Category Archives: light

Hologram with nanostructures could improve fraud protection

This research on holograms comes from Harvard University according to a May 13, 2016 news item on ScienceDaily,

Holograms are a ubiquitous part of our lives. They are in our wallets — protecting credit cards, cash and driver’s licenses from fraud — in grocery store scanners and biomedical devices.

Even though holographic technology has been around for decades, researchers still struggle to make compact holograms more efficient, complex and secure.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have programmed polarization into compact holograms. These holograms use nanostructures that are sensitive to polarization (the direction in which light vibrates) to produce different images depending on the polarization of incident light. This advancement, which works across the spectrum of light, improves anti-fraud holograms as well as those used in entertainment displays.

A May 13, 2016 Harvard University press release (also on EurekAlert) by Leah Burrows, which originated the news item, provides more detail,

“The novelty in this research is that by using nanotechnology, we’ve made holograms that are highly efficient, meaning that very little light is lost to create the image,” said Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering and senior author of the paper. “By using incident polarized light, you can see far a crisper image and can store and retrieve more images. Polarization adds another dimension to holograms that can be used to protect against counterfeiting and in applications like displays.”

Harvard’s Office of Technology Development has filed patents on this and related technologies and is actively pursuing commercial opportunities.

Holograms, like digital photographs, capture a field of light around an object and encode it on a chip. However, photographs only record the intensity of light while holograms also capture the phase of light, which is why holograms appear three-dimensional.

“Our holograms work like any other but the image produced depends on the polarization state of the illuminating light, providing an extra degree of freedom in design for versatile applications,” said Mohammadreza Khorasaninejad, postdoctoral fellow in the Capasso Lab and first author of the paper.

There are several states of polarization. In linearly polarized light the direction of vibration remains constant while in circularly polarized light it rotates clockwise or counterclockwise. The direction of rotation is the chirality.

The team built silicon nanostructured patterns on a glass substrate, which act as superpixels. Each superpixel responds to a certain polarization state of the incident light. Even more information can be encoded in the hologram by designing and arranging the nanofins to respond differently to the chirality of the polarized incident light.

“Being able to encode chirality can have important applications in information security such as anti-counterfeiting,” said Antonio Ambrosio, a research scientist in the Capasso Lab and co-first author. “For example, chiral holograms can be made to display a sequence of certain images only when illuminated with light of specific polarization not known to the forger.”

“By using different nanofin designs in the future, one could store and retrieve far more images by employing light with many states of polarization,” said Capasso.

Because this system is compact, it has application in portable projectors, 3D movies and wearable optics.

“Modern polarization imaging systems require cascading several optical components such as beam splitters, polarizers and wave plates,” said Ambrosio. “Our metasurface can distinguish between incident polarization using a single layer dielectric surface.”

“We have also incorporated in some of the holograms a lens function that has allowed us to produce images at large angles,” said Khorasaninejad. “This functionality combined with the small footprint and lightweight, has significant potential for wearable optics applications.”

Here’s a link to and a citation for the paper,

Broadband and chiral binary dielectric meta-holograms by Mohammadreza Khorasaninejad, Antonio Ambrosio, Pritpal Kanhaiya, and Federico Capasso. Science Advances  13 May 2016: Vol. 2, no. 5, e1501258 DOI: 10.1126/sciadv.1501258

This paper is open access.

Explaining research into matching plasmonic nanoantenna resonances with atoms, molecules, and quantum dots

There’s a very nice explanation of the difficulties associeated with using plasmonic nanoantennas as sensors in a March 21, 2016 news item on,

Plasmonic nanoantennas are among the hot topics in science at the moment because of their ability to interact strongly with light, which for example makes them useful for different kinds of sensing. But matching their resonances with atoms, molecules or so called quantum dots has been difficult so far because of the very different length scales involved. Thanks to a grant from the Engkvist foundation, Timur Shegai, assistant professor at Chalmers University of Technology, hopes to find a way to do this and by that open doors for applications such as safe long distance communication channels.

A molecule being illuminated by two gold nanoantennas. By: Alexander Ericson Courtesy: Chalmers University of Technology

A molecule being illuminated by two gold nanoantennas. By: Alexander Ericson Courtesy: Chalmers University of Technology

The image, looking like a stylized butterfly or bow tie, above accompanies Karin Weijdegård’s March ??, 2016 Chalmers University of Technology press release, which originated the news item, expands on the research theme,

The diffraction limit makes it very hard for light to interact with the very smallest particles or so called quantum systems such as atoms, molecules or quantum dots. The size of such a particle is simply so much smaller than the wavelength of light that there cannot be a strong interaction between the two. But by using plasmonic nanoantennas, which can be described as metallic nanostructures that are able to focus light very strongly and in wavelengths smaller than those of the visible light, one can build a bridge between the light and the atom, molecule or quantum dot and that is what Timur Shegai is working on.

“Plasmonic nanostructures are themselves smaller than wavelengths of light, but because they have a lot of free electrons they can store the electromagnetic energy in a volume which is actually a lot smaller than the diffraction limit, which helps to bridge the gap between really small objects such as molecules and the larger wavelengths of light,” he says.

Matching the harmonic with the un-harmonic

This might sound easy enough, but the problem with combining the two is that they behave in very different ways. The behaviour of plasmonic nanostructures is very linear, like a harmonic oscillator it will regularly move from side to side no matter how much energy or in other words how many excitations are stored in it. On the other hand, so called quantum systems like atoms, molecules or quantum dots are very much the opposite – their optical properties are highly un-harmonic. Here it makes a big difference if you excite the system with one or two or hundreds of photons.

“Now imagine that you couple together this un-harmonic resonator and a harmonic resonator, and add the possibility to interact with light much stronger than the un-harmonic system alone would have allowed. That opens up very interesting possibilities for quantum technologies and for non-linear optics for example. But as opposed to previous attempts that have been done at very low temperatures and in a vacuum, we will do it at room temperature.”

Communication channels impossible to hack

One possible application where this technology could be useful in the future is to create channels for long distance communications that are impossible to hack. With the current technology this kind of safe communication is only possible if the persons communicating is within a distance of about one hundred kilometres from each other, because that is the maximum distance that an individual photon can run in fibres before it scatters and the signal is lost.

“The kind of ultra small and ultra fast technology we want to develop could be useful in a so called quantum repeater, a device that could be installed across the line from for example New York to London, that would repeat the photon every time it is about to be scattered,” says Timur Shegai.

At the moment though, it is the fundamental aspects of merging plasmons with quantum systems that interest Timur Shegai. To be able to experimentally prove that the there can be interactions between the two systems, he first of all needs to fabricate model systems at the nano level. This is a big challenge, but with the grant of 1,6 million SEK over a period of two years that he just received from the Engkvist foundation, the chances of success have improved.

“Since I am a researcher at the beginning of my career every person is a huge improvement and now I can hire a post doc to work with my group. This means that the project can be divided into sub parts and together we will be able to explore more possibilities about this new technology.”

Thank you Karin Weijdegård for the explanation.

Australians take step toward ‘smart’ contact lenses

Some research from RMIT University (Australia) and the University of Adelaide (Australia) is make quite an impression. A Feb. 19, 2016 article by Caleb Radford for The Lead explains some of the excitement,

NEW light-manipulating nano-technology may soon be used to make smart contact lenses.

The University of Adelaide in South Australia worked closely with RMIT University to develop small hi-tech lenses to filter harmful optical radiation without distorting vision.

Dr Withawat Withayachumnankul from the University of Adelaide helped conceive the idea and said the potential applications of the technology included creating new high-performance devices that connect to the Internet.

A Feb. 19, 2016 RMIT University press release on EurekAlert, which originated the news item, provides more detail,

The light manipulation relies on creating tiny artificial crystals termed “dielectric resonators”, which are a fraction of the wavelength of light – 100-200 nanometers, or over 500 times thinner than a human hair.

The research combined the University of Adelaide researchers’ expertise in interaction of light with artificial materials with the materials science and nanofabrication expertise at RMIT University.

Dr Withawat Withayachumnankul, from the University of Adelaide’s School of Electrical and Electronic Engineering, said: “Manipulation of light using these artificial crystals uses precise engineering.

“With advanced techniques to control the properties of surfaces, we can dynamically control their filter properties, which allow us to potentially create devices for high data-rate optical communication or smart contact lenses.

“The current challenge is that dielectric resonators only work for specific colours, but with our flexible surface we can adjust the operation range simply by stretching it.”

Associate Professor Madhu Bhaskaran, Co-Leader of the Functional Materials and Microsystems Research Group at RMIT, said the devices were made on a rubber-like material used for contact lenses.

“We embed precisely-controlled crystals of titanium oxide, a material that is usually found in sunscreen, in these soft and pliable materials,” she said.

“Both materials are proven to be bio-compatible, forming an ideal platform for wearable optical devices.

“By engineering the shape of these common materials, we can create a device that changes properties when stretched. This modifies the way the light interacts with and travels through the device, which holds promise of making smart contact lenses and stretchable colour changing surfaces.”

Lead author and RMIT researcher Dr. Philipp Gutruf said the major scientific hurdle overcome by the team was combining high temperature processed titanium dioxide with the rubber-like material, and achieving nanoscale features.

“With this technology, we now have the ability to develop light weight wearable optical components which also allow for the creation of futuristic devices such as smart contact lenses or flexible ultra thin smartphone cameras,” Gutruf said.

Here’s a link to and a citation for the paper,

Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies by Philipp Gutruf, Chengjun Zou, Withawat Withayachumnankul, Madhu Bhaskaran, Sharath Sriram, and Christophe Fumeaux. ACS Nano, 2016, 10 (1), pp 133–141 DOI: 10.1021/acsnano.5b05954 Publication Date (Web): November 30, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

ETA Feb. 24, 2016: Dexter Johnson (Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website) has chimed in with additional insight into this research in his Feb. 23, 2016 posting.

Quantum and classical physics may be closer than we thought

It seems that a key theory about the boundary between the quantum world and our own macro world has been disproved and I think the July 21, 2015 news item on Nanotechnology Now says it better,

Quantum theory is one of the great achievements of 20th century science, yet physicists have struggled to find a clear boundary between our everyday world and what Albert Einstein called the “spooky” features of the quantum world, including cats that could be both alive and dead, and photons that can communicate with each other across space instantaneously.

For the past 60 years, the best guide to that boundary has been a theorem called Bell’s Inequality, but now a new paper shows that Bell’s Inequality is not the guidepost it was believed to be, which means that as the world of quantum computing brings quantum strangeness closer to our daily lives, we understand the frontiers of that world less well than scientists have thought.

In the new paper, published in the July 20 [2015] edition of Optica, University of Rochester [New York state, US] researchers show that a classical beam of light that would be expected to obey Bell’s Inequality can fail this test in the lab, if the beam is properly prepared to have a particular feature: entanglement.

A July 21, 2015 University of Rochester news release, which originated the news item, reveals more about the boundary and the research,

Not only does Bell’s test not serve to define the boundary, the new findings don’t push the boundary deeper into the quantum realm but do just the opposite. They show that some features of the real world must share a key ingredient of the quantum domain. This key ingredient is called entanglement, exactly the feature of quantum physics that Einstein labeled as spooky. According to Joseph Eberly, professor of physics and one of the paper’s authors, it now appears that Bell’s test only distinguishes those systems that are entangled from those that are not. It does not distinguish whether they are “classical” or quantum. In the forthcoming paper the Rochester researchers explain how entanglement can be found in something as ordinary as a beam of light.

Eberly explained that “it takes two to tangle.” For example, think about two hands clapping regularly. What you can be sure of is that when the right hand is moving to the right, the left hand is moving to the left, and vice versa. But if you were asked to guess without listening or looking whether at some moment the right hand was moving to the right, or maybe to the left, you wouldn’t know. But you would still know that whatever the right hand was doing at that time, the left hand would be doing the opposite. The ability to know for sure about a common property without knowing anything for sure about an individual property is the essence of perfect entanglement.

Eberly added that many think of entanglement as a quantum feature because “Schrodinger coined the term ‘entanglement’ to refer to his famous cat scenario.” But their experiment shows that some features of the “real” world must share a key ingredient of Schrodinger’s Cat domain: entanglement.

The existence of classical entanglement was pointed out in 1980, but Eberly explained that it didn’t seem a very interesting concept, so it wasn’t fully explored. As opposed to quantum entanglement, classical entanglement happens within one system. The effect is all local: there is no action at a distance, none of the “spookiness.”

With this result, Eberly and his colleagues have shown experimentally “that the border is not where it’s usually thought to be, and moreover that Bell’s Inequalities should no longer be used to define the boundary.”

Here’s a link to and a citation for the paper,

Shifting the quantum-classical boundary: theory and experiment for statistically classical optical fields by Xiao-Feng Qian, Bethany Little, John C. Howell, and J. H. Eberly. Optica Vol. 2, Issue 7, pp. 611-615 (2015) •doi: 10.1364/OPTICA.2.000611

This paper is open access.

Unique ‘printing’ process boosts supercapacitor performance

In addition to creating energy, we also need to store some of it for future use as a July 29, 2013 news release from the University of Central Florida notes,

Researchers at the University of Central Florida have developed a technique to increase the energy storage capabilities of supercapacitors, essential devices for powering high-speed trains, electric cars, and the emergency doors of the Airbus A380.

The finding, which offers a solution to a problem that has plagued the growing multi-billion dollar industry, utilizes a unique three-step process to “print” large – area nanostructured electrodes, structures necessary to improve electrical conductivity and boost performance of the supercapacitor.

Jayan Thomas, an assistant professor in UCF’s NanoScience Technology Center, led the project which is featured in the June edition of Advanced Materials, one of the leading peer-reviewed scientific journals covering materials science in the world. Thomas’ research appears on the journal’s highly-coveted frontispiece, the illustration page of the journal that precedes the title page.

The news release goes on to describe the supercapacitor issue the researchers were addressing,

Supercapacitors have been around since the 1960’s. Similar to batteries, they store energy. The difference is that supercapacitors can provide higher amounts of power for shorter periods of time, making them very useful for heavy machinery and other applications that require large amounts of energy to start.  However, due to their innate low energy density; supercapacitors are limited in the amount of energy that they can store.

“We had been looking at techniques to print nanostructures,” said Thomas. “Using a simple spin-on nanoprinting (SNAP) technique, we can print highly-ordered nanopillars without the need for complicated development processes. By eliminating these processes, it allows multiple imprints to be made on the same substrate in close proximity.“

This simplified fabrication method devised by Thomas and his team is very attractive for the next-generation of energy storage systems. “What we’ve found is by adding the printed ordered nanostructures to supercapacitor electrodes, we can increase their surface area many times,” added Thomas. “We discovered that supercapacitors made using the SNAP technique can store much more energy than ones made without.”

Here’s a link to and a citation for the research paper abut this new technique for supercapacitors,

Energy Storage: Highly Ordered MnO2 Nanopillars for Enhanced Supercapacitor Performance (Adv. Mater. 24/2013) by Zenan Yu, Binh Duong, Danielle Abbitt, and Jayan Thomas. Article first published online: 20 JUN 2013 DOI: 10.1002/adma.201370160 Advanced Materials Volume 25, Issue 24, page 3301, June 25, 2013.

Lead researcher Thomas was recently featured in a video for his work on creating plasmonic nanocrystals from gold nanoparticles (from the news release),

Thomas, who is also affiliated with the College of Optics and Photonics (CREOL), and the College of Engineering, was recently featured on American Institute of Physics’ Inside Science TV for his collaborative research to develop a new material using nanotechnology that could potentially help keep pilots safe by diffusing harmful laser light.

Here’s the video,

You can find videos, news, and blogs featuring other research at Inside Science and you can find out more about Dr. Jayan Thomas here.

Fireflies and their jagged scales lead to brighter LEDs (light emitting diodes)

According to the Jan. 8, 2013 news item on ScienceDaily, scientists have used an observation about fireflies to make brighter LEDs (light emitting diodes),

The nighttime twinkling of fireflies has inspired scientists to modify a light-emitting diode (LED) so it is more than one and a half times as efficient as the original.

Researchers from Belgium, France, and Canada studied the internal structure of firefly lanterns, the organs on the bioluminescent insects’ abdomens that flash to attract mates. The scientists identified an unexpected pattern of jagged scales that enhanced the lanterns’ glow, and applied that knowledge to LED design to create an LED overlayer that mimicked the natural structure. The overlayer, which increased LED light extraction by up to 55 percent, could be easily tailored to existing diode designs to help humans light up the night while using less energy.

The Optical Society of America’s Jan. 8, 2013 news release, which originated the news item, describes how the scientists came to make their observations,

“The most important aspect of this work is that it shows how much we can learn by carefully observing nature,” says Annick Bay, a Ph.D. student at the University of Namur in Belgium who studies natural photonic structures, including beetle scales and butterfly wings.  When her advisor, Jean Pol Vigneron, visited Central America to conduct field work on the Panamanian tortoise beetle (Charidotella egregia), he also noticed clouds of twinkling fireflies and brought some specimens back to the lab to examine in more detail.

Fireflies create light through a chemical reaction that takes place in specialized cells called photocytes. The light is emitted through a part of the insect’s exoskeleton called the cuticle.  Light travels through the cuticle more slowly than it travels through air, and the mismatch means a proportion of the light is reflected back into the lantern, dimming the glow. The unique surface geometry of some fireflies’ cuticles, however, can help minimize internal reflections, meaning more light escapes to reach the eyes of potential firefly suitors.

In Optics Express papers, Bay, Vigneron, and colleagues first describe the intricate structures they saw when they examined firefly lanterns and then present how the same features could enhance LED design. Using scanning electron microscopes, the researchers identified structures such as nanoscale ribs and larger, misfit scales, on the fireflies’ cuticles. When the researchers used computer simulations to model how the structures affected light transmission they found that the sharp edges of the jagged, misfit scales let out the most light. The finding was confirmed experimentally when the researchers observed the edges glowing the brightest when the cuticle was illuminated from below.

“We refer to the edge structures as having a factory roof shape,” says Bay.  “The tips of the scales protrude and have a tilted slope, like a factory roof.” The protrusions repeat approximately every 10 micrometers, with a height of approximately 3 micrometers. “In the beginning we thought smaller nanoscale structures would be most important, but surprisingly in the end we found the structure that was the most effective in improving light extraction was this big-scale structure,” says Bay.

Here’s how the scientists applied their observations to LEDs (from the news release),

Human-made light-emitting devices like LEDs face the same internal reflection problems as fireflies’ lanterns and Bay and her colleagues thought a factory roof-shaped coating could make LEDs brighter. In the second Optics Express paper published today, which is included in the Energy Express  section of the journal, the researchers describe the method they used to create a jagged overlayer on top of a standard gallium nitride LED. Nicolas André, a postdoctoral researcher at the University of Sherbrooke in Canada, deposited a layer of light-sensitive material on top of the LEDs and then exposed sections with a laser to create the triangular factory-roof profile. Since the LEDs were made from a material that slowed light even more than the fireflies’ cuticle, the scientists adjusted the dimensions of the protrusions to a height and width of 5 micrometers to maximize the light extraction.

“What’s nice about our technique is that it’s an easy process and we don’t have to create new LEDs,” says Bay.  “With a few more steps we can coat and laser pattern an existing LED.”

Other research groups have studied the photonic structures in firefly lanterns as well, and have even mimicked some of the structures to enhance light extraction in LEDs, but their work focused on nanoscale features. The Belgium-led team is the first to identify micrometer-scale photonic features, which are larger than the wavelength of visible light, but which surprisingly improved light extraction better than the smaller nanoscale features. The factory roof coating that the researchers tested increased light extraction by more than 50 percent, a significantly higher percentage than other biomimicry approaches have achieved to date. The researchers speculate that, with achievable modifications to current manufacturing techniques, it should be possible to apply these novel design enhancements to current LED production within the next few years.

For those who care to investigate further,

Both articles (HTML version) are open access; PDF versions were not checked.

Lumerical’s latest INTERCONNECT product and statistic variations in one or more circuit elements

Vancouver- (Canada) based Lumerical Solutions’ Sept. 12, 2012 (?) product announcement for its INTERCONNECT 2.0 release notes some improvements and new features,

Release 2.0 of INTERCONNECT enables PIC designers to more quickly explore the role of circuit architecture and statistical component variations on overall circuit performance.  New features include an improved frequency-domain calculation engine which can compute circuit performance significantly faster, a custom s-parameter element which can accept measured or simulated data of arbitrary complexity including complete characterization data for multimode, many-port elements, and a yield calculator that produces Monte Carlo performance estimates based on statistical variations of one or more circuit parameters.

As the company seems to do on a regular basis, they are offering a free 30-day evaluation period for the product.

The Sept. 12, 2012 product announcement offers some insight into which users might find this product most useful along with some testimonials from the product’s current users,

INTERCONNECT has been engineered, since the original product concept, to support both device and circuit designers.  Device designers are interested in component dimensions and material compositions, often with the goal of designing new proprietary circuit elements that work well with adjacent components.  Circuit designers are focused on achieving desired target performance and are often only interested in using element-level transfer functions and compact models to predict system behavior. INTERCONNECT 2.0’s yield calculator, which accepts statistical variations at the element level whether they apply to physical or phenomenological parameters, continues to support both designer profiles.

Professor Lukas Chrostowski of the University of British Columbia, and Director of the NSERC [Natural Sciences and Engineering Research Council] CREATE Si-EPIC training program, believes that device designers will benefit from INTERCONNECT’s integration with MODE Solutions and FDTD Solutions.  “The software can be used to design devices such as ring resonators, waveguide Bragg gratings, arrayed waveguide gratings, and fibre grating couplers, and to study the performance of components within simple circuits,” he said.  “For example, reflections from components such as grating couplers often introduce undesired ripple in the optical spectrum, and this can be simulated using INTERCONNECT.”

As photonic integrated circuits are complex and require multi-physics simulation, the ability to create hierarchically-defined elements from single devices like a modulator to entire transmitter subsystems is very important.  Being able to experimentally verify these devices and subsystems and incorporate that data into a single design environment together with statistical variations at every level of the design hierarchy promises to streamline the design process.

“In response to ongoing requests for a framework that goes beyond idealized representations, INTERCONNECT 2.0 can incorporate statistical variations of geometrical or compact-model parameters,” according to Dr. Jackson Klein, Senior Product Manager of INTERCONNECT. “Together with INTERCONNECT’s hierarchical model definition, proprietary component-level IP can be easily incorporated into more sophisticated circuit models of arbitrary complexity.”

INTERCONNECT’s ability to model multimode, many-port circuits of arbitrary complexity and physical sophistication means it will play a critical role as designers explore circuit designs incorporating proprietary elements and ever-increasing component count.  “We look forward to our ongoing discussions with industry and foundry representatives, public and private companies, and government laboratories to refine INTERCONNECT’s capabilities so that it can best serve the emerging needs of the photonic integrated circuit design community,” says Dr. James Pond, Lumerical’s Chief Technology Officer.

University of Delaware Professor and Director of OpSIS Michael Hochberg has extensive experience working with Lumerical.  “We’re very happy with their tools and investment in the INTERCONNECT product,” he said.  “At OpSIS, our goal is to provide to anyone in the world with advanced silicon photonics processes for their own projects, while only paying for the wafer area that they use.  Doing schematic-driven design is really critical for making complex photonic circuits, and to make it easy for our users to lay out and simulate systems-on-chip we are now working with Lumerical to integrate OpSIS device libraries with their tools.”

The company has been quite active lately, the last product announcement was mentioned in my July 6, 2012 posting about Lumerical’s FDTD solution.

Vancouver (Canada)-based company, Lumerical Solutions, files patent on new optoelectronic simulation software

I’m not a huge *fan of patents as per various postings (my Oct. 31, 2011 posting is probably my most overt statement) so I’m not entirely thrilled about this news from Lumerical Solutions, Inc. According to the June 14, 2012 news item on Nanowerk,

Lumerical Solutions, Inc., a global provider of optoelectronic design software, announced the filing of a provisional patent application titled, “System and Method for Transforming a Coordinate System to Simulate an Anisotropic Medium.” The patent application, filed with the US Patent and Trademark Office, describes how the optical response of dispersive, spatially varying anisotropic media can be efficiently simulated on a discretized grid like that employed by finite-difference time-domain (FDTD) or finite-element method (FEM) simulators. The invention disclosed is relevant to a wide array of applications including liquid crystal display (LCD) panels, microdisplays, spatial light modulators, integrated components using liquid crystal on silicon (LCOS) technology like LCOS optical switches, and magneto-optical elements in optical communication and sensing systems.

The company’s June 14, 2012 news release includes this comment from the founder and Chief Technical Office (CTO),

According to Dr. James Pond, the inventor and Lumerical’s Chief Technology Officer, “many next generation opto-electronic products combine complicated materials and nano-scale structure, which is beyond the capabilities of existing simulation tools. Lumerical’s enhanced framework allows designers to accurately simulate everything from liquid crystal displays to OLEDs, and silicon photonics to integrated quantum computing components.”

Lumerical’s new methodology for efficiently simulating anisotropic media is part of a larger effort to allow designers the ability to model the optical response of many different types of materials.  In addition to the disclosed invention, Lumerical has added a material plugin capability which will enable external parties to include complicated material models, such as those required for modelling semiconductor lasers or non-linear optical devices, into FDTD-based simulation projects.

…  According to Chris Koo, an engineer with Samsung, “Lumerical’s latest innovation has established them as the clear leader in the field of optoelectronic device modeling.  Their comprehensive material modeling capabilities paves the way for the development of exciting new technologies.”

I wish the company good luck. Despite my reservations about current patent regimes, I do appreciate that in some situations, it’s best to apply for a patent.

For the curious, here’s a little more (from the company’s About Lumerical page),

By empowering research and product development professionals with high performance optical design software that leverages recent advances in computing technology, Lumerical helps optical designers tackle challenging design goals and meet strict deadlines. Lumerical’s design software solutions are employed in more than 30 countries by global technology leaders like Agilent, ASML, Bosch, Canon, Harris, Northrop Grumman, Olympus, Philips, Samsung, and STMicroelectronics, and prominent research institutions including Caltech, Harvard, Max Planck Institute, MIT, NIST and the Chinese Academy of Sciences.

Our Name

Lu.min.ous (loo’me-nes) adj., full of light, illuminated (noo-mer’i-kel) adj., of or relating to a number or series of numbers (loo-mer’i-kel) – A company that delivers inventive, highly accurate and cost effective design solutions resulting in significant improvements in product development costs and speed-to-market.

* June 15, 2012: I found the error this morning (9:20 am PDT) and added the word ‘fan’.

Happy Canada Day!

This will be a short one. My recent paper, ‘Nanotechnology, storytelling, sensing, and materiality‘, gave me a chance to explore the impact that various sensing technologies used for the nanoscale might have on storytelling. In one of those happy coincidences that can occur, I came across a new sensing technique (although strictly speaking it’s not applied at the nanoscale) that incorporates light and sound on Nanowerk News here. The new technique has allowed researchers to create three-dimensional whole body visualizations of zebra fish. From Nanowerk News,

The real power of the technique, however, lies in specially developed mathematical formulas used to analyze the resulting acoustic patterns. An attached computer uses these formulas to evaluate and interpret the specific distortions caused by scales, muscles, bones and internal organs to generate a three-dimensional image. The result of this “multi-spectral opto-acoustic tomography”, or MSOT, is an image with a striking spatial resolution better than 40 micrometers (four hundredths of a millimeter). And best of all, the sedated fish wakes up and recovers without harm following the procedure.

This new technique, MSOT, has applications for medical research.

In tangentially related news, Rob Annan’s posting on the ‘Don’t leave Canada behind‘ blog (June 30, 2009) features a few comments about a recent article in the New York Times that suggests current funding structures inhibit innovative cancer research. The report was written about US funding but Annan offers some thoughts on the matter and points the way to more Canadian commentary as well as the New York Times article.

That’s it. Happy Canada Day.