Category Archives: biomimcry

Mimicking nature’s ‘anti-freeze’

Some frogs can survive being frozen for weeks and that’s the property scientists at the University of Leeds (UK) are trying to mimic according to a May 19, 2016 news item on Nanowerk (Note: A link has been removed),

The new research, published today [May 18, 2016] in the print edition of the Journal of Physical Chemistry B (“Low-Density Water Structure Observed in a Nanosegregated Cryoprotectant Solution at Low Temperatures from 285 to 238 K”), reveals how glycerol prevents ice crystals from forming in water as the solution is cooled to -35°C, with important implications for improving cryoprotectants used in fertility treatments and food storage.

A May 19, 2016 University of Leeds press release (also on EurekAlert), which originated the news item, provides more detail (Note: A link has been removed),

Dr Lorna Dougan from the University’s School of Physics and Astronomy, who leads the research group, said: “The experiments provide more insight into the fundamental properties of water. It raises questions about what cryoprotectants are doing in living organisms and could help us take steps to understanding how these organisms survive.

“If we understand what glycerol is doing we might be able to fine-tune some of these cryoprotectants that are used to find more effective combinations.”

Cryoprotectant molecules, including glycerol, play an important role in protecting cells and tissues from harmful ice crystals when they are cooled to sub-zero temperatures during freeze storage. Experts have adopted the use of cryoprotectants in fertility treatments and food storage, but not as effectively as in nature.

It is the ability of organisms that can survive in extreme cold environments – known as ‘psychrophiles’ – that inspired the team of physicists to unpick the biological rules that allow their survival.

In winter months, for example, the Eastern Wood frog in North America survives being frozen to temperatures as low as -8°C for weeks, and then in spring thaws out and continues to live perfectly healthily.

To understand how reptiles like the Eastern Wood frog can freeze and thaw, the team used a Science and Technology Facilities Council (STFC) instrument called SANDALS that was purpose-built for investigating the structure of liquids and amorphous materials.

They wanted to answer the fundamental question of how cryoprotectants alter the structure of water at low temperatures, as it is the water structure that is so important in leading to potential ice damage.

The SANDALS instrument allowed the team to see, at the molecular level, that the water and glycerol segregated into clusters. When they looked in more detail, they found the water looked similar to a low density form of itself, showing all the signs it was about to freeze but then it did not. Instead, the glycerol molecules encapsulated the water, preventing the formation of an icy network.

The team will now use these results as a platform for discovering the next generation of cryoprotectants.

Here’s a link to and a citation for the paper,

Low-Density Water Structure Observed in a Nanosegregated Cryoprotectant Solution at Low Temperatures from 285 to 238 K by J. J. Towey, A. K. Soper, and L. Dougan. J. Phys. Chem. B, 2016, 120 (19), pp 4439–4448 DOI: 10.1021/acs.jpcb.6b01185 Publication Date (Web): March 18, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

I did search for images of Eastern Wood Frogs but they have to be paid for. These frogs must be a very much in demand as I’ve haven’t encountered this before. You can usually find what you want on Wikipedia or on a frog enthusiast site. It’s not an Eastern one but here’s a Wood Frog (from Wikipedia),

Lithobates sylvaticus (Woodfrog) Date: 3 July 2011, 19:31 Author:Brian Gratwicke This file is licensed under the Creative Commons Attribution 2.0 Generic license.

Lithobates sylvaticus (Woodfrog)
Date: 3 July 2011, 19:31
Author: Brian Gratwicke
This file is licensed under the Creative Commons Attribution 2.0 Generic license.

A Victoria & Albert Museum installation integrates of biomimicry, robotic fabrication and new materials research in architecture

The Victoria & Albert Museum (V&A) in London, UK, opened its Engineering Season show on May 18, 2016 (it runs until Nov. 6, 2016) featuring a robot installation and an exhibition putting the spotlight on Ove Arup, “the most significant engineer of the 20th century” according to the V&A’s May ??, 2016 press release,

The first major retrospective of the most influential engineer of the 20th century and a site specific installation inspired by nature and fabricated by robots will be the highlights of the V&A’s first ever Engineering Season, complemented by displays, events and digital initiatives dedicated to global engineering design. The V&A Engineering Season will highlight the importance of engineering in our daily lives and consider engineers as the ‘unsung heroes’ of design, who play a vital and creative role in the creation of our built environment.

Before launching into the robot/biomimicry part of this story, here’s a very brief description of why Ove Arup is considered so significant and influential,

Engineering the World: Ove Arup and the Philosophy of Total Design will explore the work and legacy of Ove Arup (1895-1988), … . Ove pioneered a multidisciplinary approach to design that has defined the way engineering is understood and practiced today. Spanning 100 years of engineering and architectural design, the exhibition will be guided by Ove’s writings about design and include his early projects, such as the Penguin Pool at London Zoo, as well as renowned projects by the firm including Sydney Opera House [Australia] and the Centre Pompidou in Paris. Arup’s collaborations with major architects of the 20th century pioneered new approaches to design and construction that remain influential today, with the firm’s legacy visible in many buildings across London and around the world. It will also showcase recent work by Arup, from major infrastructure projects like Crossrail and novel technologies for acoustics and crowd flow analysis, to engineering solutions for open source housing design.

Robots, biomimicry and the Elytra Filament Pavilion

A May 18, 2016 article by Tim Master for BBC (British Broadcasting Corporation) news online describes the pavilion installation,

A robot has taken up residence at the Victoria & Albert Musuem to construct a new installation at its London gardens.

The robot – which resembles something from a car assembly line – will build new sections of the Elytra Filament Pavilion over the coming months.

The futuristic structure will grow and change shape using data based on how visitors interact with it.

Elytra’s canopy is made up of 40 hexagonal cells – made from strips of carbon and glass fibre – which have been tightly wound into shape by the computer-controlled Kuka robot.

Each cell takes about three hours to build. On certain days, visitors to the V&A will be able to watch the robot create new cells that will be added to the canopy.

Here are some images made available by V&A,

Elytra Filament Pavilion arriving at the V&A, 2016. © Victoria and Albert Museum, London

Elytra Filament Pavilion arriving at the V&A, 2016. © Victoria and Albert Museum, London

Kuka robot weaving Elytra Filament Pavilion cell fibres, 2016. © Victoria and Albert Museum, London

Kuka robot weaving Elytra Filament Pavilion cell fibres, 2016. © Victoria and Albert Museum, London

[downloaded from]

[downloaded from]

Elytra Filament Pavilion at the V&A, 2016. © Victoria and Albert Museum, London

Elytra Filament Pavilion at the V&A, 2016. © Victoria and Albert Museum, London

Here’s more detail from the V&A’s Elytra Filament Pavilion installation description,

Elytra Filament Pavilion has been created by experimental German architect Achim Menges with Moritz Dörstelmann, structural engineer Jan Knippers and climate engineer Thomas Auer.

Menges and Knippers are leaders of research institutes at the University of Stuttgart that are pioneering the integration of biomimicry, robotic fabrication and new materials research in architecture. This installation emerges from their ongoing research projects and is their first-ever major commission in the UK.

The pavilion explores the impact of emerging robotic technologies on architectural design, engineering and making.

Its design is inspired by lightweight construction principles found in nature, the filament structures of the forewing shells of flying beetles known as elytra. Made of glass and carbon fibre, each component of the undulating canopy is produced using an innovative robotic winding technique developed by the designers. Like beetle elytra, the pavilion’s filament structure is both very strong and very light – spanning over 200m2 it weighs less than 2,5 tonnes.

Elytra is a responsive shelter that will grow over the course of the V&A Engineering Season. Sensors in the canopy fibres will collect data on how visitors inhabit the pavilion and monitor the structure’s behaviour, ultimately informing how and where the canopy grows. During a series of special events as part of the Engineering Season, visitors will have the opportunity to witness the pavilion’s construction live, as new components are fabricated on-site by a Kuka robot.

Unfortunately, I haven’t been able to find more technical detail, particularly about the materials being used in the construction of the pavilion, on the V&A website.

One observation, I’m a little uncomfortable with how they’re gathering data “Sensors in the canopy fibres will collect data on how visitors inhabit the pavilion … .” It sounds like surveillance to me.

Nonetheless, the Engineering Season offers the promise of a very intriguing approach to fulfilling the V&A’s mandate as a museum dedicated to decorative arts and design.

Spider webs inspire liquid wire

Courtesy University of Oxford

Courtesy University of Oxford

Usually, when science talk runs to spider webs the focus is on strength but this research from the UK and France is all about resilience. From a May 16, 2016 news item on,

Why doesn’t a spider’s web sag in the wind or catapult flies back out like a trampoline? The answer, according to new research by an international team of scientists, lies in the physics behind a ‘hybrid’ material produced by spiders for their webs.

Pulling on a sticky thread in a garden spider’s orb web and letting it snap back reveals that the thread never sags but always stays taut—even when stretched to many times its original length. This is because any loose thread is immediately spooled inside the tiny droplets of watery glue that coat and surround the core gossamer fibres of the web’s capture spiral.

This phenomenon is described in the journal PNAS by scientists from the University of Oxford, UK and the Université Pierre et Marie Curie, Paris, France.

The researchers studied the details of this ‘liquid wire’ technique in spiders’ webs and used it to create composite fibres in the laboratory which, just like the spider’s capture silk, extend like a solid and compress like a liquid. These novel insights may lead to new bio-inspired technology.

A May 16, 2016 University of Oxford press release (also on EurekAlert), which originated the news item, provides more detail,

Professor Fritz Vollrath of the Oxford Silk Group in the Department of Zoology at Oxford University said: ‘The thousands of tiny droplets of glue that cover the capture spiral of the spider’s orb web do much more than make the silk sticky and catch the fly. Surprisingly, each drop packs enough punch in its watery skins to reel in loose bits of thread. And this winching behaviour is used to excellent effect to keep the threads tight at all times, as we can all observe and test in the webs in our gardens.’

The novel properties observed and analysed by the scientists rely on a subtle balance between fibre elasticity and droplet surface tension. Importantly, the team was also able to recreate this technique in the laboratory using oil droplets on a plastic filament. And this artificial system behaved just like the spider’s natural winch silk, with spools of filament reeling and unreeling inside the oil droplets as the thread extended and contracted.

Dr Hervé Elettro, the first author and a doctoral researcher at Institut Jean Le Rond D’Alembert, Université Pierre et Marie Curie, Paris, said: ‘Spider silk has been known to be an extraordinary material for around 40 years, but it continues to amaze us. While the web is simply a high-tech trap from the spider’s point of view, its properties have a huge amount to offer the worlds of materials, engineering and medicine.

‘Our bio-inspired hybrid threads could be manufactured from virtually any components. These new insights could lead to a wide range of applications, such as microfabrication of complex structures, reversible micro-motors, or self-tensioned stretchable systems.’

Here’s a link to and a citation for the paper,

In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties by Hervé Elettro, Sébastien Neukirch, Fritz Vollrath, and Arnaud Antkowiak. PNAS doi: 10.1073/pnas.1602451113

This paper appears to be open access.

Mimicking the sea urchin’s mouth and teeth for space exploration

Researchers at the University of California at San Diego (UCSD) have designed a new device for use in space exploration that is based on the structure and mechanics of a sea urchin’s mouth and teeth. From a May 2, 2016 news item on ScienceDaily,

The sea urchin’s intricate mouth and teeth are the model for a claw-like device developed by a team of engineers and marine biologists at the University of California, San Diego to sample sediments on other planets, such as Mars. The researchers detail their work in a recent issue of the Journal of Visualized Experiments.

A May 2, 2016 UCSD press release (also on EurekAlert), which originated the news item, expands on the theme by hearkening back to Aristotle (a Greek philosopher),

The urchin’s mouthpiece was first described in detail by the Greek philosopher Aristotle, earning it the nickname “Aristotle’s lantern.” It is comprised of an intricate framework of muscles and five curved teeth with triangle-shaped tips that can scrape, cut, chew and bore holes into the toughest rocks—a colony of sea urchins can destroy an entire kelp forest by churning through rock and uprooting seaweed.  The teeth are arranged in a dome-like formation that opens outwards and closes inwards in a smooth motion, similar to a claw in an arcade prize-grabbing machine.

The news release goes on to describe the methodology,

Bio-inspiration for the study came from pink sea urchins (Strongylocentrotus fragilis), which live off the West Coast of North America, at depths ranging from 100 to 1000 meters in the Pacific Ocean. The urchins were collected for scientific research by the Scripps Institution of Oceanography at UC San Diego.

Researchers extracted the urchins’ mouthpieces, scanned them with microCT, essentially a 3D microscopy technique, and analyzed the structures at the National Center for Microscopy and Imaging Research at the School of Medicine at UC San Diego. This allowed engineers to build a highly accurate model of the mouthpiece’s geometry.

Researchers also used finite element analysis to investigate the structure of the teeth, a method that allowed them to determine the importance of the keel to the teeth’s performance.

Engineers then turned the microCT data into a user-friendly file that a team of undergraduate engineering students at UC San Diego used to start iterating prototypes of the claw-like device, under the supervision of Ph.D. students in McKittrick’s lab.

The first iteration was very close to the mouthpiece’s natural structure, but didn’t do a very good job at grasping sand.  In the second iteration, students flattened the pointed end of the teeth so the device would scoop up sand better. But the device wasn’t opening quite right. Finally, on the third iteration, they connected the teeth differently to the rest of the device, which allowed it to open much easier. The students were able to quickly modify each prototype by using 3D printers in the UC San Diego Design Studio.

The device was then attached to a remote-controlled small rover. The researchers first tested the claw on beach sand, where it performed well. They then used the claw on sand that simulates Martian soil in density and humidity (or lack thereof). The device was able to scoop up sand efficiently. Researchers envision a fleet of mini rovers equipped with the claw that could be deployed to collect samples and bring them back to a main rover. Frank hopes that this design will be of interest to NASA [US National Aeronautics and Space Administraton] and SpaceX [a private enterprise for designing, manufacturing, and launching craft bound for space].

Here’s a link to and a citation for the paper,

A Protocol for Bioinspired Design: A Ground Sampler Based on Sea Urchin Jaws by Michael B. Frank, Steven E. Naleway, Taylor S. Wirth, Jae-Young Jung, Charlene L. Cheung, Faviola B. Loera, Sandra Medina, Kirk N. Sato, Jennifer R. A. Taylor, Joanna McKittrick. Journal of Visualized Experiments, 2016; (110) DOI: 10.3791/53554 Date Published: 4/24/2016

This paper and its video are behind a paywall. For those unfamiliar with the Journal of Visualized Experiments (JOVE), it is focused largely on videos which demonstrate the various techniques and protocols being described in the accompanying papers.

The researchers have made an introductory video available courtesy of UCSD,

Chinese scientists develop a novel 3D fabrication technique for bio-inspired hierarchical structures

An April 14, 2016 news item on describes a new 3D fabrication technique devised by Chinese scientists,

Nature is no doubt the world’s best biological engineer, whose simple, exquisite but powerful designs have inspired scientists and engineers to tackle the challenges of technologies for centuries. Scientists recently mimicked the surface structure of a moth’s eye, a unique structure with an antireflective property, to develop a highly light-absorbent graphene material. This is breakthrough [sic] in solar cell technology. Rice leaves and butterfly wings also have unique self-cleaning surface characteristics, which inspire scientists to develop novel materials resistant to biofouling. The bio-inspired periodic multi-scale structures, called hierarchical structures, have recently caught broad attention among scientists in various applications such as solar cells, Light-emitting diodes (LEDs), biomaterials and anti-bacterial surfaces.

An April 14, 2016 Optical Society of American news release (also on EurekAlert), which originated the news item, provides more detail,

Although a number of techniques for fabricating bio-inspired hierarchical structures already exist, most conventional methods either involve complicated processes or are highly time-consuming and low cost-efficiency for industrial applications. Now, a team of researchers from Changchun University of Science and Technology, China, have developed a novel method for the rapid and maskless fabrication of bio-inspired hierarchical structures, using a technique called laser interference lithography.

Specifically, the researchers use the interference pattern of three-and four-beam lasers to fabricate ordered multi-scale surface structures on silicon substrates, with the pattern of hierarchical structures controllable by adjusting the parameters of incident light. In accordance with the theoretical and computer analysis, the researchers have experimentally demonstrated the novel technique’s potential in large-area, low-cost and high-volume 3D fabrication of micro and nanostructures. …

“We presented a flexible and direct method for fabricating ordered multi-scale 3D structures using three- and four-beam interference lithography,” said Zuobin Wang, the primary author and a professor of International Research Centre for Nano Handling and Manufacturing of China at the Changchun University of Science and Technology, China. “Compared with other patterning technologies, our method is simple and efficient in terms of obtaining bio-inspired hierarchical structures.”

Wang mentioned that for certain complicated surface structures, conventional techniques such as electron beam lithography may take several hours or a day to fabricate the pattern, while the laser interference approach only takes several minutes to generate the structure, which makes the technique suitable for high-volume industrial production.

“Laser interference lithography is a maskless patterning technique that uses the interference patterns generated from two or several coherent laser beams to fabricate micro and nanometer periodic patterns over large areas,” Wang said. Different from conventional patterning techniques like electron beam lithography, the laser interference technique enables fabricating the entire substrate surface with one single exposure or one-step lithography.

For example, in Wang’s experiment, the one-dimension multi-scale structure, that is, one-dimension oriented arrangement with the sinusoidal grooves covered with periodic line-like structures was fabricated by exposing the silicon substrate to three or four interfered beams for one time. The resultant surface pattern, though arranged in one direction, has three-dimension spatial structure. To obtain more complicated structures such as two-dimension oriented multi-scale structures, the researchers simply rotated the substrate by 90 degrees in the plane and applied second laser exposure to the surface.

“Laser interference lithography is capable of fabricating homogeneous micro and nanometer structured patterns over areas more than one square meter, which is either impossible or highly time or cost consuming for conventional techniques,” Wang said. These features make laser interference lithography superior to other techniques in terms of efficiency and high-volume production.

According to Wang, their experimental process is simple: a high power laser beam was split into three or four equal beams, which then were directed by mirrors to generate interference patterns to fabricate the surface structures. The laser parameters such as incident angle and azimuthal angle of each beam were adjusted by beam splitters and mirror positions. Other optical devices such as quarter-wave plates and polarizers were used to select the polarization mode and control the energy of laser beams.

“The laser beam parameters are selected according to the desired surface structure and corresponding interference energy distribution calculated from theoretical simulation. In other words, the shapes or patterns of hierarchical structures in our method are controllable by adjusting the parameters of each incident beams,” Wang noted.

According to Wang, the proposed technique could be used to fabricate optical or medical devices such as solar cells, antireflective coatings, self-cleaning and antibacterial surfaces and long-life artificial hip joints.

The researchers’ next step is to develop functional surface structures with controllable wettability, adhesion and reflectivity properties for optical, medical and mechanical applications.

Here’s a link to and a citation for the paper,

Bio-inspired hierarchical patterning of silicon by laser interference lithography by Yaowei Hu, Zuobin Wang, Zhankun Weng, Miao Yu, and Dapeng Wang. Applied Optics Vol. 55, Issue 12, pp. 3226-3232 (2016) doi: 10.1364/AO.55.003226

I believe this paper is behind a paywall.

The researchers have provided this image as an illustration of their concept,

 Caption: This is a Scanning Electron Microscope (SEM) image of a moth eye. Credit: Zuobin Wang/Changchun University of Science and Technology, China

Caption: This is a Scanning Electron Microscope (SEM) image of a moth eye. Credit: Zuobin Wang/Changchun University of Science and Technology, China

Drone fly larvae avoid bacterial contamination due to their nanopillars

This is some fascinating bug research. From an April 6, 2016 news item on,

The immature stage of the drone fly (Eristalis tenax) is known as a “rat-tailed maggot” because it resembles a hairless baby rodent with a “tail” that is actually used as a breathing tube. Rat-tailed maggots are known to live in stagnant, fetid water that is rich in bacteria, fungi, and algae. However, despite this dirty environment, they are able to avoid infection by these microorganisms.

An April 6, 2016 Entomological Society of America news release on EurekAlert, which originated the news item, describes the findings,

Recently, Matthew Hayes, a cell biologist at the Institute of Ophthalmology at University College London in England, discovered never-before-seen structures that appear to keep the maggot mostly free of bacteria, despite living where microorganisms flourish. …

With scanning and transmission electron microscopes, Hayes carefully examined the larva and saw that much of its body is covered with thin spines, or “nanopillars,” that narrow to sharp points. Once he confirmed the spiky structures were indeed part of the maggot, he noticed a direct relationship between the presence of the spines and the absence of bacteria on the surface of the larva. He speculated that the carpet of spines simply makes it impossible for the bacteria to find enough room to adhere to the larva’s body surface.

Here’s an image of the nanopillars,

Caption: This electron-microscope image expose the spines, or "nanopillars," that poke up from the body of the rat-tailed maggot. The length and density of the spines vary as shown in this cross-section image of the cuticle. Credit: Matthew Hayes

Caption: This electron-microscope image expose the spines, or “nanopillars,” that poke up from the body of the rat-tailed maggot. The length and density of the spines vary as shown in this cross-section image of the cuticle. Credit: Matthew Hayes

Back to the news release,

“They’re much like anti-pigeon spikes that keep the birds away because they can’t find a nice surface to land on,” he said.

Hayes also ventured that the spines could possibly have superoleophobic properties (the ability to repel oils), which would also impede the bacteria from colonizing and forming a biofilm that could ultimately harm or kill the maggot. The composition of the spines is as unique as the structures themselves, Hayes said. Each spine appears to consist of a stack of hollow-cored disks, the largest at the bottom and the smallest at the top.

“What I really think they look like is the baby’s toy with the stack of rings of decreasing size, but on a very small scale,” he said. “I’ve worked in many different fields and looked at lots of different things, and I’ve never seen anything that looks like it.”

This work with the rat-tailed maggot is leading him to examine other insects as well, including the ability of another aquatic invertebrate — the mosquito larva — to thwart bacteria. Such antibacterial properties have applications in many different fields, including ophthalmology and other medical fields where biofilms can foul surgical instruments or implanted devices.

For now, though, he’s thrilled about shedding light on the underappreciated rat-tailed maggot and revealing its spiny armor.

“I’ve loved insects since I was a child, when I would breed butterflies and moths,” he said. “I’m just so chuffed to have discovered something a bit new about insects!”

I am charmed by Hayes’s admission of being “chuffed.”

Here’s a link to and a citation for the paper,

Identification of Nanopillars on the Cuticle of the Aquatic Larvae of the Drone Fly (Diptera: Syrphidae) by Matthew J. Hayes, Timothy P. Levine, Roger H. Wilson. DOI: 36 First published online: 30 March 2016

This is an open access paper.

Split some water molecules and save solar and wind (energy) for a future day

Professor Ted Sargent’s research team at the University of Toronto has a developed a new technique for saving the energy harvested by sun and wind farms according to a March 28, 2016 news item on Nanotechnology Now,

We can’t control when the wind blows and when the sun shines, so finding efficient ways to store energy from alternative sources remains an urgent research problem. Now, a group of researchers led by Professor Ted Sargent at the University of Toronto’s Faculty of Applied Science & Engineering may have a solution inspired by nature.

The team has designed the most efficient catalyst for storing energy in chemical form, by splitting water into hydrogen and oxygen, just like plants do during photosynthesis. Oxygen is released harmlessly into the atmosphere, and hydrogen, as H2, can be converted back into energy using hydrogen fuel cells.

Discovering a better way of storing energy from solar and wind farms is “one of the grand challenges in this field,” Ted Sargent says (photo above by Megan Rosenbloom via flickr) Courtesy: University of Toronto

Discovering a better way of storing energy from solar and wind farms is “one of the grand challenges in this field,” Ted Sargent says (photo above by Megan Rosenbloom via flickr) Courtesy: University of Toronto

A March 24, 2016 University of Toronto news release by Marit Mitchell, which originated the news item, expands on the theme,

“Today on a solar farm or a wind farm, storage is typically provided with batteries. But batteries are expensive, and can typically only store a fixed amount of energy,” says Sargent. “That’s why discovering a more efficient and highly scalable means of storing energy generated by renewables is one of the grand challenges in this field.”

You may have seen the popular high-school science demonstration where the teacher splits water into its component elements, hydrogen and oxygen, by running electricity through it. Today this requires so much electrical input that it’s impractical to store energy this way — too great proportion of the energy generated is lost in the process of storing it.

This new catalyst facilitates the oxygen-evolution portion of the chemical reaction, making the conversion from H2O into O2 and H2 more energy-efficient than ever before. The intrinsic efficiency of the new catalyst material is over three times more efficient than the best state-of-the-art catalyst.

Details are offered in the news release,

The new catalyst is made of abundant and low-cost metals tungsten, iron and cobalt, which are much less expensive than state-of-the-art catalysts based on precious metals. It showed no signs of degradation over more than 500 hours of continuous activity, unlike other efficient but short-lived catalysts. …

“With the aid of theoretical predictions, we became convinced that including tungsten could lead to a better oxygen-evolving catalyst. Unfortunately, prior work did not show how to mix tungsten homogeneously with the active metals such as iron and cobalt,” says one of the study’s lead authors, Dr. Bo Zhang … .

“We invented a new way to distribute the catalyst homogenously in a gel, and as a result built a device that works incredibly efficiently and robustly.”

This research united engineers, chemists, materials scientists, mathematicians, physicists, and computer scientists across three countries. A chief partner in this joint theoretical-experimental studies was a leading team of theorists at Stanford University and SLAC National Accelerator Laboratory under the leadership of Dr. Aleksandra Vojvodic. The international collaboration included researchers at East China University of Science & Technology, Tianjin University, Brookhaven National Laboratory, Canadian Light Source and the Beijing Synchrotron Radiation Facility.

“The team developed a new materials synthesis strategy to mix multiple metals homogeneously — thereby overcoming the propensity of multi-metal mixtures to separate into distinct phases,” said Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems at Massachusetts Institute of Technology. “This work impressively highlights the power of tightly coupled computational materials science with advanced experimental techniques, and sets a high bar for such a combined approach. It opens new avenues to speed progress in efficient materials for energy conversion and storage.”

“This work demonstrates the utility of using theory to guide the development of improved water-oxidation catalysts for further advances in the field of solar fuels,” said Gary Brudvig, a professor in the Department of Chemistry at Yale University and director of the Yale Energy Sciences Institute.

“The intensive research by the Sargent group in the University of Toronto led to the discovery of oxy-hydroxide materials that exhibit electrochemically induced oxygen evolution at the lowest overpotential and show no degradation,” said University Professor Gabor A. Somorjai of the University of California, Berkeley, a leader in this field. “The authors should be complimented on the combined experimental and theoretical studies that led to this very important finding.”

Here’s a link to and a citation for the paper,

Homogeneously dispersed, multimetal oxygen-evolving catalysts by Bo Zhang, Xueli Zheng, Oleksandr Voznyy, Riccardo Comin, Michal Bajdich, Max García-Melchor, Lili Han, Jixian Xu, Min Liu, Lirong Zheng, F. Pelayo García de Arquer, Cao Thang Dinh, Fengjia Fan, Mingjian Yuan, Emre Yassitepe, Ning Chen, Tom Regier, Pengfei Liu, Yuhang Li, Phil De Luna, Alyf Janmohamed, Huolin L. Xin, Huagui Yang, Aleksandra Vojvodic, Edward H. Sargent. Science  24 Mar 2016: DOI: 10.1126/science.aaf1525

This paper is behind a paywall.

Namib beetles, cacti, and pitcher plants teach scientists at Harvard University (US)

In this latest work from Harvard University’s Wyss Institute for Biologically Inspired Engineering, scientists have looked at three desert dwellers for survival strategies in water-poor areas. From a Feb. 25, 2015 news item on Nanowerk,

Organisms such as cacti and desert beetles can survive in arid environments because they’ve evolved mechanisms to collect water from thin air. The Namib desert beetle, for example, collects water droplets on the bumps of its shell while V-shaped cactus spines guide droplets to the plant’s body.

As the planet grows drier, researchers are looking to nature for more effective ways to pull water from air. Now, a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard University have drawn inspiration from these organisms to develop a better way to promote and transport condensed water droplets.

A Feb. 24, 2016 Harvard University press release by Leah Burrows (also on EurekAlert), which originated the news item, expands on the theme,

“Everybody is excited about bioinspired materials research,” said Joanna Aizenberg, the Amy Smith Berylson Professor of Materials Science at SEAS and core faculty member of the Wyss Institute. “However, so far, we tend to mimic one inspirational natural system at a time. Our research shows that a complex bio-inspired approach, in which we marry multiple biological species to come up with non-trivial designs for highly efficient materials with unprecedented properties, is a new, promising direction in biomimetics.”

The new system, described in Nature, is inspired by the bumpy shell of desert beetles, the asymmetric structure of cactus spines and slippery surfaces of pitcher plants. The material harnesses the power of these natural systems, plus Slippery Liquid-Infused Porous Surfaces technology (SLIPS) developed in Aizenberg’s lab, to collect and direct the flow of condensed water droplets.

This approach is promising not only for harvesting water but also for industrial heat exchangers.

“Thermal power plants, for example, rely on condensers to quickly convert steam to liquid water,” said Philseok Kim, co-author of the paper and co-founder and vice president of technology at SEAS spin-off SLIPS Technologies, Inc. “This design could help speed up that process and even allow for operation at a higher temperature, significantly improving the overall energy efficiency.”

The major challenges in harvesting atmospheric water are controlling the size of the droplets, speed in which they form and the direction in which they flow.

For years, researchers focused on the hybrid chemistry of the beetle’s bumps — a hydrophilic top with hydrophobic surroundings — to explain how the beetle attracted water. However, Aizenberg and her team took inspiration from a different possibility – that convex bumps themselves also might be able to harvest water.

“We experimentally found that the geometry of bumps alone could facilitate condensation,” said Kyoo-Chul Park, a postdoctoral researcher and the first author of the paper. “By optimizing that bump shape through detailed theoretical modeling and combining it with the asymmetry of cactus spines and the nearly friction-free coatings of pitcher plants, we were able to design a material that can collect and transport a greater volume of water in a short time compared to other surfaces.”

“Without one of those parameters, the whole system would not work synergistically to promote both the growth and accelerated directional transport of even small, fast condensing droplets,” said Park.

“This research is an exciting first step towards developing a passive system that can efficiently collect water and guide it to a reservoir,” said Kim.

Here’s a link to and a citation for the paper,

Condensation on slippery asymmetric bumps by Kyoo-Chul Park, Philseok Kim, Alison Grinthal, Neil He, David Fox, James C. Weaver, & Joanna Aizenberg. Nature (2016) doi:10.1038/nature16956 Published online 24 February 2016

This paper is behind a paywall.

I have featured the Namib beetle and its water harvesting capabilities most recently in a July 29, 2014 posting and the most recent story I have about SLIPS is in an Oct. 14, 2014 posting.

Nanotech Security Corp. stock declining but Cantor Fitzgerald Canada analyst Ralph Garcea gives the stock a buy rating

Linda Rogers has written a Feb. 29, 2016 article about a Vancouver-based company rather perturbingly titled ‘What’s Propelling Nanotech Security Corp to Decline So Much?‘ for Small Cap Wired,

The stock of Nanotech Security Corp (CVE:NTS) is a huge mover today! The stock is down 3.23% or $0.04 after the news [Nanotech Security announced its first quarter fiscal 2016 results in a Feb. 29, 2016 news release], hitting $1.2 per share. … The move comes after 7 months negative chart setup for the $68.48M company. It was reported on Feb, 29 [2016] by We have $1.06 PT which if reached, will make CVE:NTS worth $8.22 million less.

The Feb. 29, 2016 Nanotech Security news release (summary version) highlights the good news first,

  • Revenue of $1.5 million consistent with the same period last year.  Security Features contributed revenues of $569,000 largely from development contracts and Surveillance delivered $940,000.
  • Gross margin improved to 50% up from 34% in the same period last year.  The improvement reflects the increased mix of higher margin Security Features revenue.
  • Renewed a $1.0 million banknote security feature development contract. The Company successfully renewed the third and final phase of a banknote development contract with a top ten issuing authority to develop a unique Optically Variable Device (“OVD”) security feature for incorporation into future banknotes.  The final phase is expected to generate revenues of approximately $1.0 million.
  • Signed new $3.0 million KolourOptik banknote development contract. The Company signed a new three phase development contract to use the KolourOptik™ nanotechnology to develop a unique OVD security features with another G8 country for incorporation into future banknotes.
  • Strategic meetings with large international banknote issuing authority.  The Company continues to work with a large international banknote issuing authority to deliver a significant volume of colour shifting Optical Thin Film (“OTF”), and partner with our KolourOptik™ technology.  Management continues to devote a significant amount of time and resources in advancing these opportunities.
  • Signed a Memorandum of Understanding (“MOU”) with Hueck Folien, a European manufacturer to supply OTF to the banknote market.  The MOU contemplates an operational agreement to collaborate in the volume production of a colour shifting OTF security feature.  The OTF product is anticipated to initially be used in banknotes as threads and then expand into other markets in the future.

Doug Blakeway, Nanotech’s Chairman and CEO commented, “These two development contracts are material achievements.  Issuing authorities are paying us – something not common in the industry – to design unique banknote security features with our OTF and KolourOptik™ technologies.”  He further added, “Nanotech’s team has scaled the Hueck Folien production facility to where we believe together we can provide the initial volumes demanded by a top-ten issuing authority.  Our relationship with Hueck Folien continues to funnel security feature opportunities to Nanotech.”

The company’s sadder news can be found in their seven-page Feb. 29, 2016 news release (PDF). Their net earnings for the final quarter of 2015 and 2014 were both losses but in 2014 their loss was (931,271) and in 2015 it was (1,746,335). Still, the company’s gross profit from revenue for the same time periods was 50% in 2015 as opposed to 34% in 2014 despite slightly less revenue in 2015.

Assuming I’ve read this information correctly, Nanotech Security does seem to be in a fragile situation but that can change. After all, IBM was in serious trouble for a number of years during the 1990s when there was even talk the company might go bankrupt. As far as I’m aware, IBM is no longer in imminent danger of disappearing from the scene. *ETA March 9, 2016: It seems I used the wrong example if Robert X. Cringley’s March 9, 2016 article ‘What’s happening at IBM? (It’s dying)‘ for Beta News is to be believed.)* Getting back to my point, companies do go through cycles and it can be difficult to determine exactly what’s happening at some of the earlier stages.

Certainly, Cantor Fitzgerald Canada analyst Ralph Garcea has an optimistic view of Nanotech Security’s prospects according to a March 1, 2016 article by Nick Waddell for cantech letter,

Nanotech Security (TSXV:NTS) offers a better and more secure solution in multiple market segments that together are worth billions of dollars per year, says Cantor Fitzgerald Canada analyst Ralph Garcea.

This morning [March 1, 2016], Garcea initiated coverage of Nanotech with a “Buy” rating and a one-year price target of $2.50, implying a return of 110 per cent at the time of publication.

Garcea notes that Nanotech has already created solutions for the consumer electronics, brand identification and currency segments. He points out that one of the company’s biggest differentiators is that its solution can be embedded onto almost any material. This is important, he says, because it means that security can be embedded into places it previously could not go, such as directly onto a pharmaceutical pill.

Shares of Nanotech Security closed today [March 1, 2016] up 2.5 per cent to $1.22.

I have written about Nanotech Security frequently and believe the most recent is a Dec. 29, 2015 posting. For those unfamiliar with the company’s technology, it’s based on the structures found on the blue morpho butterfly. The holes in the butterfly’s wings lend it certain optical properties which the company mimics for its anti-counterfeiting technology.

One final comment, I am not endorsing the company or any of the analysis of the company’s financial situation and prospects.

Ice-free materials courtesy of penguins

The Humboldt penguin’s feathers don’t allow ice to form and a team of scientists have figured out why according to a Feb. 24, 2016 news item on Nanotechnology Now,

Humboldt penguins live in places that dip below freezing in the winter, and despite getting wet, their feathers stay sleek and free of ice. Scientists have now figured out what could make that possible. They report in ACS’ Journal of Physical Chemistry C that the key is in the microstructure of penguins’ feathers. Based on their findings, the scientists replicated the architecture in a nanofiber membrane that could be developed into an ice-proof material.

A Feb. 24, 2016 American Chemical Society (ACS) news release on EurekAlert, which originated the news item, provides a bit more detail,

The range of Humboldt penguins extends from coastal Peru to the tip of southern Chile. Some of these areas can get frigid, and the water the birds swim in is part of a cold ocean current that sweeps up the coast from the Antarctic. Their feathers keep them both warm and ice-free. Scientists had suspected that penguin feathers’ ability to easily repel water explained why ice doesn’t accumulate on them: Water would slide off before freezing. But research has found that under high humidity or ultra-low temperatures, ice can stick to even superhydrophobic surfaces. So Jingming Wang and colleagues sought another explanation.

The researchers closely examined Humboldt penguin feathers using a scanning electron microscope. They found that the feathers were comprised of a network of barbs, wrinkled barbules and tiny interlocking hooks. In addition to being hydrophobic, this hierarchical architecture with grooved structures is anti-adhesive. Testing showed ice wouldn’t stick to it. Mimicking the feathers’ microstructure, the researchers developed an icephobic polyimide fiber membrane. They say it could potentially be used in applications such as electrical insulation.

The researchers have provided an image illustrating their work,

[downloaded from]

[downloaded from]

Here’s a link to and a citation for the paper,

Icephobicity of Penguins Spheniscus Humboldti and an Artificial Replica of Penguin Feather with Air-Infused Hierarchical Rough Structures by Shuying Wang, Zhongjia Yang, Guangming Gong, Jingming Wang, Juntao Wu, Shunkun Yang, and Lei Jiang. J. Phys. Chem. C, Article ASAP DOI: 10.1021/acs.jpcc.5b12298 Publication Date (Web): February 3, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.