Category Archives: regulation

Walgreens (US-based pharmacy), As You Sow (civil society), and engineered hydroxyapatite (HA) nanoparticles

As You Sow has graced this blog before, notably in a March 13, 2015 posting about their success getting the corporate giant, Dunkin’ Donuts, to stop its practice of making powdered sugar whiter by adding nanoscale (and other scales) of titanium dioxide. What’s notable about As You Sow is that it files shareholder resolutions (in other words, the society owns shares of their corporate target) as one of its protest tactics.

This time, As You Sow has focused on Walgreens, a US pharmacy giant. This company has chosen a response that differs from Dunkin’ Donuts’ according to a Sept. 21, 2016 news item on Nanotechnology Now,

Rather than respond to shareholder concerns that Walgreens’ store-brand infant formula may contain harmful, “needle-like” nanomaterials, Walgreens filed a motion with the SEC [US Securities and Regulatory Commission] to block the inquiry.

A Sept. 21, 2016 As You Sow press release, which originated the news item, fills in a few details,

Walgreen’s Well Beginnings™ Advantage® infant formula has been reported to contain engineered hydroxyapatite (HA) nanoparticles, according to independent laboratory testing commissioned by nonprofit group Friends of the Earth. The E.U. Scientific Committee on Consumer Safety (SCCS) has determined that nano-HA may be toxic to humans and that the needle-form of nano-HA should not be used in products.

Walgreens’ “no-action letter” to the SEC argues that the company can exclude the shareholder proposal because “the use of nanomaterials in products … does not involve a significant social policy issue.” The company also claims its infant formula does not contain engineered nanomaterials, contrary to the independent laboratory testing.

“Walgreens is effectively silencing shareholder discussion of this subject,” said Austin Wilson, Environmental Health Program Manager of shareholder advocacy group As You Sow. “If Walgreens had responded to consumers’ and investors’ concerns, there would be no need for shareholders to file a proposal.”

“Shareholders will ultimately bear the burden of litigation if infants are harmed,” said Danielle Fugere, President and Chief Counsel of As You Sow. “Walgreens’ attempt to silence, rather than address, shareholder concerns raises red flags. To be successful, Walgreens must remain a trusted name for consumers and it can’t do that by sweeping new health studies under the rug.”

Nanoparticles are extremely small particles that can permeate cell membranes and travel throughout the body, including into organs, in ways that larger ingredients cannot. The extremely small size of nanoparticles may result in greater toxicity for human health and the environment.

The shareholder proposal asks the company to issue a report about actions the company is taking to reduce or eliminate the risk of nanoparticles.

In 2014, Dunkin’ Donuts reached an agreement with As You Sow to remove the nanoparticle titanium dioxide from its donuts. Starbucks plans to remove it from all products by 2017, and Krispy Kreme is reformulating its products to exclude titanium dioxide and other nanoparticles.

To seemingly dismiss concerns about their brand infant formula appears to be an odd tactic for Walgreens. After all this is infant safety and it’s the kind of thing that makes people very, very angry. On the other hand, Friends of the Earth has not always been scrupulous in its presentation of ‘facts’ (see my Feb. 9, 2012 posting).

2016 hasn’t been a good year for Walgreens. In June they ended their high profile partnership with blood testing startup, Theranos. From a June 13, 2016 article by Abigail Tracy for Vanity Fair,

After months of getting pummeled at the hands of regulators and the media over its questionable blood-testing technology, Theranos may have just been dealt its final blow. Walgreens, the main source of Theranos’s customers, has officially ended its partnership with the embattled biotech company, cutting off a critical revenue stream for founder Elizabeth Holmes’s once-promising start-up.

In a statement issued Sunday [June 12, 2016], the drugstore chain announced that it was terminating its nearly three-year-long relationship with the once $9 billion company and would immediately close all 40 Theranos-testing locations in its Arizona stores, The Wall Street Journal reports. Like so many in Silicon Valley, Walgreens fell victim to Holmes’s claims that Theranos’s technology, and its proprietary diagnostic product, Edison, would revolutionize blood testing and put its rivals, Laboratory Corporation of America and Quest Diagnostics, out of business. When it inked its deal with Holmes in 2013, Walgreens failed to properly vet the Edison technology, which was billed as being capable of conducting hundreds of diagnostics tests with just a few drops of blood.

You can read more about the Theranos situation in Tracy’s June 13, 2016 article and I have some details in a Sept. 2, 2016 posting where I feature the scandal and the proposed movie about Theranos (and other ‘science’ movies).

Getting back to Walgreens, you can find the As You Sow resolution here.

Canada’s consultation on nanoscale forms of substances on the Domestic Substances List (DSL)

Yes, there’s a redundancy in the head but there doesn’t seem to be a way around it. Ah well, it seems about seven weeks after Peter Julian (Member of Parliament) introduced his bill in the Canadian House of Commons to regulate nanotechnology (Aug. 29, 2016 posting), Environment and Climate Change Canada (ECCC) and Health Canada (HC) have announced a consultation on nanoscale materials. From an Aug. 4, 2016 posting by Lynn L. Bergeson on Nanotechnology Now (Note: Links have been removed),

On July 27, 2016, Environment and Climate Change Canada (ECCC) and Health Canada (HC) began a consultation on a proposed prioritization approach for nanoscale forms of substances on the Domestic Substances List (DSL). See Canada will use the proposed approach to: (1) establish a list of existing nanomaterials in Canada for prioritization; (2) identify how the information available will be used to inform prioritization of nanomaterials for risk assessment; and (3) outline the proposed outcomes of the prioritization process. In 2015, Canada conducted a mandatory survey under Section 71 of the Canadian Environmental Protection Act, 1999 (CEPA). The survey applied to persons who manufactured or imported any of 206 nanomaterials at a quantity greater than 100 kilograms (kg) during the 2014 calendar year. See Based on the results of the survey, ECCC and HC will prepare a final list of confirmed existing nanomaterials in Canada and will use the list for subsequent prioritization. ECCC and HC propose that, where possible, the substances identified via the survey be “rolled up into” their broader parent nanomaterial groups for the purposes of prioritization. According to ECCC and HC, this will allow, when possible, a more robust look at the hazard, volume, and use data as appropriate, rather than considering an individual substance-by-substance approach. ECCC and HC state that further consideration for sub-grouping (such as by use, unique property, or functionalization) may need to be considered for prioritization and/or risk assessment. …

You can find the Government of Canada’s 2015 Consultation Document: Proposed Approach to Address Nanoscale Forms of Substances on the Domestic Substances List page here, which set the stage for this prioritization exercise.

You can also find the Proposed prioritization approach for nanoscale forms of substances on the Domestic substances list page here where you’ll find information such as this,

Possible nanomaterial groupings, based on parent substance

Aluminum oxide
Iron (II)/(II/III) oxide
Modified silica
Bismuth oxide
Magnesium oxide
Silicon oxide
Calcium carbonate
Manganese (II & III) oxide
Cerium oxide
Titanium dioxide
Cobalt (II) oxide
Yttrium oxide
Copper (II) oxide
Nickel (II) oxide
Zinc oxide
Quantum dots
Zirconium oxide

You can also find information on how to submit comments,

Stakeholders are invited to submit comments on the content of this consultation document and provide other information that would help inform decision making. Please submit comments to one of the addresses provided below by September 25, 2016 [emphasis mine]. ECCC and HC will respond to comments and adapt the proposed approach based on the feedback received on this document, as described in Section 1.2.

Comments on this consultation document can be submitted to one of the following addresses:

By Mail:
Environment and Climate Change Canada
Substances Management Information Line
Chemicals Management Plan
351 St. Joseph Boulevard
Gatineau, Québec
K1A 0H3

By Email:
Please type “Consultation on Prioritization Approach for Nanomaterials” in the subject line of your message.

By Fax:

Suddenly, there’s lots (relative to the last few years) of action on nanotechnology regulation in Canada.

Everything old is new again: Canadian Parliament holds first reading of another bill to regulate nanotechnlogy

Back in March 2010, Canadian New Democratic Party (NDP) Member of Parliament (MP) Peter Julian introduced a bill to regulate nanotechnology (Bill C-494) in Canada. The Conservative government was in power at the time. I can’t remember how many readings it received but it never did get passed into legislation. Now, Mr. Julian is trying again and, coincidentally or not, the Liberals are in power this time. A July 26, 2016 post by Lynn L. Bergeson and Carla N. Hutton for the National Law Review (Note: Links have been removed),

On June 8, 2016, the Canadian House of Commons held its first reading of an Act to amend the Canadian Environmental Protection Act, 1999 (CEPA) (nanotechnology) (C-287).  The bill would add Part 6.1 to CEPA primarily to implement procedures for the investigation and assessment of nanomaterials. …

The bill would define nanomaterial as any manufactured substance or product or any component material, ingredient, device or structure that:  (a) is within the nanoscale (one nanometer (nm) up to and including 100 nm), in at least one external dimension; or (b) if it is not within the nanoscale, exhibits one or more properties that are attributable to the size of a substance and size effects.  The bill mandates a risk assessment process to identify the potential benefits and possible risks of nanotechnologies before nanoproducts enter the market.  It would also create a national inventory regarding nanotechnology, including nanomaterials and nanoparticles, using information collected under CEPA Sections 46 and 71 and “any other information to which the Ministers have access.” On July 25, 2015, Canada published a notice announcing a mandatory survey under CEPA Section 71(1)(b) with respect to certain nanomaterials in Canadian commerce.  …

I do have a few observations about the proposed bill. First, it’s more specific than what we have in place now. As I understand current CEPA regulations, they do not cover materials at the nanoscale which are already imported and/or produced at the macroscale and are considered safe, e.g. titanium dioxide. It is assumed that if they’re safe at the macroscale, they will be safe at the nanoscale. I gather this bill is designed to change that status.

Second, there is no mention in Julian’s press release (text to follow) of the joint Canada-United States Regulatory Cooperation Council (RCC) Nanotechnology Initiative which was designed to harmonize US and Canadian regulatory approaches to nanotechnology. Would bill C-287 introduce less harmony or was it designed to harmonize our approaches?

Third, I don’t see a big problem with the idea of an inventory, the issue is always implementation.

Finally, it appears that this bill means more bureaucrats or computerized systems and I’m not sure it addresses the problem that I believe it is trying to address: how to deal with uncertainty about the risks and hazards of an emerging technology while meeting demands for economic progress.

Very finally, here’s Peter Julian’s June 8, 2016 press release,

Julian’s bill to include Nanotechnology under Environmental Protection Act

You can watch the video here:…

OTTAWA – Today [June 8, 2016], Peter Julian, MP (New Westminster-Burnaby) re-introduced Bill C-287 in the House of Commons, which aims to include a framework that would regulate nanotechnology in the Canadian Environmental Protection Act.

“I first introduced this Bill in 2010. I am pleased to see that some of the aspects of this Bill are being considered by Health Canada and Environment Canada, such as the development of a registry for nanomaterials in commerce and use in Canada. However, there is much more that needs to be done to ensure the responsible use of nanotechnologies in Canada”, said Julian.

Nanotechnology is the application of science and technology to manipulate matter at the atomic or molecular level. Nanomaterials are any ingredient, device, or structure that is between 1 and 100 nm. These materials are present in more than 1000 consumer products, including food and cosmetics. The increasing proliferation of nanoproducts has not been met with an adequate regulatory framework.

Julian’s Bill C-287 would establish a balanced approach ensuring the responsible development of nanotechnology and the safe use off nanomaterials in Canada. The Bill mandates a risk assessment process to identify the potential benefits and possible risks of nanotechnologies before nanoproducts enter the market. It would also require a comprehensive, publicly accessible database that lists existing nanomaterials identified by the Government of Canada.

“While nanotechnology can be very beneficial to people, there are certain risks to it as well. We must identify and mitigate possible risks to better protect the environment and human health before they become an issue. Canada must ensure our regulatory processes ensure nanomaterial safety before the introduction of these substances in Canada”, said Julian.

I’m including links to my 2010 email interview with Peter Julian (published in three parts),

March 24, 2010 (Part one)

March 25, 2010 (Part two)

March 26, 2010 (Part three)

I also covered a hearing on nanomaterials and safety held by the Canadian House of Commons Standing Committee on Health on June 10, 2010 in a June 23, 2010 posting.

Two European surveys on disposal practices for manufactured nano-objects

Lynn L. Bergeson’s Aug. 10, 2016 post on Nanotechnology Now announces two surveys (one for producers of nanoscale objects and one for waste disposal companies) being conducted by the European Commission,

Under European Commission (EC) funding, the European Committee for Standardization Technical Committee (CEN/TC) 352 — Nanotechnologies is developing guidelines relating to the safe waste management and disposal of deliberately manufactured nano-objects.

Tatiana Correia has written a July 15, 2016 description of the committee’s surveys for Innovate UK Network,

Under  the European Commission funding, CEN TC 352 European standardisation committee  are  developing guidelines relating to the safe waste management and  disposal of deliberately manufactured nano-objects. These are discrete pieces  of  material with one or more dimensions in the nanoscale(1). These may  also  be  referred  to  as  nanoparticles,  quantum  dots, nanofibres, nanotubes  and  nanoplates.  The  guidelines  will provide guidance for all waste  management  activities  from  the  manufacturing  and  processing of manufactured  nano-objects  (MNOs). In order to ensure that the context for this  document  is  correct,  it  is useful to gain an insight into current practice in the disposal of MNOs.

Here’s a link to the Questionnaire relating to current disposal practice for Manufactured Nano-objects in Waste – Companies manufacturing or processing manufactured nano-objects and to the Questionnaire relating to current disposal practice for Manufactured Nano-objects in Waste – Waste disposal companies.

The deadline for both surveys is Sept. 5, 2016.

European Commission okays use of nanoscale titanium dioxide in cosmetics and beauty products (sunscreens)

Lynn L. Bergeson has a July 21, 2016 post on Nanotechnology Now with information about a July 14, 2016 European Commission (EC) regulation allowing nanoscale titanium dioxide to be used as a UV (ultraviolet) filter, i.e., sunscreen in various cosmetic and beauty products. You can find more details about the regulation and where it can be found in Bergeson’s posting. I was most interested in the specifics about the nano titanium dioxide particles,

… Titanium dioxide (nano) is not to be used in applications that may lead to exposure of the end user’s lungs by inhalation. Only nanomaterials having the following characteristics are allowed:
– Purity ¡Ý [sic] 99 percent;
– Rutile form, or rutile with up to 5 percent anatase, with crystalline structure and physical appearance as clusters of spherical, needle, or lanceolate shapes;
– Median particle size based on number size distribution ¡Ý [sic] 30 nanometers (nm);
– Aspect ratio from 1 to 4.5, and volume specific surface area ¡Ü [sic] 460 square meters per cubic meter (m2/cm3);
– Coated with silica, hydrated silica, alumina, aluminum hydroxide, aluminum stearate, stearic acid, trimethoxycaprylylsilane, glycerin, dimethicone, hydrogen dimethicone, or simethicone;
– Photocatalytic activity ¡Ü [sic] 10 percent compared to corresponding non-coated or non-doped reference, and
– Nanoparticles are photostable in the final formulation.

I’m guessing that purity should be greater than 99%, that median particle size should be greater than 30 nm, that aspect ratio should be less than 460 square meters per cubic meter, and that photocatalytic activity should be less than 10%.

If anyone should know better or have access to the data, please do let me know in the comments section.

European Commission (EC) responds to a 2014 petition calling for a European Union (EU)-wide ban on microplastics and nanoparticles

Lynn Bergeson’s July 12, 2016 posting on Nanotechnology Now features information about the European Commission’s response to a petition to ban the use of microplastics and nanoparticles throughout the European Union,

On June 29, 2016, the European Commission (EC) provided a notice to the European Parliament regarding its response to a 2014 petition calling for a European Union (EU)-wide ban on microplastics and nanoparticles. … In its response, the EC states that nanoparticles “are ubiquitous in the environment,” and while some manufactured nanomaterials may potentially be carcinogenic, others are not. The EC states that the general regulatory framework on chemicals, along with the sectoral legislation, “are appropriate to assess and manage the risks from nanomaterials, provided that a case-by-case assessment is performed.” The EC notes that the need to modify the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation to include more specific requirements for nanomaterials was identified. According to the EC, a final impact assessment of the proposed changes is being prepared, and the modification of technical REACH Annexes to include specific considerations for nanomaterials is planned for early 2017. The EC states that it created a web portal intended to improve communication regarding nanomaterials, and that this web portal will soon be superseded by the EU Nano Observatory, which will be managed by the European Chemicals Agency (ECHA).

I was imagining the petition was made by a consortium of civil society groups but it seems it was initiated by an individual, Ludwig Bühlmeier. You can find the notice of the petition here and the petition itself (PDF) here. I believe the still current EC portal “… intended to improve communication regarding nanomaterials …” is the JRC (Joint Research Centre) Web Platform on Nanomaterials.

Building a regulatory framework for nanotechnology in India

For the second time in less than six weeks (the first time is described in my June 13, 2016 posting on India’s draft guidelines for the safe handling of nanomaterials) I’ve stumbled across an article about the need for more nanotechnology safety measures in India. From a June 23, 2016 article by Prateek Sibal for The Wire (Note: Links have been removed),

India ranks third in the number of research publications in nanotechnology, only after China and the US. This significant share in global nanotech research is a result of sharp focus by the Department of Science and Technology (DST) to research in the field in the country. The unprecedented funding of Rs 1,000 crore for the Nano Mission was clearly dictated by the fact that India had missed the bus on the micro-electronic revolution of the 1970s and its attendant economic benefits that countries like China, Taiwan and South Korea continue to enjoy to this day.

At the same time, the success of the Nano Mission is not limited to research but also involves training the required human resource for further advancement in the field. An ASSOCHAM and TechSci Research study reported in 2014: “From 2015 onwards, global nanotechnology industry would require about two million professionals and India is expected to contribute about 25% professionals in the coming years.”

A missing element in India’s march towards becoming a nanotechnology powerhouse is the lack of focus on risk analysis and regulation. A survey of Indian practitioners working in the area of nano-science and nanotechnology research showed that 95% of the practitioners recognised ethical issues in nanotech research. Some of these concerns relate to the possibly adverse effects of nanotechnology on the environment and humans, their use as undetectable weapon in warfare, and the incorporation of nano-devices as performance enhancers in human beings.

One reason for lack of debate around ethical, and public-health and -safety, concerns around new technologies could be the exalted status that science and its practitioners enjoy in the country. A very successful space program and a largely indigenous nuclear program has ensured that policymakers spend much of their time feting achievements of Indian science than discussing the risks associated with new technologies or improving regulation.

After describing some of the studies raising health concerns, Sibal describes the issue for policymakers (Note: Links have been removed),

The challenge that remains in front of policymakers is that of regulating a field where vast areas of knowledge are still being investigated and are unknown. In this situation, over-regulation may end up stifling further development while under-regulation could expose the public to adverse health effects. Further, India’s lack of investment in risk studies only sustains the lull in the policy establishment when it comes to nanotech regulations.

The Energy and Resources Institute has extensively studied regulatory challenges posed by nanotechnology and advocates that an “incremental approach holds out some promise and offers a reconciliation between the two schools- one advocating no regulation at present given the uncertainty and the other propounding a stand-alone regulation for nanotechnology.”

Kesineni Srinivas, the Member of Parliament from Vijayawada, has taken cognisance of the need for incremental regulation in nanotechnology from the view point of public health and safety. (Disclosure: The author worked with the Vijayawada MP on drafting the legislation on nanotechnology regulation, introduced in the winter session of Parliament, 2015.)

In December 2015, Srinivas introduced the Insecticides (Amendment) Bill in the Lok Sabha to grant only a provisional registration to insecticides containing nanoparticles with a condition that “it shall be mandatory for the manufacturer or importer to report any adverse impact of the insecticide on humans and environment in a manner specified by the Registration Committee.” This is an improvement over the earlier process of granting permanent registration to insecticides. However, the fate of the bill remains uncertain as only 14 private member bills have been passed in Parliament since the first Lok Sabha in 1952.

Prateek Sibal will be joining Sciences Po (the Paris Institute of Political Sciences), Paris, as a Charpak Scholar in 2016.

I always appreciate these pieces as they help me to adjust my Canada-, US-, Commonwealth- and European-centric views.

Introducing the LIFE project NanoMONITOR

I believe LIFE in the project title refers to life cycle. Here’s more from a June 9, 2016 news item from Nanowerk (Note: A link has been removed),

The newly started European Commission LIFE project NanoMONITOR addresses the challenges of supporting the risk assessment of nanomaterials under REACH by development of a real-time information and monitoring system. At the project’s kickoff meeting held on the 19th January 2016 in Valencia (Spain) participants discussed how this goal could be achieved.

Despite the growing number of engineered nanomaterials (ENMs) already available on the market and in contract to their benefits the use, production, and disposal of ENMs raises concerns about their environmental impact.

A REACH Centre June 8, 2016 press release, which originated the news item, expands on the theme,

Within this context, the overall aim of LIFE NanoMONITOR is to improve the use of environmental monitoring data to support the implementation of REACH regulation and promote the protection of human health and the environment when dealing with ENMs. Within the EU REACH Regulation, a chemical safety assessment report, including risk characterisation ratio (RCR), must be provided for any registered ENMs. In order to address these objectives, the project partners have developed a rigorous methodology encompassing the following aims:

  • Develop a novel software application to support the acquisition, management and processing of data on the concentration of ENMs.
  • Develop an on-line environmental monitoring database (EMD) to support the sharing of information.
  • Design and develop a proven monitoring station prototype for continuous monitoring of particles below 100 nm in air (PM0.1).
  • Design and develop standardized sampling and data analysis procedures to ensure the quality, comparability and reliability of the monitoring data used for risk assessment.
  • Support the calculation of the predicted environmental concentration (PEC) of ENMs in the context of REACH.

Throughout the project’s kick off meeting, participants discussed the status of the research area, project goals, and expectations of the different stakeholders with respect to the project outcome.

The project has made this graphic available,


You can find the LIFE project NanoMONITOR website here.

India’s draft guidelines for the safe handling of nanomaterials

I believe this is the first time I’ve seen any guidelines for the safe handling of nanomaterials that are neither from Europe nor from the US. I imagine that’s due to translation issues or lack of publicity rather than a failure to create guidelines.

In any event, Indrani Barpujari, Advisor (Governance) at the Atal Bihari Vajpayee Institute of Good Governance and Policy Analysis, Bhopal, India, has written a commentary on draft regulations for India (from her Draft Guidelines for Safe Handling of Nanomaterials commentary in Economic and Political Weekly, Vol. 51, Issue No. 23, 04 Jun, 2016 ISSN [Online] – 2349-8846 [appears to be open access]),

It is indeed laudable that as a first step towards regulation of nanotechnology in India, the Nano Mission under the Department of Science and Technology has come out with the draft “Guidelines and Best Practices for Safe Handling of Nanomaterials in Research Laboratories and Industries.” Taking cognisance of the imperative for safe handling of nanomaterials, the Nano Mission has constituted a task force consisting of eminent experts who have prepared this document. Involving the control of matter at the nanoscale, nanomaterials are characterised by small dimensions, large surface area, and high reactivity which while making them amenable to a large variety of applications in various sectors also render them potentially dangerous for human health and environmental safety, with considerable scientific uncertainty regarding the risks. Nanotechnology presents before policymakers a classic case of “Collingridge dilemma” or a “dilemma of control” with policy decisions required to be taken on the basis of uncertain scientific facts and under conditions of some urgency. It is the unique combination of “high expectations and huge uncertainties” (Van Lente 2010) associated with nanotechnology which has provided the required thrust for the current guidelines.

The draft guidelines, basically intended as standard operating procedure (SOP) for handling nanomaterials in research laboratories and industries, prescribe a combination of engineering controls, work practices and personal protective equipment as part of a robust exposure control strategy. These lay down the process for identifying hazards, taking note of the specific effect of surface chemistry, shape, size and morphology on toxicity caused to various organs. These address the potential exposure pathways and concomitant safety measures to mitigate the same. While prescribing certain best practices for handling nanomaterials generally, the guidelines also lay down another set of best practices specifically pertaining to the making and handling of nanopowders and use of products relating to food and healthcare. A precautionary approach is advocated with detailed life cycle assessment and strong binding procedures with respect to stakeholder involvement for various players while formulating best practices in the food sector particularly.

While the draft guidelines as a first step cover reasonable ground, it may be relevant to look at these in the context of the discourse on nanotechnology regulation abroad as well as in India. The focus of modern “risk societies” being more on “manufactured risks” or risks which are the product of human activity (Giddens 1999), governments, particularly in the developed world, are increasingly realising the need for risk-based regulation, to address potential risks from emerging technologies like nanotechnology, while promoting their development. Preliminary steps have been taken to regulate nanotechnology despite the admitted difficulty in doing so owing to the scientific uncertainty regarding its risks and limited amenability to traditional risk management approaches (Schummer and Pariotti 2008).

Thus, it may be surmised that the developed world’s engagement with nanotechnology to harness its benefits has been characterised by an almost unprecedented focus on regulating its risks and developing an anticipatory governance framework, taking on board different stakeholders including the public and incorporating societal concerns. On the other hand, with an almost single-minded focus on promotion in the initial years, the official pursuit of nanotechnology in India has not accorded much priority to its potential risks with the result than a large number of nano-based products are already out in the markets, without any regulation (Barpujari 2011a). In India, the government is the primary promoter of nanotechnology, pursued under the mission on nanoscience and technology (Nano Mission) with a huge budget outlay targeted at the development of nano-applications and creating adequate infrastructural and human capabilities for this purpose.

The Indian scientific establishment has high expectations from nanotechnology, with the technology expected to help meet the development needs of the country, while also positioning India as a forerunner in the global arena. Srivastava and Chowdhury (2008) observe that Indian scientists at the helm of affairs perceive that Indian science should not lose out on this opportunity to establish itself as a global leader and that it should not “miss the bus” as it did during the previous semiconductor revolution. Sahoo and Deshpande Sarma’s (2010) survey on risk perceptions among thirty scientists working in public-funded scientific institutions/laboratories indicate that Indian scientists are not very much perturbed by the risks of nanotechnology, and few take special precautions while working with nanomaterials, while very few are interested in taking up risk research.

The fact that the policy establishment is yet to take into serious consideration the potential risks of the technology is also evident from the low priority accorded to risk research, which should precede regulation. A very small number of projects are being publicly funded to look into toxicity issues, and there is almost no engagement with the social sciences and humanities, as evidenced by the lack of government funding for such studies.

At the same time, it must be acknowledged that different stakeholders in India particularly policy researchers, civil society actors and research institutions pursuing risk research have been persistently making the case for nanotechnology regulation in the country and taken the lead in charting the way ahead. It is acknowledged that problems in developing risk-based regulation are particularly compounded for a developing country like India, owing to a lack of resources, expertise and regulatory mandate. The absence of regulation, it is anticipated, would be even worse as in the event of some of the risks materialising, developing countries would be ill-equipped to handle and mitigate these (Barpujari 2011b).

Particularly noteworthy is a regulatory matrix for India developed by TERI [The Energy and Resources Institute] (2009) comprising several central legislation, rules and notifications which could have relevance for regulation of environmental risks, occupational health and safety risks arising from nanotechnology development and applications in India. Another report (TERI 2012) has provided leads for adopting a precautionary approach and developing an anticipatory regulatory framework for nanotechnology in the South Asian region, taking the particular case of India, Pakistan and Sri Lanka.

Vajpayee offers more insight with her suggestions for “The Way Ahead” and I strongly suggest reading her commentary if you’re interested in a perspective from South Asia. There’s also a list of references at the end of the commentary, should you wish to explore further.