Category Archives: biomimcry

Enlightening Morpho butterfly

Apparently, the Morpho butterfly (or blue morpho butterfly) could inspire more balanced lighting, from an October 12, 2023 news item on phys.org,

As you watch Morpho butterflies wobble in flight, shimmering in vivid blue color, you’re witnessing an uncommon form of structural color that researchers are only beginning to use in lighting technologies such as optical diffusers. Furthermore, imparting a self-cleaning capability to such diffusers would minimize soiling and staining and maximize practical utility.

Now, in a study recently published in Advanced Optical Materials, researchers at Osaka University have developed a water-repelling nanostructured light diffuser that surpasses the functionality of other common diffusers. This work might help solve common lighting dilemmas in modern technologies.

Caption: Design and diffused light for the anisotropic (left) and isotropic (right) Morpho-type diffusers. It has high optical functionalities and anti-fouling properties, which until now have not been realized in one device. Credit: K.Yamashita, A.Saito

An October 12, 2023 Osaka University press release (also on EurekAlert), which originated the news item, sheds some light on the subject (sorry! I couldn’t resist),

Standard lighting can eventually become tiring because it’s unevenly illuminating. Thus, many display technologies use optical diffusers to make the light output more uniform. However, conventional optical diffusers reduce the light output, don’t work well for all emitted colors, or require special effort to clean. Morpho butterflies are an inspiration for improved optical diffusers. Their randomly arranged multilayer architecture enables structural color: in this case, selective reflection of blue light over a ≥±40° angle from the direction of illumination. The goal of the present work is to use this inspiration from nature to design a simplified optical diffuser that has both high transmittance and wide angular spread, works for a range of colors without dispersion, cleans by a simple water rinse, and can be shaped with standard nanofabrication tools.

“We create two-dimensional nanopatterns—in common transparent polydimethylsiloxane elastomer—of binary height yet random width, and the two surfaces have different structural scales,” explains Kazuma Yamashita, lead author of the study. “Thus, we report an effective optical diffuser for short- and long-wavelength light.”

The researchers tailored the patterns of the diffuser surfaces to optimize the performance for blue and red light, and their self-cleaning properties. The experimentally measured light transmittance was >93% over the entire visible light spectrum, and the light diffusion was substantial and could be controlled into anisotropic shape: 78° in the x-direction and 16° in the y-direction (similar to values calculated by simulations). Furthermore, the surfaces both strongly repelled water in contact angle and self-cleaning experiments.

“Applying protective cover glass layers on either side of the optical diffuser largely maintains the optical properties, yet protects against scratching,” says Akira Saito, senior author. “The glass minimizes the need for careful handling, and indicates our technology’s utility to daylight-harvesting windows.”

This work emphasizes that studying the natural world can provide insights for improved everyday devices; in this case, lighting technologies for visual displays. The fact that the diffuser consists of a cheap material that essentially cleans itself and can be easily shaped with common tools might inspire other researchers to apply the results of this work to electronics and many other fields.

Here’s a link to and a citation for the paper,

Development of a High-Performance, Anti-Fouling Optical Diffuser Inspired by Morpho Butterfly’s Nanostructure by Kazuma Yamashita, Kana Taniguchi, Takuma Hattori, Yuji Kuwahara, Akira Saito. Advanced Opticla Materials DOI: https://doi.org/10.1002/adom.202301086 First published: 26 July 2023

This paper is open access.

Living technology possibilities

Before launching into the possibilities, here are two descriptions of ‘living technology’ from the European Centre for Living Technology’s (ECLT) homepage,

Goals

Promote, carry out and coordinate research activities and the diffusion of scientific results in the field of living technology. The scientific areas for living technology are the nano-bio-technologies, self-organizing and evolving information and production technologies, and adaptive complex systems.

History

Founded in 2004 the European Centre for Living Technology is an international and interdisciplinary research centre established as an inter-university consortium, currently involving 18 European and extra-European institutional affiliates.

The Centre is devoted to the study of technologies that exhibit life-like properties including self-organization, adaptability and the capacity to evolve.

Despite the reference to “nano-bio-technologies,” this October 11, 2023 news item on ScienceDaily focuses on microscale living technology,

It is noIn a recent article in the high-profile journal “Advanced Materials,” researchers in Chemnitz show just how close and necessary the transition to sustainable living technology is, based on the morphogenesis of self-assembling microelectronic modules, strengthening the recent membership of Chemnitz University of Technology with the European Centre for Living Technology (ECLT) in Venice.

An October 11, 2023 Chemnitz University of Technology (Technische Universität Chemnitz; TU Chemnitz) press release (also on EurekAlert), which originated the news item, delves further into the topic, Note: Links have been removed,

It is now apparent that the mass-produced artefacts of technology in our increasingly densely populated world – whether electronic devices, cars, batteries, phones, household appliances, or industrial robots – are increasingly at odds with the sustainable bounded ecosystems achieved by living organisms based on cells over millions of years. Cells provide organisms with soft and sustainable environmental interactions with complete recycling of material components, except in a few notable cases like the creation of oxygen in the atmosphere, and of the fossil fuel reserves of oil and coal (as a result of missing biocatalysts). However, the fantastic information content of biological cells (gigabits of information in DNA alone) and the complexities of protein biochemistry for metabolism seem to place a cellular approach well beyond the current capabilities of technology, and prevent the development of intrinsically sustainable technology.

SMARTLETs: tiny shape-changing modules that collectively self-organize to larger more complex systems

A recent perspective review published in the very high impact journal Advanced Materials this month [October 2023] by researchers at the Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN) of Chemnitz University of Technology, shows how a novel form of high-information-content Living Technology is now within reach, based on microrobotic electronic modules called SMARTLETs, which will soon be capable of self-assembling into complex artificial organisms. The research belongs to the new field of Microelectronic Morphogenesis, the creation of form under microelectronic control, and builds on work over the previous years at Chemnitz University of Technology to construct self-folding and self-locomoting thin film electronic modules, now carrying tiny silicon chiplets between the folds, for a massive increase in information processing capabilities. Sufficient information can now be stored in each module to encode not only complex functions but fabrication recipes (electronic genomes) for clean rooms to allow the modules to be copied and evolved like cells, but safely because of the gating of reproduction through human operated clean room facilities.

Electrical self-awareness during self-assembly

In addition, the chiplets can provide neuromorphic learning capabilities allowing them to improve performance during operation. A further key feature of the specific self-assembly of these modules, based on matching physical bar codes, is that electrical and fluidic connections can be achieved between modules. These can then be employed, to make the electronic chiplets on board “aware” of the state of assembly, and of potential errors, allowing them to direct repair, correct mis-assembly, induce disassembly and form collective functions spanning many modules. Such functions include extended communication (antennae), power harvesting and redistribution, remote sensing, material redistribution etc.

So why is this technology vital for sustainability?

The complete digital fab description for modules, for which actually only a limited number of types are required even for complex organisms, allows their material content, responsible originator and environmentally relevant exposure all to be read out. Prof. Dagmar Nuissl-Gesmann from the Law Department at Chemnitz University of Technology observes that “this fine-grained documentation of responsibility intrinsic down to microscopic scales will be a game changer in allowing legal assignment of environmental and social responsibility for our technical artefacts”.

Furthermore, the self-locomotion and self-assembly-disassembly capabilities allows the modules to self-sort for recycling. Modules can be regained, reused, reconfigured, and redeployed in different artificial organisms. If they are damaged, then their limited and documented types facilitate efficient custom recycling of materials with established and optimized protocols for these sorted and now identical entities. These capabilities complement the other more obvious advantages in terms of design development and reuse in this novel reconfigurable media. As Prof. Marlen Arnold, an expert in Sustainability of the Faculty of Economics and Business Administration observes, “Even at high volumes of deployment use, these properties could provide this technology with a hitherto unprecedented level of sustainability which would set the bar for future technologies to share our planet safely with us.”

Contribution to European Living Technology

This research is a first contribution of MAIN/Chemnitz University of Technology, as a new member of the European Centre for Living Technology ECLT, based in Venice,” says Prof. Oliver G. Schmidt, Scientific Director of the Research Center MAIN and adds that “It’s fantastic to see that our deep collaboration with ECLT is paying off so quickly with immediate transdisciplinary benefit for several scientific communities.” “Theoretical research at the ECLT has been urgently in need of novel technology systems able to implement the core properties of living systems.” comments Prof. John McCaskill, coauthor of the paper, and a grounding director of the ECLT in 2004.

Here’s a link to and a citation for the researchers’ perspective paper,

Microelectronic Morphogenesis: Smart Materials with Electronics Assembling into Artificial Organisms by John S. McCaskill, Daniil Karnaushenko, Minshen Zhu, Oliver G. Schmidt. Advanced Materials DOI: https://doi.org/10.1002/adma.202306344 First published: 09 October 2023

This paper is open access.

FrogHeart’s 2023 comes to an end as 2024 comes into view

My personal theme for this last year (2023) and for the coming year was and is: catching up. On the plus side, my 2023 backlog (roughly six months) to be published was whittled down considerably. On the minus side, I start 2024 with a backlog of two to three months.

2023 on this blog had a lot in common with 2022 (see my December 31, 2022 posting), which may be due to what’s going on in the world of emerging science and technology or to my personal interests or possibly a bit of both. On to 2023 and a further blurring of boundaries:

Energy, computing and the environment

The argument against paper is that it uses up resources, it’s polluting, it’s affecting the environment, etc. Somehow the part where electricity which underpins so much of our ‘smart’ society does the same thing is left out of the discussion.

Neuromorphic (brainlike) computing and lower energy

Before launching into the stories about lowering energy usage, here’s an October 16, 2023 posting “The cost of building ChatGPT” that gives you some idea of the consequences of our insatiable desire for more computing and more ‘smart’ devices,

In its latest environmental report, Microsoft disclosed that its global water consumption spiked 34% from 2021 to 2022 (to nearly 1.7 billion gallons , or more than 2,500 Olympic-sized swimming pools), a sharp increase compared to previous years that outside researchers tie to its AI research. [emphases mine]

“It’s fair to say the majority of the growth is due to AI,” including “its heavy investment in generative AI and partnership with OpenAI,” said Shaolei Ren, [emphasis mine] a researcher at the University of California, Riverside who has been trying to calculate the environmental impact of generative AI products such as ChatGPT.

Why it matters: Microsoft’s five WDM [West Des Moines in Iowa] data centers — the “epicenter for advancing AI” — represent more than $5 billion in investments in the last 15 years.

Yes, but: They consumed as much as 11.5 million gallons of water a month for cooling, or about 6% of WDM’s total usage during peak summer usage during the last two years, according to information from West Des Moines Water Works.

The focus is AI but it doesn’t take long to realize that all computing has energy and environmental costs. I have more about Ren’s work and about water shortages in the “The cost of building ChatGPT” posting.

This next posting would usually be included with my other art/sci postings but it touches on the issues. My October 13, 2023 posting about Toronto’s Art/Sci Salon events, in particular, there’s the Streaming Carbon Footprint event (just scroll down to the appropriate subhead). For the interested, I also found this 2022 paper “The Carbon Footprint of Streaming Media:; Problems, Calculations, Solutions” co-authored by one of the artist/researchers (Laura U. Marks, philosopher and scholar of new media and film at Simon Fraser University) who presented at the Toronto event.

I’m late to the party; Thomas Daigle posted a January 2, 2020 article about energy use and our appetite for computing and ‘smart’ devices for the Canadian Broadcasting Corporation’s online news,

For those of us binge-watching TV shows, installing new smartphone apps or sharing family photos on social media over the holidays, it may seem like an abstract predicament.

The gigabytes of data we’re using — although invisible — come at a significant cost to the environment. Some experts say it rivals that of the airline industry. 

And as more smart devices rely on data to operate (think internet-connected refrigerators or self-driving cars), their electricity demands are set to skyrocket.

“We are using an immense amount of energy to drive this data revolution,” said Jane Kearns, an environment and technology expert at MaRS Discovery District, an innovation hub in Toronto.

“It has real implications for our climate.”

Some good news

Researchers are working on ways to lower the energy and environmental costs, here’s a sampling of 2023 posts with an emphasis on brainlike computing that attest to it,

If there’s an industry that can make neuromorphic computing and energy savings sexy, it’s the automotive indusry,

On the energy front,

Most people are familiar with nuclear fission and some its attendant issues. There is an alternative nuclear energy, fusion, which is considered ‘green’ or greener anyway. General Fusion is a local (Vancouver area) company focused on developing fusion energy, alongside competitors from all over the planet.

Part of what makes fusion energy attractive is that salt water or sea water can be used in its production and, according to that December posting, there are other applications for salt water power,

More encouraging developments in environmental science

Again, this is a selection. You’ll find a number of nano cellulose research projects and a couple of seaweed projects (seaweed research seems to be of increasing interest).

All by myself (neuromorphic engineering)

Neuromorphic computing is a subset of neuromorphic engineering and I stumbled across an article that outlines the similarities and differences. My ‘summary’ of the main points and a link to the original article can be found here,

Oops! I did it again. More AI panic

I included an overview of the various ‘recent’ panics (in my May 25, 2023 posting below) along with a few other posts about concerning developments but it’s not all doom and gloom..

Governments have realized that regulation might be a good idea. The European Union has a n AI act, the UK held an AI Safety Summit in November 2023, the US has been discussing AI regulation with its various hearings, and there’s impending legislation in Canada (see professor and lawyer Michael Geist’s blog for more).

A long time coming, a nanomedicine comeuppance

Paolo Macchiarini is now infamous for his untested, dangerous approach to medicine. Like a lot of people, I was fooled too as you can see in my August 2, 2011 posting, “Body parts nano style,”

In early July 2011, there were reports of a new kind of transplant involving a body part made of a biocomposite. Andemariam Teklesenbet Beyene underwent a trachea transplant that required an artificial windpipe crafted by UK experts then flown to Sweden where Beyene’s stem cells were used to coat the windpipe before being transplanted into his body.

It is an extraordinary story not least because Beyene, a patient in a Swedish hospital planning to return to Eritrea after his PhD studies in Iceland, illustrates the international cooperation that made the transplant possible.

The scaffolding material for the artificial windpipe was developed by Professor Alex Seifalian at the University College London in a landmark piece of nanotechnology-enabled tissue engineering. …

Five years later I stumbled across problems with Macchiarini’s work as outlined in my April 19, 2016 posting, “Macchiarini controversy and synthetic trachea transplants (part 1 of 2)” and my other April 19, 2016 posting, “Macchiarini controversy and synthetic trachea transplants (part 2 of 2)“.

This year, Gretchen Vogel (whose work was featured in my 2016 posts) has written a June 21, 2023 update about the Macchiarini affair for Science magazine, Note: Links have been removed,

Surgeon Paolo Macchiarini, who was once hailed as a pioneer of stem cell medicine, was found guilty of gross assault against three of his patients today and sentenced to 2 years and 6 months in prison by an appeals court in Stockholm. The ruling comes a year after a Swedish district court found Macchiarini guilty of bodily harm in two of the cases and gave him a suspended sentence. After both the prosecution and Macchiarini appealed that ruling, the Svea Court of Appeal heard the case in April and May. Today’s ruling from the five-judge panel is largely a win for the prosecution—it had asked for a 5-year sentence whereas Macchiarini’s lawyer urged the appeals court to acquit him of all charges.

Macchiarini performed experimental surgeries on the three patients in 2011 and 2012 while working at the renowned Karolinska Institute. He implanted synthetic windpipes seeded with stem cells from the patients’ own bone marrow, with the hope the cells would multiply over time and provide an enduring replacement. All three patients died when the implants failed. One patient died suddenly when the implant caused massive bleeding just 4 months after it was implanted; the two others survived for 2.5 and nearly 5 years, respectively, but suffered painful and debilitating complications before their deaths.

In the ruling released today, the appeals judges disagreed with the district court’s decision that the first two patients were treated under “emergency” conditions. Both patients could have survived for a significant length of time without the surgeries, they said. The third case was an “emergency,” the court ruled, but the treatment was still indefensible because by then Macchiarini was well aware of the problems with the technique. (One patient had already died and the other had suffered severe complications.)

A fictionalized tv series ( part of the Dr. Death anthology series) based on Macchiarini’s deceptions and a Dr. Death documentary are being broadcast/streamed in the US during January 2024. These come on the heels of a November 2023 Macchiarini documentary also broadcast/streamed on US television.

Dr. Death (anthology), based on the previews I’ve seen, is heavily US-centric, which is to be expected since Adam Ciralsky is involved in the production. Ciralsky wrote an exposé about Macchiarini for Vanity Fair published in 2016 (also featured in my 2016 postings). From a December 20, 2023 article by Julie Miller for Vanity Fair, Note: A link has been removed,

Seven years ago [2016], world-renowned surgeon Paolo Macchiarini was the subject of an ongoing Vanity Fair investigation. He had seduced award-winning NBC producer Benita Alexander while she was making a special about him, proposed, and promised her a wedding officiated by Pope Francis and attended by political A-listers. It was only after her designer wedding gown was made that Alexander learned Macchiarini was still married to his wife, and seemingly had no association with the famous names on their guest list.

Vanity Fair contributor Adam Ciralsky was in the midst of reporting the story for this magazine in the fall of 2015 when he turned to Dr. Ronald Schouten, a Harvard psychiatry professor. Ciralsky sought expert insight into the kind of fabulist who would invent and engage in such an audacious lie.

“I laid out the story to him, and he said, ‘Anybody who does this in their private life engages in the same conduct in their professional life,” recalls Ciralsky, in a phone call with Vanity Fair. “I think you ought to take a hard look at his CVs.”

That was the turning point in the story for Ciralsky, a former CIA lawyer who soon learned that Macchiarini was more dangerous as a surgeon than a suitor. …

Here’s a link to Ciralsky’s original article, which I described this way, from my April 19, 2016 posting (part 2 of the Macchiarini controversy),

For some bizarre frosting on this disturbing cake (see part 1 of the Macchiarini controversy and synthetic trachea transplants for the medical science aspects), a January 5, 2016 Vanity Fair article by Adam Ciralsky documents Macchiarini’s courtship of an NBC ([US] National Broadcasting Corporation) news producer who was preparing a documentary about him and his work.

[from Ciralsky’s article]

“Macchiarini, 57, is a magnet for superlatives. He is commonly referred to as “world-renowned” and a “super-surgeon.” He is credited with medical miracles, including the world’s first synthetic organ transplant, which involved fashioning a trachea, or windpipe, out of plastic and then coating it with a patient’s own stem cells. That feat, in 2011, appeared to solve two of medicine’s more intractable problems—organ rejection and the lack of donor organs—and brought with it major media exposure for Macchiarini and his employer, Stockholm’s Karolinska Institute, home of the Nobel Prize in Physiology or Medicine. Macchiarini was now planning another first: a synthetic-trachea transplant on a child, a two-year-old Korean-Canadian girl named Hannah Warren, who had spent her entire life in a Seoul hospital. … “

Other players in the Macchiarini story

Pierre Delaere, a trachea expert and professor of head and neck surgery at KU Leuven (a university in Belgium) was one of the first to draw attention to Macchiarini’s dangerous and unethical practices. To give you an idea of how difficult it was to get attention for this issue, there’s a September 1, 2017 article by John Rasko and Carl Power for the Guardian illustrating the issue. Here’s what they had to say about Delaere and other early critics of the work, Note: Links have been removed,

Delaere was one of the earliest and harshest critics of Macchiarini’s engineered airways. Reports of their success always seemed like “hot air” to him. He could see no real evidence that the windpipe scaffolds were becoming living, functioning airways – in which case, they were destined to fail. The only question was how long it would take – weeks, months or a few years.

Delaere’s damning criticisms appeared in major medical journals, including the Lancet, but weren’t taken seriously by Karolinska’s leadership. Nor did they impress the institute’s ethics council when Delaere lodged a formal complaint. [emphases mine]

Support for Macchiarini remained strong, even as his patients began to die. In part, this is because the field of windpipe repair is a niche area. Few people at Karolinska, especially among those in power, knew enough about it to appreciate Delaere’s claims. Also, in such a highly competitive environment, people are keen to show allegiance to their superiors and wary of criticising them. The official report into the matter dubbed this the “bandwagon effect”.

With Macchiarini’s exploits endorsed by management and breathlessly reported in the media, it was all too easy to jump on that bandwagon.

And difficult to jump off. In early 2014, four Karolinska doctors defied the reigning culture of silence [emphasis mine] by complaining about Macchiarini. In their view, he was grossly misrepresenting his results and the health of his patients. An independent investigator agreed. But the vice-chancellor of Karolinska Institute, Anders Hamsten, wasn’t bound by this judgement. He officially cleared Macchiarini of scientific misconduct, allowing merely that he’d sometimes acted “without due care”.

For their efforts, the whistleblowers were punished. [emphasis mine] When Macchiarini accused one of them, Karl-Henrik Grinnemo, of stealing his work in a grant application, Hamsten found him guilty. As Grinnemo recalls, it nearly destroyed his career: “I didn’t receive any new grants. No one wanted to collaborate with me. We were doing good research, but it didn’t matter … I thought I was going to lose my lab, my staff – everything.”

This went on for three years until, just recently [2017], Grinnemo was cleared of all wrongdoing.

It is fitting that Macchiarini’s career unravelled at the Karolinska Institute. As the home of the Nobel prize in physiology or medicine, one of its ambitions is to create scientific celebrities. Every year, it gives science a show-business makeover, picking out from the mass of medical researchers those individuals deserving of superstardom. The idea is that scientific progress is driven by the genius of a few.

It’s a problematic idea with unfortunate side effects. A genius is a revolutionary by definition, a risk-taker and a law-breaker. Wasn’t something of this idea behind the special treatment Karolinska gave Macchiarini? Surely, he got away with so much because he was considered an exception to the rules with more than a whiff of the Nobel about him. At any rate, some of his most powerful friends were themselves Nobel judges until, with his fall from grace, they fell too.

The September 1, 2017 article by Rasko and Power is worth the read if you have the interest and the time. And, Delaere has written up a comprehensive analysis, which includes basic information about tracheas and more, “The Biggest Lie in Medical History” 2020, PDF, 164 pp., Creative Commons Licence).

I also want to mention Leonid Schneider, science journalist and molecular cell biologist, whose work the Macchiarini scandal on his ‘For Better Science’ website was also featured in my 2016 pieces. Schneider’s site has a page titled, ‘Macchiarini’s trachea transplant patients: the full list‘ started in 2017 and which he continues to update with new information about the patients. The latest update was made on December 20, 2023.

Promising nanomedicine research but no promises and a caveat

Most of the research mentioned here is still in the laboratory. i don’t often come across work that has made its way to clinical trials since the focus of this blog is emerging science and technology,

*If you’re interested in the business of neurotechnology, the July 17, 2023 posting highlights a very good UNESCO report on the topic.

Funky music (sound and noise)

I have couple of stories about using sound for wound healing, bioinspiration for soundproofing applications, detecting seismic activity, more data sonification, etc.

Same old, same old CRISPR

2023 was relatively quiet (no panics) where CRISPR developments are concerned but still quite active.

Art/Sci: a pretty active year

I didn’t realize how active the year was art/sciwise including events and other projects until I reviewed this year’s postings. This is a selection from 2023 but there’s a lot more on the blog, just use the search term, “art/sci,” or “art/science,” or “sciart.”

While I often feature events and projects from these groups (e.g., June 2, 2023 posting, “Metacreation Lab’s greatest hits of Summer 2023“), it’s possible for me to miss a few. So, you can check out Toronto’s Art/Sci Salon’s website (strong focus on visual art) and Simon Fraser University’s Metacreation Lab for Creative Artificial Intelligence website (strong focus on music).

My selection of this year’s postings is more heavily weighted to the ‘writing’ end of things.

Boundaries: life/nonlife

Last year I subtitled this section, ‘Aliens on earth: machinic biology and/or biological machinery?” Here’s this year’s selection,

Canada’s 2023 budget … military

2023 featured an unusual budget where military expenditures were going to be increased, something which could have implications for our science and technology research.

Then things changed as Murray Brewster’s November 21, 2023 article for the Canadian Broadcasting Corporation’s (CBC) news online website comments, Note: A link has been removed,

There was a revelatory moment on the weekend as Defence Minister Bill Blair attempted to bridge the gap between rhetoric and reality in the Liberal government’s spending plans for his department and the Canadian military.

Asked about an anticipated (and long overdue) update to the country’s defence policy (supposedly made urgent two years ago by Russia’s full-on invasion of Ukraine), Blair acknowledged that the reset is now being viewed through a fiscal lens.

“We said we’re going to bring forward a new defence policy update. We’ve been working through that,” Blair told CBC’s Rosemary Barton Live on Sunday.

“The current fiscal environment that the country faces itself does require (that) that defence policy update … recognize (the) fiscal challenges. And so it’ll be part of … our future budget processes.”

One policy goal of the existing defence plan, Strong, Secure and Engaged, was to require that the military be able to concurrently deliver “two sustained deployments of 500 [to] 1,500 personnel in two different theaters of operation, including one as a lead nation.”

In a footnote, the recent estimates said the Canadian military is “currently unable to conduct multiple operations concurrently per the requirements laid out in the 2017 Defence Policy. Readiness of CAF force elements has continued to decrease over the course of the last year, aggravated by decreasing number of personnel and issues with equipment and vehicles.”

Some analysts say they believe that even if the federal government hits its overall budget reduction targets, what has been taken away from defence — and what’s about to be taken away — won’t be coming back, the minister’s public assurances notwithstanding.

10 years: Graphene Flagship Project and Human Brain Project

Graphene and Human Brain Project win biggest research award in history (& this is the 2000th post)” on January 28, 2013 was how I announced the results of what had been a a European Union (EU) competition that stretched out over several years and many stages as projects were evaluated and fell to the wayside or were allowed onto the next stage. The two finalists received €1B each to be paid out over ten years.

Future or not

As you can see, there was plenty of interesting stuff going on in 2023 but no watershed moments in the areas I follow. (Please do let me know in the Comments should you disagree with this or any other part of this posting.) Nanotechnology seems less and less an emerging science/technology in itself and more like a foundational element of our science and technology sectors. On that note, you may find my upcoming (in 2024) post about a report concerning the economic impact of its National Nanotechnology Initiative (NNI) from 2002 to 2022 of interest.

Following on the commercialization theme, I have noticed an increase of interest in commercializing brain and brainlike engineering technologies, as well as, more discussion about ethics.

Colonizing the brain?

UNESCO held events such as, this noted in my July 17, 2023 posting, “Unveiling the Neurotechnology Landscape: Scientific Advancements, Innovations and Major Trends—a UNESCO report” and this noted in my July 7, 2023 posting “Global dialogue on the ethics of neurotechnology on July 13, 2023 led by UNESCO.” An August 21, 2023 posting, “Ethical nanobiotechnology” adds to the discussion.

Meanwhile, Australia has been producing some very interesting mind/robot research, my June 13, 2023 posting, “Mind-controlled robots based on graphene: an Australian research story.” I have more of this kind of research (mind control or mind reading) from Australia to be published in early 2024. The Australians are not alone, there’s also this April 12, 2023 posting, “Mind-reading prosthetic limbs” from Germany.

My May 12, 2023 posting, “Virtual panel discussion: Canadian Strategies for Responsible Neurotechnology Innovation on May 16, 2023” shows Canada is entering the discussion. Unfortunately, the Canadian Science Policy Centre (CSPC), which held the event, has not posted a video online even though they have a youtube channel featuring other of their events.

As for neurmorphic engineering, China has produced a roadmap for its research in this area as noted in my March 20, 2023 posting, “A nontraditional artificial synaptic device and roadmap for Chinese research into neuromorphic devices.”

Quantum anybody?

I haven’t singled it out in this end-of-year posting but there is a great deal of interest in quantum computer both here in Canada and elsewhere. There is a 2023 report from the Council of Canadian Academies on the topic of quantum computing in Canada, which I hope to comment on soon.

Final words

I have a shout out for the Canadian Science Policy Centre, which celebrated its 15th anniversary in 2023. Congratulations!

For everyone, I wish peace on earth and all the best for you and yours in 2024!

They glow under stress: soft, living materials made with algae

Caption: These soft, living materials glow in response to mechanical stress, such as compression, stretching or twisting. Credit: UC San Diego Jacobs School of Engineering

An October 20, 2023 news item on phys.org describes research into bioluminescent materials, Note: A link has been removed,

A team of researchers led by the University of California San Diego has developed soft yet durable materials that glow in response to mechanical stress, such as compression, stretching or twisting. The materials derive their luminescence from single-celled algae known as dinoflagellates.

The work, inspired by the bioluminescent waves observed during red tide events at San Diego’s beaches, was published Oct. 20 [2023] in Science Advances.

An October 23, 2023 University of California at San Diego news release (also on EurekAlert but published October 20, 2023) by Liezel Labios, which originated the news item, delves further into the research,

An exciting feature of these materials is their inherent simplicity—they need no electronics, no external power source,” said study senior author Shengqiang Cai, a professor of mechanical and aerospace engineering at the UC San Diego Jacobs School of Engineering. “We demonstrate how we can harness the power of nature to directly convert mechanical stimuli into light emission.”

This study was a multi-disciplinary collaboration involving engineers and materials scientists in Cai’s lab, marine biologist Michael Latz at UC San Diego’s Scripps Institution of Oceanography, and physics professor Maziyar Jalaal at University of Amsterdam.

The primary ingredients of the bioluminescent materials are dinoflagellates and a seaweed-based polymer called alginate. These elements were mixed to form a solution, which was then processed with a 3D printer to create a diverse array of shapes, such as grids, spirals, spiderwebs, balls, blocks and pyramid-like structures. The 3D-printed structures were then cured as a final step.

When the materials are subjected to compression, stretching or twisting, the dinoflagellates within them respond by emitting light. This response mimics what happens in the ocean, when dinoflagellates produce flashes of light as part of a predator defense strategy. In tests, the materials glowed when the researchers pressed on them and traced patterns on their surface. The materials were even sensitive enough to glow under the weight of a foam ball rolling on their surface.

The greater the applied stress, the brighter the glow. The researchers were able to quantify this behavior and developed a mathematical model that can predict the intensity of the glow based on the magnitude of the mechanical stress applied.

The researchers also demonstrated techniques to make these materials resilient in various experimental conditions. To reinforce the materials so that they can bear substantial mechanical loads, a second polymer, poly(ethylene glycol) diacrylate, was added to the original blend. Also, coating the materials with a stretchy rubber-like polymer called Ecoflex provided protection in acidic and basic solutions. With this protective layer, the materials could even be stored in seawater for up to five months without losing their form or bioluminescent properties.

Another beneficial feature of these materials is their minimal maintenance requirements. To keep working, the dinoflagellates within the materials need periodic cycles of light and darkness. During the light phase, they photosynthesize to produce food and energy, which are then used in the dark phase to emit light when mechanical stress is applied. This behavior mirrors the natural processes at play when the dinoflagellates cause bioluminescence in the ocean during red tide events. 

“This current work demonstrates a simple method to combine living organisms with non-living components to fabricate novel materials that are self-sustaining and are sensitive to fundamental mechanical stimuli found in nature,” said study first author Chenghai Li, a mechanical and aerospace engineering Ph.D. candidate in Cai’s lab.

The researchers envision that these materials could potentially be used as mechanical sensors to gauge pressure, strain or stress. Other potential applications include soft robotics and biomedical devices that use light signals to perform treatment or controlled drug release.

However, there is much work to be done before these applications can be realized. The researchers are working on further improving and optimizing the materials.

Here’s a link to and a citation for the paper,

Ultrasensitive and robust mechanoluminescent living composites by Chenghai Li, Nico Schramma, Zijun Wang, Nada F. Qari, Maziyar Jalaal, Michael I. Latz, and Shengqiang Cai. Science Advances 20 Oct 2023 Vol 9, Issue 42 DOI: 10.1126/sciadv.adi8643

This paper is open access.

Using insect corpses to create biodegradable plastics

Caption: Black soldier flies are a good source of chemicals to make bioplastics. Credit: Cassidy Tibbetts

The American Chemical Society (ACS) held its Fall 2023 meeting (Aug. 13 -17, 2023) and amongst roughly 12,000 presentations there was this one on insects and degradable plastics as described in an August 14, 2023 ACS news release (also on EurekAlert),

Imagine using insects as a source of chemicals to make plastics that can biodegrade later — with the help of that very same type of bug. That concept is closer to reality than you might expect. Today, researchers will describe their progress to date, including isolation and purification of insect-derived chemicals and their conversion into functional bioplastics.

The researchers will present their results at the fall meeting of the American Chemical Society (ACS). ACS Fall 2023 is a hybrid meeting being held virtually and in-person Aug. 13–17, and features about 12,000 presentations on a wide range of science topics.

“For 20 years, my group has been developing methods to transform natural products — such as glucose obtained from sugar cane or trees — into degradable, digestible polymers that don’t persist in the environment,” says Karen Wooley, Ph.D., the project’s principal investigator. “But those natural products are harvested from resources that are also used for food, fuel, construction and transportation.”

So Wooley began searching for alternative sources that wouldn’t have these competing applications. Her colleague Jeffery Tomberlin, Ph.D., suggested she could use waste products left over from farming black soldier flies, an expanding industry that he has been helping to develop.

The larvae of these flies contain many proteins and other nutritious compounds, so the immature insects are increasingly being raised for animal feed and to consume wastes. However, the adults have a short life span after their breeding days are over and are then discarded. At Tomberlin’s suggestion, those adult carcasses became the new starting material for Wooley’s team. “We’re taking something that’s quite literally garbage and making something useful out of it,” says Cassidy Tibbetts, a graduate student working on the project in Wooley’s lab at Texas A&M University.

When Tibbetts examined the dead flies, she determined that chitin is a major component. This nontoxic, biodegradable, sugar-based polymer strengthens the shell, or exoskeleton, of insects and crustaceans. Manufacturers already extract chitin from shrimp and crab shells for various applications, and Tibbetts has been applying similar techniques using ethanol rinses, acidic demineralization, basic deproteinization and bleach decolorization to extract and purify it from the insect carcasses. She says her fly-sourced chitin powder is probably purer, since it lacks the yellowish color and clumpy texture of the traditional product. She also notes that obtaining chitin from flies could avoid possible concerns over some seafood allergies. Some other researchers isolate chitin or proteins from fly larvae, but Wooley says her team is the first that she knows of to use chitin from discarded adult flies, which — unlike the larvae — aren’t used for feed.

While Tibbetts continues to refine her extraction techniques, Hongming Guo, another graduate student in Wooley’s lab, has been converting the purified fly chitin into a similar polymer known as chitosan. [emphasis mine] He does this by stripping off chitin’s acetyl groups. That exposes chemically reactive amino groups that can be functionalized and then crosslinked. These steps transform chitosan into useful bioplastics such as superabsorbent hydrogels, which are 3D polymer networks that absorb water.

Guo has produced a hydrogel that can absorb 47 times its weight in water in just one minute. This product could potentially be used in cropland soil to capture floodwater and then slowly release moisture during subsequent droughts, Wooley says. “Here in Texas, we’re constantly either in a flood or drought situation,” she explains, “so I’ve been trying to think of how we can make a superabsorbent hydrogel that could address this.” And because the hydrogel is biodegradable, she says it should gradually release its molecular components as nutrients for crops.

This summer, the team is starting a project to break down chitin into its monomeric glucosamines. These small sugar molecules will then be used to make bioplastics, such as polycarbonates or polyurethanes, which are traditionally made from petrochemicals. Black soldier flies also contain many other useful compounds that the group plans to use as starting materials, including proteins, DNA, fatty acids, lipids and vitamins.

The products made from these chemical building blocks are intended to degrade or digest when they’re discarded, so they won’t contribute to the current plastic pollution problem. Wooley’s vision for that process would align it with the sustainable, circular economy concept: “Ultimately, we’d like the insects to eat the waste plastic as their food source, and then we would harvest them again and collect their components to make new plastics,” she says. “So the insects would not only be the source, but they would also then consume the discarded plastics.”

The researchers acknowledge support and funding from the Welch Foundation and a private donation.

As you can see from the news release, there were two related presentations,

Title
Harvesting of building blocks from insect feedstocks for transformation into carbohydrate-derived superabsorbent hydrogels

Abstract
A primary interest in the Wooley laboratory is the production of functional polymers from renewable sources that are capable of reverting to those natural products once their purpose has been served. As scaled-up production of biomass-based biodegradable polymers continues to grow, we’ve recognized a need to avoid competition with resources that are important to food, fuel, construction and other societal demands. Therefore, we’re turning to unique supply chains, including harvesting of naturally-derived building blocks from black soldier flies (BSF), a rapidly growing feed crop industry. This presentation will highlight efforts to isolate carbohydrate feedstocks from BSF and transform them into superabsorbent hydrogel materials, which are designed to address global challenges with flooding and drought associated with climate change.

Title
Harvesting of naturally-derived building blocks from adult black soldier flies

Abstract
The urgent threat to our environment created by plastic pollution has continued to grow and develop as we face the well-established problems arising from traditional plastic production using petrochemicals and their accumulation. Polymeric materials constructed from natural building blocks are promising candidates to displace environmentally-persistent petrochemical counterparts, due to their similar thermal and mechanical properties and greater breadth of compositions, structures and properties, sustainability and degradability, thereby redefining the current plastic economy. A key goal in the exploration of building blocks from natural polymers is to avoid competition with resources critical to food, fuel, construction and other societal demands. This requires turning to unique supply chains, such as black soldier flies (BSF).

BSF provides an immense array of potential utility to society, ranging from being a protein source for animal feed to composting waste. However, the larvae are almost exclusively of use for these processes and the adults serve the sole purpose of reproducing. Once the adults die, they are currently considered as waste and disposed of. Intrigued with the opportunity to create a value chain using the adult BSF, studies focusing on optimization and scalability for the digestion of adult black soldier flies to produce high quality chitin and utilize it as a feedstock for the production of super-absorbent hydrogel networks will be discussed.

If you’d like to know more about this work, there’s an ACS Fall 2023 Media Briefings webpage, which includes the briefing for “Transforming flies into degradable plastics.” It runs approximately 10 mins. 29 secs.

The art and science of architecture that is ‘living-like’

Biology in the service of architecture, from a June 21, 2023 news item on phys.org, Note: Links have been removed,

“This technology is not alive,” says Laia Mogas-Soldevila. “It is living-like.”

The distinction is an important one for the assistant professor at the Stuart Weitzman School of Design [University of Pennsylvania], for reasons both scientific and artistic. With a doctorate in biomedical engineering, several degrees in architecture, and a devotion to sustainable design, Mogas-Soldevila brings biology to everyday life, creating materials for a future built halfway between nature and artifice.

A June 21, 2023 University of Pennsylvania news release (from a Penn Engineering Today blog posting by Devorah Fischler; also on EurekAlert), which originated the news item, provides more details, Note: Links have been removed,

The architectural technology she describes is unassuming at first look: A freeze-dried pellet, small enough to get lost in your pocket. But this tiny lump of matter, the result of more than a year’s collaboration between designers, engineers and biologists, is a biomaterial that contains a “living-like” system.

When touched by water, the pellet activates and expresses a glowing protein, its fluorescence demonstrating that life and art can harmonize into a third and very different thing, as ready to please as to protect. Woven into lattices made of flexible natural materials promoting air and moisture flow, the pellets form striking interior design elements that could one day keep us healthy.

“We envision them as sensors,” explains Mogas-Soldevila. “They may detect pathogens, such as bacteria or viruses, or alert people to toxins inside their home. The pellets are designed to interact with air. With development, they could monitor or even clean it.”

For now, they glow, a triumphant first stop on the team’s roadmap to the future. The fluorescence establishes that the lab’s biomaterial manufacturing process is compatible with the leading-edge cell-free engineering that gives the pellets their life-like properties.

A rapidly expanding technology, cell-free protein expression systems allow researchers to manufacture proteins without the use of living cells.

Gabrielle Ho, Ph.D. candidate in the Department of Bioengineering and co-leader of the project, explains how the team’s design work came to be cell-free, a technique rarely explored outside of lab study or medical applications.

“Typically, we’d use living E. coli cells to make a protein,” says Ho. “E. coli is a biological workhorse, accessible and very productive. We’d introduce DNA to the cell to encourage expression of specific proteins. But this traditional method was not an option for this project. You can’t have engineered E. coli hanging on your walls.”

Cell-free systems contain all the components a living cell requires to manufacture protein —energy, enzymes and amino acids — and not much else. These systems are therefore not alive. They do not replicate, and neither can they cause infection. They are “living-like,” designed to take in DNA and push out protein in ways that previously were only possible using living cells.

“One of the nicest things about these materials not being alive,” says Mogas-Soldevila, “is that we don’t need to worry about keeping them that way.”

Unlike living cells, cell-free materials don’t need a wet environment or constant monitoring in a lab. The team’s research has established a process for making these dry pellets that preserves bioactivity throughout manufacturing, storage and use.

Bioactive, expressive and programmable, this technology is designed to capitalize on the unique properties of organic materials.

Mogas-Soldevila, whose lab focuses exclusively on biodegradable architecture, understands the value of biomaterials as both environmentally responsible and aesthetically rich.

“Architects are coming to the realization that conventional materials — concrete, steel, glass, ceramic, etc. — are environmentally damaging and they are becoming more and more interested in alternatives to replace at least some of them. Because we use so much, even being able to replace a small percentage would result in a significant reduction in waste and pollution.”

Her lab’s signature materials — biopolymers made from shrimp shells, wood pulp, sand and soil, silk cocoons, and algae gums — lend qualities over and above their sustainable advantages.

“My obsession is diagnostic, but my passion is playfulness,” says Mogas-Soldevila. “Biomaterials are the only materials that can encapsulate this double function observed in nature.”

This multivalent approach benefited from the help of Penn Engineering’s George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace, and the support of its director, Sevile Mannickarottu. In addition to contributing essential equipment and research infrastructure to the team, Mannickarottu was instrumental in enabling the interdisciplinary relationships that led the team to success, introducing Ho to the DumoLab Research team collaborators. These include Mogas-Soldevila, Camila Irabien, a Penn Biology major who provided crucial contributions to experimental work, and Fulbright design fellow Vlasta Kubušová, who co-led the project during her time at Penn and who will continue fueling the project’s next steps.

The cell-free manufacturing and design research required unique dialogues between science and art, categories that Ho believed to be entirely separate before embarking on this project.

“I learned so much from the approach the designers brought to the lab,” says Ho. “Usually, in science, we have a specific problem or hypothesis that we systematically work towards.”

But in this collaboration, things were different. Open-ended. The team sought a living-like platform that does sensing and tells people about interactive matter. They needed to explore, step by step, how to get there.

“Design is only limited by imagination. We sought a technology that could help build towards a vision, and that turned out to be cell-free” says Ho.

“For my part,” says Mogas-Soldevila, “it was inspiring to witness the rigor and attention to constraints that bioengineering brings.”

The constraints were many — machine constraints, biological constraints, financial constraints and space constraints.

“But as we kept these restrictions in play,” she continues, “we asked our most pressing creative questions. Can materials warn us of invisible threats? How will humans react to these bioactive sites? Will they be beautiful? Will they be weird? Most importantly, will they enable a new aesthetic relationship with the potential of bio-based and bioactive matter?”

Down the line, the cell-free pellets and biopolymer lattices could drape protectively over our interior lives, caring for our mental and physical health. For now, research is ongoing, the poetry of design energized by constraint, the constraint of engineering energized by poetry. [emphases mine]

The “poetry of design” and “engineering energized by poetry,” eh? (I have a few comments about science, in my September 11, 2023 posting; scroll down to the ‘Poetry and physics’ subhead.)

Back on topic, here’s a link to and a citation for the paper,

Multiscale design of cell-free biologically active architectural structures by G. Ho, V. Kubušová, C. Irabien, V. Li, A. Weinstein, Sh. Chawla, D. Yeung, A. Mershin, K. Zolotovsky, L. Mogas-Soldevila. Front. Bioeng. Biotechnol., 28 March 2023 Volume 11 – 2023 DOI: https://doi.org/10.3389/fbioe.2023.1125156

This paper appears to be open access.

Building materials made with knitted molds and the root network of fungi

Caption: A 1.8m high, 2m diameter freestanding structure [mycelium vault], made of the BioKnit mycocrete using knitted formwork. Two people are sitting inside it. Credit: Image courtesy of the Hub for Biotechnology in the Built Environment.

The molds for the framework were knitted and filled with ‘mycocrete’ according to a July 14, 2023 Frontiers (Pub.) press release by Angharad Brewer Gillham (also on EurekAlert and published July 17, 2023 on the Newcastle University website),

Scientists hoping to reduce the environmental impact of the construction industry have developed a way to grow building materials using knitted molds and the root network of fungi. Although researchers have experimented with similar composites before, the shape and growth constraints of the organic material have made it hard to develop diverse applications that fulfil its potential. Using the knitted molds as a flexible framework or ‘formwork’, the scientists created a composite called ‘mycocrete’ which is stronger and more versatile in terms of shape and form, allowing the scientists to grow lightweight and relatively eco-friendly construction materials.

“Our ambition is to transform the look, feel and wellbeing of architectural spaces using mycelium in combination with biobased materials such as wool, sawdust and cellulose,” said Dr Jane Scott of Newcastle University [UK], corresponding author of the paper in Frontiers in Bioengineering and Biotechnology. The research was carried out by a team of designers, engineers, and scientists in the Living Textiles Research Group, part of the Hub for Biotechnology in the Built Environment at Newcastle University, which is funded by Research England.

Root networks

To make composites using mycelium, part of the root network of fungi, scientists mix mycelium spores with grains they can feed on and material that they can grow on. This mixture is packed into a mold and placed in a dark, humid, and warm environment so that the mycelium can grow, binding the substrate tightly together. Once it’s reached the right density, but before it starts to produce the fruiting bodies we call mushrooms, it is dried out. This process could provide a cheap, sustainable replacement for foam, timber, and plastic. But mycelium needs oxygen to grow, which constrains the size and shape of conventional rigid molds and limits current applications.

Knitted textiles offer a possible solution: oxygen-permeable molds that could change from flexible to stiff with the growth of the mycelium. But textiles can be too yielding, and it is difficult to pack the molds consistently. Scott and her colleagues set out to design a mycelium mixture and a production system that could exploit the potential of knitted forms.

“Knitting is an incredibly versatile 3D manufacturing system,” said Scott. “It is lightweight, flexible, and formable. The major advantage of knitting technology compared to other textile processes is the ability to knit 3D structures and forms with no seams and no waste.”

Samples of conventional mycelium composite were prepared by the scientists as controls, and grown alongside samples of mycocrete, which also contained paper powder, paper fiber clumps, water, glycerin, and xanthan gum. This paste was designed to be delivered into the knitted formwork with an injection gun to improve packing consistency: the paste needed to be liquid enough for the delivery system, but not so liquid that it failed to hold its shape.

Tubes for their planned test structure were knitted from merino yarn, sterilized, and fixed to a rigid structure while they were filled with the paste, so that changes in tension of the fabric would not affect the performance of the mycocrete.

Building the future

Once dried, samples were subjected to strength tests in tension, compression and flexion. The mycocrete samples proved to be stronger than the conventional mycelium composite samples and outperformed mycelium composites grown without knitted formwork. In addition, the porous knitted fabric of the formwork provided better oxygen availability, and the samples grown in it shrank less than most mycelium composite materials do when they are dried, suggesting more predictable and consistent manufacturing results could be achieved.

The team were also able to build a larger proof-of-concept prototype structure called BioKnit – a complex freestanding dome constructed in a single piece without joins that could prove to be weak points, thanks to the flexible knitted form.

“The mechanical performance of the mycocrete used in combination with permanent knitted formwork is a significant result, and a step towards the use of mycelium and textile biohybrids within construction,” said Scott. “In this paper we have specified particular yarns, substrates, and mycelium necessary to achieve a specific goal. However, there is extensive opportunity to adapt this formulation for different applications. Biofabricated architecture may require new machine technology to move textiles into the construction sector.”

The mycelium vault (also pictured above) is a freestanding structure,

Caption: A 1.8m high, 2m diameter freestanding structure made of the BioKnit mycocrete using knitted formwork. Credit: Courtesy of the Hub for Biotechnology in the Built Environment.

Here’s a link to and a citation for the paper,

BioKnit: development of mycellium paste for use with permanent textile formwork by Romy Kaiser, Ben Bridgens, Elise Elsacker, Jane Scott. Front. Bioeng. Biotechnol., 14 July 2023 Volume 11 – 2023 DOI: https://doi.org/10.3389/fbioe.2023.1229693

This paper appears to be open access.

A structural colour solution for energy-saving paint (thank the butterflies)

The UCF-developed plasmonic paint uses nanoscale structural arrangement of colorless materials — aluminum and aluminum oxide — instead of pigments to create colors. Here the plasmonic paint is applied to the wings of metal butterflies, the insect that inspired the research. Credit: University of Central Florida

A March 9, 2023 news item on Nanowerk announces research into multicolour energy-saving coating/paint, so, this is a structural colour story, Note: Links have been removed,

University of Central Florida researcher Debashis Chanda, a professor in UCF’s NanoScience Technology Center, has drawn inspiration from butterflies to create the first environmentally friendly, large-scale and multicolor alternative to pigment-based colorants, which can contribute to energy-saving efforts and help reduce global warming.

A March 8, 2023 University of Central Florida (UCF) news release (also on EurekAlert) by Katrina Cabansay, which originated the news item, provides more context and more details,

“The range of colors and hues in the natural world are astonishing — from colorful flowers, birds and butterflies to underwater creatures like fish and cephalopods,” Chanda says. “Structural color serves as the primary color-generating mechanism in several extremely vivid species where geometrical arrangement of typically two colorless materials produces all colors. On the other hand, with manmade pigment, new molecules are needed for every color present.”

Based on such bio-inspirations, Chanda’s research group innovated a plasmonic paint, which utilizes nanoscale structural arrangement of colorless materials — aluminum and aluminum oxide — instead of pigments to create colors.

While pigment colorants control light absorption based on the electronic property of the pigment material and hence every color needs a new molecule, structural colorants control the way light is reflected, scattered or absorbed based purely on the geometrical arrangement of nanostructures.

Such structural colors are environmentally friendly as they only use metals and oxides, unlike present pigment-based colors that use artificially synthesized molecules.

The researchers have combined their structural color flakes with a commercial binder to form long-lasting paints of all colors.

“Normal color fades because pigment loses its ability to absorb photons,” Chanda says. “Here, we’re not limited by that phenomenon. Once we paint something with structural color, it should stay for centuries.”

Additionally, because plasmonic paint reflects the entire infrared spectrum, less heat is absorbed by the paint, resulting in the underneath surface staying 25 to 30 degrees Fahrenheit cooler than it would if it were covered with standard commercial paint, the researcher says.

“Over 10% of total electricity in the U.S. goes toward air conditioner usage,” Chanda says. “The temperature difference plasmonic paint promises would lead to significant energy savings. Using less electricity for cooling would also cut down carbon dioxide emissions, lessening global warming.”

Plasmonic paint is also extremely lightweight, the researcher says.

This is due to the paint’s large area-to-thickness ratio, with full coloration achieved at a paint thickness of only 150 nanometers, making it the lightest paint in the world, Chanda says.

The paint is so lightweight that only about 3 pounds of plasmonic paint could cover a Boeing 747, which normally requires more than 1,000 pounds of conventional paint, he says.

Chanda says his interest in structural color stems from the vibrancy of butterflies.

“As a kid, I always wanted to build a butterfly,” he says. “Color draws my interest.”

Future Research

Chanda says the next steps of the project include further exploration of the paint’s energy-saving aspects to improve its viability as commercial paint.

“The conventional pigment paint is made in big facilities where they can make hundreds of gallons of paint,” he says. “At this moment, unless we go through the scale-up process, it is still expensive to produce at an academic lab.”

“We need to bring something different like, non-toxicity, cooling effect, ultralight weight, to the table that other conventional paints can’t.” Chanda says.

Licensing Opportunity

For more information about licensing this technology, please visit the Inorganic Paint Pigment for Vivid Plasmonic Color technology sheet.

Researcher’s Credentials

Chanda has joint appointments in UCF’s NanoScience Technology Center, Department of Physics and College of Optics and Photonics. He received his doctorate in photonics from the University of Toronto and worked as a postdoctoral fellow at the University of Illinois at Urbana-Champaign. He joined UCF in Fall 2012.

Here’s a link to and a citation for the paper,

Ultralight plasmonic structural color paint by Pablo Cencillo-Abad, Daniel Franklin, Pamela Mastranzo-Ortega, Javier Sanchez-Mondragon, and Debashis Chanda. Science Advances 8 Mar 2023 Vol 9, Issue 10 DOI: 10.1126/sciadv.adf7207

This paper is open access.

Here’s the researcher with one of ‘his butterflies’ (I may be reading a little too much into this but it looks like he’s uncomfortable having his photo taken but game to do it for work that he’s proud of),

Caption: Debashis Chanda, a professor in UCF’s NanoScience Technology Center, drew inspiration from butterflies to create the innovative new plasmonic paint, shown here applied to metal butterfly wings. Credit: University of Central Florida

International conference “Living Machines” dedicated to technology inspired by nature in Genoa, Italy (July 10 – 13, 2023)

I love the look and the theme for this “Living Machines” conference, which seems to be water,

A June 28, 2023 Istituto Italiano di Tecnologia (IIT) press release (also on EurekAlert) provides more detail about the conference,

Now in its twelfth year, the international conference “Living Machines”, organised by Istituto Italiano di Tecnologia (Italian Institute of Technology, IIT), returns to Italy and comes to Genoa for the first time, from 10 to 13 July. Around one hundred experts from all over the world are expected, and they will present their achievements in the field of bio-inspired science and technology. The conference will take place in an exceptional venue, the Acquario di Genova (Genoa Aquarium), which, having reached its 30th birthday, is the ideal location at which to bring together various subject areas, from biology to artificial intelligence and robotics, with a focus on sustainability and environmental protection.

The scientific organiser of the event is Barbara Mazzolai, Associate Director for Robotics and head of the Bioinspired Soft Robotics Lab at IIT, along with Fabian Meder, researcher in the Bioinspired Soft Robotics Lab group and co-chair of the conference programme.

The conference will include two events open to the public: an exhibition area, which will be accessible from 11 to 13 July in the afternoon (from 2 to 4.30 pm); and a scientific café, which will take place on the 12 July at 5 pm. The conference will be an opportunity for international guests to appreciate the region’s beauty and talents, and it will also include the participation of students from the Niccolò Paganini Conservatory of Music. In addition, a satellite event of the conference will be the ISPA – Italian Sustainability Photo Award – exhibition, which will open at Palazzo Ducale on 10 July at 6 p.m.

The “Living Machines” conference is the landmark event for the international scientific community which bases its research on living organisms, such as human beings and other animal species – terrestrial, marine, and airborne – in addition to plants, fungi, and bacteria, in order to create so-called “living machines”, in other words, forms of technology capable of replicating their structure and mechanisms of operation.

“The conference is rooted in the union between robotics and neuroscience, using man and other animal species as a model for the study of intelligence and control systems,” said Barbara Mazzolai, Associate Director for Robotics at IIT. “This year the conference will focus on the role of biomimicry in the creation of robots that are more sustainable, with applications for the challenges of environmental protection and human health. Discussions will revolve around the development of robots with a lower energy impact, made using recyclable and biodegradable materials, and that can be used in emergency situations or extreme environments, such as deep sea, soil, space, or environmental disasters, but also for precision agriculture, environmental surveillance, infrastructure monitoring, human care and medical-surgical assistance.

In the conference programme, experts will take part in a first day of parallel workshop and tutorial sessions (on 10 July), during which the topics of bioinspiration and biohybrid technology in the fields of medicine and the marine environment will be addressed. This first day will be followed by three days of plenary sessions, featuring talks by internationally-renowned scientists. More specifically: Oussama Khatib, one of the pioneers of robotics and director of the Robotics Laboratory at Stanford University; Marco Dorigo, professor at the Université Libre de Bruxelles and one of the pioneers of collective intelligence; Peter Fratzl, director of the Max Planck Institute of Colloids and Interfaces, working on research into osteoporosis and tissue regeneration; Eleni Stavrinidou, coordinator of the “Electronic Plants” group at Linköping University and an expert in bioelectronic and biohybrid systems; Olga Speck, Principal Researcher at the University of Freiburg, specialising in biomimetic materials and the regenerative capabilities of plants; and Kyu-Jin Cho, director of the Research Centre for Soft Robotics and the Biorobotics Laboratory at Seoul National University, one of the world’s leading experts on soft robotics.

For conference participants only, the programme includes: a visit to the Acquario, guided by the facility’s scientific staff, who will illustrate the work and practices needed for the protection and conservation of marine species and the undergoing research projects; an exhibition area for prototypes and products by research groups and companies operating in this field; and a dinner at Villa Lo Zerbino, with a musical contribution by students from the Niccolò Paganini Conservatory.

Open to the general public, on 12 July from 5 p.m. to 6 p.m. there will be a round table entitled “Living Machines: The Origin and the Future” chaired by science journalist Nicola Nosengo, Chief Editor of Nature Italy. Speakers will include Cecilia Laschi from the National University of Singapore, Vickie Webster-Wood from Carnegie Mellon University, Thomas Speck from the University of Freiburg and Paul Verschure from Radboud University Nijmegen.

A satellite initiative of the conference will be the exhibition for ISPA, the Italian Sustainability Photo Award, which will open at Palazzo Ducale on 10 July at 6.00 p.m. ISPA is the photographic award created by the Parallelozero agency in cooperation with the main sponsor PIMCO, to raise public awareness of environmental, social, and governance sustainability issues, encapsulated in the acronym ESG. The works of the winning photographers and finalists in the last three editions will be on display in Genoa: a selection of images that depict the emblematic stories of Italy, a nation moving towards a more sustainable future, a visual narrative that makes it easier to understand the country’s progress in research and innovation.

The organisations supporting the event include, in addition to the principal organiser Istituto Italiano di Tecnologia (Italian Institute of Technology), the international Convergent Science Network [emphasis mine], the Office of Naval Research, Radboud University Nijmegen, and the Living, Adaptive and Energy-autonomous Materials Systems Cluster of Excellence in Freiburg.

Event website: https://livingmachinesconference.eu/2023/

I was particularly struck by this quote, “The conference is rooted in the union between robotics and neuroscience [emphasis mine], using man and other animal species as a model for the study of intelligence and control systems,” from Barbara Mazzolai as I have an as yet unpublished post for a UNESCO neurotechnology event coming up on July 13, 2023. These events come on the heels of a May 16, 2023 Canadian Science Policy Centre panel discussion on responsible neurotechnology (see my May 12, 2023 posting).

For the curious, you can find the Convergent Science Network here.

‘Polar bear wear’: 30% lighter than cotton and much warmer

For the same reason some people like ‘Christmas in July’ events, I like to occasionally feature a nonseasonal story. Especially since the area where I live is going through an unseasonal cold snap and will be followed shortly by anomalously hot temperatures. So, more or less fittingly, an April 10, 2023 news item announces a new fabric,

Three engineers at the University of Massachusetts Amherst have invented a fabric that concludes the 80-year quest to make a synthetic textile modeled on Polar bear fur. The results, published recently in the journal ACS Applied Materials and Interfaces, are already being developed into commercially available products. [ACS is American Chemical Society.]

Caption: Inspired by polar bears, this new textile creates an on-body “greenhouse” effect to keep you warm. Credit: Viola et al., 10.1021/acsami.2c23075

Nice to see a properly drawn polar bear. Back to the research, an April 10, 2023 University of Massachusetts Amherst news release (also on EurekAlert), which originated the news item, provides a brief history of the research and a few technical details about the current work, Note: Links have been removed,

Polar bears live in some of the harshest conditions on earth, shrugging off Arctic temperatures as low as -50 Fahrenheit. While the bears have many adaptations that allow them to thrive when the temperature plummets, since the 1940s scientists have focused on one in particular: their fur. How, the scientific community has asked, does a polar bear’s fur keep them warm?

Typically, we think that the way to stay warm is to insulate ourselves from the weather. But there’s another way: One of the major discoveries of the last few decades is that many polar animals actively use the sunlight to maintain their temperature, and polar bear fur is a well-known case in point.

Scientists have known for decades that part of the bears’ secret is their white fur. One might think that black fur would be better at absorbing heat, but it turns out that the polar bears’ fur is extremely effective at transmitting solar radiation toward the bears’ skin.

“But the fur is only half the equation,” says the paper’s senior author,  Trisha L. Andrew, associate professor of chemistry and adjunct in chemical engineering at UMass Amherst. “The other half is the polar bears’ black skin.”

As Andrew explains it, polar bear fur is essentially a natural fiberoptic, conducting sunlight down to the bears’ skin, which absorbs the light, heating the bear. But the fur is also exceptionally good at preventing the now-warmed skin from radiating out all that hard-won warmth. When the sun shines, it’s like having a thick blanket that warms itself up, and then traps that warmth next to your skin.

What Andrew and her team have done is to engineer a bilayer fabric whose top layer is composed of threads that, like polar bear fur, conduct visible light down to the lower layer, which is made of nylon and coated with a dark material called PEDOT [Poly(3,4-ethylenedioxythiophene)]. PEDOT, like the polar bears’ skin, warms efficiently.

So efficiently, in fact, that a jacket made of such material is 30% lighter than the same jacket made of cotton yet will keep you comfortable at temperatures 10 degrees Celsius colder than the cotton jacket could handle, as long as the sun is shining or a room is well lit.

“Space heating consumes huge amounts of energy that is mostly fossil fuel-derived,” says Wesley Viola, the paper’s lead author, who completed his Ph.D. in chemical engineering at UMass and is now at Andrew’s startup, Soliyarn, LLC. “While our textile really shines as outerwear on sunny days, the light-heat trapping structure works efficiently enough to imagine using existing indoor lighting to directly heat the body. By focusing energy resources on the ‘personal climate’ around the body, this approach could be far more sustainable than the status quo.”

The research, which was supported by the National Science Foundation, is already being applied, and  Soliyarn has begun production of the PEDOT-coated cloth.

Here’s a link to and a citation for the paper,

Solar Thermal Textiles for On-Body Radiative Energy Collection Inspired by Polar Animals by Wesley Viola, Peiyao Zhao, and Trisha L. Andrew. ACS Appl. Mater. Interfaces 2023, 15, 15, 19393–19402 DOI: https://doi.org/10.1021/acsami.2c23075 Publication Date: April 5, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

You can find Soliyarn here.