Category Archives: regulation

2016 report on nanomaterial reporting released by French government

Lynn L. Bergeson has announced the release of a new report from the French government in her Jan. 3, 2017 posting on Nanotechnology Now,

In November 2016, the Ministry of the Environment, Energy, and the Sea released its 2016 report, in French, Éléments issus des déclarations des substances à l’état nanoparticulaire. … The report analyzes nanomaterial declarations received in 2016 for reporting year 2015. Under Decree No. 2012-232, companies that manufacture, import, and/or distribute a “substance with nanoparticle status” in an amount of at least 100 grams per year must submit an annual report with substance identity, quantity, and use information. According to the report, while the number of declarations received in 2016 decreased from 2015, the quantity of materials produced increased (350,487 tonnes vs. 300,822 tonnes in 2015), as well as the quantity imported (125,279 tonnes vs. 114,951 tonnes in 2015).

For people with the French language skills, you can find the report here (PDF). You can also check out the R-Nano website (French language) (English language) for more information about the reporting programme in France.

In related news. the US Environmental Protection Agency announced its one-time only nanomaterial reporting requirements as highlighted in my Jan. 18, 2017 posting.

US Environmental Protection Agency finalizes its one-time reporting requirements for nanomaterials

The US Environmental Protection Agency (EPA) has announced its one-time reporting requirement for  nanomaterials. From a Jan. 12, 2017 news item on Nanowerk,

The U.S. Environmental Protection Agency (EPA) is requiring one-time reporting and recordkeeping requirements on nanoscale chemical substances in the marketplace. These substances are nano-sized versions of chemicals that are already in the marketplace.
EPA seeks to facilitate innovation while ensuring safety of the substances. EPA currently reviews new chemical substances manufactured or processed as nanomaterials prior to introduction into the marketplace to ensure that they are safe.

For the first time, EPA is using [the] TSCA [Toxic Substances Control Act] to collect existing exposure and health and safety information on chemicals currently in the marketplace when manufactured or processed as nanoscale materials.

The companies will notify EPA of certain information:
– specific chemical identity;
– production volume;
– methods of manufacture; processing, use, exposure, and release information; and,available health and safety data.

Reactions

David Stegon writes about the requirement in a Jan. 12, 2017 posting on Chemical Watch,

The US EPA has finalised its nanoscale materials reporting rule, completing a process that began more than 11 years ago.

The US position contrasts with that of the European Commission, which has rejected the idea of a specific mandatory reporting obligation for nanomaterials. Instead it insists such data can be collected under REACH’s registration rules for substances in general. It has told Echa [ECHA {European Chemicals Agency}] to develop ‘nano observatory’ pages on its website with existing nanomaterial information. Meanwhile, Canada set its reporting requirements in 2015.

The US rule, which comes under section 8(a) of TSCA, will take effect 120 days after publication in the Federal Register.

It defines nanomaterials as chemical substances that are:

  • solids at 25 degrees Celsius at standard atmospheric pressure;
  • manufactured or processed in a form where any particles, including aggregates and agglomerates, are between 1 and 100 nanometers (nm) in at least one dimension; and
  • manufactured or processed to exhibit one or more unique and novel property.

The rule does not apply to chemical substances manufactured or processed in forms that contain less than 1% by weight of any particles between 1 and 100nm.

Taking account of comments received on the rulemaking, the EPA made three changes to the proposed definition:

  • it added the definition of unique and novel properties to help identify substances that act differently at nano sizes;
  • it clarified that a substance is not a nanomaterial if it fits the specified size range, but does not have a size-dependent property that differs from the same chemical at sizes greater than 100nm; and
  • it eliminated part of the nanomaterial definition that had said a reportable chemical may not include a substance that only has trace amounts of primary particles, aggregates, or agglomerates in the size range of 1 to 100nm.

The EPA has added the new information gathering rule (scroll down about 50% of the way) on its Control of Nanoscale Materials under the Toxic Substances Control Act webpage.

There’s also this Jan. 17, 2017 article by Meagan Parrish for the ChemInfo which provides an alternative perspective and includes what appears to be some misinformation (Note: A link has been removed),

It was several years in the making, but in the final stages of its rule-making process for nanomaterial reporting, the Environmental Protection Agency declined to consider feedback from the industry.

Now, with the final language published and the rule set to go into effect in May, some in the industry are concerned that the agency is requiring an unnecessary amount of costly reporting that isn’t likely to reveal potential hazards. The heightened regulations could also hamper the pace of innovation underway in the industry.

“The poster child for nanotechnology is carbon nanotubes,” says James Votaw, a partner with Manatt, Phelps & Phillips, of the form of carbon that is 10,000 smaller than human hair but stronger than steel. “It can be used to make very strong materials and as an additive in plastics to make them electrically conductive or stiffer.”

The EPA has been attempting to define nanomaterials since 2004 and assess the potential for environmental or human health risks associated with their use. In 2008, the EPA launched an effort to collect voluntarily submitted information from key players in the industry, but after a few years, the agency wasn’t happy with amount of responses. The effort to create a mandatory reporting requirement was launched in 2010.

Yet, according to Votaw, after a 2015 proposal of the rule was extensively criticized by the industry for being overly ambiguous and overly inclusive of its coverage, the industry asked the EPA to reopen a dialogue on the rule. The EPA declined.

The new reporting requirement is expected to cost companies about $27.79 million during the first year and $3.09 million in subsequent years. [emphasis mine]

As far as I’m aware, this is a one-time reporting requirement. Although I’m sure many would like to see that change.

As for the Canadian situation, I mentioned the nanomaterials mandatory survey noted in Stegon’s piece in a July 29, 2015 posting. It was one of a series of mandatory surveys (currently, a survey on asbestos is underway) issued as part of Canada’s Chemicals Management Plan. You can find more information about the nanomaterials notice and approach to the survey although there doesn’t appear to have been a report made public but perhaps it’s too soon. From the Nanomaterials Mandatory Survey page,

The Government of Canada is undertaking a stepwise approach to address nanoscale forms of substances on the DSL. The proposed approach consists of three phases:

  • Establishment of a list of existing nanomaterials in Canada (this includes the section 71 Notice);
  • Prioritization of existing nanomaterials for action; and
  • Action on substances identified for further work.

The overall approach was first described in a consultation document entitled Proposed Approach to Address Nanoscale Forms of Substances on the Domestic Substances List, published on March 18, 2015. This consultation document was open for a 60-day public comment period to solicit feedback from stakeholders, particularly on the first phase of the approach.

A second consultation document entitled Proposed Prioritization Approach for Nanoscale Forms of Substances on the Domestic Substances List was published on July 27, 2016. In this document, the approach proposed for prioritization of existing nanomaterials on the DSL is described, taking into consideration the results of the section 71 Notice.  Comments on this consultation document may be submitted prior to September 25, 2016 …

I look forward to discovering a report on the Canadian nanomaterials survey should one be made public.

International news bits: Israel and Germany and Cuba and Iran

I have three news bits today.

Germany

From a Nov. 14, 2016 posting by Lynn L. Bergeson and Carla N. Hutton for The National Law Review (Note: A link has been removed),

The German Federal Ministry of Education and Research (BMBF) recently published an English version of its Action Plan Nanotechnology 2020. Based on the success of the Action Plan Nanotechnology over the previous ten years, the federal government will continue the Action Plan Nanotechnology for the next five years.  Action Plan Nanotechnology 2020 is geared towards the priorities of the federal government’s new “High-Tech Strategy” (HTS), which has as its objective the solution of societal challenges by promoting research.  According to Action Plan Nanotechnology 2020, the results of a number of research projects “have shown that nanomaterials are not per se linked with a risk for people and the environment due to their nanoscale properties.”  Instead, this is influenced more by structure, chemical composition, and other factors, and is thus dependent on the respective material and its application.

A Nov. 16, 2016 posting on Out-Law.com provides mores detail about the plan (Note: A link has been removed),

Eight ministries have been responsible for producing a joint plan on nanotechnology every five years since 2006, the Ministry said. The ministries develop a common approach that pools strategies for action and fields of application for nanotechnology, it [Germany’s Federal Ministry of Education and Research] said.

The German public sector currently spends more than €600 million a year on nanotechnology related developments, and 2,200 organisations from industry, services, research and associations are registered in the Ministry’s nanotechnology competence map, the report said.

“There are currently also some 1,100 companies in Germany engaged [in] the use of nanotechnology in the fields of research and development as well as the marketing of commercial products and services. The proportion of SMEs [small to medium enterprises?] is around 75%,” it said.

Nanotechnology-based product innovations play “an increasingly important role in many areas of life, such as health and nutrition, the workplace, mobility and energy production”, and the plan “thus pursues the objective of continuing to exploit the opportunities and potential of nanotechnology in Germany, without disregarding any potential risks to humans and the environment.”, the Ministry said.

Technology law expert Florian von Baum of Pinsent Masons, the law firm behind Out-Law.com said: “The action plan aims to achieve and secure Germany’s critical lead in the still new nanotechnology field and to recognise and use the full potential of nanotechnology while taking into account possible risks and dangers of this new technology.”

..

“With the rapid pace of development and the new applications that emerge every day, the government needs to ensure that the dangers and risks are sufficiently recognised and considered. Nanotechnology will provide great and long-awaited breakthroughs in health and ecological areas, but ethical, legal and socio-economic issues must be assessed and evaluated at all stages of the innovation chain,” von Baum said.

You can find Germany’s Action Plan Nanotechnology 2020 here, all 64 pp.of it.

Israel and Germany

A Nov. 16, 2016 article by Shoshanna Solomon for The Times of Israel announces a new joint (Israel-Germany) nanotechnology fund,

Tsrael and Germany have set up a new three-year, €30 million plan to promote joint nanotechnology initiatives and are calling on companies and entities in both countries to submit proposals for funding for projects in this field.

“Nanotech is the industry of the future in global hi-tech and Israel has set a goal of becoming a leader of this field, while cooperating with leading European countries,” Ilan Peled, manager of Technological Infrastructure Arena at the Israel Innovation Authority, said in a statement announcing the plan.

In the past decade nanotechnology, seen by many as the tech field of the future, has focused mainly on research. Now, however, Israel’s Innovation Authority, which has set up the joint program with Germany, believes the next decade will focus on the application of this research into products — and countries are keen to set up the right ecosystem that will draw companies operating in this field to them.

Over the last decade, the country has focused on creating a “robust research foundation that can support a large industry,” the authority said, with six academic research institutes that are among the world’s most advanced.

In addition, the authority said, there are about 200 new startups that were established over the last decade in the field, many in the development stage.

I know it’s been over 70 years since the events of World War II but this does seem like an unexpected coupling. It is heartening to see that people can resolve the unimaginable within the space of a few generations.

Iran and Cuba

A Nov. 16, 2016 Mehr News Agency press release announces a new laboratory in Cuba,

Iran is ready to build a laboratory center equipped with nanotechnology in one of nano institutes in Cuba, Iran’s VP for Science and Technology Sorena Sattari said Tuesday [Nov. 15, 2016].

Sorena Sattari, Vice-President for Science and Technology, made the remark in a meeting with Fidel Castro Diaz-Balart, scientific adviser to the Cuban president, in Tehran on Tuesday [November 15, 2016], adding that Iran is also ready to present Cuba with a gifted package including educational services related to how to operate the equipment at the lab.

During the meeting, Sattari noted Iran’s various technological achievements including exports of biotechnological medicine to Russia, the extensive nanotechnology plans for high school and university students as well as companies, the presence of about 160 companies active in the field of nanotechnology and the country’s achievements in the field of water treatment.

“We have sealed good nano agreements with Cuba, and are ready to develop our technological cooperation with this country in the field of vaccines and recombinant drugs,” he said.

Sattari maintained that the biggest e-commerce company in the Middle East is situated in Iran, adding “the company which was only established six years ago now sales over $3.5 million in a day, and is even bigger than similar companies in Russia.”

The Cuban official, for his part, welcomed any kind of cooperation with Iran, and thanked the Islamic Republic for its generous proposal on establishing a nanotechnology laboratory in his country.

This coupling is not quite so unexpected as Iran has been cozying up to all kinds of countries in its drive to establish itself as a nanotechnology leader.

The Center for Nanotechnology in Society at the University of California at Santa Barbara offers a ‘swan song’ in three parts

I gather the University of California at Santa Barbara’s (UCSB) Center for Nanotechnology in Society is ‘sunsetting’ as its funding runs out. A Nov. 9, 2016 UCSB news release by Brandon Fastman describes the center’s ‘swan song’,

After more than a decade, the UCSB Center for Nanotechnology in Society research has provided new and deep knowledge of how technological innovation and social change impact one another. Now, as the national center reaches the end of its term, its three primary research groups have published synthesis reports that bring together important findings from their 11 years of activity.

The reports, which include policy recommendations, are available for free download at the CNS web site at

http://www.cns.ucsb.edu/irg-synthesis-reports.

The ever-increasing ability of scientists to manipulate matter on the molecular level brings with it the potential for science fiction-like technologies such as nanoelectronic sensors that would entail “merging tissue with electronics in a way that it becomes difficult to determine where the tissue ends and the electronics begin,” according to a Harvard chemist in a recent CQ Researcher report. While the life-altering ramifications of such technologies are clear, it is less clear how they might impact the larger society to which they are introduced.

CNS research, as detailed the reports, addresses such gaps in knowledge. For instance, when anthropologist Barbara Herr Harthorn and her collaborators at the UCSB Center for Nanotechnology in Society (CNS-UCSB), convened public deliberations to discuss the promises and perils of health and human enhancement nanotechnologies, they thought that participants might be concerned about medical risks. However, that is not exactly what they found.

Participants were less worried about medical or technological mishaps than about the equitable distribution of the risks and benefits of new technologies and fair procedures for addressing potential problems. That is, they were unconvinced that citizens across the socioeconomic spectrum would share equal access to the benefits of therapies or equal exposure to their pitfalls.

In describing her work, Harthorn explained, “Intuitive assumptions of experts and practitioners about public perceptions and concerns are insufficient to understanding the societal contexts of technologies. Relying on intuition often leads to misunderstandings of social and institutional realities. CNS-UCSB has attempted to fill in the knowledge gaps through methodologically sophisticated empirical and theoretical research.”

In her role as Director of CNS-UCSB, Harthorn has overseen a larger effort to promote the responsible development of sophisticated materials and technologies seen as central to the nation’s economic future. By pursuing this goal, researchers at CNS-UCSB, which closed its doors at the end of the summer, have advanced the role for the social, economic, and behavioral sciences in understanding technological innovation.

Harthorn has spent the past 11 years trying to understand public expectations, values, beliefs, and perceptions regarding nanotechnologies. Along with conducting deliberations, she has worked with toxicologists and engineers to examine the environmental and occupational risks of nanotechnologies, determine gaps in the U.S. regulatory system, and survey nanotechnology experts. Work has also expanded to comparative studies of other emerging technologies such as shale oil and gas extraction (fracking).

Along with Harthorn’s research group on risk perception and social response, CNS-UCSB housed two other main research groups. One, led by sociologist Richard Appelbaum, studied the impacts of nanotechnology on the global economy. The other, led by historian Patrick McCray, studied the technologies, communities, and individuals that have shaped the direction of nanotechnology research.

Appelbaum’s research program included studying how state policies regarding nanotechnology – especially in China and Latin America – has impacted commercialization. Research trips to China elicited a great understanding of that nation’s research culture and its capacity to produce original intellectual property. He also studied the role of international collaboration in spurring technological innovation. As part of this research, his collaborators surveyed and interviewed international STEM graduate students in the United States in order to understand the factors that influence their choice whether to remain abroad or return home.

In examining the history of nanotechnology, McCray’s group explained how the microelectronics industry provided a template for what became known as nanotechnology, examined educational policies aimed at training a nano-workforce, and produced a history of the scanning tunneling microscope. They also penned award-winning monographs including McCray’s book, The Visioneers: How a Group of Elite Scientists Pursued Space Colonies, Nanotechnologies, and Limitless Future.

Reaching the Real World

Funded as a National Center by the US National Science Foundation in 2005, CNS-UCSB was explicitly intended to enhance the understanding of the relationship between new technologies and their societal context. After more than a decade of funding, CNS-UCSB research has provided a deep understanding of the relationship between technological innovation and social change.

New developments in nanotechnology, an area of research that has garnered $24 billion in funding from the U.S. federal government since 2001, impact sectors as far ranging as agriculture, medicine, energy, defense, and construction, posing great challenges for policymakers and regulators who must consider questions of equity, sustainability, occupational and environmental health and safety, economic and educational policy, disruptions to privacy, security and even what it means to be human. (A nanometer is roughly 10,000 times smaller than the diameter of a human hair.)  Nanoscale materials are already integrated into food packaging, electronics, solar cells, cosmetics, and pharmaceuticals. They are far in development for drugs that can target specific cells, microscopic spying devices, and quantum computers.

Given such real-world applications, it was important to CNS researchers that the results of their work not remain confined within the halls of academia. Therefore, they have delivered testimony to Congress, federal and state agencies (including the National Academies of Science, the Centers for Disease Control and Prevention, the Presidential Council of Advisors on Science and Technology, the U.S. Presidential Bioethics Commission and the National Nanotechnology Initiative), policy outfits (including the Washington Center for Equitable Growth), and international agencies (including the World Bank, European Commission, and World Economic Forum). They’ve collaborated with nongovernmental organizations. They’ve composed policy briefs and op eds, and their work has been covered by numerous news organizations including, recently, NPR, The New Yorker, and Forbes. They have also given many hundreds of lectures to audiences in community groups, schools, and museums.

Policy Options

Most notably, in their final act before the center closed, each of the three primary research groups published synthesis reports that bring together important findings from their 11 years of activity. Their titles are:

Exploring Nanotechnology’s Origins, Institutions, and Communities: A Ten Year Experiment in Large Scale Collaborative STS Research

Globalization and Nanotechnology: The Role of State Policy and International Collaboration

Understanding Nanotechnologies’ Risks and Benefits: Emergence, Expertise and Upstream Participation.

A sampling of key policy recommendations follows:

1.     Public acceptability of nanotechnologies is driven by: benefit perception, the type of application, and the risk messages transmitted from trusted sources and their stability over time; therefore transparent and responsible risk communication is a critical aspect of acceptability.

2.     Social risks, particularly issues of equity and politics, are primary, not secondary, drivers of perception and need to be fully addressed in any new technology development. We have devoted particular attention to studying how gender and race/ethnicity affect both public and expert risk judgments.

3.     State policies aimed at fostering science and technology development should clearly continue to emphasize basic research, but not to the exclusion of supporting promising innovative payoffs. The National Nanotechnology Initiative, with its overwhelming emphasis on basic research, would likely achieve greater success in spawning thriving businesses and commercialization by investing more in capital programs such as the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, self-described as “America’s seed fund.”

4.     While nearly half of all international STEM graduate students would like to stay in the U.S. upon graduation, fully 40 percent are undecided — and a main barrier is current U.S. immigration policy.

5.     Although representatives from the nanomaterials industry demonstrate relatively high perceived risk regarding engineered nanomaterials, they likewise demonstrate low sensitivity to variance in risks across type of engineered nanomaterials, and a strong disinclination to regulation. This situation puts workers at significant risk and probably requires regulatory action now (beyond the currently favored voluntary or ‘soft law’ approaches).

6.     The complex nature of technological ecosystems translates into a variety of actors essential for successful innovation. One species is the Visioneer, a person who blends engineering experience with a transformative vision of the technological future and a willingness to promote this vision to the public and policy makers.

Leaving a Legacy

Along with successful outreach efforts, CNS-UCSB also flourished when measured by typical academic metrics, including nearly 400 publications and 1,200 talks.

In addition to producing groundbreaking interdisciplinary research, CNS-UCSB also produced innovative educational programs, reaching 200 professionals-in-training from the undergraduate to postdoctoral levels. The Center’s educational centerpiece was a graduate fellowship program, referred to as “magical” by an NSF reviewer, that integrated doctoral students from disciplines across the UCSB campus into ongoing social science research projects.

For social scientists, working side-by-side with science and engineering students gave them an appreciation for the methods, culture, and ethics of their colleagues in different disciplines. It also led to methodological innovation. For their part, scientists and engineers were able to understand the larger context of their work at the bench.

UCSB graduates who participated in CNS’s educational programs have gone on to work as postdocs and professors at universities (including MIT, Stanford, U Penn), policy experts (at organizations like the Science Technology and Policy Institute and the Canadian Institute for Advanced Research), researchers at government agencies (like the National Institute for Standards and Technology), nonprofits (like the Kauffman Foundation), and NGOs. Others work in industry, and some have become entrepreneurs, starting their own businesses.

CNS has spawned lines of research that will continue at UCSB and the institutions of collaborators around the world, but its most enduring legacy will be the students it trained. They bring a true understanding of the complex interconnections between technology and society — along with an intellectual toolkit for examining them — to every sector of the economy, and they will continue to pursue a world that is as just as it technologically advanced.

I found the policy recommendations interesting especially this one:

5.     Although representatives from the nanomaterials industry demonstrate relatively high perceived risk regarding engineered nanomaterials, they likewise demonstrate low sensitivity to variance in risks across type of engineered nanomaterials, and a strong disinclination to regulation. This situation puts workers at significant risk and probably requires regulatory action now (beyond the currently favored voluntary or ‘soft law’ approaches).

Without having read the documents, I’m not sure how to respond but I do have a question.  Just how much regulation are they suggesting?

I offer all of the people associated with the center my thanks for all their hard work and my gratitude for the support I received from the center when I presented at the Society for the Study of Nanotechnologies and Other Emerging Technology (S.Net) in 2012. I’m glad to see they’re going out with a bang.

Germany has released a review of their research strategy for nanomaterials

A Sept. 24, 2016 posting by Lynn L. Bergeson and Carla N. Hutton on The National Law Review blog features a new report from German authorities (Note: A link has been removed),

On September 19, 2016, the Federal Institute for Occupational Safety and Health (BAuA) published a report entitled Review of the joint research strategy of the higher federal authorities — Nanomaterials and other advanced materials:  Application safety and environmental compatibility.  The report states that in a long-term research strategy, the higher federal authorities responsible for human and environmental safety — the German Environment Agency (UBA), the Federal Institute for Risk Assessment (BfR), BAuA, the Federal Institute for Materials Research and Testing (BAM), and the National Metrology Institute (PTB) — are accompanying the rapid pace of development of new materials from the points of view of occupational safety and health, consumer protection, and environmental protection.

Here’s a link to Review of the joint research strategy of the higher federal authorities — Nanomaterials and other advanced materials:  Application safety and environmental compatibility (PDF) and excerpts from the foreword (Note: There are some differences in formatting between what you see here and what you’ll see in the report),

The research strategy builds on the outcomes so far of the joint research strategy of the higher federal authorities launched in 2008 and first evaluated in 2013, “Nanotechnology: Health and Environmental Risks of Nanomaterials”1, while additionally covering other advanced materials where these pose similar risks to humans and the environment or where such risks need to be studied. It also takes up the idea of application safety of chemical products 2 from the New Quality of Work (INQA) initiative of the Federal Ministry of Labour and Social Affairs (BMAS) and the concept of sustainable
chemistry 3 endorsed by the Federal  Ministry  for  the  Environment, Nature Conservation, Building  and Nuclear Safety (BMUB). Application safety and environmental compatibility are aimed for advanced materials and derived products in order to largely rule out unacceptable risks to humans and the environment. This can be achieved by:

Using safe materials without hazardous properties for humans and the environment (direct application safety); or

Product design for low emissions and environmental compatibility over the entire product lifecycle (integrated application safety); or

Product stewardship, where producers support users in taking technical, organizational, and personal safety measures for the safe use and disposal of products (supported application safety).

As a comprising part of the Federal Government’s Nanotechnology Action Plan 2020, the update of the joint research strategy aims to contribute to governmental research in the following main areas:

 characterising and assessing the human and environmental risks of advanced materials
 Supporting research institutions and business enterprises
 Science-based revision of legal requirements and recommendations
 Public acceptance

The research strategy is to be implemented in projects and other research-related activities. These  include  governmental  research,  tendering  and  extramural  research  funding, and participation in mostly publicly supported projects with third-party funding. Additional activities will take place as part of policy advice and the ongoing work of the sovereign tasks of agencies involved. Interdisciplinary and transdisciplinary approaches will be used to better connect risk and safety research with innovation research and material development. In keeping up with the rapid pace of development, the time horizon for the research strategy is up to 2020. The research objectives address the research approaches likely to be actionable in this period. The research strategy will be supported by a working group and be evaluated and revised by the end of the Nanotechnology Action Plan 2020. tegy will be implemented in projects and other research-related activities, including governmental research, tendering and extramural research funding, and participation in mostly publicly supported projects with third-party funding.  Agencies will use interdisciplinary and transdisciplinary approaches to connect better risk and safety research with innovation research and material development. To keep up with the pace of development, the time horizon for the research strategy extends to 2020.  The research objectives in the report address the research approaches likely to be actionable in this period.  The research strategy will be supported by a working group and be evaluated and revised by the end of the Nanotechnology Action Plan 2020.

It’s always interesting to find out what’s happening elsewhere.

Walgreens (US-based pharmacy), As You Sow (civil society), and engineered hydroxyapatite (HA) nanoparticles

As You Sow has graced this blog before, notably in a March 13, 2015 posting about their success getting the corporate giant, Dunkin’ Donuts, to stop its practice of making powdered sugar whiter by adding nanoscale (and other scales) of titanium dioxide. What’s notable about As You Sow is that it files shareholder resolutions (in other words, the society owns shares of their corporate target) as one of its protest tactics.

This time, As You Sow has focused on Walgreens, a US pharmacy giant. This company has chosen a response that differs from Dunkin’ Donuts’ according to a Sept. 21, 2016 news item on Nanotechnology Now,

Rather than respond to shareholder concerns that Walgreens’ store-brand infant formula may contain harmful, “needle-like” nanomaterials, Walgreens filed a motion with the SEC [US Securities and Regulatory Commission] to block the inquiry.

A Sept. 21, 2016 As You Sow press release, which originated the news item, fills in a few details,

Walgreen’s Well Beginnings™ Advantage® infant formula has been reported to contain engineered hydroxyapatite (HA) nanoparticles, according to independent laboratory testing commissioned by nonprofit group Friends of the Earth. The E.U. Scientific Committee on Consumer Safety (SCCS) has determined that nano-HA may be toxic to humans and that the needle-form of nano-HA should not be used in products.

Walgreens’ “no-action letter” to the SEC argues that the company can exclude the shareholder proposal because “the use of nanomaterials in products … does not involve a significant social policy issue.” The company also claims its infant formula does not contain engineered nanomaterials, contrary to the independent laboratory testing.

“Walgreens is effectively silencing shareholder discussion of this subject,” said Austin Wilson, Environmental Health Program Manager of shareholder advocacy group As You Sow. “If Walgreens had responded to consumers’ and investors’ concerns, there would be no need for shareholders to file a proposal.”

“Shareholders will ultimately bear the burden of litigation if infants are harmed,” said Danielle Fugere, President and Chief Counsel of As You Sow. “Walgreens’ attempt to silence, rather than address, shareholder concerns raises red flags. To be successful, Walgreens must remain a trusted name for consumers and it can’t do that by sweeping new health studies under the rug.”

Nanoparticles are extremely small particles that can permeate cell membranes and travel throughout the body, including into organs, in ways that larger ingredients cannot. The extremely small size of nanoparticles may result in greater toxicity for human health and the environment.

The shareholder proposal asks the company to issue a report about actions the company is taking to reduce or eliminate the risk of nanoparticles.

In 2014, Dunkin’ Donuts reached an agreement with As You Sow to remove the nanoparticle titanium dioxide from its donuts. Starbucks plans to remove it from all products by 2017, and Krispy Kreme is reformulating its products to exclude titanium dioxide and other nanoparticles.

To seemingly dismiss concerns about their brand infant formula appears to be an odd tactic for Walgreens. After all this is infant safety and it’s the kind of thing that makes people very, very angry. On the other hand, Friends of the Earth has not always been scrupulous in its presentation of ‘facts’ (see my Feb. 9, 2012 posting).

2016 hasn’t been a good year for Walgreens. In June they ended their high profile partnership with blood testing startup, Theranos. From a June 13, 2016 article by Abigail Tracy for Vanity Fair,

After months of getting pummeled at the hands of regulators and the media over its questionable blood-testing technology, Theranos may have just been dealt its final blow. Walgreens, the main source of Theranos’s customers, has officially ended its partnership with the embattled biotech company, cutting off a critical revenue stream for founder Elizabeth Holmes’s once-promising start-up.

In a statement issued Sunday [June 12, 2016], the drugstore chain announced that it was terminating its nearly three-year-long relationship with the once $9 billion company and would immediately close all 40 Theranos-testing locations in its Arizona stores, The Wall Street Journal reports. Like so many in Silicon Valley, Walgreens fell victim to Holmes’s claims that Theranos’s technology, and its proprietary diagnostic product, Edison, would revolutionize blood testing and put its rivals, Laboratory Corporation of America and Quest Diagnostics, out of business. When it inked its deal with Holmes in 2013, Walgreens failed to properly vet the Edison technology, which was billed as being capable of conducting hundreds of diagnostics tests with just a few drops of blood.

You can read more about the Theranos situation in Tracy’s June 13, 2016 article and I have some details in a Sept. 2, 2016 posting where I feature the scandal and the proposed movie about Theranos (and other ‘science’ movies).

Getting back to Walgreens, you can find the As You Sow resolution here.

Canada’s consultation on nanoscale forms of substances on the Domestic Substances List (DSL)

Yes, there’s a redundancy in the head but there doesn’t seem to be a way around it. Ah well, it seems about seven weeks after Peter Julian (Member of Parliament) introduced his bill in the Canadian House of Commons to regulate nanotechnology (Aug. 29, 2016 posting), Environment and Climate Change Canada (ECCC) and Health Canada (HC) have announced a consultation on nanoscale materials. From an Aug. 4, 2016 posting by Lynn L. Bergeson on Nanotechnology Now (Note: Links have been removed),

On July 27, 2016, Environment and Climate Change Canada (ECCC) and Health Canada (HC) began a consultation on a proposed prioritization approach for nanoscale forms of substances on the Domestic Substances List (DSL). See http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=FA3C8DBF-1 Canada will use the proposed approach to: (1) establish a list of existing nanomaterials in Canada for prioritization; (2) identify how the information available will be used to inform prioritization of nanomaterials for risk assessment; and (3) outline the proposed outcomes of the prioritization process. In 2015, Canada conducted a mandatory survey under Section 71 of the Canadian Environmental Protection Act, 1999 (CEPA). The survey applied to persons who manufactured or imported any of 206 nanomaterials at a quantity greater than 100 kilograms (kg) during the 2014 calendar year. See http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=28ABBAC9-1%20-%20s1 Based on the results of the survey, ECCC and HC will prepare a final list of confirmed existing nanomaterials in Canada and will use the list for subsequent prioritization. ECCC and HC propose that, where possible, the substances identified via the survey be “rolled up into” their broader parent nanomaterial groups for the purposes of prioritization. According to ECCC and HC, this will allow, when possible, a more robust look at the hazard, volume, and use data as appropriate, rather than considering an individual substance-by-substance approach. ECCC and HC state that further consideration for sub-grouping (such as by use, unique property, or functionalization) may need to be considered for prioritization and/or risk assessment. …

You can find the Government of Canada’s 2015 Consultation Document: Proposed Approach to Address Nanoscale Forms of Substances on the Domestic Substances List page here, which set the stage for this prioritization exercise.

You can also find the Proposed prioritization approach for nanoscale forms of substances on the Domestic substances list page here where you’ll find information such as this,

Possible nanomaterial groupings, based on parent substance

Aluminum oxide
Iron (II)/(II/III) oxide
Modified silica
Bismuth oxide
Magnesium oxide
Silicon oxide
Calcium carbonate
Manganese (II & III) oxide
Silver
Cerium oxide
Nanocellulose
Titanium dioxide
Cobalt (II) oxide
Nanoclays
Yttrium oxide
Copper (II) oxide
Nickel (II) oxide
Zinc oxide
Gold
Quantum dots
Zirconium oxide

You can also find information on how to submit comments,

Stakeholders are invited to submit comments on the content of this consultation document and provide other information that would help inform decision making. Please submit comments to one of the addresses provided below by September 25, 2016 [emphasis mine]. ECCC and HC will respond to comments and adapt the proposed approach based on the feedback received on this document, as described in Section 1.2.

Comments on this consultation document can be submitted to one of the following addresses:

By Mail:
Environment and Climate Change Canada
Substances Management Information Line
Chemicals Management Plan
351 St. Joseph Boulevard
Gatineau, Québec
K1A 0H3

By Email:
eccc.substances.eccc@canada.ca
Please type “Consultation on Prioritization Approach for Nanomaterials” in the subject line of your message.

By Fax:
819-938-5212

Suddenly, there’s lots (relative to the last few years) of action on nanotechnology regulation in Canada.

Everything old is new again: Canadian Parliament holds first reading of another bill to regulate nanotechnlogy

Back in March 2010, Canadian New Democratic Party (NDP) Member of Parliament (MP) Peter Julian introduced a bill to regulate nanotechnology (Bill C-494) in Canada. The Conservative government was in power at the time. I can’t remember how many readings it received but it never did get passed into legislation. Now, Mr. Julian is trying again and, coincidentally or not, the Liberals are in power this time. A July 26, 2016 post by Lynn L. Bergeson and Carla N. Hutton for the National Law Review (Note: Links have been removed),

On June 8, 2016, the Canadian House of Commons held its first reading of an Act to amend the Canadian Environmental Protection Act, 1999 (CEPA) (nanotechnology) (C-287).  The bill would add Part 6.1 to CEPA primarily to implement procedures for the investigation and assessment of nanomaterials. …

The bill would define nanomaterial as any manufactured substance or product or any component material, ingredient, device or structure that:  (a) is within the nanoscale (one nanometer (nm) up to and including 100 nm), in at least one external dimension; or (b) if it is not within the nanoscale, exhibits one or more properties that are attributable to the size of a substance and size effects.  The bill mandates a risk assessment process to identify the potential benefits and possible risks of nanotechnologies before nanoproducts enter the market.  It would also create a national inventory regarding nanotechnology, including nanomaterials and nanoparticles, using information collected under CEPA Sections 46 and 71 and “any other information to which the Ministers have access.” On July 25, 2015, Canada published a notice announcing a mandatory survey under CEPA Section 71(1)(b) with respect to certain nanomaterials in Canadian commerce.  …

I do have a few observations about the proposed bill. First, it’s more specific than what we have in place now. As I understand current CEPA regulations, they do not cover materials at the nanoscale which are already imported and/or produced at the macroscale and are considered safe, e.g. titanium dioxide. It is assumed that if they’re safe at the macroscale, they will be safe at the nanoscale. I gather this bill is designed to change that status.

Second, there is no mention in Julian’s press release (text to follow) of the joint Canada-United States Regulatory Cooperation Council (RCC) Nanotechnology Initiative which was designed to harmonize US and Canadian regulatory approaches to nanotechnology. Would bill C-287 introduce less harmony or was it designed to harmonize our approaches?

Third, I don’t see a big problem with the idea of an inventory, the issue is always implementation.

Finally, it appears that this bill means more bureaucrats or computerized systems and I’m not sure it addresses the problem that I believe it is trying to address: how to deal with uncertainty about the risks and hazards of an emerging technology while meeting demands for economic progress.

Very finally, here’s Peter Julian’s June 8, 2016 press release,

Julian’s bill to include Nanotechnology under Environmental Protection Act

You can watch the video here: https://peterjulian.ca/Introduction_of_Private_Member_Bill_C287_An_Act_t…

OTTAWA – Today [June 8, 2016], Peter Julian, MP (New Westminster-Burnaby) re-introduced Bill C-287 in the House of Commons, which aims to include a framework that would regulate nanotechnology in the Canadian Environmental Protection Act.

“I first introduced this Bill in 2010. I am pleased to see that some of the aspects of this Bill are being considered by Health Canada and Environment Canada, such as the development of a registry for nanomaterials in commerce and use in Canada. However, there is much more that needs to be done to ensure the responsible use of nanotechnologies in Canada”, said Julian.

Nanotechnology is the application of science and technology to manipulate matter at the atomic or molecular level. Nanomaterials are any ingredient, device, or structure that is between 1 and 100 nm. These materials are present in more than 1000 consumer products, including food and cosmetics. The increasing proliferation of nanoproducts has not been met with an adequate regulatory framework.

Julian’s Bill C-287 would establish a balanced approach ensuring the responsible development of nanotechnology and the safe use off nanomaterials in Canada. The Bill mandates a risk assessment process to identify the potential benefits and possible risks of nanotechnologies before nanoproducts enter the market. It would also require a comprehensive, publicly accessible database that lists existing nanomaterials identified by the Government of Canada.

“While nanotechnology can be very beneficial to people, there are certain risks to it as well. We must identify and mitigate possible risks to better protect the environment and human health before they become an issue. Canada must ensure our regulatory processes ensure nanomaterial safety before the introduction of these substances in Canada”, said Julian.

I’m including links to my 2010 email interview with Peter Julian (published in three parts),

March 24, 2010 (Part one)

March 25, 2010 (Part two)

March 26, 2010 (Part three)

I also covered a hearing on nanomaterials and safety held by the Canadian House of Commons Standing Committee on Health on June 10, 2010 in a June 23, 2010 posting.

Two European surveys on disposal practices for manufactured nano-objects

Lynn L. Bergeson’s Aug. 10, 2016 post on Nanotechnology Now announces two surveys (one for producers of nanoscale objects and one for waste disposal companies) being conducted by the European Commission,

Under European Commission (EC) funding, the European Committee for Standardization Technical Committee (CEN/TC) 352 — Nanotechnologies is developing guidelines relating to the safe waste management and disposal of deliberately manufactured nano-objects.

Tatiana Correia has written a July 15, 2016 description of the committee’s surveys for Innovate UK Network,

Under  the European Commission funding, CEN TC 352 European standardisation committee  are  developing guidelines relating to the safe waste management and  disposal of deliberately manufactured nano-objects. These are discrete pieces  of  material with one or more dimensions in the nanoscale(1). These may  also  be  referred  to  as  nanoparticles,  quantum  dots, nanofibres, nanotubes  and  nanoplates.  The  guidelines  will provide guidance for all waste  management  activities  from  the  manufacturing  and  processing of manufactured  nano-objects  (MNOs). In order to ensure that the context for this  document  is  correct,  it  is useful to gain an insight into current practice in the disposal of MNOs.

Here’s a link to the Questionnaire relating to current disposal practice for Manufactured Nano-objects in Waste – Companies manufacturing or processing manufactured nano-objects and to the Questionnaire relating to current disposal practice for Manufactured Nano-objects in Waste – Waste disposal companies.

The deadline for both surveys is Sept. 5, 2016.

European Commission okays use of nanoscale titanium dioxide in cosmetics and beauty products (sunscreens)

Lynn L. Bergeson has a July 21, 2016 post on Nanotechnology Now with information about a July 14, 2016 European Commission (EC) regulation allowing nanoscale titanium dioxide to be used as a UV (ultraviolet) filter, i.e., sunscreen in various cosmetic and beauty products. You can find more details about the regulation and where it can be found in Bergeson’s posting. I was most interested in the specifics about the nano titanium dioxide particles,

… Titanium dioxide (nano) is not to be used in applications that may lead to exposure of the end user’s lungs by inhalation. Only nanomaterials having the following characteristics are allowed:
– Purity ¡Ý [sic] 99 percent;
– Rutile form, or rutile with up to 5 percent anatase, with crystalline structure and physical appearance as clusters of spherical, needle, or lanceolate shapes;
– Median particle size based on number size distribution ¡Ý [sic] 30 nanometers (nm);
– Aspect ratio from 1 to 4.5, and volume specific surface area ¡Ü [sic] 460 square meters per cubic meter (m2/cm3);
– Coated with silica, hydrated silica, alumina, aluminum hydroxide, aluminum stearate, stearic acid, trimethoxycaprylylsilane, glycerin, dimethicone, hydrogen dimethicone, or simethicone;
– Photocatalytic activity ¡Ü [sic] 10 percent compared to corresponding non-coated or non-doped reference, and
– Nanoparticles are photostable in the final formulation.

I’m guessing that purity should be greater than 99%, that median particle size should be greater than 30 nm, that aspect ratio should be less than 460 square meters per cubic meter, and that photocatalytic activity should be less than 10%.

If anyone should know better or have access to the data, please do let me know in the comments section.