Category Archives: marketing

Nanotechnology-enabled electronic tattoo from Tel Aviv University (Israel)

This is the first stick-on, nanotechnology-enabled tattoo I’ve seen that’s designed for the face. From a July 11, 2016 news item on ScienceDaily,

A new temporary “electronic tattoo” developed by Tel Aviv University [TAU] that can measure the activity of muscle and nerve cells researchers is poised to revolutionize medicine, rehabilitation, and even business and marketing research.

A July 11, 2016 American Friends of Tel Aviv University news release (also on EurekAlert), which originated the news item, provides more detail (Note: Some formatting has been changed),

The tattoo consists of a carbon electrode, an adhesive surface that attaches to the skin, and a nanotechnology-based conductive polymer coating that enhances the electrode’s performance. It records a strong, steady signal for hours on end without irritating the skin.

The electrode, developed by Prof. Yael Hanein, head of TAU’s Center for Nanoscience and Nanotechnology, may improve the therapeutic restoration of damaged nerves and tissue — and may even lead to new insights into our emotional life.

Prof. Hanein’s research was published last month in Scientific Reports and presented at an international nanomedicine program held at TAU.

“Stick it on and forget about it”

One major application of the new electrode is the mapping of emotion by monitoring facial expressions through electric signals received from facial muscles. “The ability to identify and map people’s emotions has many potential uses,” said Prof. Hanein. “Advertisers, pollsters, media professionals, and others — all want to test people’s reactions to various products and situations. Today, with no accurate scientific tools available, they rely mostly on inevitably subjective questionnaires.

“Researchers worldwide are trying to develop methods for mapping emotions by analyzing facial expressions, mostly via photos and smart software,” Prof. Hanein continued. “But our skin electrode provides a more direct and convenient solution.”

The device was first developed as an alternative to electromyography, a test that assesses the health of muscles and nerve cells. It’s an uncomfortable and unpleasant medical procedure that requires patients to lie sedentary in the lab for hours on end. Often a needle is stuck into muscle tissue to record its electrical activity, or patients are swabbed with a cold, sticky gel and attached to unwieldy surface electrodes.

“Our tattoo permits patients to carry on with their daily routines, while the electrode monitors their muscle and nerve activity,” said Prof. Hanein. “The idea is: stick it on and forget about it.”

Applications for rehabilitation and more

According to Prof. Hanein, the new skin electrode has other important therapeutic applications. The tattoo will be used to monitor the muscle activity of patients with neurodegenerative diseases in a study at Tel Aviv Medical Center.

“But that’s not all,” said Prof. Hanein. “The physiological data measured in specific muscles may be used in the future to indicate the alertness of drivers on the road; patients in rehabilitation following stroke or brain injury may utilize the ‘tattoo’ to improve muscle control; and amputees may employ it to move artificial limbs with remaining muscles.”

As it often is, the funding sources prove to be interesting (from the news release),

The electrode is the product of a European Research Council (ERC) project and received support from the BSMT Consortium of Israel’s Ministry of Economy.

The involvement of the European Research Council underlines the very close relationship Israel has to the European Union even though it is not an official member.

Here’s a link to and a citation for the paper,

Temporary-tattoo for long-term high fidelity biopotential recordings by Lilach Bareket, Lilah Inzelberg, David Rand, Moshe David-Pur, David Rabinovich, Barak Brandes & Yael Hanein. Scientific Reports 6, Article number: 25727 (2016)  doi:10.1038/srep25727 Published online: 12 May 2016

This paper is open access.

International nano news bits: Belarus and Vietnam

I have two nano news bits, one concerning Belarus and the other concerning Vietnam.

Belarus

From a June 21, 2016 news item on Belarus News,

In the current five-year term Belarus will put efforts into developing robot technology, nano and biotechnologies, medical industry and a number of other branches of the national economy that can make innovative products, BelTA learned from Belarusian Economy Minister Vladimir Zinovsky on 21 June [2016].

The Minister underlined that the creation of new kinds of products, the development of conventional industries will produce their own results in economy and will allow securing a GDP growth rate as high as 112-115% in the current five-year term.

The last time Belarus was mentioned here was in a June 24, 2014 posting (scroll down about 25% of the way to see Belarus mentioned) about the European Union’s Graphene Flagship programme and new partners in the project. There was also a March 6, 2013 posting about Belarus and a nanotechnology partnership with Indonesia. (There are other mentions but those are the most recent.)

Vietnam

Vietnam has put into operation its first bio-nano production plant. From a June 21, 2016 news item on vietnamnet,

The Vietlife biological nano-plant was officially put into operation on June 20 [2016] at the North Thang Long Industrial Park in Hanoi.

It is the first plant producing biological nano-products developed entirely by Vietnamese scientists with a successful combination of traditional medicine, nanotechnology and modern drugs.

At the inauguration, Professor, Academician Nguyen Van Hieu, former president of Vietnam Academy of Science and Technology, who is the first to bring nanotechnology to Vietnam, reviewed the milestones of nanotechnology around the world and in the country.

In 2000, former US President Bill Clinton proposed American scientists research and develop nanotechnology for the first time.

Japan and the Republic of Korea then began developing the new technology.

Just two years later, in 2002, Vietnamese scientists also recommended research on nanotechnology and got the approval from the Party and State.

Academician Hieu said that Vietnam does not currently use nanotechnology to manufacture flat-screen TVs or smartphones. However, in Southeast Asia Vietnam has pioneered the research and successful applications of nanotechnology in production of probiotics combined with traditional medicine in health care, opening up a new potential science research in Vietnam.

Cam Ha JSC and scientists at the Vietnam Academy of Science and Technology have co-operated with a number of laboratories in the US, Australia and Japan to study and successfully develop a bio-nano production line in sync with diverse technologies.

Vietlife is the first plant to combine traditional medicine with nanotechnology and modern medicine. It consists of three technological lines: NANO MICELLE No. 1, 2 and 3; a NANO SOL-GEL chain; a packaging line, and a bio-nano research centre.

Nghia [Prof. Dr. Nguyen Duc Nghia, former deputy director of the Chemistry Institute under the Vietnam Academy of Science and Technology] said the factory has successfully produced some typical bio products, including Nanocurcumin NDN22+ from Vietnamese turmeric by nano micelle and Nano Sol-Gel methods. Preclinical experiment results indicate that at a concentration of about 40ppm, NDN22+ solution can kill 100% of rectum cancer tumors and prostate tumor cells within 72 hours. [emphasis mine]

In addition, it also manufactures other bio-nano products like Nanorutin from luscious trees and Nanolycopen from gac (Momordica cochinchinensis) oil.

Unfortunately, this news item does not include links to the research supporting the claims regarding nanocurcumin NDN22+. Hopefully, I will stumble across it soon.

Cientifica’s “Wearables, Smart Textiles and Nanotechnology Applications Technologies and Markets” report

It’s been a long time since I’ve received notice of a report from Cientifica Research and I’m glad to see another one. This is titled, Wearables, Smart Textiles and Nanotechnologies and Markets, and has just been published according to the May 26,  2016 Cientifica announcement received by email.

Here’s more from the report’s order page on the Cientifica site,

Wearables, Smart Textiles and Nanotechnology: Applications, Technologies and Markets

Price GBP 1995 / USD 2995

The past few years have seen the introduction of a number of wearable technologies, from fitness trackers to “smart watches” but with the increasing use of smart textiles wearables are set to become ‘disappearables’ as the devices merge with textiles.

The textile industry will experience a growing demand for high-tech materials driven largely by both technical textiles and the increasing integration of smart textiles to create wearable devices based on sensors.  This will enable the transition of the wearable market away from one dominated by discrete hardware based on MEMS accelerometers and smartphones. Unlike today’s ‘wearables’ tomorrow’s devices will be fully integrated into the the garment through the use of conductive fibres, multilayer 3D printed structures and two dimensional materials such as graphene.

Largely driven by the use of nanotechnologies, this sector will be one of the largest end users of nano- and two dimensional materials such as graphene, with wearable devices accounting for over half the demand by 2022. Products utilizing two dimensional materials such as graphene inks will be integral to the growth of wearables, representing a multi-billion dollar opportunity by 2022.

This represents significant opportunities for both existing smart textiles companies and new entrants to create and grow niche markets in sectors currently dominated by hardware manufacturers such Apple and Samsung.

The market for wearables using smart textiles is forecast to grow at a CAGR [compound annual growth rate] of 132% between 2016 and 2022 representing a $70 billion market. Largely driven by the use of nanotechnologies, this sector has the potential to be one of the largest end users of nano and two dimensional materials such as graphene, with wearable devices accounting for over half the demand by 2022.

“Wearables, Smart Textiles and Nanotechnologies: Applications, Technologies and Markets” looks at the technologies involved from antibacterial silver nanoparticles to electrospun graphene fibers, the companies applying them, and the impact on sectors including wearables, apparel, home, military, technical, and medical textiles.

This report is based on an extensive research study of the smart textile market backed with over a decade of experience in identifying, predicting and sizing markets for nanotechnologies and smart textiles. Detailed market figures are given from 2016-2022, along with an analysis of the key opportunities, and illustrated with 120 figures and 15 tables.

I always love to view the table of contents (from the report’s order page),

Table of Contents      

Executive Summary  

Why Wearable Technologies Need More than Silicon + Software

The Solution Is in Your Closet

The Shift To Higher Value Textiles

Nanomaterials Add Functionality and Value

Introduction   

Objectives of the Report

World Textiles and Clothing

Overview of Nanotechnology Applications in the EU Textile Industry

Overview of Nanotechnology Applications in the US Textile Industry

Overview of Nanotechnology Applications in the Chinese Textile Industry

Overview of Nanotechnology Applications in the Indian Textile Industry

Overview of Nanotechnology Applications in the Japanese Textile Industry

Overview of Nanotechnology Applications in the Korean Textile Industry

Textiles in the Rest of the World

Macro and Micro Value Chain of Textiles Industry

Common Textiles Industry Classifications

End Markets and Value Chain Actors

Why Textiles Adopt Nanotechnologies        

Nanotechnology in Textiles

Examples of Nanotechnology in Textiles

Nanotechnology in Some Textile-related Categories

Technical & Smart Textiles

Multifunctional Textiles

High Performance Textiles

Smart/Intelligent Textiles

Nanotechnology Hype

Current Applications of Nanotechnology in Textile Production       

Nanotechnology in Fibers and Yarns

Nano-Structured Composite Fibers

Nanotechnology in Textile Finishing, Dyeing and Coating

Nanotechnology In Textile Printing

Green Technology—Nanotechnology In Textile Production Energy Saving

Electronic Textiles and Wearables   

Nanotechnology in Electronic Textiles

Concept

Markets and Impacts

Conductive Materials

Carbon Nanotube Composite Conductive Fibers

Carbon Nanotube Yarns

Nano-Treatment for Conductive Fiber/Sensors

Textile-Based Wearable Electronics

Conductive Coatings On Fibers For Electronic Textiles

Stretchable  Electronics

Memory-Storing Fiber

Transistor Cotton for Smart Clothing

Embedding Transparent, Flexible Graphene Electrodes Into Fibers

Organic Electronic Fibers

‘Temperature Regulating Smart Fabric’

Digital System Built Directly on a Fiber

Sensors    

Shirt Button Sensors

An integrated textile heart monitoring solution

OmSignal’s  Smart Bra

Printed sensors to track movement

Textile Gas Sensors

Smart Seats To Curtail Fatigued Driving.

Wireless Brain and Heart Monitors

Chain Mail Fabric for Smart Textiles

Graphene-Based Woven Fabric

Anti-Counterfeiting and Drug Delivery Nanofiber

Batteries and Energy Storage

Flexible Batteries

Cable Batteries

Flexible Supercapacitors

Energy Harvesting Textiles

Light Emitting Textiles  

Data Transmission 

Future and Challenges of Electronic Textiles and Wearables

Market Forecast

Smart Textiles, Nanotechnology and Apparel          

Nano-Antibacterial Clothing Textiles

Nanosilver Safety Concerns

UV/Sun/Radiation Protective

Hassle-free Clothing: Stain/Oil/Water Repellence, Anti-Static, Anti-Wrinkle

Anti-Fade

Comfort Issues: Perspiration Control, Moisture Management

Creative Appearance and Scent for High Street Fashions

Nanobarcodes for Clothing Combats Counterfeiting

High Strength, Abrasion-Resistant Fabric Using Carbon Nanotube

Nanotechnology For Home Laundry

Current Adopters of Nanotechnology in Clothing/Apparel Textiles

Products and Markets

Market Forecast

Nanotechnology in Home Textiles   

Summary of Nanotechnology Applications in Home Textiles

Current Applications of Nanotechnology in Home Textiles

Current Adopters of Nanotechnology in Home Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Military/Defence Textiles

Summary of Nanotechnology Applications in Military/Defence Textiles

Military Textiles

Current Applications of Nanotechnology in Military/Defence Textiles

Current Adopters of Nanotechnology in Military/Defence Textiles

Light Weight, Multifunctional Nanostructured Fibers and Materials

Costs and Benefits

Market Forecast

Nanotechnology Applications in Medical Textiles   

Summary of Nanotechnology Applications in Medical Textiles

Current Applications of Nanotechnology in Medical Textiles

Current Adopters of Nanotechnology in Medical Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Sports/Outdoor Textiles   

Summary of Nanotechnology Applications in Sports/Outdoor Textiles

Current Applications of Nanotechnology in Sports/Outdoor Textiles

Current Adopters of Nanotechnology in Sports/Outdoor Textiles

Products and Markets

Costs and Benefits

Market Forecast

Nanotechnology Applications in Technical Textiles 

Summary of Nanotechnology Applications in Technical and smart textiles

Current Applications of Nanotechnology in Technical Textiles

Current Adopters of Nanotechnology in Technical and smart textiles

Products and Markets

Costs and Benefits

Market Forecast

APPENDIX I: Companies/Research Institutes Applying Nanotechnologies to the Textile Industry

Companies Working on Nanofiber Applications

Companies Working on Nanofabric Applications

Companies Working on Nano Finishing, Coating, Dyeing and Printing Applications

Companies Working on Green Nanotechnology In Textile Production Energy Saving Applications

Companies Working on E-textile Applications

Companies Working on Nano Applications in Clothing/Apparel Textiles

Companies Working on Nano Applications in Home Textiles

Companies Working on Nano Applications in Sports/Outdoor Textile

Companies Working on Nano Applications in Military/Defence Textiles

Companies Working on Nano Applications in Technical Textiles

APPENDIX II: Selected Company Profiles     

APPENDIX III: Companies Mentioned in This Report 

The report’s order page has a form you can fill out to get more information but, as far as I can tell, there is no purchase button or link to a shopping cart for purchase.

Afterthought

Recently, there was an email in my inbox touting a Canadian-based company’s underclothing made with the founder’s Sweat-Secret fabric technology (I have not been able to find any details about the technology). As this has some of the qualities being claimed for the nanotechnology-enabled textiles described in the report and the name for the company amuses me, Noody Patooty, I’m including it in this posting (from the homepage),

Organic Bamboo Fabric
The soft, breathable and thermoregulation benefits of organic bamboo fabric keep you comfortable throughout all your busy days.

Sweat-Secret™ Technology
The high performance fabric in the underarm wicks day-to-day sweat and moisture from the body preventing sweat and odour stains.

Made in Canada
From fabric to finished garment our entire collection is made in Canada using sustainable and ethical manufacturing processes.

This is not an endorsement of the Noody Patooty undershirts. I’ve never tried one.

As for the report, Tim Harper who founded Cientifica Research has in my experience always been knowledgeable and well-informed (although I don’t always agree with him). Presumably, he’s still with the company but I’m not entirely certain.

#BCTECH: preview of Summit, Jan. 18 – 19, 2016

It is the first and it is sold out. Fear Not! I have gotten a press pass so I can investigate a bit further. In the meantime, #BCTECH Summit 2016 is a joint venture between the province of British Columbia (BC, Canada) and the BC Innovation Council (BCIC), a crown corporation formerly known as the Science Council of British Columbia.  A Jan 6, 2016 BCIC news release tells the story,

With less than two weeks to go and tickets 95% sold out, world-renowned keynote speakers will reinforce technology’s increasing economic and social impact to more than 2,000 people during B.C.’s first #BCTECH Summit on Jan. 18 & 19, 2016.

With Microsoft confirmed as the title sponsor, the summit will feature numerous dynamic keynote speakers:

  •  Ray Kurzweil, inventor, futurist—described as “the restless genius”, with predictions that will change how people think about the future.
  •  Andrew Wilson, CEO, Electronic Arts—named one of the top people in business by Fortune magazine.
  •  T.K. “Ranga” Rengarajan, corporate vice-president, Microsoft—will explore how technology and the cloud is empowering Canadians and changing how we do business and interact in the digital world.
  •  Elyse Allan, president and CEO, GE Canada—named one of the 25 most powerful people in Canada.
  •  Eric Ries, pioneer of the Lean Startup movement—a new approach to business that’s being adopted around the world; changing the way companies are built and new products are launched.

In addition, panel discussions featuring B.C. business leaders and global thought leaders will explore the latest trends, including fintech, cleantech, big data and cyber security.

A technology showcase will feature B.C.’s most innovative technology at work, including robots, 3D printing and electric cars. A new exhibit, the 4D Portal, will take delegates on a journey of B.C. tech, from deep below the earth’s surface into outer space.

More than 500 high school and post-secondary students will also take part in the summit’s career showcase featuring speakers and exhibitors sharing the latest information about technology as a career choice that pays, on average, 60% more than the B.C. average.

As part of the career showcase, nearly 200 high school students will participate in a coding camp and learn basic coding skills. The coding camp will also be offered via live webcast so schools throughout the province can participate.

A key component of the summit will profile venture capital presentations made by 40 promising small- to medium-sized B.C. companies aiming to attract investors and proceed to the next stage of development.

B.C.’s technology sector, a key pillar of the BC Jobs Plan, is consistently growing faster than the economy overall. Its continued growth is integral to diversifying the Province’s economy, strengthening B.C.’s business landscape and creating jobs in B.C. communities.

The new $100 million venture capital BC Tech Fund, announced Dec. 8, 2015, is the first pillar of the comprehensive #BCTECH Strategy to be released in full at B.C.’s first #BCTECH Summit, Jan. 18 – 19, 2016. The conference is presented by the B.C. government in partnership with the BC Innovation Council (BCIC). To register or learn more, go to: http://bctechsummit.ca

Quotes:

Minister of Technology, Innovation and Citizens’ Services, Amrik Virk –

“Strengthening our technology sector is part of our commitment to support our diverse economy. The summit provides an unprecedented opportunity for like-minded individuals to get together and discuss ways of growing this sector and capitalizing from that growth.”

President and CEO, BCIC, Greg Caws –

“We are pleased to provide British Columbians from across the province with the opportunity to explore how technology impacts our lives and our businesses. Above all, the #BCTECH Summit will be a catalyst for all of us to embrace technology and an innovation mindset.”

President, Microsoft Canada, Janet Kennedy –

“Microsoft is proud to be the title sponsor of the #BCTECH Summit—an event that showcases B.C.’s vibrant technology industry. We are excited about the growth of B.C.’s tech sector and are pleased that we’re expanding our developer presence in Vancouver and supporting Canadian private and public sector organizations through our investments in Canadian data centres.”

Quick Facts:

  •  The technology sector directly employs more than 86,000 people, and wages for those jobs are 60% higher than B.C.’s industrial average.
  •  B.C.’s technology sector is growing faster than the overall economy. In 2013, it grew at a rate of 4.7%, higher than the 3.2% growth observed in the provincial economy.
  •  In 2013, the technology sector added $13.9 billion to B.C.’s GDP.
  •  B.C.’s 9,000 technology companies combined generated $23.3 billion in revenue in 2013.
  •  New technology companies are emerging at increasing rates throughout the province. In 2013, there was an addition of more than 700 new technology companies in B.C., an increase of 8% over the prior year.

I’m not a big fan of Kurzweil’s but the man can sell tickets and, in days past, he did develop some important software. You can find out more about him on his website and critiques can be found here on Quora, as well as, a thoughtful Nov. 5, 2012 piece by Gary Marcus for the New Yorker about Kurzweil’s latest book (“How to Create a Mind: The Secret of Human Thought Revealed”).

As for me, I’m most interested in the trade show/research row/technology showcase. Simon Fraser University sent out a Jan. 14, 2016 news release highlighting its participation in the trade show and summit (weirdly there was nothing from the other major local research institution, the University of British Columbia),

Simon Fraser University is a gold sponsor of the #BCTECH Summit a new two-day event presented by the B.C. government and the BC Innovation Council to showcase the province’s vibrant technology sector

 

Simon Fraser University will be highly visible at the inaugural #BCTECH Summit taking place on January 18-19 at the Vancouver Convention Centre.

 

In addition to technology displays from student entrepreneurs at the SFU Innovates booth, SFU research will be featured at both the Technology Showcase and Research Row. [emphasis mine] SFU representatives will be on hand at the Career Showcase to speak to secondary and post-secondary students who are interested in the industry. And several investment-ready companies affiliated with SFU will be pitching to elite investors.

 

During the summit, entrepreneurs, investors, researchers, students and government will explore new ideas on how to gain a competitive advantage for B.C. The event will spark discussion on directions for the province’s rapidly developing high tech sector, while several streams will illustrate and share new innovations.

 

“This event provides us with an opportunity to showcase how SFU students, faculty, alumni and client companies are stimulating innovation and creating jobs and opportunities for British Columbia,“ says SFU Vice-President Research Joy Johnson. “And it highlights the work we’ve been doing to inspire, develop and support impact-driven innovation and entrepreneurship through SFU Innovates.”

 

SFU Innovates was launched in October to synergize and strengthen the university’s activities and resources related to community and industry engagement, incubation and acceleration, entrepreneurship and social innovation.

 

Johnson will introduce the summit’s keynote address by Eric Ries, Silicon Valley entrepreneur and author of The Lean Startup, on How today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses, on Jan. 18 [2016] at 10:45 a.m.

 

SFU Faculty of Applied Sciences professor Ryan D’Arcy will be a panelist at a session titled Industry Deep Dive – Healthcare, moderated by Paul Drohan, CEO, Life Sciences BC, on Jan. 19 [2016] at 11 a.m. He will share how Surrey’s thriving Innovation Boulevard (IB) is progressing. SFU is a founding partner of IB and contributes via the university’s research strengths in health and technology and its focus on health tech innovation.

 

Steven Jones, an SFU professor of molecular biology and biochemistry, and associate director and head of bioinformatics at the Michael Smith Genome Sciences Centre, BCCA [BC Cancer Agency], will participate on a panel titled Shaping the Future of Health, on Jan. 19 [2016] at 2:15 p.m., to be moderated by the Honourable Terry Lake, Minister of Health.

 

And Igor Faletski, CEO of Mobify (and an SFU alumnus) will participate in the “Why BC?” session to be moderated by Bill Tam, CEO of BCTIA [BC Technology Industry Association], on Jan. 18 [2016] at 11:30 a.m.

 

Students and delegates will also have the opportunity to explore the various research and technology showcases.

 

Backgrounder: SFU Innovations at #BCTECH Summit

 

Research Row

 

4D LABS will showcase how it has helped B.C.’s academic and industry tech clients turn their ideas into innovations. The facility has been instrumental in bringing numerous ideas out of the lab and into the marketplace, advancing a diverse range of technologies, including fuel cells, batteries, biosensors, security devices, pharmaceutical delivery, MEMS, and many more. As B.C.’s premier materials research institute, the open-access, $65 million state-of-the-art facility has helped to advance nearly 50 companies in the local tech sector.

 

• SFU researchers led by JC Liu of the Faculty of Applied Sciences will display their cloud gaming platform, Rhizome, utilizing the latest hardware support for both remote servers and local clients. The platform takes the first step towards bridging online gaming systems and the public cloud, accomplishing ultra-low latency and resulting in a low power consumption gaming experience. Their demo shows that gaming over virtualized cloud can be made possible with careful optimization and integration of different modules. They will also introduce CrowdNavigation, a complementary service to existing navigation systems that combats the “last mile puzzle” and helps drivers to determine the end of routes.

 

Molescope is a hand held tool that uses a smartphone to monitor skin for signs of cancer. The device is based on research that Maryam Sadeghi conducted during her doctoral studies at SFU and commercialized through her company, MetaOptima Inc., a former SFU Venture Connection client. The product was unveiled at the World Congress of Dermatology in 2015 and is also now available at the consumer level. Molescope enables people to monitor their moles and manage skin health.

 

Technology Showcase

 

• Engineering science professors Siamak Arzanpour and Edward Park will showcase their Wearable Lower Limb Anthropomorphic Exoskeleton (WLLAE) – a lightweight, battery-operated and ergonomic robotic system to help those with mobility issues improve their lives. The exoskeleton features joints and links that correspond to those of a human body and sync with motion. SFU has designed, manufactured and tested a proof-of-concept prototype and the current version can mimic all the motions of hip joints. Researchers anticipate the next generation of this system early this year. The prototype will be live-demoed as an example of a breakthrough innovation.

 

Venture Capital Presentations

 

Several SFU-affiliated companies were selected to present investment pitches to local and international venture capitalists at the summit, including:

 

H+ Technology, creator of Holus, an interactive, tabletop holographic platform that converts any digital content from your tablet, smartphone, PC or Mac into a 360-degree holographic experience. H+ was co-founded by three SFU alumni and was a former client company of the SFU incubator at the Harbour Centre campus.

 

Optigo Networks, a VentureLabs® client company that delivers next-generation security for the commercial Internet of Things.

 

Saltworks Technologies Inc., provider of advanced water treatment solutions and a company founded by two graduates of SFU’s Management of Technology MBA program.

 

Semios, a VentureLabs® client company and emerging leader in agricultural technology innovation.

 

VeloMetro Mobility Inc., a former SFU Venture Connection and current VentureLabs® client company with the mission to provide people with human-powered vehicles that parallel automobile functionality for urban use.

 

SFU Innovates Trade Show will include:

 

• H+ Technology (see above)

 

Shield X Technology, creators of Brainshield™, an impact-diverting decal for sports helmets that is the result of six years of R&D at SFU’s School of Mechatronics Systems Engineering at the Surrey campus. An SFU spinout, it is a current VentureLabs® client company.

 

• Acceleration Innovations, creator of Birth Alert, the first ever app-enabled, automatic and wireless contraction-monitoring device. Acceleration Innovations was founded by a team of students from the Technology Entrepreneurship@SFU program.

 

ORA Scents, a mobile device company created by an SFU Beedie School of Business undergrad student, that is introducing the world’s first app-enabled scent diffuser that enables users to create, control and share personalized scents in real-time. [Sounds like oPhone mentioned in my June 18, 2014 posting.)

 

Also presenting at the VentureLabs area within the BC Accelerator Network Pavilion will be: PHEMI Health Systems, Semios, XCo, U R In Control, TeamFit, Instant, Wearable Therapeutics, V7 Entertainment, ThinkValue, and Aspect Biosystems. Lungpacer Medical and Metacreative, both companies formed around SFU faculty research, will also have exhibits.

 

Prize draws will be held for projects from RADIUS Slingshot ventures The Capilano Tea House & Botanical Soda Co. and Naked Snacks.

I’m particularly interested in what 4D Labs is doing these days. (They used to brand themselves as a nanotechnology laboratory but they’ve moved on to what they see as more sophisticated branding. I’m just curious. Have they changed focus or is it nanotechnology under a new name?)

Nanotechnology is an enabling technology not an industry sector

Over the years I’ve heard people point out that nanotechnology isn’t really a technology in the traditional sense. It is instead a means of describing applied science performed at the molecular level.  In short, chemistry, physics, engineering, and biology at the molecular level.

An Oct. 9, 2015 article by Kevin Kelleher for Time magazine points that fact out in detail focusing largely on the business end of things (Note: Links have been removed),

Of all the investment fads and manias over the past few decades, none have been as big of a fizzle as the craze for nanotech stocks. Ten years ago, venture capitalists were scrambling for investments, startups with “nano” in their names flourished and even a few nanotech funds launched hoping to track a rising industry.

Back in 2005, the year when nanotech mania peaked, a gold rush mentality took hold. There were 1,200 nanotech startups worldwide, half of them in the U.S. VCs invested more than $1 billion in nanotech in the first half of the decade. Draper Fisher Jurvetson had nearly a fifth of its portfolio in the nanotech sector, and Steve Jurvetson proclaimed it “the next great technology wave.”

Ten years on, precious few of the nanotech stocks and venture-backed startups have delivered on their investment promise. Harris & Harris and Arrowhead are both trading at less than a tenth of their respective peaks of the last decade. Invesco liquidated its PowerShares Lux Nanotech ETF in 2014, after it underperformed the S&P 500 for seven of the previous eight years.

And many of the surviving companies that touted their nanotech credentials or put “nano” in their names now describe themselves as materials companies, or semiconductor companies, or – like Arrowhead – biopharma companies, if they haven’t changed their names entirely.

The rebranding process has been an interesting one to observe. I had Neil Branda  (professor at Simon Fraser University [Vancouver, Canada] and executive director of their 4D Labs) explain to me last year (2014) that nanotechnology was a passé term, it is now all about advanced materials.

They’re right and they’re wrong. I think rebranding companies is possible and a good idea. Locally, Pangaea Ventures is now an Advanced Materials venture capitalism company. Coincidentally, Neil Branda’s startup (scroll down about 15% of the way), Switch Materials, is in their portfolio.

However, the term nanotechnology is some 40 years old and represents an enormous social capital investment. While it’s possible it will disappear that won’t be happening for a long, long time.

The long road to commercializing nanotechnology-enabled products in Europe: the IP Nanoker Project

IP Nanoker, a nanotechnology commercialization project, was a European Union 7th Framework Programme-funded project from 2005 – 2009. So, how does IP Nanoker end up in a June 11, 2014 news item on Nanowerk? The road to commercialization is not only long, it is also winding as this news item points out in an illuminating fashion,

Superior hip, knee and dental implants, a new generation of transparent airplane windows and more durable coatings for automotive engines are just some of the products made possible – and cheaper – by the EU-funded IP NANOKER project. Many of these materials are now heading to market, boosting Europe’s competitiveness and creating jobs.

Launched back in 2005, the four-year project set out to build upon Europe’s expertise and knowledge in nanoceramics and nanocomposites.

Nanocomposites entirely made up of ceramic and metallic nanoscale particles – particles that are usually between 1 and 100 nanometres in size – are a broad new class of engineered materials that combine excellent mechanical performance with critical functionalities such as transparency, biocompatibility, and wear resistance.

These materials offer improvements over conventional materials. For some advanced optical applications – such as windows for aircraft – glass is too brittle. Nanoceramics offer both transparency and toughness, and thanks to IP NANOKER, can now be manufactured at a significantly reduced cost.
Indeed, one of the most important outcomes of IP NANOKER has been the development of new dense nanostructured materials as hard as diamond. The fabrication of these super hard materials require extreme conditions of high temperature and pressure, which is why IP NANOKER project partners developed a customised Spark Plasma Sintering machine.

“This new equipment is the largest in the world (12 metres high, 6 metres wide and 5 metres deep), and features a pressing force up to 400 tonnes and will allow the fabrication of near-net shaped products up to 400mm in diameter”, explains project coordinator Ramon Torrecillas from Spain’s Council for Scientific Research (CSIC).

This is obviously a distilled and simplified version of what occurred but, first, they developed the technology, then they developed a machine that would allow them to manufacture their nanotechnology-enabled materials. It’s unclear as to whether or not the machine was developed during the project years of 2005 – 2009 but the project can trace its impact in other ways (from the March 27, 2014 European Union news release), which originated the news item,

The project promises to have a long-lasting impact. In 2013, some former IP NANOKER partners launched a public-private initiative with the objective of bridging the gap between research and industry and boosting the industrial application of Spark Plasma Sintering in the development of nanostructured multifunctional materials.

Potential new nanomaterial-based products hitting the market soon include ultra-hard cutting and mining tools, tough ceramic armour and mirrors for space telescopes.

“Another positive result arising from IP NANOKER was the launch in 2011 of Nanoker Research, a Spanish spin-off company,” says Prof Torrecillas. “This company was formed by researchers from two of the project partners, CSIC and Cerámica Industrial Montgatina, and currently employs 19 people.”
IP NANOKER was also instrumental in creating the Nanomaterials and Nanotechnology Research Centre (CINN) in Spain, a joint initiative of the CSIC, the University of Oviedo and the Regional Government of Asturias.

As a result of its economic and societal impact, IP NANOKER was selected as project finalist in two European project competitions: Industrial Technologies 2012 and Euronanoforum 2013.
Some three years after its completion, the positive effects of the project are still being felt. Prof Torrecillas is delighted with the results, and argues that only a pan-European project could have achieved such ambitious goals.

“As an industry-led project, IP NANOKER provided a suitable framework for research on top-end applications that require not only costly technologies but also very specific know-how,” he says. “Thus, bringing together the best European experts in materials science, chemistry, physics and engineering and focusing the work of these multidisciplinary teams on specific applications, was the only way to face the project challenges.”

The technology for producing these materials/coatings has yet to be truly commercialized. They face a somewhat tumultuous future as they develop markets for their products and build up manufacturing capabilities almost simultaneously.

They will definitely use ‘push’ strategies, i.e., try to convince car manufacturers, hip implant manufacturers,etc. their materials are a necessity for improved sales of the product (car, hip implant, etc.).

They could also use ‘pull’ strategies with retailers (convince them their sales will improve) and or the general public (this will make your life easier, better, more exciting, safer, etc.). The hope with a pull strategy is that retailers and/or the general public will start demanding these improved products (car, hip implants, etc.) and the manufacturers will be clamouring for your nanotechnology-enabled materials.

Of course, if you manage to create a big demand, then you have the problem of delivering your product, which brings this post back to manufacturing and having to address capacity issues. You will also have competitors, which likely means the technology and/or  the buyers’ ideas about the technology, will evolve, at least in the short term, while the market (as they say) shakes out.

If you want to read more about some of the issues associated with commercializing nanotechnology-enabled products, there’s this Feb. 10, 2014 post titled, ‘Valley of Death’, ‘Manufacturing Middle’, and other concerns in new government report about the future of nanomanufacturing in the US‘ about a report from the US Government Accountability Office (GAO) and a May 23, 2014 post titled, ‘Competition, collaboration, and a smaller budget: the US nano community responds‘, which touches on some commercialization issues, albeit, within a very different context.

One final note, it’s interesting to note that the March 2014 news release about IP Nanoker is on a Horizon 2020 (this replaces the European Union’s 7th Framework Programme) news website. I expect officials want to emphasize the reach and impact these funded projects have over time.

Win an iPad with your image for the Nanotechnology Industries Association contest

A nanoimage contest open to scientists and others is mentioned in a July 15, 2013 news item on Nanowerk ,

The Nanotechnology Industries Association (NIA) invites scientists, photographers and enthusiasts to enter its 2013 NanoImage Competition:

“With our mission to improve the image of nanotechnology, we are eager to see striking examples that illustrate nanotechnology’s diversity of nature, its range of applications and its unseen beauty.

Our panel of experts will judge photos on their originality, technical excellence, composition, overall impact and artistic merit and our grand prize winner will receive an iPad!

Up to 10 images can be submitted by the deadline of Oct. 11, 2013. The full set of competition rules can be found here,

WHO CAN ENTER

The NanoImage Competition (the “Competition”) is open to all persons aged 18 and above, regardless of residence or citizenship and subject to the laws of their jurisdiction but excluding NIA employees and their immediate families.

HOW TO ENTER

Participants can send a maximum of 10 images in total.

All images must be submitted via this link. Please complete all required fields, including name, email and other information about your photo submission.

….

I was able to find out more about the Nanotechnology Industries Association on the their Who We Are webpage,

The Nanotechnology Industries Association (NIA) is the sector-independent, responsible voice for the industrial nanotechnologies supply chains.

NIA supports the ongoing innovation and commercialisation of the next generation of technologies and promotes their safe and reliable advancement.

Through NIA’s constant involvement in a number of international organisations, members of the Nanotechnology Industries Association are represented on globally influential fora, such the OECD Working Party on Manufactured Nanomaterials, and the OECD Working Party on Nanotechnology, as well as national and international advisory groups and standardisation committees, such as ISO/TC 229 and CEN/TC 352.

NIA was formed in 2005 in the UK by a group of companies from a variety of industry sectors, including healthcare, chemicals, automotive, materials processing, and consumer products. In September 2008, the NIA opened its international NIA office in Brussels (Belgium), whilst maintaining an independent UK-national representation through NIA-UK based in London. Globally the only industry-focused trade association in nanotechnology, NIA provides a uniquely consolidated perspective derived from a highly multi-disciplinary membership which operates across a wide range of markets and industrial sectors.

Good luck to all the entrants!

Self-cleaning schools

I’m all for self-cleaning, which is why this Apr. 19, 2013 news item on Azonano caught my attention,

“We’re always trying to create a cleaner environment for students and teachers in an effort to reduce absenteeism and the associated costs,” says Dr. Henry Kiernan, Superintendent with the Bellmore-Merrick School District in New York. “The NanoTouch® products provide an additional benefit of communicating our commitment, which plays an important role in our relationship with parents.”

Bellmore-Merrick has installed facility touch points, including door push pads and handle wraps, on all bathroom doors in an initial 5 high schools. Other schools have brought the portable NanoSeptic surfaces into the classroom in the form of snack mats and desk mats.

“The pre-school students were fascinated by the snack mats and what they did. The children focused intently on keeping their snacks on the mat,” says Bonny Phillips , teacher at Liberty Christian Academy’s Early Learning Center. “It also provided an additional opportunity for learning about cleanliness and food handling.”

“Schools will continue to use one-time kill products like disinfectants, but NanoTouch enhances their cleaning efforts by working to eliminate even hard-to-kill microbes such as C. Diff, 24 hours a day, seven days a week,” says Mark Sisson , co-founder of NanoTouch. “And because alcohol based hand sanitizers pose a risk of fire around kids, NanoTouch products help to fill that void in schools.”

In today’s world of shrinking budgets, it’s sometimes difficult for schools to find funding for advanced technologies like NanoTouch, even when these products are inexpensive. However, some innovative thinking by a community bank has led to several classrooms being equipped with NanoSeptic snack mats. SelectBank, headquartered in Forest, Virginia, donates snack mats to area pre-schools and day cares as a way to give back to their community.

“When we can help area schools and children, and get some positive recognition from parents, that’s good for our community and for our business,” says Sherri Sackett , Marketing Manager at SelectBank.

And the parents at these schools are enthusiastically embracing the use of this new nanotechnology.

“We were very excited to hear that our son’s school has started using this new product,” says Robert Thomas, parent of a student at the Blue Ridge Montessori School. “Not only is this creating a cleaner classroom environment for our child, but it’s doing so in a healthier way, without poisons or heavy metals. And it’s such a unique product line that the school is considering selling the travel kits as a fundraiser.”

“NanoTouch is out to make the world a better and healthier place to live, work, and play. This is particularly important for sensitive populations, such as our youth,” says NanoTouch co-founder, Dennis Hackemeyer. “And, what can’t be understated is the communications ability of NanoTouch products to educate and change behavior.'”

It’s unusual these days to see a company market a ‘nanotechnology’ product by incorporating nano into  product names (e.g., NanoSeptic) and the company name (NanoTouch).

The NanoTouch website does not offer information about its management team (I was not able to find either co-founder although it is possible to find a listing for the company’s advisory board) nor is there much information about the technology. Here’s the best technology description I could find on the website, from the NanoTouch NanoSeptic versus other antimicrobials page,

NanoTouch products utilize several complex components which all work together. Our specialized fabrication process not only provides products that are durable enough to withstand routine cleaning, but also helps to accentuate the effectiveness of the antimicrobial ingredients and maximize the surface’s self-cleaning action. Our products contain widely used, harmless, “green” chemistry, which does not include diluted poisons or heavy metals. The antimicrobial technology we deploy, molecularly bonded on a nano-scale, provides a non-leaching, self-cleaning surface that constantly traps and kills bacteria, viruses and fungi through a catalytic oxidation process using available light.

All of these solutions approach the problem of bacteria, viruses and fungus by cleaning surfaces…which is absolutely necessary. NanoTouch is not meant to replace these methods, but instead, it is a perfect complement and another step in the reduction of germ transfer. While the these approaches clean a touchpoint or a person’s hand, contamination happens with the next contact or from airborne microbes. NanoTouch self-cleans…constantly killing bacteria, viruses and fungi.

I did find some details about the company co-founders on their respective  LinkedIn pages, Dennis Hackemeyer and Mark Sisson. Both men are associated with another company, KiteString, from the Our Approach page,

KiteString uses innovative technological solutions in the service of creative to achieve Marketing Relevance. Yes, we deliver traditional creative services like design, Web development, and direct mail, but we also provide technology-based marketing solutions and client service processes and systems that deliver measurably better operational efficiency, enhanced brand management, improved collaboration and greater marketing response rates.

I’m not sure what the KiteString description of their approach means but it looks like KiteString’s main activity is marketing. Anyway, that’s not so important given that my main interest is NanoTouch. For that matter, it would have been nice to have found more technical information. For example, How precisely is this product nanotechnology-enabled? Are there scientists working for or associated in some fashion with NanoTouch? What kind of testing has the product undergone? These are a few of the questions that leap to mind.

WAVE in Alberta (Canada); bringing your technology products to market

May 5 – 8, 2013 are the dates for WAVE 2013, Alberta’s technology commercialization conference, being held at the Fairmont Chateau in Lake Louise, Alberta. The conference features 12 keynote speakers from industry (including Dr. Wagiuh Ishak of Corning Inc, Dr. Sergio Kapusta of Royal Dutch Shell, Stephen Graham of Maple Leaf Foods, and Travis Earles of Lockheed Martin) discussing 6 market areas (including health/medical, cleantech/conventional energy and agriculture/forestry).

The conference host and organizer is ACAMP (Alberta Centre for Advanced Micro and Nano Technology Products) a not-for-profit centre offering business support to micro and nano technology businesses. WAVE 2013 is the second such conference, the first being held in 2011. From the About WAVE page on the conference website,

From a Ripple in Research to a Powerful Wave in Marketing

The WAVE 2013 Conference and Exhibition builds on the success of our last conference WAVE 2011. WAVE 2013 exists to enable and encourage companies with investable hardware product technologies to showcase their state-of-the-art capabilities and bring them to market. There will be no poster sessions, academic papers, or student presentations.

Professionals representing domestic and international corporations are invited to take exhibitor space in order to network with other market strategists, distributors and representatives, manufacturers, materials producers, equipment suppliers, and investors.

This is an opportunity to expand your market and showcase your products. Networking areas are available free of charge and designed to allow attendees to meet privately to discuss business opportunities.

The bottom-line goal is bottom-line success.

The WAVE home page description offers more specifics as to how this conference is organized to maximize contact between participants,

Take your investable tech products to market

You may have a great investable technology product and not know it yet. Or you may know it, but can’t find partners and markets. In either case, it’s a big challenge to connect innovators with larger corporations and funding to help develop products and take them to market.

That’s what the Wave 2013 conference is all about… and we’re doing it in a very different way.
Connect with the right exhibitors

Typically, at large international conferences the exhibitors exhibit. The presenters present. The attendees listen and walk around exhibits looking for opportunities. Everyone is left to their own devices to make the right connections.

But at Wave 2013, we’re going to change all that. Every company that exhibits will also present to the entire audience. So exhibitors and attendees will understand where the opportunities are without all the frustration.
Actually meet the keynotes one-on-one

What about the big keynotes? There will be outstanding keynotes from a who’s who in the international tech space. And get this… they won’t just present and go home. At the presentations you’ll learn what they’re looking for and then they’ll be available for one-on-one meetings with you during the three days.

Plus, government officials from Alberta and across Canada will be in attendance, looking for new opportunities to invest and collaborate.
Find the right partners

So come. Exhibit. Present. Or join us as an attendee and pitch your product in one-on-one meetings. Some of the world’s most important companies in the tech space want to tell you what they’re looking for and hear about what you’re working on.

You can find more information about the conference in a brochure which oddly enough is on the NanoQuébec website here (scroll down about 1/3 of the way). I couldn’t find the brochure or the list of industry keynote speakers on the WAVE 2013 conference website (?)