Category Archives: pop culture

Exploring the science of Iron Man (prior to the opening of Captain America: Civil War, aka, Captain America vs. Iron Man)

Not unexpectedly, there’s a news item about science and Iron Man (it’s getting quite common for the science in movies to be promoted and discussed) just a few weeks before the movie Captain America: Civil War or, as it’s also known, Captain America vs. Iron Man opens in the US. From an April 26, 2016 news item on phys.org,

… how much of our favourite superheros’ power lies in science and how much is complete fiction?

As Iron Man’s name suggests, he wears a suit of “iron” which gives him his abilities—superhuman strength, flight and an arsenal of weapons—and protects him from harm.

In scientific parlance, the Iron man suit is an exoskeleton which is worn outside the body to enhance it.

An April 26, 2016 posting by Chris Marr on the ScienceNetwork Western Australia blog, which originated the news item, provides an interesting overview of exoskeletons and some of the scientific obstacles still to be overcome before they become commonplace,

In the 1960s, the first real powered exoskeleton appeared—a machine integrated with the human frame and movements which provided the wearer with 25 times his natural lifting capacity.

The major drawback then was that the unit itself weighed in at 680kg.

UWA [University of Western Australia] Professor Adrian Keating suggests that some of the technology seen in the latest Marvel blockbuster, such as controlling the exoskeleton with simple thoughts, will be available in the near future by leveraging ongoing advances of multi-disciplinary research teams.

“Dust grain-sized micromachines could be programmed to cooperate to form reconfigurable materials such as the retractable face mask, for example,” Prof Keating says.

However, all of these devices are in need of a power unit small enough to be carried yet providing enough capacity for more than a few minutes of superhuman use, he says.

Does anyone have a spare Arc Reactor?

Currently, most exoskeleton development has been for medical applications, with devices designed to give mobility to amputees and paraplegics, and there are a number in commercial production and use.

Dr Lei Cui, who lectures in Mechatronics at Curtin University, has recently developed both a hand and leg exoskeleton, designed for use by patients who have undergone surgery or have nerve dysfunction, spinal injuries or muscular dysfunction.

“Currently we use an internal battery that lasts about two hours in the glove, which can be programmed for only four different movement patterns,” Dr Cui says.

Dr Cui’s exoskeletons are made from plastic, making them light but offering little protection compared to the titanium exterior of Stark’s favourite suit.

It’s clear that we are a long way from being able to produce a working Iron Man suit at all, let alone one that flies, protects the wearer and has the capacity to fight back.

This is not the first time I’ve featured a science and pop culture story here. You can check out my April 28, 2014 posting for a story about how Captain America’s shield could be a supercapacitor (it also has a link to a North Carolina State University blog featuring science and other comic book heroes) and there is my May 6, 2013 post about Iron Man 3 and a real life injectable nano-network.

As for ScienceNetwork Western Australia, here’s more from their About SWNA page,

ScienceNetwork Western Australia (SNWA) is an online science news service devoted to sharing WA’s achievements in science and technology.

SNWA is produced by Scitech, the state’s science and technology centre and supported by the WA Government’s Office of Science via the Department of the Premier and Cabinet.

Our team of freelance writers work with in-house editors based at Scitech to bring you news from all fields of science, and from the research, government and private industry sectors working throughout the state. Our writers also produce profile stories on scientists. We collaborate with leading WA institutions to bring you Perspectives from prominent WA scientists and opinion leaders.

We also share news of science-related events and information about the greater WA science community including WA’s Chief Scientist, the Premier’s Science Awards, Innovator of the Year Awards and information on regional community science engagement.

Since our commencement in 2003 we have grown to share WA’s stories with local, national and global audiences. Our articles are regularly republished in print and online media in the metropolitan and regional areas.

Bravo to the Western Australia government! I wish there  initiatives of this type in Canada, the closest we have is the French language Agence Science-Presse supported by the Province of Québec.

Ghostbusters* (all female version) and science

It was delightful to learn that there is science underlying Paul Feig’s upcoming all female version (remake) of the movie Ghostbusters in a March 4, 2016 article by Darian Alexander for Slate.com (Note: Links have been removed),

With Thursday’s [March 4, 2016] release of the first trailer for Paul Feig’s Ghostbusters, fans finally got a good look at the highly anticipated reboot. The clip offered a peak into the movie’s setup, its setpieces, and its overall tone. But there’s one topic it left mysterious: the science.

Well, in a new and pretty fascinating marketing tie-in, the studio made a video going deep on the science of proton packs. Tucked inconspicuously into the trailer footage (at around the 1:05 mark) was a short shot of an equation-filled whiteboard. Appearing somewhat mysteriously atop it was a url: ParanormalStudiesLab.com.

The Paranormal Studies Lab site (part of Sony’s publicity campaign for the film) doesn’t have a great deal of information at this time but there is this video featuring scientist James Maxwell (not to be confused with James Clerk Maxwell whose 150-year-old theory mashing up magnetism, electricity and optics is being celebrated as noted in my Nov. 27, 2015 posting),

By the way, there is a real paranormal studies laboratory at the University of Virginia according to a Feb. 10, 2014 article by Jake Flanagin for the The Atlantic,

The market for stories of paranormal academe is a rich one. There’s Heidi Julavits’s widely acclaimed 2012 novel The Vanishers, which takes place at a New England college for aspiring Sylvia Brownes. And, of course, there’s Professor X’s School for Gifted Youngsters—Marvel’s take on Andover or Choate—where teachers read minds and students pass like ghosts through ivy-covered walls.

The Division of Perceptual Studies (DOPS) at the University of Virginia’s School of Medicine is decidedly less fantastic than either Julavits’s or Marvel’s creations, but it’s nevertheless a fascinating place. Founded in 1967 by Dr. Ian Stevenson—originally as the Division of Personality Studies—its mission is “the scientific empirical investigation of phenomena that suggest that currently accepted scientific assumptions and theories about the nature of mind or consciousness, and its relation to matter, may be incomplete.”

What sorts of “phenomena” qualify? Largely your typical catalog of Forteana: ESP, poltergeists, near-death experiences, out-of-body experiences, “claimed memories of past lives.” So yes: In 2014, there is a center for paranormal research at a totally legitimate (and respected) American institution of higher learning. But unlike the X-Mansion, or other fictional psy-schools, DOPS doesn’t employ any practicing psychics. The teachers can’t read minds, and the students don’t walk through walls. DOPS is home to a small group of hardworking, impressively credentialed scientists with minds for stats and figures.

Finally, for anyone unfamiliar with the original Ghostbusters movie, it was made in 1984 and featured four comedians in the lead roles, Bill Murray, Dan Ackroyd, Harold Ramis, and Rick Moranis, according to IMDB.com. Feig’s 2016 version features four female comedians: Melissa McCarthy, Kristen Wiig, Kate McKinnon, Leslie Jones.

*’Ghostbuster’ corrected to ‘Ghostbusters’ on March 14, 2016.

Polish researchers develop Superman’s kryptonite?

It’s not precisely kryptonite but rather a krypton-oxygen compound according to a March 2, 2016 news item on ScienceDaily,

Theoretical chemists have found how to synthesize the first binary compound of krypton and oxygen: a krypton oxide. It turns out that this exotic substance can be produced under extremely high pressure, and its production is quite within the capabilities of today’s laboratories.

A March 2, 2016 Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) press release (also on EurekAlert), which originated the news item, provides more information about Superman’s kryptonite, real krypton, and the new synthesized compound,

Crystals of kryptonite, a material deadly to Superman and his race, were supposed to have been created within the planet Krypton, and therefore most likely under very high pressure. The progenitor of the name, real krypton, is an element with an atomic number of 36, a noble gas considered to be incapable of forming stable chemical compounds. However, a publication in the journal Scientific Reports by a two-man team of theoretical chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, Poland, presents the possibility of synthesizing a new crystalline material in which atoms of krypton would be chemically bonded to another element.

“The substance we are predicting is a compound of krypton with not nitrogen, but oxygen. In the convention of the comic book it should, therefore, be called not so much kryptonite as kryptoxide. So if Superman’s reading this, he can stay calm – at the moment there’s no cause for panic!” laughs Dr. Patrick Zaleski-Ejgierd (IPC PAS) and adds: “Our krypton monoxide, KrO, probably does not exist in nature. According to current knowledge, deep in the interiors of planets, that is, the only place where there is sufficient pressure for its synthesis, oxygen does not exist, nor even more so, does krypton.”

Compounds of krypton have been produced before, in the laboratory under cryogenic conditions. They were, however, only single, linear and small molecules of the hydrogen-carbon-krypton-carbon-hydrogen type. The Polish chemists wondered if there were conditions in which krypton would not only bond chemically with another element, but also in which it would be capable of forming an extensive and stable crystal lattice. Their search, funded by an OPUS grant from the Polish National Science Centre, involved the researchers using genetic algorithms and models built on the so-called density functional theory. In the field of solid state physics, this theory has for years been a basic tool for the description and study of the world of chemical molecules.

“Our computer simulations suggest that crystals of krypton monoxide will be formed at a pressure in the range of 3 to 5 million atmospheres. This is a huge pressure, but it can be achieved even in today’s laboratories, by skillfully squeezing samples in diamond anvils,” says PhD student Pawe? Lata (IPC PAS).

Crystal lattices are built from atoms or molecules arranged in space in an orderly manner. The smallest repetitive fragment of such structures – the basic ‘building block’ – is called a unit cell. In crystals of table salt the unit cell has the shape of a cube, the sodium and chlorine atoms, arranged alternately, are mounted on each corner, close enough to each other that they are bound by covalent (chemical) bonds.

The unit cell of krypton monoxide is cuboid with a diamond base, with krypton atoms at the corners. In addition, in the middle of the two opposite side walls, there is one atom of krypton.

“Where is the oxygen? On the side walls of the unit cell, where there are five atoms of krypton, they are arranged like the dots on a dice showing the number five. Single atoms of oxygen are located between the krypton atoms, but only along the diagonal – and only along one! Thus, on each wall with five krypton atoms there are only two atoms of oxygen. Not only that, the oxygen is not exactly on the diagonal: one of the atoms is slightly offset from it in one direction and the other atom in the other direction,” describes Lata.

In such an idiosyncratic unit cell, each atom of oxygen is chemically bound to the two nearest adjacent atoms of krypton. Zigzag chains of Kr/O\Kr\O/Kr will therefore pass through the crystal of krypton monoxide, forming long polymer structures. Calculations indicate that crystals of this type of krypton monoxide should have the characteristics of a semiconductor. One can assume that they will be dark, and their transparency will not be great.

Theorists from the IPC PAS have also found a second, slightly less stable compound of krypton: the tetroxide KrO4. This material, which probably has properties typical of a metal, has a simpler crystalline structure and could be formed at a pressure exceeding 3.4 million atmospheres.

After formation, the two kinds of krypton oxide crystals could probably exist at a somewhat lower pressure than that required for their formation. The pressure on earth, however, is so low that on our planet these crystals would undergo degradation immediately.

“Reactions occurring at extremely high pressure are almost unknown, very, very exotic chemistry. We call it ‘Chemistry on the Edge'”. Often the pressures needed to perform syntheses are so gigantic that at present there is no point in trying to produce them in laboratories. In those cases even methods of theoretic description fail! But what is most interesting here is the non-intuitiveness. From the very first to the last step of synthesis you never know what’s going to happen,” says Dr. Zaleski-Ejgierd – and he returns to his computer where simulations of subsequent syntheses are nearing their end.

I don’t usually include images of the researchers but these guys dressed up for the occasion,

Chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw have found a method of synthesizing a new crystalline material in which atoms of krypton would be chemically bonded to another element. (Source: IPC PAS, Grzegorz Krzy¿ewski) Metodê syntezy pierwszego trwa³ego zwi¹zku kryptonu znale¿li chemicy-teoretycy z Instytutu Chemii Fizycznej PAN w Warszawie. (ród³o: IChF PAN, Grzegorz Krzy¿ewski)

Chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw have found a method of synthesizing a new crystalline material in which atoms of krypton would be chemically bonded to another element. (Source: IPC PAS, Grzegorz Krzy¿ewski)
Metodê syntezy pierwszego trwa³ego zwi¹zku kryptonu znale¿li chemicy-teoretycy z Instytutu Chemii Fizycznej PAN w Warszawie. (ród³o: IChF PAN, Grzegorz Krzy¿ewski)

Here’s a link to and a citation for the paper,

Krypton oxides under pressure by  Patryk Zaleski-Ejgierd & Pawel M. Lata. Scientific Reports 6, Article number: 18938 (2016) doi:10.1038/srep18938 Published online: 02 February 2016

This paper is open access.

Teleportation of a classic object (Star Trek’s teleportation)

A March 4, 2016 Friedrich-Schiller-Universitaet Jena press release (also on EurekAlert) describes the work in terms of Star Trek,

“Beam me up, Scotty” – even if Captain Kirk supposedly never said this exact phrase, it remains a popular catch-phrase to this day. Whenever the chief commander of the television series starship USS Enterprise (NCC-1701) wanted to go back to his control centre, this command was enough to take him back to the control centre instantly – travelling through the infinity of outer space without any loss of time.

But is all of this science fiction that was thought up in the 1960s? Not quite: Physicists are actually capable of beaming–or “teleporting” as it is called in technical language – if not actual solid particles at least their properties.

“Many of the ideas from Star Trek that back then appeared to be revolutionary have become reality,” explains Prof. Dr Alexander Szameit from the University of Jena (Germany). “Doors that open automatically, video telephony or flip phones–all things we have first seen on the starship USS Enterprise,” exemplifies the Juniorprofessor of Diamond-/Carbon-Based Optical Systems. So why not also teleporting? “Elementary particles such as electrons and light particles exist per se in a spatially delocalized state,” says Szameit. For these particles, it is with a certain probability thus possible to be in different places at the same time. “Within such a system spread across multiple locations, it is possible to transmit information from one location to another without any loss of time.” This process is called quantum teleportation and has been known for several years.

The team of scientists lead by science fiction fan Szameit has now for the first demonstrated in an experiment that the concept of teleportation does not only persist in the world of quantum particles, but also in our classical world. …

They used a special form of laser beams in the experiment. “As can be done with the physical states of elementary particles, the properties of light beams can also be entangled,” explains Dr Marco Ornigotti, a member of Prof. Szameit’s team. For physicists, “entanglement” means a sort of codification. “You link the information you would like to transmit to a particular property of the light,” clarifies Ornigotti who led the experiments for the study that was now presented.

In their particular case, the physicists have encoded some information in a particular polarisation direction of the laser light and have transmitted this information to the shape of the laser beam using teleportation. “With this form of teleportation, we can, however, not bridge any given distance,” admits Szameit. “On the contrary, classic teleportation only works locally.” But just like it did at the starship USS Enterprise or in quantum teleportation, the information is transmitted fully and instantly, without any loss of time. And this makes this kind of information transmission a highly interesting option in telecommunication for instance, underlines Szameit.

Here’s a link to and a citation for the paper,

Demonstration of local teleportation using classical entanglement by Diego Guzman-Silva, Robert Brüning, Felix Zimmermann, Christian Vetter, Markus Gräfe, Matthias Heinrich, Stefan Nolte, Michael Duparré, Andrea Aiello, Marco Ornigotti and Alexander Szameit. Laser & Photonics Reviews DOI: 10.1002/lpor.201500252 Article first published online: 11 JAN 2016

© 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Sciences Goes to the Movies closes out season one with zombies and opens season two with nanotechnolgy

Thanks to David Bruggeman’s March 9, 2016 posting on his Pasco Phronesis blog for the latest about ‘Science Goes to the Movies’,

The 13th episode of Science Goes to the Movies is now available online, and showing some restraint, the show waited until the end of its first season to deal with zombies.

In other show news, the second season will premiere on CUNY [City University of New York] TV March 18th [2016].  It will focus on nanotechnology.

You can find the 13th episode (running time is almost 30 mins.) embedded in David’s post or you can go to the Science Goes to the Movies webpage on the City University of New York (CUNY) website for the latest video and more information about the episode,

In episode #113 of Science Goes to the Movies, series co-hosts Dr. Heather Berlin and Faith Salie talk with Mark Siddall – a curator at the American Museum of Natural History and President of the American Society of Parasitologists – about zombies!

… Siddall describes different types of parasites that manipulate behavior in a host in order to complete a life cycle or other essential task – including a type of “Dementor” wasp, named after the monster in Harry Potter books, that changes behavior in a cockroach by stinging it. Whether or not zombifying parasites have a taste for brains is also considered, with reference to a species that takes over the bodies of ants, replaces their brains, and uses the ant to complete its life cycle, and The Guinea Worm, a parasite that targets humans for their own reproduction. Siddall then distinguishes between parasites and viruses and explains their similarities.

The Haitian voodoo practice of ingesting neurotoxins to create the effect of “waking from the dead” provides the basis for the next part of the discussion. Dr. Berlin defines neurotoxins and how they work in the brain to block neurons from firing. Tetrodotoxin, in particular, is explained as having a zombifying effect on humans in that its overall paralysis doesn’t affect the brain or the heart, leaving a person fully conscious throughout.

The Wade Davis [emphasis mine] book, The Serpent and The Rainbow, is brought into the discussion, as well as a story about a man kept in a zombie state for two years by ingesting a combination of neurotoxins and hallucinogens. Dr. Berlin breaks down the plausibility of the story and introduces the idea of the “philosopher zombie,” whose zombie status is more conceptual in nature.

28 Days Later and World War Z are discussed as examples of zombie movies in which the cause of the apocalypse is a zombie infection, and Siddall shares news about a cancer with contagious qualities. A recent Centers for Disease Control ad campaign, warning people to prepare for the zombie apocalypse, is mentioned and the real-life potential for human zombies, given the creativity of evolution, makes for the final topic of the show. Before finishing, though, Dr. Berlin and Siddall each share an idea for an original zombie movie.

Written and Produced by Lisa Beth Kovetz.

Wade Davis is a Canadian anthropologist who now teaches at the University of British Columbia.

Should you care to search, you will find a number of posts concerning zombies on this blog.

The science in Star Wars according to the American Chemical Society

The American Chemical Society (ACS) has produced a video in its Reactions series, which focuses on Stars Wars science from the middle part of the series (episodes 4, 5, & 6) or what some might consider the classic, ‘first’ episodes. From a Dec. 15, 2015 news ACS news release on EurekAlert,

Star Wars VII: The Force Awakens hits movie screens this week with its intense plot, edge-of-your-seat action scenes and, of course, lots of lightsabers. But is it actually possible to create a real-life lightsaber or build a functioning Death Star laser? To answer these questions and more, Reactions explores the science behind the Star Wars franchise.

Here’s the video,

You’ll notice the ‘parsec’ situation is not explained. In Star Wars they reference the term parsec as a unit of time (in the first episode produced which is now no. 4, Star Wars: A New Hope). But, a ‘parsec’ is a unit of distance. Here’s Kyle Hill writing about the ‘parsec’ situation in a Feb. 12, 2013 article for Wired (Note: A link has been removed),

You’ll hear any reputable Star Wars fan point it out eventually: Han Solo’s famous boast that the Millennium Falcon “made the Kessel Run in less than 12 parsecs” may have sounded impressive, but from an astronomical perspective, it made no sense. A parsec is a unit of distance, not time, so why would Solo use it to explain how quickly his ship could travel?

There are two stories going on here. The first is that Solo’s famous line of dialog was simply a mistake of terminology. The second — the one I choose believe [sic] — is far more interesting, because it means that when Obi-Wan sat down across from the wryly smiling Han Solo in that cramped cantina, he met a time-traveling smuggler born at least 40 years before the events of The Phantom Menace [episode 1, which was produced after the classic episodes, effectively the ‘first’ episode is a prequel] ever took place.

I understand the new movie, episode 7 is quite good but haven’t had a chance to see it yet. If you get there before I do, please let me know if it’s as good as the reviews suggest and what you think of the science.

Science and the movies (Bond’s Spectre and The Martian)

There’s some nanotechnology in the new James Bond movie, Spectre, according to Johnny Brayson in his Nov. 5, 2015 (?) article for Bustle (Note: A link has been removed),

James Bond has always been known for his gadgets, and although Daniel Craig’s version of the character has been considerably less doohickey-heavy than past iterations, he’s still managed to make use of a few over the years, from his in-car defibrillator in Casino Royale to his biometric-coded gun in Skyfall. But Spectre, the newest Bond film, changes up the formula and brings more gadgets than fans have seen in years. There are returning favorites like a tricked out Aston Martin and an exploding watch, but there’s also a new twist on an old gadget that allows Bond to be tracked by his bosses, an injected microchip that records his every move. …

To Bond fans, though, the technology isn’t totally new. In Casino Royale, Bond is injected with a microchip that tracks his location and monitors his vital signs. However, when he’s captured by the bad guys, the device is cut out of his arm, rendering it useless. MI6 seems to have learned their lesson in Spectre, because this time around Bond is injected with Smart Blood, consisting of nanotechnology that does the same thing while flowing microscopically through his veins. As for whether it could really happen, the answer is not yet, but someday it could be.

Brayson provides an introduction to some of the exciting developments taking place scientifically in an intriguing way by relating those developments to a James Bond movie. Unfortunately, some of  his details  are wrong. For example, he is describing a single microchip introduced subcutaneously (under the skin) synonymously with ‘smart blood’ which would be many, many microchips prowling your bloodstream.

So, enjoy the article but exercise some caution. For example, this part in his article is mostly right (Note: Links have been removed),

However, there does actually exist nanotechnology that has been safely inserted into a human body — just not for the purposes of tracking.  Some “nanobots”, microscopic robots, have been used within the human eye to deliver drugs directly to the area that needs them [emphasis mine], and the idea is that one day similar nanobots will be able to be injected into one’s bloodstream to administer medication or even perform surgery. Some scientists even believe that a swarm of nanobots in the bloodstream could eventually make humans immune to disease, as the bots would simply destroy or fix any issues as soon as they arrive.

According to a Jan. 30, 2015 article by Jacopo Prisco for CNN, scientists at ETH Zurich were planning to start human clinical trials to test ‘micro or nanobots’ in the human eye. I cannot find any additional information about the proposed trials. Similarly, Israeli researcher Ido Bachelet announced a clinical trial of DNA nanobots on one patient to cure their leukemia (my Jan. 7, 2015 posting). An unsuccessful attempt to get updated information can found in a May 2015 Reddit Futurology posting.

The Martian

That film has been doing very well and, for the most part, seems to have gotten kudos for its science. However for those who like to dig down for more iinformation, Jeffrey Kluger’s Sept. 30, 2015 article for Time magazine expresses some reservations about the science while enthusing over its quality as a film,

… Go see The Martian. But still: Don’t expect all of the science to be what it should be. The hard part about good science fiction has always been the fiction part. How many liberties can you take and how big should they be before you lose credibility? In the case of The Martian, the answer is mixed.

The story’s least honest device is also its most important one: the massive windstorm that sweeps astronaut Mark Watney (Matt Damon) away, causing his crew mates to abandon him on the planet, assuming he has been killed. That sets the entire castaway tale into motion, but on a false note, because while Mars does have winds, its atmosphere is barely 1% of the density of Earth’s, meaning it could never whip up anything like the fury it does in the story.

“I needed a way to force the astronauts off the planet, so I allowed myself some leeway,” Weir conceded in a statement accompanying the movie’s release. …

It was exceedingly cool actually, and for that reason Weir’s liberty could almost be forgiven, but then the story tries to have it both ways with the same bit of science. When a pressure leak causes an entire pod on Watney’s habitat to blow up, he patches a yawning opening in what’s left of the dwelling with plastic tarp and duct tape. That might actually be enough to do the job in the tenuous atmosphere that does exist on Mars. But in the violent one Weir invents for his story, the fix wouldn’t last a day.

There’s more to this entertaining and educational article including embedded images and a video.

Did the Fantastic Four (comic book heroes) get their powers from radiation?

The American Chemical Society (ACS) has gone old school regarding how the Fantastic Four comic book characters got their powers, radiation. (The latest movie version offers an alternate explanation.)

Here’s more about radiation and the possibility of developing super powers as a consequence of exposure from the ACS video podcast series, Reactions,

From the Aug. 4, 2015 ACS news release on EurekAlert,

The Thing, Human Torch, Invisible Woman and Mister Fantastic are back this summer! In the new movie reboot, the team gets its powers while in an alternate dimension. Here at Reactions, though, we stick to comic-book canon. In this week’s video, we explain the original way the Fantastic Four got their power – radiation – with help from SciPop Talks. Check it out here: https://youtu.be/GbmSmgTIQ8s.

That’s all, folks!