s nanotechnology efforts falter?

The title for Leonid Bershidksy’s May 16, 2013 article, Power Grab Trumps Nanotechnology in Putin’s Russia, casts an ominous shadow over Rusnano’s situation (Note: Links have been removed),

The projects, known as Rusnano and Skolkovo, were meant to propel Russia’s raw-material economy into the technology age. They involved multibillion-dollar government investments, the first in nanotechnology and the second in a new city that would become Russia’s answer to Silicon Valley. They were supposed to provide the infrastructure and stability required to attract large amounts of foreign investment.

Now, both have become targets in Putin’s campaign to demonstrate that he’s being tough on corruption and mismanagement of government funds. As a result, their chances of succeeding are looking increasingly remote.

Trouble came in April [2013], when the Accounting Chamber, a body charged with auditing government spending, accused Rusnano of inefficient management in a report that received ample coverage on state-owned TV. It said that Rusnano had transferred about $40 million to shell companies and pointed out that a silicon factory in which Rusnano invested about $450 million was not functioning and was about to be declared insolvent. The report also highlighted the state company’s 2012 losses of 2.5 billion rubles ($80 million) and the 24.4-billion-ruble (about $800 million) in reserves Rusnano had formed against potential losses from risky ventures.

Anatoly Medetsky’s Apr. 29, 2013 article for The Moscow Times provides more insight into the situation,

The government’s Audit Chamber on Friday [April 26, 2013] accused state-owned Rusnano of multiple infractions in a blow to the high-tech corporation’s chief, Anatoly Chubais.

The chamber’s critical conclusions followed President Vladimir Putin’s reproof of the company during a live call-in show the previous day.

Auditors made their statement after examining Rusnano’s records in response to a request by Chubais’ political nemesis, the Communist Party.

“The audit’s materials attest that Rusnano’s performance was inappropriate to attain the goals that it was entrusted with, which are the development of the national nano industry,” the Audit Chamber said in a statement.

Auditor Sergei Agaptsov said separately that Rusnano is unlikely to achieve the goal of 300 billion rubles in annual sales of nano-tech products by the companies it co-owns in 2015 — the target that the government set for the company, Interfax reported.

I’m sorry to read about Rusnano’s difficulties especially in light my first piece about it where I compared the Canadian effort unfavourably to, what was then, a relatively new and promising organization in my Apr. 14, 2009 posting. About seventeen months later, officials with Rusnano signed a memorandum of understanding with John Varghese, CEO and Managing Partner of Toronto based venture capital firm, VentureLink Funds as noted in my Sept. 14, 2010 posting. Nothing further seemed to come of that agreement.

I have one last thought about Rusnano’s current travails, will they have an impact on US commercialization efforts? In my Oct. 28, 2011 posting where I was contrasting nanotechnology commercialization efforts by the US, Spain, and Rusnano, I mentioned this deal Rusnano had made with two US nanomedicine companies,

Then RUSNANO announced its investments in Selecta Biosciences and BIND Biosiences, from the Oct. 27, 2011 news item on Nanowerk,

BIND Biosciences and Selecta Biosciences, two leading nanomedicine companies, announced today that they have entered into investment agreements with RUSNANO, a $10-billion Russian Federation fund that supports high-tech and nanotechnology advances. [emphasis mine]

RUSNANO is co-investing $25 million in BIND and $25 million in Selecta, for a total RUSNANO investment of $50 million within the total financing rounds of $94.5 million in the two companies combined. …

The proprietary technology platforms of BIND and Selecta originated in laboratories at Harvard Medical School directed by Professor Omid Farokhzad, MD, and in laboratories at MIT directed by Professor Robert Langer, ScD, a renowned scientist who is a recipient of the US National Medal of Science, the highest US honor for scientists, and is an inventor of approximately 850 patents issued or pending worldwide. Drs. Langer and Farokhzad are founders of both companies.

Ripple effects, eh? Rusnano was very active internationally.

ETA June 14, 2013:  Nanowerk has a June 13, 2013 news item, which updates the situation with the news that Rusnano has opted out of presenting an ‘initial public offering’, aka, listing itself on a stock exchange in 2015 and will instead attract private investment.

Goodish article for beginners—Pangaea Ventures on the state of nanotechnology

Purnesh Seegopaul, General Partner, Pangaea Ventures Ltd., headquartered in Vancouver, Canada, has written a Jan. 21, 2013 posting, The State of Nanotechnology, for the company blog, which offers a good primer on nanotechnology along with a bit of a sales pitch,

Nanomaterials are of particular interest and at Pangaea Ventures, our focused approach on advanced materials gives us an exceptional grasp of leading-edge innovations and emerging companies developing and commercializing nano-enabled products. Engineered nanomaterial building blocks include inorganic nanoparticles, nanofibers, nanowires, quantum dots, nanotubes, nanoporous materials, dendrimers, plasmons, metamaterials, superlattices, metal organic frameworks, clays, nanocomposites, and the carbon-based nanotubes, graphene, fibers, fullerenes, and activated materials. These nanostructures are incorporated in bulk forms, coatings, films, inks, and devices. Graphene, the latest addition to the nanotech toolkit not only garnered the 2010 Nobel Prize (Geim and Nuvoselov [sic]) but also projected to extend Moore’s law in nanoelectronics. Nanobiomedical applications would allow targeted drug delivery in cancer treatment. Of course, nano-enabled products are expected to be competitive in terms of cost, performance and safety.

I do have a problem with Seegopaul’s stance on intellectual property (IP); I reported on the nanotech IP bonanza (4000 in the US for 2012)  in my Jan. 4, 2013 posting,

Companies need to understand that intellectual property is an important consideration and the IP landscape is getting busy. US patent publications in the 977 nanotech class established by the USPTO are expected to reach 4000 in 2012.

Tim Harper, Chief Executive Officer of Cientifica (the company is cited in Seegopaul’s posting) isn’t particularly enthusiastic about patents either, from Harper’s Jan. 15, 2013 posting about graphene (a nanomaterial) on the Cientifica blog, Insight,

The UK has a number of companies producing decent quality graphene – a prerequisite for any applications – and the history of nanotechnology shows us that filing huge numbers of patents is no guarantee of commercial success.

The Cientifica mention in Seegopaul’s posting was made in the context of government funding,

Nanotechnology enjoys generous funding support. Cientifica recently estimated that governments around the world invested $67 billion over the last 11 years and projected $0.25 trillion in investments from all sources by 2015! [emphasis mine] The USA is expected to spend about $1.7 billion in 2012 and $1.8 billion has been requested for 2013. I expect that nations will continue to pour significant funding into nanotechnology.

Tim Harper gave an interview about  his company’s report Global Funding of Nanotechnologies and its Impact that was published in my July 15, 2012 posting.

Seegopaul’s posting is a good introduction, despite my concern over his IP stance, to nanotechnology but the title does seem to be stretching it a bit. Panagaea Ventures has been mentioned here before (May 14, 2010 posting) in the context of a local Vancouver-based smart window company, SWITCH Materials, which was founded by Neil Branda who was himself mentioned here in a Jan. 15, 2013 posting about the Canadian government funding of the Prometheus Project; a global innovation hub at Simon Fraser University in Vancouver.

You say nanocrystalline cellulose, I say cellulose nanocrystals; CelluForce at Japan conference and at UK conference

In reading the Oct. 14, 2012 news release from CelluForce about its presence at conferences in Japan and in the UK, I was interested to note the terminology being used,

CelluForce, the world leader in the commercial development of NanoCrystalline Cellulose (NCC), also referred to as Cellulose Nanocrystals (CNC),[emphases mine] is participating in two  upcoming industry conferences:  the ‘Nanocellulose Summit 2012’ in Kyoto, Japan on October 15, 2012, and ‘Investing in Cellulose 2012’, in London, UK, on November 5, 2012.

All of the materials from Canadian companies and not-for-profits have used the term nanocrystalline cellulose (NCC) exclusively, until now. I gather there’ve been some international discussions regarding terminology and that the term cellulose nanocrystals (CNC) is, at the least, a synonym if not the preferred term.

Here’s more about the conference in Japan (from the CelluForce news release),

The 209th Symposium on Sustainable Humanosphere: Nanocellulose Summit 2012’ welcomes the world’s top scientists and large research project leaders involved with nanocellulose to present on each country’s current status and prospects concerning nanocellulose research and industrialization.

What:                  CelluForce – What do we do?

Who:                    Richard Berry, Vice President and Chief  Technology Officer, CelluForce

When:                 Monday, October 15, 2012, 4 p.m. JST

Where:                 Kyoto Terrsa Venue, Shinmachi Kujo Minami-ku,
Kyoto, Japan (Kyoto Citizen’s Amenity Plaza)

I found out a little more about the conference Dr. Richard Berry will be attending on the Nanocellulose Summit 2012 webpage on the Kyoto University website,

The world’s top scientists and large research project leaders involved with nanocellulose (cellulose nanofiber (CNF) [sic] and cellulose nanocrystal (CNC or NCC) ) brought together. They will talk about each country’s current status and prospects concerning nanocellulose research and industrialization.

You can find more details, including the agenda, on the conference webpage.

Here’s more about the investment-oriented conference taking place in the UK,

In its second edition, ‘Investing in Cellulose 2012’ is a global conference on specialty cellulose, organized by CelCo. The company focuses primarily on the specialty cellulose business including the organization of cellulose training courses as well as advisory and consultancy to the industry.

What:                  Nanocrystalline technologies: Bringing Innovation to the Market

Who:                    Jean Moreau, President and CEO, CelluForce

When:                 Monday, November 5, 2012, 2:30 p.m. BST

Where:                The Royal Horseguards Hotel, 2 Whitehall Court Whitehall, London SW1A 2EJ, United Kingdom

I have found an ‘Investing in Cellulose 2012‘ conference webpage (of sorts) on the CelCo website (Note: I have removed some of the formatting),

Based on the success of 2011 specialty cellulose conference and encouraged by a 92% return intention response we are pleased to announce that Investing in Cellulose -2012 Conference will take place in London on November 5th.

A cocktail will kick off the event the preceding night and close around 18:00 of November 5th.

So please SAVE THE DATE in your calendar and contact us HERE

 We have taken into account your wishes and suggestions for this second year event and some of the changes will include:

  • Antitrust lawyer attending meeting allowing larger participation esp. from USA.
  • New topics to allow ether and viscose market to be better covered. Technology section during the day.
  • Seat in lunch accommodations and air condition.
  • Larger china representation.
  • More downstream value chain participation.

We will share later this year the Agenda but feel free to let us know if there were any particular topics you would like us to cover or you would like to present.

The most I could find out about the UK conference organizer is that  Celco Cellulose Consulting is a Swiss company founded by two partners.

RUSNANO and 12BF’s clean energy investment fund

After the late June 2012 announcement that the Russian government was selling its shares in various resource- and commodity-based national enterprises as well as 10% of its stake in RUSNANO (my June 25, 2012 posting), this seems an interesting development. Sally Bakewell in a July 18, 2012 article for mentions a new Rusnano venture (Note: I have removed links),

Rusnano Capital LLC teamed up with New York-based I2BF Global Ventures to invest $150 million in nanotechnologies for Russia’s agriculture and water industries.

Nanotechnology, which deals with matter on a scale comparable to the diameter of a strand of DNA, can be used to remove pollutants and salt from water, improve soil fertility and boost crops. Drought, still affecting nine regions in Russia, has damaged grains on 1.5 million hectares (3.7 million acres) of land this year, according to the Agriculture Ministry.

The July 18, 2012 news item on Opalesque offers this detail,

Rusnano Capital (RNC), the Russian government-owned nanotechnology investment company, and international technology investment group I2BF Global Ventures have announced the launch of the I2BF-RNC Strategic Resources Fund to invest in later-stage nanotechnology companies. The seven-year fund launches with a $53m commitment from its LPs with a target fund size of $150m.

Its remit will be to invest in international nanotechnology that has applications of value within the Russian Federation, with a focus on the resource sector as well as water and agriculture.

“We are delighted to partner with Rusnano Capital on our first late-stage venture fund expanding on I2BF’s existing investment expertise,” says Ilya Golubovich, Managing Partner of I2BF Global Ventures (right). “… The opportunities to roll out nanotech applications and also production facilities in Russia are widespread and we will be using our global footprint to channel the best technologies into this market.”