Category Archives: pop culture

Science and the movies (Bond’s Spectre and The Martian)

There’s some nanotechnology in the new James Bond movie, Spectre, according to Johnny Brayson in his Nov. 5, 2015 (?) article for Bustle (Note: A link has been removed),

James Bond has always been known for his gadgets, and although Daniel Craig’s version of the character has been considerably less doohickey-heavy than past iterations, he’s still managed to make use of a few over the years, from his in-car defibrillator in Casino Royale to his biometric-coded gun in Skyfall. But Spectre, the newest Bond film, changes up the formula and brings more gadgets than fans have seen in years. There are returning favorites like a tricked out Aston Martin and an exploding watch, but there’s also a new twist on an old gadget that allows Bond to be tracked by his bosses, an injected microchip that records his every move. …

To Bond fans, though, the technology isn’t totally new. In Casino Royale, Bond is injected with a microchip that tracks his location and monitors his vital signs. However, when he’s captured by the bad guys, the device is cut out of his arm, rendering it useless. MI6 seems to have learned their lesson in Spectre, because this time around Bond is injected with Smart Blood, consisting of nanotechnology that does the same thing while flowing microscopically through his veins. As for whether it could really happen, the answer is not yet, but someday it could be.

Brayson provides an introduction to some of the exciting developments taking place scientifically in an intriguing way by relating those developments to a James Bond movie. Unfortunately, some of  his details  are wrong. For example, he is describing a single microchip introduced subcutaneously (under the skin) synonymously with ‘smart blood’ which would be many, many microchips prowling your bloodstream.

So, enjoy the article but exercise some caution. For example, this part in his article is mostly right (Note: Links have been removed),

However, there does actually exist nanotechnology that has been safely inserted into a human body — just not for the purposes of tracking.  Some “nanobots”, microscopic robots, have been used within the human eye to deliver drugs directly to the area that needs them [emphasis mine], and the idea is that one day similar nanobots will be able to be injected into one’s bloodstream to administer medication or even perform surgery. Some scientists even believe that a swarm of nanobots in the bloodstream could eventually make humans immune to disease, as the bots would simply destroy or fix any issues as soon as they arrive.

According to a Jan. 30, 2015 article by Jacopo Prisco for CNN, scientists at ETH Zurich were planning to start human clinical trials to test ‘micro or nanobots’ in the human eye. I cannot find any additional information about the proposed trials. Similarly, Israeli researcher Ido Bachelet announced a clinical trial of DNA nanobots on one patient to cure their leukemia (my Jan. 7, 2015 posting). An unsuccessful attempt to get updated information can found in a May 2015 Reddit Futurology posting.

The Martian

That film has been doing very well and, for the most part, seems to have gotten kudos for its science. However for those who like to dig down for more iinformation, Jeffrey Kluger’s Sept. 30, 2015 article for Time magazine expresses some reservations about the science while enthusing over its quality as a film,

… Go see The Martian. But still: Don’t expect all of the science to be what it should be. The hard part about good science fiction has always been the fiction part. How many liberties can you take and how big should they be before you lose credibility? In the case of The Martian, the answer is mixed.

The story’s least honest device is also its most important one: the massive windstorm that sweeps astronaut Mark Watney (Matt Damon) away, causing his crew mates to abandon him on the planet, assuming he has been killed. That sets the entire castaway tale into motion, but on a false note, because while Mars does have winds, its atmosphere is barely 1% of the density of Earth’s, meaning it could never whip up anything like the fury it does in the story.

“I needed a way to force the astronauts off the planet, so I allowed myself some leeway,” Weir conceded in a statement accompanying the movie’s release. …

It was exceedingly cool actually, and for that reason Weir’s liberty could almost be forgiven, but then the story tries to have it both ways with the same bit of science. When a pressure leak causes an entire pod on Watney’s habitat to blow up, he patches a yawning opening in what’s left of the dwelling with plastic tarp and duct tape. That might actually be enough to do the job in the tenuous atmosphere that does exist on Mars. But in the violent one Weir invents for his story, the fix wouldn’t last a day.

There’s more to this entertaining and educational article including embedded images and a video.

Did the Fantastic Four (comic book heroes) get their powers from radiation?

The American Chemical Society (ACS) has gone old school regarding how the Fantastic Four comic book characters got their powers, radiation. (The latest movie version offers an alternate explanation.)

Here’s more about radiation and the possibility of developing super powers as a consequence of exposure from the ACS video podcast series, Reactions,

From the Aug. 4, 2015 ACS news release on EurekAlert,

The Thing, Human Torch, Invisible Woman and Mister Fantastic are back this summer! In the new movie reboot, the team gets its powers while in an alternate dimension. Here at Reactions, though, we stick to comic-book canon. In this week’s video, we explain the original way the Fantastic Four got their power – radiation – with help from SciPop Talks. Check it out here:

That’s all, folks!

Informal roundup of robot movies and television programmes and a glimpse into our robot future

David Bruggeman has written an informal series of posts about robot movies. The latest, a June 27, 2015 posting on his Pasco Phronesis blog, highlights the latest Terminator film and opines that the recent interest could be traced back to the rebooted Battlestar Galactica television series (Note: Links have been removed),

I suppose this could be traced back to the reboot of Battlestar Galactica over a decade ago, but robots and androids have become an increasing presence on film and television, particularly in the last 2 years.

In the movies, the new Terminator film comes out next week, and the previews suggest we will see a new generation of killer robots traveling through time and space.  Chappie is now out on your digital medium of choice (and I’ll post about any science fiction science policy/SciFiSciPol once I see it), so you can compare its robot police to those from either edition of Robocop or the 2013 series Almost Human.  Robots also have a role …

The new television series he mentions, Humans (click on About) debuted on the US tv channel, AMC, on Sunday, June 28, 2015 (yesterday).

HUMANS is set in a parallel present, where the latest must-have gadget for any busy family is a Synth – a highly-developed robotic servant, eerily similar to its live counterpart. In the hope of transforming the way his family lives, father Joe Hawkins (Tom Goodman-Hill) purchases a Synth (Gemma Chan) against the wishes of his wife (Katharine Parkinson), only to discover that sharing life with a machine has far-reaching and chilling consequences.

Here’s a bit more information from its Wikipedia entry,

Humans (styled as HUM∀NS) is a British-American science fiction television series, debuted in June 2015 on Channel 4 and AMC.[2] Written by the British team Sam Vincent and Jonathan Brackley, based on the award-winning Swedish science fiction drama Real Humans, the series explores the emotional impact of the blurring of the lines between humans and machines. The series is produced jointly by AMC, Channel 4 and Kudos.[3] The series will consist of eight episodes.[4]

David also wrote about Ex Machina, a recent robot film with artistic ambitions, in an April 26, 2015 posting on his Pasco Phronesis blog,

I finally saw Ex Machina, which recently opened in the United States.  It’s a minimalist film, with few speaking roles and a plot revolving around an intelligence test.  Of the robot movies out this year, it has received the strongest reviews, and it may take home some trophies during the next awards season.  Shot in Norway, the film is both lovely to watch and tricky to engage.  I finished the film not quite sure what the characters were thinking, and perhaps that’s a lesson from the film.

Unlike Chappie and Automata, the intelligent robot at the center of Ex Machina is not out in the world. …

He started the series with a Feb. 8, 2015 posting which previews the movies in his later postings but also includes a couple of others not mentioned in either the April or June posting, Avengers: Age of Ultron and Spare Parts.

It’s interesting to me that these robots  are mostly not related to the benign robots in the movie, ‘Forbidden Planet’, a reworking of Shakespeare’s The Tempest in outer space, in ‘Lost in Space’, a 1960s television programme, and in the Jetsons animated tv series of the 1960s. As far as I can tell not having seen the new movies in question, the only benign robot in the current crop would be ‘Chappie’. It should be mentioned that the ‘Terminator’, in the person of Arnold Schwarzenegger, has over a course of three or four movies evolved from a destructive robot bent on evil to a destructive robot working on behalf of good.

I’ll add one more more television programme and I’m not sure if the robot boy is good or evil but there’s Extant where Halle Berry’s robot son seems to be in a version of the Pinocchio story (an ersatz child want to become human), which is enjoying its second season on US television as of July 1, 2015.

Regardless of one or two ‘sweet’ robots, there seems to be a trend toward ominous robots and perhaps, in addition to Battlestar Galactica, the concerns being raised by prominent scientists such as Stephen Hawking and those associated with the Centre for Existential Risk at the University of Cambridge have something to do with this trend and may partially explain why Chappie did not do as well at the box office as hoped. Thematically, it was swimming against the current.

As for a glimpse into the future, there’s this Children’s Hospital of Los Angeles June 29, 2015 news release,

Many hospitals lack the resources and patient volume to employ a round-the-clock, neonatal intensive care specialist to treat their youngest and sickest patients. Telemedicine–with real-time audio and video communication between a neonatal intensive care specialist and a patient–can provide access to this level of care.

A team of neonatologists at Children’s Hospital Los Angeles investigated the use of robot-assisted telemedicine in performing bedside rounds and directing daily care for infants with mild-to-moderate disease. They found no significant differences in patient outcomes when telemedicine was used and noted a high level of parent satisfaction. This is the first published report of using telemedicine for patient rounds in a neonatal intensive care unit (NICU). Results will be published online first on June 29 in the Journal of Telemedicine and Telecare.

Glimpse into the future?

The part I find most fascinating was that there was no difference in outcomes, moreover, the parents’ satisfaction rate was high when robots (telemedicine) were used. Finally, of the families who completed the after care survey (45%), all indicated they would be comfortable with another telemedicine (robot) experience. My comment, should robots prove to be cheaper in the long run and the research results hold as more studies are done, I imagine that hospitals will introduce them as a means of cost cutting.

Captain America, Wolverine, Iron Man, and Thor on The Abstract, North Carolina State University’s news blog

Captain America’s shield as a supercapacitor? Intriguing, oui? Thank you to Matt Shipman and his April 15, 2014 post on The Abstract (North Carolina State University’s official newsroom blog, [h/t]) for presenting a very intriguing exploration of the science to be found in comic books and, now, the movies,

Image from Captain America By Ed Brubaker Vol. 2 Premiere HC (2011 – Present). Release Date: February 21, 2012. Image credit:

Image from Captain America By Ed Brubaker Vol. 2 Premiere HC (2011 – Present).
Release Date: February 21, 2012. Image credit:
Courtesy: NCSU

I have a new appreciation for Captain America (never one of my favourite super heroes). From Shipman’s April 15, 2014 posting on The Abstract (Note: Links have been removed),

It’s tough to explain how the shield works, in part because it behaves differently under different circumstances. Sometimes the shield is thrown and becomes embedded in a wall; but sometimes it bounces off of walls, ricocheting wildly. Sometimes the shield seems to easily absorb tremendous force; but sometimes it is damaged by the attacks of Cap’s most powerful foes.

“However, from a scientific perspective, it’s important to remember that we’re talking about the first law of thermodynamics,” says Suveen Mathaudhu, a program manager in the materials science division of the U.S. Army Research Office, adjunct materials science professor at NC State University and hardcore comics fan. “Energy is conserved. It doesn’t disappear, it just changes form.

“When enormous energy, such as a blow from Thor’s hammer, strikes Cap’s shield, that energy needs to go somewhere.”

Normally, that energy would need to be either stored or converted into heat or sound. But comic-book readers and moviegoers know that Cap’s shield usually doesn’t give off waves of heat or roaring shrieks (that shockwave from Thor’s hammer in The Avengers film notwithstanding).

“That absence of heat and sound means that the energy has to be absorbed somehow; the atomic bonds in the shield – which is made of vibranium – must be able to store that energy in some form,” Mathaudhu says.

Mathaudhu, later in the posting, describes the shield’s qualities as a supercapacitor. (For more information about supercapacitors, you can look at my April 9, 2014 posting.)

Shipman’s piece appears to be part of a series featuring Wolverine, Iron Man, and Thor, which you can access by scrolling past the end of the Captain America posting (April 15, 2014 post), where you will also find at least one comment, which is worth checking out.

Nanotechnology at the movies: Transcendence opens April 18, 2014 in the US & Canada

Screenwriter Jack Paglen has an intriguing interpretation of nanotechnology, one he (along with the director) shares in an April 13, 2014 article by Larry Getlen for the NY Post and in his movie, Transcendence. which is opening in the US and Canada on April 18, 2014. First, here are a few of the more general ideas underlying his screenplay,

In “Transcendence” — out Friday [April 18, 2014] and directed by Oscar-winning cinematographer Wally Pfister (“Inception,” “The Dark Knight”) — Johnny Depp plays Dr. Will Caster, an artificial-intelligence researcher who has spent his career trying to design a sentient computer that can hold, and even exceed, the world’s collective intelligence.

After he’s shot by antitechnology activists, his consciousness is uploaded to a computer network just before his body dies.

“The theories associated with the film say that when a strong artificial intelligence wakes up, it will quickly become more intelligent than a human being,” screenwriter Jack Paglen says, referring to a concept known as “the singularity.”

It should be noted that there are anti-technology terrorists. I don’t think I’ve covered that topic in a while so an Aug. 31, 2012 posting is the most recent and, despite the title, “In depth and one year later—the nanotechnology bombings in Mexico” provides an overview of sorts. For a more up-to-date view, you can read Eric Markowitz’s April 9, 2014 article for I do have one observation about the article where Markowitz has linked some recent protests in San Francisco to the bombings in Mexico. Those protests in San Francisco seem more like a ‘poor vs. the rich’ situation where the rich happen to come from the technology sector.

Getting back to “Transcendence” and singularity, there’s a good Wikipedia entry describing the ideas and some of the thinkers behind the notion of a singularity or technological singularity, as it’s sometimes called (Note: Links have been removed),

The technological singularity, or simply the singularity, is a hypothetical moment in time when artificial intelligence will have progressed to the point of a greater-than-human intelligence, radically changing civilization, and perhaps human nature.[1] Because the capabilities of such an intelligence may be difficult for a human to comprehend, the technological singularity is often seen as an occurrence (akin to a gravitational singularity) beyond which the future course of human history is unpredictable or even unfathomable.

The first use of the term “singularity” in this context was by mathematician John von Neumann. In 1958, regarding a summary of a conversation with von Neumann, Stanislaw Ulam described “ever accelerating progress of technology and changes in the mode of human life, which gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue”.[2] The term was popularized by science fiction writer Vernor Vinge, who argues that artificial intelligence, human biological enhancement, or brain-computer interfaces could be possible causes of the singularity.[3] Futurist Ray Kurzweil cited von Neumann’s use of the term in a foreword to von Neumann’s classic The Computer and the Brain.

Proponents of the singularity typically postulate an “intelligence explosion”,[4][5] where superintelligences design successive generations of increasingly powerful minds, that might occur very quickly and might not stop until the agent’s cognitive abilities greatly surpass that of any human.

Kurzweil predicts the singularity to occur around 2045[6] whereas Vinge predicts some time before 2030.[7] At the 2012 Singularity Summit, Stuart Armstrong did a study of artificial generalized intelligence (AGI) predictions by experts and found a wide range of predicted dates, with a median value of 2040. His own prediction on reviewing the data is that there is an 80% probability that the singularity will occur between 2017 and 2112.[8]

The ‘technological singularity’ is controversial and contested (from the Wikipedia entry).

In addition to general criticisms of the singularity concept, several critics have raised issues with Kurzweil’s iconic chart. One line of criticism is that a log-log chart of this nature is inherently biased toward a straight-line result. Others identify selection bias in the points that Kurzweil chooses to use. For example, biologist PZ Myers points out that many of the early evolutionary “events” were picked arbitrarily.[104] Kurzweil has rebutted this by charting evolutionary events from 15 neutral sources, and showing that they fit a straight line on a log-log chart. The Economist mocked the concept with a graph extrapolating that the number of blades on a razor, which has increased over the years from one to as many as five, will increase ever-faster to infinity.[105]

By the way, this movie is mentioned briefly in the pop culture portion of the Wikipedia entry.

Getting back to Paglen and his screenplay, here’s more from Getlen’s article,

… as Will’s powers grow, he begins to pull off fantastic achievements, including giving a blind man sight, regenerating his own body and spreading his power to the water and the air.

This conjecture was influenced by nanotechnology, the field of manipulating matter at the scale of a nanometer, or one-billionth of a meter. (By comparison, a human hair is around 70,000-100,000 nanometers wide.)

“In some circles, nanotechnology is the holy grail,” says Paglen, “where we could have microscopic, networked machines [emphasis mine] that would be capable of miracles.”

The potential uses of, and implications for, nanotechnology are vast and widely debated, but many believe the effects could be life-changing.

“When I visited MIT,” says Pfister, “I visited a cancer research institute. They’re talking about the ability of nanotechnology to be injected inside a human body, travel immediately to a cancer cell, and deliver a payload of medicine directly to that cell, eliminating [the need to] poison the whole body with chemo.”

“Nanotechnology could help us live longer, move faster and be stronger. It can possibly cure cancer, and help with all human ailments.”

I find the ‘golly gee wizness’ of Paglen’s and Pfister’s take on nanotechnology disconcerting but they can’t be dismissed. There are projects where people are testing retinal implants which allow them to see again. There is a lot of work in the field of medicine designed to make therapeutic procedures that are gentler on the body by making their actions specific to diseased tissue while ignoring healthy tissue (sadly, this is still not possible). As for human enhancement, I have so many pieces that it has its own category on this blog. I first wrote about it in a four-part series starting with this one: Nanotechnology enables robots and human enhancement: part 1, (You can read the series by scrolling past the end of the posting and clicking on the next part or search the category and pick through the more recent pieces.)

I’m not sure if this error is Paglen’s or Getlen’s but nanotechnology is not “microscopic, networked machines” as Paglen’s quote strongly suggests. Some nanoscale devices could be described as machines (often called nanobots) but there are also nanoparticles, nanotubes, nanowires, and more that cannot be described as machines or devices, for that matter. More importantly, it seems Paglen’s main concern is this,

“One of [science-fiction author] Arthur C. Clarke’s laws is that any sufficiently advanced technology is indistinguishable from magic. That very quickly would become the case if this happened, because this artificial intelligence would be evolving technologies that we do not understand, and it would be capable of miracles by that definition,” says Paglen. [emphasis mine]

This notion of “evolving technologies that we do not understand” brings to mind a  project that was announced at the University of Cambridge (from my Nov. 26, 2012 posting),

The idea that robots of one kind or another (e.g. nanobots eating up the world and leaving grey goo, Cylons in both versions of Battlestar Galactica trying to exterminate humans, etc.) will take over the world and find humans unnecessary  isn’t especially new in works of fiction. It’s not always mentioned directly but the underlying anxiety often has to do with intelligence and concerns over an ‘explosion of intelligence’. The question it raises,’ what if our machines/creations become more intelligent than humans?’ has been described as existential risk. According to a Nov. 25, 2012 article by Sylvia Hui for Huffington Post, a group of eminent philosophers and scientists at the University of Cambridge are proposing to found a Centre for the Study of Existential Risk,

While I do have some reservations about how Paglen and Pfister describe the science, I appreciate their interest in communicating the scientific ideas, particularly those underlying Paglen’s screenplay.

For anyone who may be concerned about the likelihood of emulating  a human brain and uploading it to a computer, there’s an April 13, 2014 article by Luke Muehlhauser and Stuart Armstrong for Slate discussing that very possibility (Note 1: Links have been removed; Note 2: Armstrong is mentioned in this posting’s excerpt from the Wikipedia entry on Technological Singularity),

Today scientists can’t even emulate the brain of a tiny worm called C. elegans, which has 302 neurons, compared with the human brain’s 86 billion neurons. Using models of expected technological progress on the three key problems, we’d estimate that we wouldn’t be able to emulate human brains until at least 2070 (though this estimate is very uncertain).

But would an emulation of your brain be you, and would it be conscious? Such questions quickly get us into thorny philosophical territory, so we’ll sidestep them for now. For many purposes—estimating the economic impact of brain emulations, for instance—it suffices to know that the brain emulations would have humanlike functionality, regardless of whether the brain emulation would also be conscious.

Paglen/Pfister seem to be equating intelligence (brain power) with consciousness while Muehlhauser/Armstrong simply sidestep the issue. As they (Muehlhauser/Armstrong) note, it’s “thorny.”

If you consider thinkers like David Chalmers who suggest everything has consciousness, then it follows that computers/robots/etc. may not appreciate having a human brain emulation which takes us back into Battlestar Galactica territory. From my March 19, 2014 posting (one of the postings where I recounted various TED 2014 talks in Vancouver), here’s more about David Chalmers,

Finally, I wasn’t expecting to write about David Chalmers so my notes aren’t very good. A philosopher, here’s an excerpt from Chalmers’ TED biography,

In his work, David Chalmers explores the “hard problem of consciousness” — the idea that science can’t ever explain our subjective experience.

David Chalmers is a philosopher at the Australian National University and New York University. He works in philosophy of mind and in related areas of philosophy and cognitive science. While he’s especially known for his theories on consciousness, he’s also interested (and has extensively published) in all sorts of other issues in the foundations of cognitive science, the philosophy of language, metaphysics and epistemology.

Chalmers provided an interesting bookend to a session started with a brain researcher (Nancy Kanwisher) who breaks the brain down into various processing regions (vastly oversimplified but the easiest way to summarize her work in this context). Chalmers reviewed the ‘science of consciousness’ and noted that current work in science tends to be reductionist, i.e., examining parts of things such as brains and that same reductionism has been brought to the question of consciousness.

Rather than trying to prove consciousness, Chalmers proposes that we consider it a fundamental in the same way that we consider time, space, and mass to be fundamental. He noted that there’s precedence for additions and gave the example of James Clerk Maxwell and his proposal to consider electricity and magnetism as fundamental.

Chalmers next suggestion is a little more outré and based on some thinking (sorry I didn’t catch the theorist’s name) that suggests everything, including photons, has a type of consciousness (but not intelligence).

Have a great time at the movie!

Is Stephen Colbert’s love of science compatible with his new job (host of the Late Show) on US network television?

For those not familiar with Stephen Colbert and his body of work, here’s a brief description from David Shiffman’s April 11, 2014 article (Stephen Colbert Is the Best Source of Science on TV; Will he be stuck interviewing dingbat celebrities at CBS [Columbia Broadcasting System]?) for (Note: Links have been removed),

David Letterman announced last week that he will soon be retiring from The Late Show after hosting for more than 30 years, and CBS has confirmed that Stephen Colbert will replace him. While switching from The Colbert Report to The Late Show will be a huge career advancement for the comedian and TV show host, it could be a big loss for television coverage of science.

Stephen Colbert is one of the only news or faux-news anchors to regularly cover scientific discoveries and interview scientists. “The Colbert Report has certainly been one of the best television programs ever for showcasing scientists—and I don’t just mean ‘for a comedy talk show,’” says science comedian Brian Malow. He points out that the guest who has made the most appearances is Neil deGrasse Tyson. “More than any movie star! And Tyson isn’t even the only physicist he’s featured!”

Among the other physicists Colbert has interviewed are Brian Greene, Michio Kaku, and Lawrence Krauss. He has hosted oceanographer Robert Ballard, neurophilosopher Patricia Churchland, surgeon Atul Gawande, and evolutionary biologist Neil Shubin as well as experts in science policy such as then–Environmental Protection Agency Administrator Lisa Jackson and National Institutes of Health Director Francis Collins. The online archive of interview guests includes separate categories for “academic,” “medical,” and “scientist.”

Shiffman provides a description of the current situation regarding science coverage in the mainstream media (Note: Links have been removed),

Colbert’s transition comes at a terrible time for coverage of science. “Traditional science journalism has been gutted in recent years due to the economic downturn,” says Sheril Kirshenbaum, the co-author of Unscientific America: How Scientific Illiteracy Threatens Our Future. …

The consequences were clear most recently in CNN’s horrifically bad coverage of the missing Malaysia Airlines Flight MH370. CNN cut its science, technology, and environment team in 2008. When host Don Lemon was covering the lost plane, he speculated on air that there could be some supernatural explanation, or perhaps the airliner could have disappeared into a black hole.

Meanwhile, Animal Planet is airing fake documentaries about mermaids.

I hadn’t realized until reading Shiffman’s article that Colbert covers science news in addition to interviewing scientists (Note: Links have been removed),

Colbert features science in many of his show’s segments, not just in his interviews. Colbert’s recurring series “The Craziest F#?king Thing I’ve Ever Heard” is often about interesting new scientific discoveries. He has discussed neuroscience, insect reproduction, and the Large Hadron Collider. He put the scientific Journal of Paleolimnology “on notice” for proposing an explanation for walking on water that differed from the biblical account.

The Colbert Report covered a mishap in University of Maine Ph.D. student Skylar Bayer’s research in marine biology. A bucket of her samples—scallop gonads—was accidentally taken by someone else. A Colbert Report producer saw her blog post and thought it would make a fun segment for the show; they turned it into a mock crime drama. …

I recommend reading Shiffman’s piece which is lively and interesting. One observation though, while he decries the loss of science journalism in mainstream media, he makes no mention of science blogs as a source of increasing popularity, It’s odd since he himself is a science blogger on Southern Fried Science.

If you have the time, follow the links in Shiffman’s article, in particular the one leading to the faux documentary about mermaids.

I wish Mr. Colbert all the best as he takes on his new job and I hope that he is able to include a science presence on the new show.

Almost Human (tv series), smartphones, and anxieties about life/nonlife

The US-based Fox Broadcasting Company is set to premiere a new futuristic television series, Almost Human, over two nights, Nov. 17, and 18, 2013 for US and Canadian viewers. Here’s a description of the premise from its Wikipedia essay (Note: Links have been removed),

The series is set thirty-five years in the future when humans in the Los Angeles Police Department are paired up with lifelike androids; a detective who has a dislike for robots partners with an android capable of emotion.

One of the showrunners, Naren Shankar, seems to have also been functioning both as a science consultant and as a crime writing consultant,in addition to his other duties. From a Sept. 4, 2013 article by Lisa Tsering for,

FOX is the latest television network to utilize the formidable talents of Naren Shankar, an Indian American writer and producer best known to fans for his work on “Star Trek: Deep Space Nine,” “Star Trek: Voyager” and “Star Trek: The Next Generation” as well as “Farscape,” the recently cancelled ABC series “Zero Hour” and “The Outer Limits.”

Set 35 years in the future, “Almost Human” stars Karl Urban and Michael Ealy as a crimefighting duo of a cop who is part-machine and a robot who is part-human. [emphasis mine]

“We are extrapolating the things we see today into the near future,” he explained. For example, the show will comment on the pervasiveness of location software, he said. “There will also be issues of technology such as medical ethics, or privacy; or how technology enables the rich but not the poor, who can’t afford it.”

Speaking at Comic-Con July 20 [2013], Shankar told media there, “Joel [J.H. Wyman] was looking for a collaboration with someone who had come from the crime world, and I had worked on ‘CSI’ for eight years.

“This is like coming back to my first love, since for many years I had done science fiction. It’s a great opportunity to get away from dismembered corpses and autopsy scenes.”

There’s plenty of drama — in the new series, the year is 2048, and police officer John Kennex (Karl Urban, “Dr. Bones” from the new “Star Trek” films) is trying to bounce back from one of the most catastrophic attacks ever made against the police department. Kennex wakes up from a 17-month coma and can’t remember much, except that his partner was killed; his girlfriend left him and one of his legs has been amputated and is now outfitted with a high-tech synthetic appendage. According to police department policy, every cop must partner with a robot, so Kennex is paired with Dorian (Ealy), an android with an unusual glitch that makes it have human emotions.

Shankar took an unusual path into television. He started college at age 16 and attended Cornell University, where he earned a B. Sc., an M.S. and a Ph.D. in engineering physics and electrical engineering, and was a member of the elite Kappa Alpha Society, he decided he didn’t want to work as a scientist and moved to Los Angeles to try to become a writer.

Shankar is eager to move in a new direction with “Almost Human,” which he says comes at the right time. “People are so technologically sophisticated now that maybe the audience is ready for a show like this,” he told India-West.

I am particularly intrigued by the ‘man who’s part machine and the machine that’s part human’ concept (something I’ve called machine/flesh in previous postings such as this May 9, 2012 posting titled ‘Everything becomes part machine’) and was looking forward to seeing how they would be integrating this concept along with some of the more recent scientific work being done on prosthetics and robots, given they had an engineer as part of the team (albeit with lots of crime writing experience), into the stories. Sadly, only days after Tserling’s article was published, Shankar parted ways with Almost Human according to the Sept. 10, 2013 posting on the Almost Human blog,

So this was supposed to be the week that I posted a profile of Naren Shankar, for whom I have developed a full-on crush–I mean, he has a PhD in Electrical Engineering from Cornell, he was hired by Gene Roddenberry to be science consultant on TNG, he was saying all sorts of great things about how he wanted to present the future in AH…aaaand he quit as co-showrunner yesterday, citing “creative differences.” That leaves Wyman as sole showrunner, with no plans to replace Shankar.

I’d like to base some of my comments on the previews, unfortunately, Fox Broadcasting,, in its infinite wisdom, has decided to block Canadians from watching Almost Human previews online. (Could someone please explain why? I mean, Canadians will be tuning in to watch or record for future viewing  the series premiere on the 17th & 18th of November 2013 just like our US neighbours, so, why can’t we watch the previews online?)

Getting back to machine/flesh (human with prosthetic)s and life/nonlife (android with feelings), it seems that Almost Human (as did the latest version of Battlestar Galactica, from 2004-2009) may be giving a popular culture voice to some contemporary anxieties being felt about the boundary or lack thereof between humans and machines and life/nonlife. I’ve touched on this topic many times both within and without the popular culture context. Probably one of my more comprehensive essays on machine/flesh is Eye, arm, & leg prostheses, cyborgs, eyeborgs, Deus Ex, and ableism from August 30, 2011, which includes this quote from a still earlier posting on this topic,

Here’s an excerpt from my Feb. 2, 2010 posting which reinforces what Gregor [Gregor Wolbring, University of Calgary] is saying,

This influx of R&D cash, combined with breakthroughs in materials science and processor speed, has had a striking visual and social result: an emblem of hurt and loss has become a paradigm of the sleek, modern, and powerful. Which is why Michael Bailey, a 24-year-old student in Duluth, Georgia, is looking forward to the day when he can amputate the last two fingers on his left hand.

“I don’t think I would have said this if it had never happened,” says Bailey, referring to the accident that tore off his pinkie, ring, and middle fingers. “But I told Touch Bionics I’d cut the rest of my hand off if I could make all five of my fingers robotic.” [originally excerpted from Paul Hochman’s Feb. 1, 2010 article, Bionic Legs, i-Limbs, and Other Super Human Prostheses You’ll Envy for Fast Company]

Here’s something else from the Hochman article,

But Bailey is most surprised by his own reaction. “When I’m wearing it, I do feel different: I feel stronger. As weird as that sounds, having a piece of machinery incorporated into your body, as a part of you, well, it makes you feel above human. [semphasis mine] It’s a very powerful thing.”

Bailey isn’t  almost human’, he’s ‘above human’. As Hochman points out. repeatedly throughout his article, this sentiment is not confined to Bailey. My guess is that Kennex (Karl Urban’s character) in Almost Human doesn’t echo Bailey’s sentiments and, instead feels he’s not quite human while the android, Dorian, (Michael Ealy’s character) struggles with his feelings in a human way that clashes with Kennex’s perspective on what is human and what is not (or what we might be called the boundary between life and nonlife).

Into this mix, one could add the rising anxiety around ‘intelligent’ machines present in real life, as well as, fiction as per this November 12 (?), 2013 article by Ian Barker for Beta News,

The rise of intelligent machines has long been fertile ground for science fiction writers, but a new report by technology research specialists Gartner suggests that the future is closer than we think.

“Smartphones are becoming smarter, and will be smarter than you by 2017,” says Carolina Milanesi, research vice president at Gartner. “If there is heavy traffic, it will wake you up early for a meeting with your boss, or simply send an apology if it is a meeting with your colleague. The smartphone will gather contextual information from its calendar, its sensors, the user’s location and personal data”.

Your smartphone will be able to predict your next move or your next purchase based on what it knows about you. This will be made possible by gathering data using a technique called “cognizant computing”.

Gartner analysts will be discussing the future of smart devices at the Gartner Symposium/ITxpo 2013 in Barcelona from November 10-14 [2013].

The Gartner Symposium/Txpo in Barcelona is ending today (Nov. 14, 2013) but should you be curious about it, you can go here to learn more.

This notion that machines might (or will) get smarter or more powerful than humans (or wizards) is explored by (of the Black Eyed Peas) and, futurist, Brian David Johnson in their upcoming comic book, Wizards and Robots (mentioned in my Oct. 6, 2013 posting),. This notion of machines or technology overtaking human life is also being discussed at the University of Cambridge where there’s talk of founding a Centre for the Study of Existential Risk (from my Nov. 26, 2012 posting)

The idea that robots of one kind or another (e.g. nanobots eating up the world and leaving grey goo, Cylons in both versions of Battlestar Galactica trying to exterminate humans, etc.) will take over the world and find humans unnecessary  isn’t especially new in works of fiction. It’s not always mentioned directly but the underlying anxiety often has to do with intelligence and concerns over an ‘explosion of intelligence’. The question it raises,’ what if our machines/creations become more intelligent than humans?’ has been described as existential risk. According to a Nov. 25, 2012 article by Sylvia Hui for Huffington Post, a group of eminent philosophers and scientists at the University of Cambridge are proposing to found a Centre for the Study of Existential Risk,

Could computers become cleverer than humans and take over the world? Or is that just the stuff of science fiction?

Philosophers and scientists at Britain’s Cambridge University think the question deserves serious study. A proposed Center for the Study of Existential Risk will bring together experts to consider the ways in which super intelligent technology, including artificial intelligence, could “threaten our own existence,” the institution said Sunday.

“In the case of artificial intelligence, it seems a reasonable prediction that some time in this or the next century intelligence will escape from the constraints of biology,” Cambridge philosophy professor Huw Price said.

When that happens, “we’re no longer the smartest things around,” he said, and will risk being at the mercy of “machines that are not malicious, but machines whose interests don’t include us.”

Our emerging technologies give rise to questions abut what constitutes life and where human might fit in. For example,

  • are sufficiently advanced machines a new form of life,?
  • what does it mean when human bodies are partially integrated at the neural level with machinery?
  • what happens when machines have feelings?
  • etc.

While this doesn’t exactly fit into my theme of life/nonlife or machine/flesh, this does highlight how some popular culture efforts are attempting to integrate real science into the storytelling. Here’s an excerpt from an interview with Cosima Herter, the science consultant and namesake/model for one of the characters on Orphan Black (from the March 29, 2013 posting on the blog),

Cosima Herter is Orphan Black’s Science Consultant, and the inspiration for her namesake character in the series. In real-life, Real Cosima is a PhD. student in the History of Science, Technology, and Medicine Program at the University of Minnesota, working on the History and Philosophy of Biology. Hive interns Billi Knight & Peter Rowley spoke with her about her role on the show and the science behind it…

Q: Describe your role in the making of Orphan Black.

A: I’m a resource for the biology, particularly insofar as evolutionary biology is concerned. I study the history and the philosophy of biology, so I do offer some suggestions and some creative ideas, but also help correct some of the misconceptions about science.  I offer different angles and alternatives to look at the way biological science is represented, so (it’s) not reduced to your stereotypical tropes about evolutionary biology and cloning, but also to provide some accuracy for the scripts.

– See more at:

For anyone not familiar with the series, from the Wikipedia essay (Note: Links have been removed),

Orphan Black is a Canadian science fiction television series starring Tatiana Maslany as several identical women who are revealed to be clones.

Are we becoming machines?

According to the advertisement (being broadcast in January 2013 on US television channels) for HTC’s Droid smartphone, we’ve already become machines,

This advertisement isn’t the only instance, look at this from a Jan. 17, 2013 news release on EurekAlert,

A nano-gear in a nano-motor inside you

To live is to move. You strike to swat that irritable mosquito, which skilfully evades the hand of death. How did that happen? Who moved your hand, and what saved the mosquito? Enter the Molecular Motors, nanoscale protein-machines in the muscles of your hand and wings of the mosquito. You need these motors to swat mosquitoes, blink your eyes, walk, eat, drink… just name it. Millions of motors tug as a team within your muscles, and you swat the mosquito. This is teamwork at its exquisite best.

It’s not unusual to have bodily processes described in terms that one uses for machines (particularly in science-related publications), what’s different here (for me at least) is the intimacy in the ad. The phone is plugged into your chest and the upgrade is to your brain.

This ad is part of a continuum in the popular culture conversation (e.g. Deux Ex game featuring human enhancement and augmentation as  mentioned in my Aug. 30, 2011 posting and in my Aug. 18, 2011 posting) and the prosthetic in the ear seems to be a reference to cochlear implants but now they are for anyone who might care to augment their hearing past the limits of what has been possible for humans. Congratulations, you’ve been upgraded.