Category Archives: Music

Sounding out the TRAPPIST-1 planetary system

It’s been a while since a data sonification story has come this way. Like my first posting on the topic (Feb. 7, 2014) this is another astrophysics ‘piece of music’. From the University of Toronto (Canada) and Thought Café (a Canadian animation studio),

For those who’d like a little text, here’s more from a May 10, 2017 University of Toronto news release (also on EurekAlert) by Don Campbell,

When NASA announced its discovery of the TRAPPIST-1 system back in February [2017] it caused quite a stir, and with good reason. Three of its seven Earth-sized planets lay in the star’s habitable zone, meaning they may harbour suitable conditions for life.

But one of the major puzzles from the original research describing the system was that it seemed to be unstable.

“If you simulate the system, the planets start crashing into one another in less than a million years,” says Dan Tamayo, a postdoc at U of T Scarborough’s Centre for Planetary Science.

“This may seem like a long time, but it’s really just an astronomical blink of an eye. It would be very lucky for us to discover TRAPPIST-1 right before it fell apart, so there must be a reason why it remains stable.”

Tamayo and his colleagues seem to have found a reason why. In research published in the journal Astrophysical Journal Letters, they describe the planets in the TRAPPIST-1 system as being in something called a “resonant chain” that can strongly stabilize the system.

In resonant configurations, planets’ orbital periods form ratios of whole numbers. It’s a very technical principle, but a good example is how Neptune orbits the Sun three times in the amount of time it takes Pluto to orbit twice. This is a good thing for Pluto because otherwise it wouldn’t exist. Since the two planets’ orbits intersect, if things were random they would collide, but because of resonance, the locations of the planets relative to one another keeps repeating.

“There’s a rhythmic repeating pattern that ensures the system remains stable over a long period of time,” says Matt Russo, a post-doc at the Canadian Institute for Theoretical Astrophysics (CITA) who has been working on creative ways to visualize the system.

TRAPPIST-1 takes this principle to a whole other level with all seven planets being in a chain of resonances. To illustrate this remarkable configuration, Tamayo, Russo and colleague Andrew Santaguida created an animation in which the planets play a piano note every time they pass in front of their host star, and a drum beat every time a planet overtakes its nearest neighbour.

Because the planets’ periods are simple ratios of each other, their motion creates a steady repeating pattern that is similar to how we play music. Simple frequency ratios are also what makes two notes sound pleasing when played together.

Speeding up the planets’ orbital frequencies into the human hearing range produces an astrophysical symphony of sorts, but one that’s playing out more than 40 light years away.

“Most planetary systems are like bands of amateur musicians playing their parts at different speeds,” says Russo. “TRAPPIST-1 is different; it’s a super-group with all seven members synchronizing their parts in nearly perfect time.”

But even synchronized orbits don’t necessarily survive very long, notes Tamayo. For technical reasons, chaos theory also requires precise orbital alignments to ensure systems remain stable. This can explain why the simulations done in the original discovery paper quickly resulted in the planets colliding with one another.

“It’s not that the system is doomed, it’s that stable configurations are very exact,” he says. “We can’t measure all the orbital parameters well enough at the moment, so the simulated systems kept resulting in collisions because the setups weren’t precise.”

In order to overcome this Tamayo and his team looked at the system not as it is today, but how it may have originally formed. When the system was being born out of a disk of gas, the planets should have migrated relative to one another, allowing the system to naturally settle into a stable resonant configuration.

“This means that early on, each planet’s orbit was tuned to make it harmonious with its neighbours, in the same way that instruments are tuned by a band before it begins to play,” says Russo. “That’s why the animation produces such beautiful music.”

The team tested the simulations using the supercomputing cluster at the Canadian Institute for Theoretical Astrophysics (CITA) and found that the majority they generated remained stable for as long as they could possibly run it. This was about 100 times longer than it took for the simulations in the original research paper describing TRAPPIST-1 to go berserk.

“It seems somehow poetic that this special configuration that can generate such remarkable music can also be responsible for the system surviving to the present day,” says Tamayo.

Here’s a link to and a citation for the paper,

Convergent Migration Renders TRAPPIST-1 Long-lived by Daniel Tamayo, Hanno Rein, Cristobal Petrovich, and Norman Murray. The Astrophysical Journal Letters, Volume 840, Number 2 https://doi.org/10.5281/zenodo.496153 Published 2017 May 10

© 2017. The American Astronomical Society. All rights reserved.

This paper is open access.

Solange Knowles and the Rennie Museum in Vancouver, Canada on April 27 and 28, 2017

Tickets ($35 CAD?) were sold out in less than an hour. Drat! On the upside, the Rennie Museum (formerly the Rennie Collection) is one of nine venues in nine cities hosting Solange Knowles’ music tour of art museums. (Not my usual topic but I have covered shows at the Rennie many times throughout the years.) This tour is discussed in Emilia Petrarca’s April 24, 2017 article for W magazine,

While Knowles isn’t formally touring for A Seat at the Table, she will continue on the festival circuit and is also working on a performance art-inspired “museum tour,” which she’ll perform at the San Francisco Museum of Modern Art as well as the Guggenheim Museum in May [2017].

On wanting to be more than just a singer:

“Singer is probably at the bottom of the barrel in terms of what I’m trying to achieve as an artist. Visually, through many mediums—through dance, through art direction, through color theory—there are so many things that I’ve dabbled in that I’ve yet to immerse myself in fully. But I think right now, I’m creating the live show and music composition, production, and creating from the ground up is when I feel the most at home.”

On her history as a dancer:

“I used to want to be a modern dancer when I was younger and go to Juilliard and do the whole thing, but I had a knee injury when I was 15. I was actually dancing for Destiny’s Child. And that was how I started to write, because I thought I was going to be an [Alvin] Ailey girl [emphasis mine] somewhere.”

On styling the costumes for her festival shows and museum tour:

“I’m touring two shows this spring/summer/fall, and one takes place in museum lobbies. For me, Donald Judd’s idea that we take on our surroundings as a part of the art itself really, really punctured me in the way that I look at performance art. It’s really rare that an artist gets to perform in daylight, unless it’s at a festival. So I really wanted to play with creating a strong color palette. I’ve been playing around with a lot of neutral tones since the record came out and Issey Miyake has been a huge influence. We’re also wearing a lot of Phillip Lim and really comfortable, moveable fabrics. On stage, I’ve really been empowered by the color red. I think it’s associated, especially with women, as this fiery, super volatile, and strong-willed color. Almost stubborn, if you will. So we’re wearing all-red for our festival shows and playing with the lighting for all the moods red can express. Color theory is this really nerdy side of me that I’ve been wanting to explore more of.”

It’s impossible to emphasize Alvin Ailey’s impact enough. Prior to him, there were no African American dancers in dance It was thought African Americans had the wrong body type until Alvin Ailey proved them wrong. (The topic of body type and dance is bizarre to an outsider, especially where ballet is concerned. It lends itself to racism but is rampant throughout the world of modern dance and ballet. I followed the topic for a number of years.)

Getting back to Solange Knowles, Tavi Gevinson’s Sept. 30, 2016 article for W explores her then new album ‘A Seat at the Table’,

Solange’s new album, A Seat at the Table, is so many things at once: an antidote to hate, a celebration of blackness, an expression of the right to feel it all. After a move to Louisiana and period of self-reflection, the artist joined forces with a range of collaborators to put her new discoveries to music. Hearing it for the very first time, my heart went in and out of slow motion: swelled at a layered vocal, stopped at a painfully apt choice of words, sped up with a perfect bass-line. Mostly I was struck by A Seat at the Table as a nurturing force among the trauma of anti-blackness; a further exploration of questions posed by Solange on her Twitter, last summer: “Where can we be safe? Where can we be free? Where can we be black?”

So much of your album explicitly discusses racism and celebrating blackness, and one of the interludes talks about taking all the anger and metabolizing it through the work. Does that start with you through the lyrics or the sounds?

The writing process of this album was not more unique than any of my other processes, in that it typically starts with the melody idea and the words evolve based off of what I listen back to. Nine times out of ten, you’re freestyling, but you’re piecing the puzzle pieces together after you settle on a melody that you like. I definitely had concepts I wanted to explore. I knew that I wanted to make a song experiencing and communicating the exhaustion, the feeling of being weary and tired and energetically drained. I knew that I wanted to discuss this idea of the “angry black woman” in society, and dissect a conversation that I’ve had one too many times. I knew I had these concepts that I wanted to communicate, but I was resistant to letting them lead the creative process. So the first layer of making the album, I just jammed in a room with some incredible musicians. It was a great energy in the room, because it was not so much like, ‘I’m going to make this album about this specific thing. It was just music-making. Then, I took that music and I went to New Iberia for that time, and I needed that insular time to break down what I was saying, what I was going to communicate and how I was going to do that. From there, I spent that summer writing lyrics. It was an interesting process because I’m a mother and I had to balance making an album and raising a preteen. And having my hands in all these different pots, so it was either all or nothing to me. I spent three months in New Iberia, and I recorded some of the album in Ghana and Jamaica. I had to have these isolated experiences creatively in order to turn off and listen to myself.

For all of the continued awareness of systemic violence and oppression, there isn’t a lot of talk about that psychological toll of racism, at least in white circles and white media. That is so heavy in the album, and I’m really excited for people to have that to turn to.

That is such an ignored part of the conversation. I feel there were a lot of traumas that I had to experience during this creative process, that I didn’t identify as traumas until I realized just how much weight and how many triggers [there are] like constantly seeing the images of young black people lifeless in the street, and how many cries of mothers that you’re constantly hearing on a daily basis. Outside of those traumas, just the nuances that you have to navigate through everyday as a black person living in this country. It absolutely has a psychological effect on you. There are clinical and scientific studies that show the brain dealing with the same type of PTSD that we know of in other traumatic instances and experiences, but society has not yet come to terms with applying it to race. But I have a lot of optimism in the fact that we’re even able to have this conversation now. This isn’t something that my mom and one of her white friends would be discussing in their time. It’s not always easy, and it’s not always comfortable, and the person leading it usually gets a lot of shit for it, but that’s with any revolution.

Here’s a little information about the upcoming Vancouver show from an April 21, 2017 news item on the Georgia Straight (Note: Links have been removed),

Solange Knowles, woke artist, activist, feminist, and producer of one of 2016’s most critically acclaimed albums, has announced that she will be playing a show at Vancouver’s Rennie Museum (51 East Pender Street) on April 27.

The singer published an image to her Instagram page yesterday (April 20), revealing that Vancouver is one of nine cities she will be stopping in over the next two months. Shortly after, the Rennie Collection, one of the country’s largest collections of contemporary art exhibited at the Wing Sang building in Chinatown, shared on its social media pages that Knowles will be conducting a “special performance”.

“Her album [A Seat at the Table] is very artistic,” Wendy Chang, director at the Rennie, tells the Straight by phone. “She’s on the West Coast this week and, because she has nothing planned for Vancouver at all, we thought we’d take advantage of that and have her perform and have all proceeds go to a charity.”

Chang reveals that the “very small, very intimate” performance will benefit the Atira Women’s Resource Society, a DTES–based nonprofit that provides safe housing and support for women and children affected by violence.

Not much else has been confirmed about the last-minute show, though given the venue and the sold-out act Knowles plans to present at New York’s Guggenheim Museum in May, fans can expect an interdisciplinary set that explores blackness, prejudice, and womanhood both visually and sonically.

In March, Knowles also debuted “Scales”, a performance project “examining protest as meditation through movement and experimentation of unique compositions and arrangements from A Seat at the Table”, at Houston’s Menil Collection. More recently, she appeared at the Pérez Art Museum Miami.

In addition to Vancouver, Knowles is making stops in cities such as San Francisco, Mayer, Arizona, and Boston between now and June [2017].

I did find a review for Knowles’ April 21, 2017 show in Portland, Oregon (from  Emerson Malone’s April 22, 2017 review for DailyEmerald.com,

The unsinkable Solange Knowles played the headlining slot for Soul’d Out Music Fest, a soul and R&B music festival based in multiple venues around Portland, on Friday, April 21, at the Arlene Schnitzer Concert Hall. The festival’s events from April 19–23 have included Travis Scott (who brought Drake out to get cozy in the crowd); Giorgio Moroder, The Ohio Players and Cory Henry and the Funk Apostles.

One of the most admirable elements of Solange’s live show is the impeccable choreography. It’s so precisely designed that every subtle movement, every head nod and jazz hand-wave, was on cue. At times the group would form a tight chorus line and sway back and forth in unison, with everyone (save the trombonists) continuing to play.

When she demanded that everyone dance during the bubblegum-pop hit “Losing You” from her 2012 EP “True,” the entire hall erupted at her behest. The encore performance “Don’t Touch My Hair” — Solange’s exhortation of the casual fetishization of black women  — was phenomenal. She turned her back to the audience and acted as conductor, commanding the musicians with loud, grandiose gestures. As the drummer smashed the cymbals, she mirrored him, thrashed her limbs and windmilled her arms.

Following the show, even one of the Arlene’s security guards — who just spent the last hour dancing — was quietly weeping and speechlessly shaking her head in awe. Solange isn’t just a firebrand individual, and her show isn’t just an opulent, elegant triumph of performance art. She is a puppet master; we’re marionettes.

Unfortunately, the Solange Knowles’ Vancouver show sold out within minutes (yes, I know I’m repeating it but it was heartbreaking) and I gather from the folks at the Rennie Museum that they had very little notice about the show which is being organized solely by Knowles’ people in response to my somewhat grumbling email. Ah well, them’s the breaks. In any event, there are only 100 tickets per performance available so for those who did get a ticket, you are going to have an intimate experience with the artist  and given the venue, this will be a performance art experience rather than a music show such as the one in Portland, Oregon. There will be three performances in Vancouver,. one on Thursday, April 27, 2017 and two on Friday, April 28, 2017 (you can see the listing here). Enjoy!

I hear the proteins singing

Points to anyone who recognized the paraphrasing of the title for the well-loved, Canadian movie, “I heard the mermaids singing.” In this case, it’s all about protein folding and data sonification (from an Oct. 20, 2016 news item on phys.org),

Transforming data about the structure of proteins into melodies gives scientists a completely new way of analyzing the molecules that could reveal new insights into how they work – by listening to them. A new study published in the journal Heliyon shows how musical sounds can help scientists analyze data using their ears instead of their eyes.

The researchers, from the University of Tampere in Finland, Eastern Washington University in the US and the Francis Crick Institute in the UK, believe their technique could help scientists identify anomalies in proteins more easily.

An Oct. 20, 2016 Elsevier Publishing press release on EurekAlert, which originated the news item, expands on the theme,

“We are confident that people will eventually listen to data and draw important information from the experiences,” commented Dr. Jonathan Middleton, a composer and music scholar who is based at Eastern Washington University and in residence at the University of Tampere. “The ears might detect more than the eyes, and if the ears are doing some of the work, then the eyes will be free to look at other things.”

Proteins are molecules found in living things that have many different functions. Scientists usually study them visually and using data; with modern microscopy it is possible to directly see the structure of some proteins.

Using a technique called sonification, the researchers can now transform data about proteins into musical sounds, or melodies. They wanted to use this approach to ask three related questions: what can protein data sound like? Are there analytical benefits? And can we hear particular elements or anomalies in the data?

They found that a large proportion of people can recognize links between the melodies and more traditional visuals like models, graphs and tables; it seems hearing these visuals is easier than they expected. The melodies are also pleasant to listen to, encouraging scientists to listen to them more than once and therefore repeatedly analyze the proteins.

The sonifications are created using a combination of Dr. Middleton’s composing skills and algorithms, so that others can use a similar process with their own proteins. The multidisciplinary approach – combining bioinformatics and music informatics – provides a completely new perspective on a complex problem in biology.

“Protein fold assignment is a notoriously tricky area of research in molecular biology,” said Dr. Robert Bywater from the Francis Crick Institute. “One not only needs to identify the fold type but to look for clues as to its many functions. It is not a simple matter to unravel these overlapping messages. Music is seen as an aid towards achieving this unraveling.”

The researchers say their molecular melodies can be used almost immediately in teaching protein science, and after some practice, scientists will be able to use them to discriminate between different protein structures and spot irregularities like mutations.

Proteins are the first stop, but our knowledge of other molecules could also benefit from sonification; one day we may be able to listen to our genomes, and perhaps use this to understand the role of junk DNA [emphasis mine].

About 97% of our DNA (deoxyribonucleic acid) has been known for some decades as ‘junk DNA’. In roughly 2012, that was notion was challenged as Stephen S. Hall wrote in an Oct. 1, 2012 article (Hidden Treasures in Junk DNA; What was once known as junk DNA turns out to hold hidden treasures, says computational biologist Ewan Birney) for Scientific American.

Getting back to  2016, here’s a link to and a citation for ‘protein singing’,

Melody discrimination and protein fold classification by  Robert P. Bywater, Jonathan N. Middleton. Heliyon 20 Oct 2016, Volume 2, Issue 10 DOI: 10.1016/j.heliyon.2016.e0017

This paper is open access.

Here’s what the proteins sound like,

Supplementary Audio 3 for file for Supplementary Figure 2 1r75 OHEL sonification full score. [downloaded from the previously cited Heliyon paper]

Joanna Klein has written an Oct. 21, 2016 article for the New York Times providing a slightly different take on this research (Note: Links have been removed),

“It’s used for the concert hall. It’s used for sports. It’s used for worship. Why can’t we use it for our data?” said Jonathan Middleton, the composer at Eastern Washington University and the University of Tampere in Finland who worked with Dr. Bywater.

Proteins have been around for billions of years, but humans still haven’t come up with a good way to visualize them. Right now scientists can shoot a laser at a crystallized protein (which can distort its shape), measure the patterns it spits out and simulate what that protein looks like. These depictions are difficult to sift through and hard to remember.

“There’s no simple equation like e=mc2,” said Dr. Bywater. “You have to do a lot of spade work to predict a protein structure.”

Dr. Bywater had been interested in assigning sounds to proteins since the 1990s. After hearing a song Dr. Middleton had composed called “Redwood Symphony,” which opens with sounds derived from the tree’s DNA, he asked for his help.

Using a process called sonification (which is the same thing used to assign different ringtones to texts, emails or calls on your cellphone) the team took three proteins and turned their folding shapes — a coil, a turn and a strand — into musical melodies. Each shape was represented by a bunch of numbers, and those numbers were converted into a musical code. A combination of musical sounds represented each shape, resulting in a song of simple patterns that changed with the folds of the protein. Later they played those songs to a group of 38 people together with visuals of the proteins, and asked them to identify similarities and differences between them. The two were surprised that people didn’t really need the visuals to detect changes in the proteins.

Plus, I have more about data sonification in a Feb. 7, 2014 posting regarding a duet based on data from Voyager 1 & 2 spacecraft.

Finally, I hope my next Steep project will include  sonification of data on gold nanoparticles. I will keep you posted on any developments.

Move objects by playing a melody

At this point, moving objects by playing a melody is a laboratory experiment but who knows, perhaps one day you’ll be able to sing your front door open. A Sept. 9, 2016 news item on ScienceDaily announces the research on acoustic waves,

Researchers of Aalto University have made a breakthrough in controlling the motion of multiple objects on a vibrating plate with a single acoustic source. By playing carefully constructed melodies, the scientists can simultaneously and independently move multiple objects on the plate towards desired targets. This has enabled scientists, for instance, writing words consisting of separate letters with loose metal pieces on the plate by playing a melody.

A Sept. 9, 2016 Aalto University press release (also on EurekAlert), which originated the news item, describes the research in more detail,

Already in 1878, the first studies of sand moving on a vibrating plate were done by Ernst Chladni, known as the father of acoustics. Chladni discovered that when a plate is vibrating at a frequency, objects move towards a few positions, called the nodal lines, specific to that frequency. Since then, the prevailing view has been that the particle motion is random on the plate before they reached the nodal line. “We have shown that the motion is also predictable away from the nodal lines. Now that the object does not have to be at a nodal line, we have much more freedom in controlling its motion and have achieved independent control of up to six objects simultaneously using just one single actuator. We are very excited about the results, because this probably is a new world record of how many independent motions can be controlled by a single acoustic actuator,” says Professor Quan Zhou.

The objects to be controlled have been placed on top of a manipulation plate, and imaged by a tracking camera. Based on the detected positions, the computer goes through a list of music notes to find a note that is most likely to move the objects towards the desired directions. After playing the note, the new positions of the objects are detected, and the control cycle is restarted. This cycle is repeated until the objects have reached their desired target locations. The notes played during the control cycles form a sequence, a bit like music.

The new method has been applied to manipulate a wide range of miniature objects including electronic components, water droplets, plant seeds, candy balls and metal parts. “Some of the practical applications we foresee include conveying and sorting microelectronic chips, delivering drug-loaded particles for pharmaceutical applications or handling small liquid volumes for lab on chips,” says Zhou. “Also, the basic idea should be transferrable to other kinds of systems with vibration phenomena. For example, it should be possible to use waves and ripples to control floating objects in a pond using our technique.”

Here’s a link to and a citation for the paper,

Controlling the motion of multiple objects on a Chladni plate by Quan Zhou, Veikko Sariola, Kourosh Latifi, Ville Liimatainen. Nature Communications 7, Article number: 12764 doi:10.1038/ncomms12764 Published 09 September 2016

This article is open access.

Repurposing music from Broadway hit Hamilton to give a science perspective

Thanks to David Bruggeman’s July 27, 2016 posting for information about a piece from Tim Blais (A Capella Science).

Before getting to the video: The musical “Hamilton” is about Alexander Hamilton, one of the founding fathers of the United States while Blais’ version, featuring a cast of YouTube purveyors of science (I recognized Baba Brinkman), is about  Sir William Rowan Hamilton, an extraordinary Irish physicist, astronomer, and mathematician.

I know I’ll need more than one viewing.

A Moebius strip of moving energy (vibrations)

This research extends a theorem which posits that waves will adapt to slowly changing conditions and return to their original vibration to note that the waves can be manipulated to a new state. A July 25, 2016 news item on ScienceDaily makes the announcement,

Yale physicists have created something similar to a Moebius strip of moving energy between two vibrating objects, opening the door to novel forms of control over waves in acoustics, laser optics, and quantum mechanics.

The discovery also demonstrates that a century-old physics theorem offers much greater freedom than had long been believed. …

A July 25, 2016 Yale University news release (also on EurekAlert) by Jim Shelton, which originated the news item, expands on the theme,

Yale’s experiment is deceptively simple in concept. The researchers set up a pair of connected, vibrating springs and studied the acoustic waves that traveled between them as they manipulated the shape of the springs. Vibrations — as well as other types of energy waves — are able to move, or oscillate, at different frequencies. In this instance, the springs vibrate at frequencies that merge, similar to a Moebius strip that folds in on itself.

The precise spot where the vibrations merge is called an “exceptional point.”

“It’s like a guitar string,” said Jack Harris, a Yale associate professor of physics and applied physics, and the study’s principal investigator. “When you pluck it, it may vibrate in the horizontal plane or the vertical plane. As it vibrates, we turn the tuning peg in a way that reliably converts the horizontal motion into vertical motion, regardless of the details of how the peg is turned.”

Unlike a guitar, however, the experiment required an intricate laser system to precisely control the vibrations, and a cryogenic refrigeration chamber in which the vibrations could be isolated from any unwanted disturbance.

The Yale experiment is significant for two reasons, the researchers said. First, it suggests a very dependable way to control wave signals. Second, it demonstrates an important — and surprising — extension to a long-established theorem of physics, the adiabatic theorem.

The adiabatic theorem says that waves will readily adapt to changing conditions if those changes take place slowly. As a result, if the conditions are gradually returned to their initial configuration, any waves in the system should likewise return to their initial state of vibration. In the Yale experiment, this does not happen; in fact, the waves can be manipulated into a new state.

“This is a very robust and general way to control waves and vibrations that was predicted theoretically in the last decade, but which had never been demonstrated before,” Harris said. “We’ve only scratched the surface here.”

In the same edition of Nature, a team from the Vienna University of Technology also presented research on a system for wave control via exceptional points.

Here’s a link to and a citation for the paper,

Topological energy transfer in an optomechanical system with exceptional points by H. Xu, D. Mason, Luyao Jiang, & J. G. E. Harris. Nature (2016) doi:10.1038/nature18604 Published online 25 July 2016

This paper is behind a paywall.

Curiosity Collider (Vancouver, Canada) presents Neural Constellations: Exploring Connectivity

I think of Curiosity Collider as an informal art/science  presenter but I gather the organizers’ ambitions are more grand. From the Curiosity Collider’s About Us page,

Curiosity Collider provides an inclusive community [emphasis mine] hub for curious innovators from any discipline. Our non-profit foundation, based in Vancouver, Canada, fosters participatory partnerships between science & technology, art & culture, business communities, and educational foundations to inspire new ways to experience science. The Collider’s growing community supports and promotes the daily relevance of science with our events and projects. Curiosity Collider is a catalyst for collaborations that seed and grow engaging science communication projects.

Be inspired by the curiosity of others. Our Curiosity Collider events cross disciplinary lines to promote creative inspiration. Meet scientists, visual and performing artists, culinary perfectionists, passionate educators, and entrepreneurs who share a curiosity for science.

Help us create curiosity for science. Spark curiosity in others with your own ideas and projects. Get in touch with us and use our curiosity events to showcase how your work creates innovative new ways to experience science.

I wish they hadn’t described themselves as an “inclusive community.” This often means exactly the opposite.

Take for example the website. The background is in black, the heads are white, and the text is grey. This is a website for people under the age of 40. If you want to be inclusive, you make your website legible for everyone.

That said, there’s an upcoming Curiosity Collider event which looks promising (from a July 20, 2016 email notice),

Neural Constellations: Exploring Connectivity

An Evening of Art, Science and Performance under the Dome

“We are made of star stuff,” Carl Sagan once said. From constellations to our nervous system, from stars to our neurons. We’re colliding neuroscience and astronomy with performance art, sound, dance, and animation for one amazing evening under the planetarium dome. Together, let’s explore similar patterns at the macro (astronomy) and micro (neurobiology) scale by taking a tour through both outer and inner space.

This show is curated by Curiosity Collider’s Creative Director Char Hoyt, along with Special Guest Curator Naila Kuhlmann, and developed in collaboration with the MacMillan Space Centre. There will also be an Art-Science silent auction to raise funding for future Curiosity Collider activities.

Participating performers include:

The July 20, 2016 notice also provides information about date, time, location, and cost,

When
7:30pm on Thursday, August 18th 2016. Join us for drinks and snacks when doors open at 6:30pm.

Where
H. R. MacMillan Space Centre (1100 Chestnut Street, Vancouver, BC)

Cost
$20.00 sliding scale. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization. Purchase tickets on our Eventbrite page.

Head to the Facebook event page: Let us know you are coming and share this event with others! We will also share event updates and performer profiles on the Facebook page.

There is a pretty poster,

CuriostiytCollider_AugEvent_NeuralConstellations

[downloaded from http://www.curiositycollider.org/events/]

Enjoy!

A selection of science songs for summer

Canada’s Perimeter Institute for Theoretical Physics (PI) has compiled a list of science songs and it includes a few Canadian surprises. Here’s more from the July 21, 2016 PI notice received via email.

Ah, summer.

School’s out, the outdoors beckon, and with every passing second a 4.5-billion-year-old nuclear fireball fuses 620 million tons of hydrogen so brightly you’ve gotta wear shades.

Who says you have to stop learning science over the summer?

All you need is the right soundtrack to your next road trip, backyard barbeque, or day at the beach.

Did we miss your favourite science song? Tweet us @Perimeter with the hashtag #SciencePlaylist.

You can find the list and accompanying videos on The Ultimate Science Playlist webpage on the PI website. Here are a few samples,

“History of Everything” – Barenaked Ladies (The Big Bang Theory theme)

You probably know this one as the theme song of The Big Bang Theory. But here’s something you might not know. The tune began as an improvised ditty Barenaked Ladies’ singer Ed Robertson performed one night in Los Angeles after reading Simon Singh’s book Big Bang: The Most Important Scientific Discovery of All Time and Why You Need to Know About It. Lo and behold, in the audience that night were Chuck Lorre and Bill Prady, creators of The Big Bang Theory. The rest is history (of everything).

“Bohemian Gravity” – A Capella Science (Tim Blais)

Tim Blais, the one-man choir behind A Capella Science, is a master at conveying complex science in fun musical parodies. “Bohemian Gravity” is his most famous, but be sure to also check out our collaboration with him about gravitational waves, “LIGO: Feel That Space.”

“NaCl” – Kate and Anna McGarrigle

“NaCl” is a romantic tale of the courtship of a chlorine atom and a sodium atom, who marry and become sodium chloride. “Think of the love you eat,” sings Kate McGarrigle, “when you salt your meat.”

This is just a sampling. At this point, there are 15 science songs on the webpage. Surprisingly, rap is not represented. One other note, you’ll notice all of my samples are Canadian. (Sadly, I had other videos as well but every time I saved a draft I lost at least half or more. It seems the maximum allowed to me is three.).

Here are the others I wanted to include:

“Mandelbrot Set” – Jonathan Coulton

Singer-songwriter Jonathan Coulton (JoCo, to fans) is arguably the patron saint of geek-pop, having penned the uber-catchy credits songs of the Portal games, as well as this loving tribute to a particular set of complex numbers that has a highly convoluted fractal boundary when plotted.

“Higgs Boson Sonification” – Traq 

CERN physicist Piotr Traczyk (a.k.a. Traq) “sonified” data from the experiment that uncovered the Higgs boson, turning the discovery into a high-energy metal riff.

“Why Does the Sun Shine?” – They Might Be Giants

Choosing just one song for this playlist by They Might Be Giants is a tricky task, since They Definitely Are Nerdy. But this one celebrates physics, chemistry, and astronomy while also being absurdly catchy, so it made the list. Honourable mention goes to their entire album for kids, Here Comes Science.

In any event, the PI list is a great introduction to science songs and The Ultimate Science Playlist includes embedded videos for all 15 of the songs selected so far. Happy Summer!

Cornwall (UK) connects with University of Southern California for performance by a quantum computer (D-Wave) and mezzo soprano Juliette Pochin

The upcoming performance of a quantum computer built by D-Wave Systems (a Canadian company) and Welsh mezzo soprano Juliette Pochin is the première of “Superposition” by Alexis Kirke. A July 13, 2016 news item on phys.org provides more detail,

What happens when you combine the pure tones of an internationally renowned mezzo soprano and the complex technology of a $15million quantum supercomputer?

The answer will be exclusively revealed to audiences at the Port Eliot Festival [Cornwall, UK] when Superposition, created by Plymouth University composer Alexis Kirke, receives its world premiere later this summer.

A D-Wave 1000 Qubit Quantum Processor. Credit: D-Wave Systems Inc

A D-Wave 1000 Qubit Quantum Processor. Credit: D-Wave Systems Inc

A July 13, 2016 Plymouth University press release, which originated the news item, expands on the theme,

Combining the arts and sciences, as Dr Kirke has done with many of his previous works, the 15-minute piece will begin dark and mysterious with celebrated performer Juliette Pochin singing a low-pitched slow theme.

But gradually the quiet sounds of electronic ambience will emerge over or beneath her voice, as the sounds of her singing are picked up by a microphone and sent over the internet to the D-Wave quantum computer at the University of Southern California.

It then reacts with behaviours in the quantum realm that are turned into sounds back in the performance venue, the Round Room at Port Eliot, creating a unique and ground-breaking duet.

And when the singer ends, the quantum processes are left to slowly fade away naturally, making their final sounds as the lights go to black.

Dr Kirke, a member of the Interdisciplinary Centre for Computer Music Research at Plymouth University, said:

“There are only a handful of these computers accessible in the world, and this is the first time one has been used as part of a creative performance. So while it is a great privilege to be able to put this together, it is an incredibly complex area of computing and science and it has taken almost two years to get to this stage. For most people, this will be the first time they have seen a quantum computer in action and I hope it will give them a better understanding of how it works in a creative and innovative way.”

Plymouth University is the official Creative and Cultural Partner of the Port Eliot Festival, taking place in South East Cornwall from July 28 to 31, 2016 [emphasis mine].

And Superposition will be one of a number of showcases of University talent and expertise as part of the first Port Eliot Science Lab. Being staged in the Round Room at Port Eliot, it will give festival goers the chance to explore science, see performances and take part in a range of experiments.

The three-part performance will tell the story of Niobe, one of the more tragic figures in Greek mythology, but in this case a nod to the fact the heart of the quantum computer contains the metal named after her, niobium. It will also feature a monologue from Hamlet, interspersed with terms from quantum computing.

This is the latest of Dr Kirke’s pioneering performance works, with previous productions including an opera based on the financial crisis and a piece using a cutting edge wave-testing facility as an instrument of percussion.

Geordie Rose, CTO and Founder, D-Wave Systems, said:

“D-Wave’s quantum computing technology has been investigated in many areas such as image recognition, machine learning and finance. We are excited to see Dr Kirke, a pioneer in the field of quantum physics and the arts, utilising a D-Wave 2X in his next performance. Quantum computing is positioned to have a tremendous social impact, and Dr Kirke’s work serves not only as a piece of innovative computer arts research, but also as a way of educating the public about these new types of exotic computing machines.”

Professor Daniel Lidar, Director of the USC Center for Quantum Information Science and Technology, said:

“This is an exciting time to be in the field of quantum computing. This is a field that was purely theoretical until the 1990s and now is making huge leaps forward every year. We have been researching the D-Wave machines for four years now, and have recently upgraded to the D-Wave 2X – the world’s most advanced commercially available quantum optimisation processor. We were very happy to welcome Dr Kirke on a short training residence here at the University of Southern California recently; and are excited to be collaborating with him on this performance, which we see as a great opportunity for education and public awareness.”

Since I can’t be there, I’m hoping they will be able to successfully livestream the performance. According to Kirke who very kindly responded to my query, the festival’s remote location can make livecasting a challenge. He did note that a post-performance documentary is planned and there will be footage from the performance.

He has also provided more information about the singer and the technical/computer aspects of the performance (from a July 18, 2016 email),

Juliette Pochin: I’ve worked with her before a couple of years ago. She has an amazing voice and style, is musically adventurousness (she is a music producer herself), and brings great grace and charisma to a performance. She can be heard in the Harry Potter and Lord of the Rings soundtracks and has performed at venues such as the Royal Albert Hall, Proms in the Park, and Meatloaf!

Score: The score is in 3 parts of about 5 minutes each. There is a traditional score for parts 1 and 3 that Juliette will sing from. I wrote these manually in traditional music notation. However she can sing in free time and wait for the computer to respond. It is a very dramatic score, almost operatic. The computer’s responses are based on two algorithms: a superposition chord system, and a pitch-loudness entanglement system. The superposition chord system sends a harmony problem to the D-Wave in response to Juliette’s approximate pitch amongst other elements. The D-Wave uses an 8-qubit optimizer to return potential chords. Each potential chord has an energy associated with it. In theory the lowest energy chord is that preferred by the algorithm. However in the performance I will combine the chord solutions to create superposition chords. These are chords which represent, in a very loose way, the superposed solutions which existed in the D-Wave before collapse of the qubits. Technically they are the results of multiple collapses, but metaphorically I can’t think of a more beautiful representation of superposition: chords. These will accompany Juliette, sometimes clashing with her. Sometimes giving way to her.

The second subsystem generates non-pitched noises of different lengths, roughnesses and loudness. These are responses to Juliette, but also a result of a simple D-Wave entanglement. We know the D-Wave can entangle in 8-qubit groups. I send a binary representation of the Juliette’s loudness to 4 qubits and one of approximate pitch to another 4, then entangle the two. The chosen entanglement weights are selected for their variety of solutions amongst the qubits, rather than by a particular musical logic. So the non-pitched subsystem is more of a sonification of entanglement than a musical algorithm.

Thank you Dr. Kirke for a fascinating technical description and for a description of Juliette Pochin that makes one long to hear her in performance.

For anyone who’s thinking of attending the performance or curious, you can find out more about the Port Eliot festival here, Juliette Pochin here, and Alexis Kirke here.

For anyone wondering about data sonficiatiion, I also have a Feb. 7, 2014 post featuring a data sonification project by Dr. Domenico Vicinanza which includes a sound clip of his Voyager 1 & 2 spacecraft duet.

Music videos for teaching science and a Baba Brinkman update

I have two news bits concerning science and music.

Music videos and science education

Researchers in the US and New Zealand have published a study on how effective music videos are for teaching science. Hint: there are advantages but don’t expect perfection. From a May 25, 2016 news item on ScienceDaily,

Does “edutainment” such as content-rich music videos have any place in the rapidly changing landscape of science education? A new study indicates that students can indeed learn serious science content from such videos.

The study, titled ‘Leveraging the power of music to improve science education’ and published by International Journal of Science Education, examined over 1,000 students in a three-part experiment, comparing learners’ understanding and engagement in response to 24 musical and non-musical science videos.

A May 25, 2016 Taylor & Francis (publishers) press release, which originated the news item, quickly gets to the point,

The central findings were that (1) across ages and genders, K-16 students who viewed music videos improved their scores on quizzes about content covered in the videos, and (2) students preferred music videos to non-musical videos covering equivalent content.  Additionally, the results hinted that videos with music might lead to superior long-term retention of the content.

“We tested most of these students outside of their normal classrooms,” commented lead author Greg Crowther, Ph.D., a lecturer at the University of Washington.  “The students were not forced by their teachers to watch these videos, and they didn’t have the spectre of a low course grade hanging over their heads.  Yet they clearly absorbed important information, which highlights the great potential of music to deliver key content in an appealing package.”

The study was inspired by the classroom experiences of Crowther and co-author Tom McFadden [emphasis mine], who teaches science at the Nueva School in California.  “Tom and I, along with many others, write songs for and with our students, and we’ve had a lot of fun doing that,” said Crowther.  “But rather than just assuming that this works, we wanted to see whether we could document learning gains in an objective way.”

The findings of this study have implications for teacher practitioners, policy-makers and researchers who are looking for innovative ways to improve science education.  “Music will always be a supplement to, rather than a substitute for, more traditional forms of teaching,” said Crowther.  “But teachers who want to connect with their students through music now have some additional data on their side.”

The paper is quite interesting (two of the studies were run in the US and one in New Zealand) and I notice that Don McFadden of the Science Rap Academy is one of the authors (more about him later); here’s a link to and a citation for the paper,

Leveraging the power of music to improve science education by Gregory J. Crowther, Tom McFadden, Jean S. Fleming, & Katie Davis.  International Journal of Science Education
Volume 38, Issue 1, 2016 pages 73-95. DOI: 10.1080/09500693.2015.1126001 Published online: 18 Jan 2016

This paper is open access. As I noted earlier, the research is promising but science music videos are not the answer to all science education woes.

One of my more recent pieces featuring Tom McFadden and his Science Rap Academy is this April 21, 2015 posting. The 2016 edition of the academy started in January 2016 according to David Bruggeman’s Jan. 27, 2016 posting on his Pasco Phronesis blog. You can find the Science Rap Academy’s YouTube channel here and the playlist here.

Canadian science rappers and musicians

I promised the latest about Baba Brinkman and here it is (from a May 14, 2016 notice received via email,

Not many people know this, but Dylan Thomas [legendary Welsh poet] was one of my early influences as a poet and one of the reasons I was inspired to pursue versification as a career. Well now Literature Wales has commissioned me to write and record a new rap/poem in celebration of Dylan Day 2016 (today [May 14, 20160) which I dutifully did. You can watch the video here to check out what a hip-hop flow and a Thomas poem have in common.

In other news, I’ll be performing a couple of one-off show over the next few weeks. Rap Guide to Religion is on at NECSS in New York on May 15 (tomorrow) [Note: Link removed as the event date has now been passed] and Rap Guide to Evolution is at the Reason Rally in DC June 2nd [2016]. I’m also continuing with the off-Broadway run of Rap Guide to Climate Chaos, recording the climate chaos album and looking to my next round of writing and touring, so if you have ideas about venues I could play please send me a note.

You can find out more about Baba Brinkman (a Canadian rapper who has written and  performed many science raps and lives in New York) here.

There’s another Canadian who produces musical science videos, Tim Blais (physicist and Montréaler) who was most recently featured here in a Feb. 12, 2016 posting. You can find a selection of Blais’ videos on his A Capella Science channel on YouTube.