Category Archives: Visual Art

Michelangelo, clinical anatomy, mathematics, the Golden Ratio, and a myth

I would have thought an article about Michelangelo, mathematics, and the Golden Ratio would be in a journal dedicated to the arts or mathematics or possibly both. Not even my tenth guess would  have been Clinical Anatomy. As for the myth, not everyone subscribes to the Golden Ratio theory of beauty.

A July 20, 2015 Wiley Periodicals press release (also on EurekAlert) announces the publication of the research,

New research provides mathematical evidence that Michelangelo used the Golden Ratio of 1.6 when painting The Creation of Adam on the ceiling of the Sistine Chapel. The Golden Ratio is found when you divide a line into two parts so that the longer part divided by the smaller part is equal to the whole length divided by the longer part.

The Golden Ratio has been linked with greater structural efficiency and has puzzled scientists for centuries due to its frequent occurrence in nature–for example in snail shells and flower petals. The Golden Ratio can also be found in a variety of works by architects and designers, in famous musical compositions, and in the creations of many artists.

The findings suggest that the beauty and harmony found in the works of Michelangelo may not be based solely on his anatomical knowledge. He likely knew that anatomical structures incorporating the Golden Ratio offer greater structural efficiency and, therefore, he used it to enhance the aesthetic quality of his works.

“We believe that this discovery will bring a new dimension to the great work of Michelangelo,” said Dr. Deivis de Campos, author of the Clinical Anatomy study.

Here’s a link to and a citation for the paper,

More than a neuroanatomical representation in The Creation of Adam by Michelangelo Buonarroti, a representation of the Golden Ratio by Deivis De Campos, Tais Malysz,  João Antonio Bonatto-Costa, Geraldo Pereira Jotz, Lino Pinto De Oliveira Junior, and Andrea Oxley da Rocha. Clinical Anatomy DOI: 10.1002/ca.22580 Article first published online: 17 JUL 2015

© 2015 Wiley Periodicals, Inc.

This paper is open access.

Golden Ratio myth

One final comment, it seems not everyone is convinced that the Golden Ratio plays an important role in design, art, and architecture according to an April 13, 2015 article by John Brownlee for Fast Company titled: The Golden Ratio: Design’s Biggest Myth,

In the world of art, architecture, and design, the golden ratio has earned a tremendous reputation. Greats like Le Corbusier and Salvador Dalí have used the number in their work. The Parthenon, the Pyramids at Giza, the paintings of Michelangelo, the Mona Lisa, even the Apple logo are all said to incorporate it.

It’s bullshit. The golden ratio’s aesthetic bona fides are an urban legend, a myth, a design unicorn. Many designers don’t use it, and if they do, they vastly discount its importance. There’s also no science to really back it up. Those who believe the golden ratio is the hidden math behind beauty are falling for a 150-year-old scam.

Fascinating, non?

Do artists see colour at the nanoscale? It would seem so

I’ve wondered how Japanese artists of the 16th to 18th centuries were able to beat gold down to the nanoscale for application to screens. How could they see what they were doing? I may have an answer at last. According to some new research, it seems that the human eye can detect colour at the nanoscale.

Before getting to the research, here’s the Namban screen story.

Japanese Namban Screen. ca. 1550. In Portugal-Japão: 450 anos de memórias. Embaixada de Portugal no Japão, 1993. [downloaded from http://www.indiana.edu/~liblilly/digital/exhibitions/exhibits/show/portuguese-speaking-diaspora/china-and-japan]

Japanese Namban Screen. ca. 1550. In Portugal-Japão: 450 anos de memórias. Embaixada de Portugal no Japão, 1993. [downloaded from http://www.indiana.edu/~liblilly/digital/exhibitions/exhibits/show/portuguese-speaking-diaspora/china-and-japan]

This image is from an Indiana University at Bloomington website featuring a page titled, Portuguese-Speaking Diaspora,

A detail from one of four large folding screens on display in the Museu de Arte Antiga in Lisbon. Namban was the word used to refer to Portuguese traders who, in this scene, are dressed in colorful pantaloons and accompanied by African slaves. Jesuits appear in black robes, while the Japanese observe the newcomers from inside their home. The screen materials included gold-covered copper and paper, tempera paint, silk, and lacquer.

Copyright © 2015 The Trustees of Indiana University

Getting back to the Japanese artists, here’s how their work was described in a July 2, 2014 Springer press release on EurekAlert,

Ancient Japanese gold leaf artists were truly masters of their craft. An analysis of six ancient Namban paper screens show that these artifacts are gilded with gold leaf that was hand-beaten to the nanometer scale. [emphasis mine] Study leader Sofia Pessanha of the Atomic Physics Center of the University of Lisbon in Portugal believes that the X-ray fluorescence technique her team used in the analysis could also be used to date other artworks without causing any damage to them. The results are published in Springer’s journal Applied Physics A: Materials Science & Processing.

Gold leaf refers to a very thin sheet made from a combination of gold and other metals. It has almost no weight and can only be handled by specially designed tools. Even though the ancient Egyptians were probably the first to gild artwork with it, the Japanese have long been credited as being able to produce the thinnest gold leaf in the world. In Japanese traditional painting, decorating with gold leaf is named Kin-haku, and the finest examples of this craft are the Namban folding screens, or byobu. These were made during the late Momoyama (around 1573 to 1603) and early Edo (around 1603 to 1868) periods.

Pessanha’s team examined six screens that are currently either part of a museum collection or in a private collection in Portugal. Four screens belong to the Momoyama period, and two others were decorated during the early Edo period. The researchers used various X-ray fluorescence spectroscopy techniques to test the thickness and characteristics of the gold layers. The method is completely non-invasive, no samples needed to be taken, and therefore the artwork was not damaged in any way. Also, the apparatus needed to perform these tests is portable and can be done outside of a laboratory.

The gilding was evaluated by taking the attenuation or weakening of the different characteristic lines of gold leaf layers into account. The methodology was tested to be suitable for high grade gold alloys with a maximum of 5 percent influence of silver, which is considered negligible.

The two screens from the early Edo period were initially thought to be of the same age. However, Pessanha’s team found that gold leaf on a screen kept at Museu Oriente in Lisbon was thinner, hence was made more recently. This is in line with the continued development of the gold beating techniques carried out in an effort to obtain ever thinner gold leaf.

So, how did these artists beat gold leaf down to the nanoscale and then use the sheets in their art work? This July 10, 2015 news item on Azonano may help to answer that question,

The human eye is an amazing instrument and can accurately distinguish between the tiniest, most subtle differences in color. Where human vision excels in one area, it seems to fall short in others, such as perceiving minuscule details because of the natural limitations of human optics.

In a paper published today in The Optical Society’s new, high-impact journal Optica, a research team from the University of Stuttgart, Germany and the University of Eastern Finland, Joensuu, Finland, has harnessed the human eye’s color-sensing strengths to give the eye the ability to distinguish between objects that differ in thickness by no more than a few nanometers — about the thickness of a cell membrane or an individual virus.

A July 9, 2015 Optical Society news release (also on EurkeAlert), which originated the news item, provides more details,

This ability to go beyond the diffraction limit of the human eye was demonstrated by teaching a small group of volunteers to identify the remarkably subtle color differences in light that has passed through thin films of titanium dioxide under highly controlled and precise lighting conditions. The result was a remarkably consistent series of tests that revealed a hitherto untapped potential, one that rivals sophisticated optics tools that can measure such minute thicknesses, such as ellipsometry.

“We were able to demonstrate that the unaided human eye is able to determine the thickness of a thin film — materials only a few nanometers thick — by simply observing the color it presents under specific lighting conditions,” said Sandy Peterhänsel, University of Stuttgart, Germany and principal author on the paper. The actual testing was conducted at the University of Eastern Finland.

The Color and Thickness of Thin Films

Thin films are essential for a variety of commercial and manufacturing applications, including anti-reflective coatings on solar panels. These films can be as small as a few to tens of nanometers thick. The thin films used in this experiment were created by applying layer after layer of single atoms on a surface. Though highly accurate, this is a time-consuming procedure and other techniques like vapor deposition are used in industry.

The optical properties of thin films mean that when light interacts with their surfaces it produces a wide range of colors. This is the same phenomenon that produces scintillating colors in soap bubble and oil films on water.

The specific colors produced by this process depend strongly on the composition of the material, its thickness, and the properties of the incoming light. This high sensitivity to both the material and thickness has sometimes been used by skilled engineers to quickly estimate the thickness of films down to a level of approximately 10-20 nanometers.

This observation inspired the research team to test the limits of human vision to see how small of a variation could be detected under ideal conditions.

“Although the spatial resolving power of the human eye is orders of magnitude too weak to directly characterize film thicknesses, the interference colors are well known to be very sensitive to variations in the film,” said Peterhänsel.

Experimental Setup

The setup for this experiment was remarkably simple. A series of thin films of titanium dioxide were manufactured one layer at a time by atomic deposition. While time consuming, this method enabled the researchers to carefully control the thickness of the samples to test the limitations of how small a variation the research subjects could identify.

The samples were then placed on a LCD monitor that was set to display a pure white color, with the exception of a colored reference area that could be calibrated to match the apparent surface colors of the thin films with various thicknesses.

The color of the reference field was then changed by the test subject until it perfectly matched the reference sample: correctly identifying the color meant they also correctly determined its thickness. This could be done in as little as two minutes, and for some samples and test subjects their estimated thickness differed only by one-to-three nanometers from the actual value measured by conventional means. This level of precision is far beyond normal human vision.

Compared to traditional automated methods of determining the thickness of a thin film, which can take five to ten minutes per sample using some techniques, the human eye performance compared very favorably.

Since human eyes tire very easily, this process is unlikely to replace automated methods. It can, however, serve as a quick check by an experienced technician. “The intention of our study never was solely to compare the human color vision to much more sophisticated methods,” noted Peterhänsel. “Finding out how precise this approach can be was the main motivation for our work.”

The researchers speculate that it may be possible to detect even finer variations if other control factors are put in place. “People often underestimate human senses and their value in engineering and science. This experiment demonstrates that our natural born vision can achieve exceptional tasks that we normally would only assign to expensive and sophisticated machinery,” concludes Peterhänsel.

Here’s a link to and a citation for the paper,

Human color vision provides nanoscale accuracy in thin-film thickness characterization by Sandy Peterhänsel, Hannu Laamanen, Joonas Lehtolahti, Markku Kuittinen, Wolfgang Osten, and Jani Tervo. Optica Vol. 2, Issue 7, pp. 627-630 (2015) •doi: 10.1364/OPTICA.2.000627

This article appears to be open access.

It would seem that the artists creating the Namban screens exploited the ability to see at the nanoscale, which leads me to  wonder how many people who work with color/colour all the time such as visual artists, interior designers, graphic designers, printers, and more can perceive at the nanoscale. These German and Finnish researchers may want to work with some of these professionals in their next study.

Convergence at Canada’s Perimeter Institute: art/science and physics

It’s a cornucopia of convergence at Canada’s Perimeter Institute (PI). First, there’s a June 16, 2015 posting by Colin Hunter about converging art and science in the person of Alioscia Hamma,

In his professional life, Hamma is a lecturer in the Perimeter Scholars International (PSI) program and an Associate Professor at China’s Tsinghua University. His research seeks new insights into quantum entanglement, quantum statistical mechanics, and other aspects of the fundamental nature of reality.

Though he dreamed during his boyhood in Naples of one day becoming a comic book artist, he pursued physics because he believed – still believes – it is our most reliable tool for decoding our universe.

“Mathematics is ideal, clean, pure, and meaningless. Natural sciences are living, concrete, dirty, and meaningful. Physics is right in the middle, like the human condition,” says Hamma.

Art too, he says, resides in the middle ground between the world of ideals and the world as it presents itself to our senses.

So he draws. …

Perimeter Institute has provided a video where Hamma shares his ideas,

This is very romantic as in literature-romantic. If I remember rightly, ‘truth is beauty and beauty is truth’ was the motto of the romantic poets, Byron, Keats, and Shelley. It’s intriguing to hear similar ideas being applied to physics, philosophy, and art.

H/t to Speaking Up For Canadian Science regarding this second ‘convergence at PI‘. From the Convergence conference page on the Perimeter Institute website,

Convergence is Perimeter’s first-ever alumni reunion and a new kind of physics conference providing a “big picture” overview of fundamental physics and its future.

Physics is at a turning point. The most sophisticated experiments ever devised are decoding our universe with unprecedented clarity — from the quantum to the cosmos — and revealing a stunning simplicity that theory has yet to explain.

Convergence will bring together many of the world’s best minds in physics to probe the field’s most exciting ideas and chart a course for 21st century physics. The event will also celebrate, through commemorative lectures, the centenaries of two defining discoveries of the 20th century: Noether’s theorem and Einstein’s theory of general relativity.

Converge with us June 20-24. [Registration is now closed]

Despite registration being closed it is still possible to attend online,

CONVERGE ONLINE

Whether you’re at Convergence in person or joining us online, there are many ways to join the conversation:

You can find PI’s Convergence blog here.

DNA (deoxyribonucleic acid), music, and data storage

David Bruggeman (Pasco Phronesis blog) has written up, as he so often does, a fascinating art/science piece in his May 28, 2015 post (Note: A link has been removed),

Opening next month [June 2015] at the Dilston Grove Gallery at GDP London is Music of the Spheres, an exhibition that uses bioinformatics to record music.  Dr. Nick Goldman of the European Bioinformatics Institute has been working on new technologies for encoding large amounts of information into DNA.  Collaborating with Charlotte Jarvis, the two have worked on installations of bubbles that would contain DNA encoded with music (the DNA is suspended in soap solution).

There’s more information about the exhibit on the Music of the Spheres webpage on the CGP London website,

Music of the Spheres utilises new bioinformatics technology developed by Dr. Nick Goldman to encode a new musical recording by the Kreutzer Quartet into DNA.

The DNA has been suspended in soap solution and will be used by visual artist Charlotte Jarvis to create performances and installations filled with bubbles. The recording will fill the air, pop on visitors skin and literally bathe the audience in music.

Dr. Nick Goldman and Charlotte Jarvis have been working together for the past year to create a series of moving visual and musical experiences that explore the scope and future ubiquity of DNA technologies.

The Kreutzer Quartet’s new composition for string quartet loosely follows the traditional form of a concerto, in comprising of three musical movements. The second movement only exists in the form of a recording encoded into DNA.

For the exhibition the DNA will be suspended in soap solution and used to create silent installations filled with bubbles. The bubbles will be accompanied by a video projection showing the musicians playing in the server room of the European Bioinformatics Institute, Cambridge.

In response to the growing challenge of storing vast quantities of biological data generated by biomedical research Dr. Nick Goldman and the European Bioinformatics Institute have developed a method to encode huge amounts of information in DNA itself. Every day the huge quantities and speed of data pouring into servers gets larger. When research groups sequence DNA the file sizes are too large to be kept on local computers. It is this problem that was the motivation for Nick Goldman to develop his new technology. Their goal is a system that will safely store the equivalent of one million CDs in a gram of DNA for 10,000 years. Nick’s work was has been featured in The New York Times, The Guardian and on BBC News amongst other media outlets.

The Kreutzer Quartet will play the full-length composition live during the preview on 12 June [2015] timed with the setting of the sun through the large westerly windows. [emphasis mine] During the passage of the second movement the stage will fall silent, the music will be released into the auditorium in the form of bubbles. The performance will be accompanied by film projection and a discussion about the project.

The exhibit runs from June 12 – July 5, 2015. Hours and location can be found on the CGP website.

The Music of the Spheres DNA/music project was first mentioned here in a May 5, 2014 post about the launch of the book ‘Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature’. The launch featured a number of performances and events, scroll down abut 80% of the way for the then description of Music of the Spheres.

The use of graphene scanners in art conservation

A May 20, 2015 news item on phys.org describes a new method of examining art work without damaging it,

Museum curators, art restorers, archaeologists and the broader public will soon be able to learn much more about paintings and other historic objects, thanks to an EU project which has become a pioneer in non-invasive art exploration techniques, based on a graphene scanner.

Researchers working on INSIDDE [INtegration of cost-effective Solutions for Imaging, Detection, and Digitisation of hidden Elements in paintings], which received a EUR 2.9 million investment from FP7 ICT Research Programme, have developed a graphene scanner that can explore under the surface of a painting, or through the dirt covering an ancient object unearthed in an archaeological dig, without touching it.

‘As well as showing sketches or previous paintings that have remained hidden beneath a particular artwork, the scanner, together with post-processing techniques, will allow us to identify and distinguish brushstrokes to understand the creative process,’ explained Javier Gutiérrez, of Spanish technology company Treelogic, which is leading the project.

A May 19, 2015 CORDIS press release, which originated the news item, provides more details about the graphene scanner’s cabilities,

The challenge in this field is to develop advanced technologies that avoid damaging the artwork under examination. Solvents and their potential side effects are progressively being replaced by the likes of lasers, to removed dirt and varnish from paintings. Limestone-producing bacteria can be used to fill cracks in sculptures. INSIDDE is taking a step further in this direction by using terahertz, a frequency band lying between microwave and infrared in the electromagnetic spectrum.

Until graphene, considered to be one of the materials of the future, came along it was difficult to generate terahertz frequencies to acquire such detail. Graphene in this application acts as a frequency multiplier, allowing scientists to reveal previously hidden features such as brushstroke textures, pigments and defects, without harming the work.

Although X-ray and infrared reflectography are used elsewhere to carry out this type of study, they heat the object and cannot reach the intermediate layers between the gesso and the varnish in paintings, or other characteristic elements in ceramics. INSIDDE’s device, using terahertz frequency, works in these intermediate layers and does not heat the object.

In conjunction with a commercial scanner mapping the art’s upper layers, it can generate full 3D data from the object in a completely non-intrusive way and processes this data to extract and interpret features invisible to the naked eye, in a way that has never been done before.

INSIDDE is developing this technology to benefit the general public, too. The 2D and 3D digital models it is producing will be uploaded to the Europeana network and the project aims to make the results available through a smartphone and tablet app to be exploited by local and regional museums. The app is currently being trialled at one of the partners, the Asturias Fine Art Museum in Oviedo. It shows the different layers of the painting the visitor is looking at and provides additional information and audio.

The press release notes that the technology offers some new possibilities,

Although the scanner is still in its trial and calibration phase, the project participants have already unveiled some promising results. Marta Flórez, of the Asturias Fine Art Museum, explained: ‘Using the prototype, we have been able to distinguish clearly between different pigments, which in some cases will avoid having to puncture the painting in order to find out what materials the artist used.’

The prototype is also being validated with some recently unearthed 3rd Century pottery from the Stara Zagora regional history museum in Bulgaria. When the project ends in December 2015, one of the options the consortium is assessing is putting this cost-effective solution at the service of smaller local and regional museums without art restoration departments so that they too, like the bigger museums, can make important discoveries about their collections.

You can find out more about INSIDDE here.

Nanotechnology and drones for London’s (UK) Old Royal Naval College (ORNC)

It’s an art conservation project where nanotechnology and drones will be employed to help preserve the Old Royal Naval College’s (ORNC) Painted Hall. From an April 12, 2015 news item on Nanotechnology Now,

Plans for a major conservation project to restore the Painted Hall at the Old Royal Naval College (ORNC) in Greenwich, UK, will be announced in the US at an event on 14th May 2015 hosted by the British Consulate General in New York.

The ORNC, Sir Christopher Wren’s twin-domed riverside masterpiece stands on the site of the Greenwich Palace, Henry VIII’s birthplace and favorite royal residence. It is one of the most important ensembles in European baroque architecture.

Following a £2.77 million pledge in November 2014 from the Heritage Lottery Fund, the ORNC are embarking on the second stage of its plans to restore the Painted Hall to its former glory. A further £4 million is required to achieve the full scale of this landmark project.

Cutting-edge technologies are being applied for this conservation project, including drones and nanotechnology-enabled materials.

About the Old Royal Naval College

The Old Royal Naval College (ORNC) in Greenwich was established as the Royal Hospital for Seamen by King William III and Queen Mary II in 1694.

Designed by Sir Christopher Wren, it is one of the most important ensembles in European baroque architecture. From 1705, the Royal Hospital provided modest, wood-lined cabins as accommodation for retired sailors, housing as many as 2,700 residents at its peak in 1814. The last naval pensioners left in 1869, when the site became home to the Royal Naval College, an officers’ training academy, until 1997. When the Navy left, an independent charity was established to conserve the site for present and future generations, and create enjoyment, learning and unique cultural experiences for everyone.

Today this historic landmark is open to the public and is the home of three unique and free to visit attractions; the Painted Hall, the Chapel, and the Discover Greenwich visitor centre.

The Painted Hall is the greatest piece of decorative painting in England and has been described as ‘the Sistine Chapel of the UK’. The walls and ceilings were painted by Sir James Thornhill between 1708 and 1727.

The Chapel of St Peter and St Paul is a neo-classical masterpiece by James ‘Athenian’ Stuart and William Newton. Featuring a Samuel Green organ and an altarpiece painted by Benjamin West, it is one of the finest eighteenth century interiors in existence.

Here’s the Painted Hall and Chapel,

 

 Gryffindor derivative work: Fpo (talk) - Royal_Naval_College_Greenwich_001.JPG Royal_Naval_College_Greenwich_002.JPG  Creative Commons Attribution-Share Alike 3.0

Gryffindor derivative work: Fpo (talk) – Royal_Naval_College_Greenwich_001.JPG Royal_Naval_College_Greenwich_002.JPG Creative Commons Attribution-Share Alike 3.0

You can find out more about the ORNC here.

Masterpieces seen in a new light

Caption: This image shows: After Raphael 1483 - 1520 probably before 1600 Oil on wood 87 x 61.3 cm Wynn Ellis Bequest, 1876 Credit: © National Gallery, London

Caption: This image shows: After Raphael 1483 – 1520
probably before 1600
Oil on wood
87 x 61.3 cm
Wynn Ellis Bequest, 1876
Credit: © National Gallery, London

An April 13, 2015 Optical Society news release (also on EurekAlert) describes a new technique for ‘seeing’ below the surface of a painting without taking samples,

A painting hanging on the wall in an art gallery tells one story. What lies beneath its surface may tell quite another.

Often in a Rembrandt, a Vermeer, a Leonardo, a Van Eyck, or any other great masterpiece of western art, the layers of paint are covered with varnish, sometimes several coats applied at different times over their history. The varnish was originally applied to protect the paint underneath and make the colors appear more vivid, but over the centuries it can degrade. Conservators carefully clean off the old varnish and replace it with new, but to do this safely it is useful to understand the materials and structure of the painting beneath the surface. Conservation scientists can glean this information by analyzing the hidden layers of paint and varnish.

Now, researchers from Nottingham Trent University’s School of Science and Technology have partnered with the National Gallery in London to develop an instrument capable of non-invasively capturing subsurface details from artwork at a high resolution. Their setup, published in an Optics Express paper, will allow conservators and conservation scientists to more effectively peek beneath the surface of paintings and artifacts to learn not only how the artist built up the original composition, but also what coatings have been applied to it over the years.

Traditionally, analyzing the layers of a painting requires taking a very small physical sample — usually around a quarter of a millimeter across — to view under a microscope. The technique provides a cross-section of the painting’s layers, which can be imaged at high resolution and analyzed to gain detailed information on the chemical composition of the paint, but does involve removing some original paint, even if only a very tiny amount. When studying valuable masterpieces, conservation scientists must therefore sample very selectively from already-damaged areas, often only taking a few minute samples from a large canvas.

More recently, researchers have begun to use non-invasive imaging techniques to study paintings and other historical artifacts. For example, Optical Coherence Tomography (OCT) was originally developed for medical imaging but has also been applied to art conservation. Because it uses a beam of light to scan the intact painting without removing physical samples, OCT allows researchers to analyze the painting more extensively. However, the spatial resolution of commercially-available OCT setups is not high enough to fully map the fine layers of paint and varnish.

The Nottingham Trent University researchers gave OCT an upgrade. “We’re trying to see how far we can go with non-invasive techniques. We wanted to reach the kind of resolution that conventional destructive techniques have reached,” explained Haida Liang, who led the project.

In OCT, a beam of light is split: half is directed towards the sample, and the other half is sent to a reference mirror. The light scatters off both of these surfaces. By measuring the combined signal, which effectively compares the returned light from the sample versus the reference, the apparatus can determine how far into the sample the light penetrated. By repeating this procedure many times across an area, researchers can build up a cross-sectional map of the painting.

Liang and her colleagues used a broadband laser-like light source — a concentrated beam of light containing a wide range of frequencies. The wider frequency range allows for more precise data collection, but such light sources were not commercially available until recently.

Along with a few other modifications, the addition of the broadband light source enabled the apparatus to scan the painting at a higher resolution. When tested on a late 16th-century copy of a Raphael painting, housed at the National Gallery in London, it performed as well as traditional invasive imaging techniques.

“We are able to not only match the resolution but also to see some of the layer structures with better contrast. That’s because OCT is particularly sensitive to changes in refractive index,” said Liang. In some places, the ultra-high resolution OCT setup identified varnish layers that were almost indistinguishable from each other under the microscope.

Eventually, the researchers plan to make their instrument available to other art institutions. It could also be useful for analyzing historical manuscripts, which cannot be physically sampled in the same way that paintings can.

In a parallel paper recently published in Optics Express, the researchers also improved the depth into the painting that their apparatus can scan. The two goals are somewhat at odds: using a longer wavelength light source could enhance the penetration depth, but shorter wavelength light (as used in their current setup) provides the best resolution.

“The next challenge is perhaps to be able to do that in one instrument, as well as to extract chemical information from different layers,” said Liang.

Here are links to and citations for the two recent papers published by Liang and her team,

Ultra-high resolution Fourier domain optical coherence tomography for old master paintings by C. S. Cheung, M. Spring, and H. Liang. Optics Express, Vol. 23, Issue 8, pp. 10145-10157 (2015) http://dx.doi.org/10.1364/OE.23.010145

High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source by C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang. Optics Express, Vol. 23, Issue 3, pp. 1992-2001 (2015) http://dx.doi.org/10.1364/OE.23.001992

Both papers are open access.

Art project (autonomous bot purchases illegal goods) seized by Swiss law enforcement

Having just attended a talk on Robotics and Rehabilitation which included a segment on Robo Ethics, news of an art project where an autonomous bot (robot) is set loose on the darknet to purchase goods (not all of them illegal) was fascinating in itself (it was part of an art exhibition which also displayed the proceeds of the darknet activity). But things got more interesting when the exhibit attracted legal scrutiny in the UK and occasioned legal action in Switzerland.

Here’s more from a Jan. 23, 2015 article by Mike Masnick for Techdirt (Note: A link has been removed),

… some London-based Swiss artists, !Mediengruppe Bitnik [(Carmen Weisskopf and Domagoj Smoljo)], presented an exhibition in Zurich of The Darknet: From Memes to Onionland. Specifically, they had programmed a bot with some Bitcoin to randomly buy $100 worth of things each week via a darknet market, like Silk Road (in this case, it was actually Agora). The artists’ focus was more about the nature of dark markets, and whether or not it makes sense to make them illegal:

The pair see parallels between copyright law and drug laws: “You can enforce laws, but what does that mean for society? Trading is something people have always done without regulation, but today it is regulated,” says ays [sic] Weiskopff.

“There have always been darkmarkets in cities, online or offline. These questions need to be explored. But what systems do we have to explore them in? Post Snowden, space for free-thinking online has become limited, and offline is not a lot better.”

Interestingly the bot got excellent service as Mike Power wrote in his Dec. 5, 2014 review of the show. Power also highlights some of the legal, ethical, and moral implications,

The gallery is next door to a police station, but the artists say they are not afraid of legal repercussions of their bot buying illegal goods.

“We are the legal owner of the drugs [the bot purchased 10 ecstasy pills along with a baseball cap, a pair of sneaker/runners/trainers among other items] – we are responsible for everything the bot does, as we executed the code, says Smoljo. “But our lawyer and the Swiss constitution says art in the public interest is allowed to be free.”

The project also aims to explore the ways that trust is built between anonymous participants in a commercial transaction for possibly illegal goods. Perhaps most surprisingly, not one of the 12 deals the robot has made has ended in a scam.

“The markets copied procedures from Amazon and eBay – their rating and feedback system is so interesting,” adds Smojlo. “With such simple tools you can gain trust. The service level was impressive – we had 12 items and everything arrived.”

“There has been no scam, no rip-off, nothing,” says Weiskopff. “One guy could not deliver a handbag the bot ordered, but he then returned the bitcoins to us.”

The exhibition scheduled from Oct. 18, 2014 – Jan. 11, 2015 enjoyed an uninterrupted run but there were concerns in the UK (from the Power article),

A spokesman for the National Crime Agency, which incorporates the National Cyber Crime Unit, was less philosophical, acknowledging that the question of criminal culpability in the case of a randomised software agent making a purchase of an illegal drug was “very unusual”.

“If the purchase is made in Switzerland, then it’s of course potentially subject to Swiss law, on which we couldn’t comment,” said the NCA. “In the UK, it’s obviously illegal to purchase a prohibited drug (such as ecstasy), but any criminal liability would need to assessed on a case-by-case basis.”

Masnick describes the followup,

Apparently, that [case-by[case] assessment has concluded in this case, because right after the exhibit closed in Switzerland, law enforcement showed up to seize stuff …

!Mediengruppe Bitnik  issued a Jan. 15, 2015 press release (Note: Links have been removed),

«Can a robot, or a piece of software, be jailed if it commits a crime? Where does legal culpability lie if code is criminal by design or default? What if a robot buys drugs, weapons, or hacking equipment and has them sent to you, and police intercept the package?» These are some of the questions Mike Power asked when he reviewed the work «Random Darknet Shopper» in The Guardian. The work was part of the exhibition «The Darknet – From Memes to Onionland. An Exploration» in the Kunst Halle St. Gallen, which closed on Sunday, January 11, 2015. For the duration of the exhibition, !Mediengruppe Bitnik sent a software bot on a shopping spree in the Deepweb. Random Darknet Shopper had a budget of $100 in Bitcoins weekly, which it spent on a randomly chosen item from the deepweb shop Agora. The work and the exhibition received wide attention from the public and the press. The exhibition was well-attended and was discussed in a wide range of local and international press from Saiten to Vice, Arte, Libération, CNN, Forbes. «There’s just one problem», The Washington Post wrote in January about the work, «recently, it bought 10 ecstasy pills».

What does it mean for a society, when there are robots which act autonomously? Who is liable, when a robot breaks the law on its own initiative? These were some of the main questions the work Random Darknet Shopper posed. Global questions, which will now be negotiated locally.

On the morning of January 12, the day after the three-month exhibition was closed, the public prosecutor’s office of St. Gallen seized and sealed our work. It seems, the purpose of the confiscation is to impede an endangerment of third parties through the drugs exhibited by destroying them. This is what we know at present. We believe that the confiscation is an unjustified intervention into freedom of art. We’d also like to thank Kunst Halle St. Gallen for their ongoing support and the wonderful collaboration. Furthermore, we are convinced, that it is an objective of art to shed light on the fringes of society and to pose fundamental contemporary questions.

This project brings to mind Isaac Asimov’s three laws of robotics and a question (from the Wikipedia entry; Note: Links have been removed),

The Three Laws of Robotics (often shortened to The Three Laws or Three Laws, also known as Asimov’s Laws) are a set of rules devised by the science fiction author Isaac Asimov. The rules were introduced in his 1942 short story “Runaround”, although they had been foreshadowed in a few earlier stories. The Three Laws are:

A robot may not injure a human being or, through inaction, allow a human being to come to harm.
A robot must obey the orders given it by human beings, except where such orders would conflict with the First Law.
A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Here’s my question, how do you programme a robot to know what would injure a human being? For example, if a human ingests an ecstasy pill the bot purchased, would that be covered in the first law?

Getting back to the robot ethics talk I recently attended, it was given by Ajung Moon (Ph.D. student at the University of British Columbia [Vancouver, Canada] studying Human-Robot Interaction and Roboethics. Mechatronics engineer with a sprinkle of Philosophy background). She has a blog,  Roboethic info DataBase where you can read more on robots and ethics.

I strongly recommend reading both Masnick’s post (he positions this action in a larger context) and Power’s article (more details and images from the exhibit).

Disrupting the arts scene around the world and in Vancouver (Canada)

I have two news bits of news for this post. First, the theme for the 2015 International Symposium on Electronic Arts (ISEA) to be held in Vancouver, Canada from Aug. 14 – 18, 2015 is Disruption and the deadline for submitting proposals for research papers and art installations is Dec. 20, 2014 (ETA Dec. 22, 2014: The deadline for long art or research papers, short art or research papers, art or research extended abstracts with demonstration or poster presentation, panels, workshops, tutorials and institutional presentations has been extended to Jan. 12, 2014; the deadline for artwork submissions remains Dec. 20, 2014). Here’s more about the symposium from the About page,

ISEA is one of the world’s most prominent international arts and technology events, bringing  together scholarly, artistic, and scientific domains in an interdisciplinary discussion and showcase of creative productions applying new technologies in art, interactivity, and electronic and digital media. The event annually brings together artists, designers, academics, technologists, scientists, and general audience in the thousands. The symposium consists of a peer reviewed conference, a series of exhibitions, and various partner events—from large scale interactive artwork in public space to cutting edge electronic music performance.

In the last four years ISEA has been hosted in Istanbul (2011), Albuquerque, New Mexico (2012), and Sydney, Australia (2013), and Dubai (2014). ISEA2015 in Vancouver marks its return to Canada, 20 years since the groundbreaking first Canadian ISEA1995 in Montréal. The Symposium will be held at the Woodward’s campus of Simon Fraser University in downtown Vancouver with exhibitions and events taking place at Emily Carr University of Art + Design and many other sites and venues throughout the city.

The series of ISEA symposia is coordinated by ISEA International. Founded in the Netherlands in 1990, ISEA International (formerly Inter-Society for the Electronic Arts) is an international non-profit organization fostering interdisciplinary academic discourse and exchange among culturally diverse organizations and individuals working with art, science and technology. ISEA International Headquarters is supported by the University of Brighton (UK).

Here’s more from the Theme page,

ISEA2015’s theme of DISRUPTION invites a conversation about the aesthetics of change, renewal, and game-changing paradigms. We look to raw bursts of energy, reconciliation, error, and the destructive and creative forces of the new. Disruption contains both blue sky and black smoke. When we speak of radical emergence we must also address things left behind. Disruption is both incremental and monumental.

In practices ranging from hacking and detournement to inversions of place, time, and intention, creative work across disciplines constantly finds ways to rethink or reconsider form, function, context, body, network, and culture. Artists push, shape, break; designers reinvent and overturn; scientists challenge, disprove and re-state; technologists hack and subvert to rebuild.

Disruption and rupture are fundamental to digital aesthetics. Instantiations of the digital realm continue to proliferate in contemporary culture, allowing us to observe ever-broader consequences of these effects and the aesthetic, functional, social and political possibilities that arise from them.

Within this theme, we want to investigate trends in digital and internet aesthetics and revive exchange across disciplines. We hope to broaden the spheres in which disruptive aesthetics can be explored, crossing into the worlds of science, technology, design, visual art, contemporary and media art, innovation, performance, and sound.

I encourage you to read the whole Theme page if you’re interested in making a proposal as the organizers have outlined many approaches to the main theme. Good luck to everyone making a submission (and that includes me). I will be submitting a proposal  with my co-author, Raewyn Turner, an artist from New Zealand, for Steep (I): a digital poetry of gold nanoparticles. (I’ll be writing more about our Steep project soon (hopefully next week Dec. 22 – 25, 2014.)

For the second bit of news, Emily Carr University of Art + Design received grants for two Canada Research Chairs in Oct. 2014. Here’s more from the Recipients List (Note: I have made some changes to the formatting),

Frid-Jimenez, Amber     Emily Carr University of Art + Design     Canada Research Chair in Art and Design Technology     SSHRC [funding agency: Social Sciences and Humanities Research Council]     [Tier] 2     New [position]
Hertz, Garnet     Emily Carr University of Art + Design     Canada Research Chair in Design and Media Arts     SSHRC     2     New

A Nov. 22, 2014 blog post on Emily Carr University’s The Big Idea blog provides more detail about the appointments,

Emily Carr University of Art + Design is honoured to announce the appointment of Associate Professors Amber Frid-Jimenez and Dr. Garnet Hertz to Canada Research Chairs recently published by the Government of Canada. This historic milestone marks the first Canada Research Chair appointments for Emily Carr University of Art + Design recognizing the institution’s capacity, faculty and contributions-to-date in the fields of art, media and design research. …

… “We are honoured that our University and the work of Dr. Garnet Hertz and Amber Frid-Jimenez are being recognized by the Government of Canada,” said David Bogen, Vice President Academic + Provost, Emily Carr University of Art + Design. “The appointment of our first Canada Research Chairs is significant at every level – for our institution’s culture of research, for our academic programs, and for our students who will work directly with some of today’s greatest artists, designers, and scholars in their prospective fields.” … Associate Professor Amber Frid-Jimenez is an awarding-winning interaction and print designer who has taught design studios and seminars at the Rhode Island School of Design, the Massachusetts Institute of Technology Visual Arts Program, the National Arts Academy (KHiB) in Bergen, Norway, and most recently at Emily Carr University of Art + Design. She holds a Masters in Media Arts and Sciences from the MIT Media Lab where she studied with John Maeda. Associate Professor Dr. Garnet Hertz’s work explores themes of DIY culture and interdisciplinary art/design practices. His work has been shown at several notable international venues including SIGGRAPH, Arts Electronica, and DEAF, and he was awarded the 2008 Oscar Signorini Award in robotic art. He is the founder and director of Dorkbot SoCal, a monthly Los Angeles-based lecture series, has taught at the Art Center College of Design, the University of California, Irvine, and is now Associate Professor at Emily Carr University of Art + Design.

You can find out more about Amber Frid-Jiminez here and about Garnet Hertz here .