Category Archives: biomimcry

A nano fabrication technique used to create next generation heart valve

I am going to have take the researchers’ word that these somehow lead to healthy heart valve tissue,

In rotary jet spinning technology, a rotating nozzle extrudes a solution of extracellular matrix (ECM) into nanofibers that wrap themselves around heart valve-shaped mandrels. By using a series of mandrels with different sizes, the manufacturing process becomes fully scalable and is able to provide JetValves for all age groups and heart sizes. Credit: Wyss Institute at Harvard University

From a May 18, 2017 news item on ScienceDaily,

The human heart beats approximately 35 million times every year, effectively pumping blood into the circulation via four different heart valves. Unfortunately, in over four million people each year, these delicate tissues malfunction due to birth defects, age-related deteriorations, and infections, causing cardiac valve disease.

Today, clinicians use either artificial prostheses or fixed animal and cadaver-sourced tissues to replace defective valves. While these prostheses can restore the function of the heart for a while, they are associated with adverse comorbidity and wear down and need to be replaced during invasive and expensive surgeries. Moreover, in children, implanted heart valve prostheses need to be replaced even more often as they cannot grow with the child.

A team lead by Kevin Kit Parker, Ph.D. at Harvard University’s Wyss Institute for Biologically Inspired Engineering recently developed a nanofiber fabrication technique to rapidly manufacture heart valves with regenerative and growth potential. In a paper published in Biomaterials, Andrew Capulli, Ph.D. and colleagues fabricated a valve-shaped nanofiber network that mimics the mechanical and chemical properties of the native valve extracellular matrix (ECM). To achieve this, the team used the Parker lab’s proprietary rotary jet spinning technology — in which a rotating nozzle extrudes an ECM solution into nanofibers that wrap themselves around heart valve-shaped mandrels. “Our setup is like a very fast cotton candy machine that can spin a range of synthetic and natural occurring materials. In this study, we used a combination of synthetic polymers and ECM proteins to fabricate biocompatible JetValves that are hemodynamically competent upon implantation and support cell migration and re-population in vitro. Importantly, we can make human-sized JetValves in minutes — much faster than possible for other regenerative prostheses,” said Parker.

A May 18,2017 Wyss Institute for Biologically Inspired Engineering news release (also on EurekAlert), which originated the news item, expands on the theme of Jetvalves,

To further develop and test the clinical potential of JetValves, Parker’s team collaborated with the translational team of Simon P. Hoerstrup, M.D., Ph.D., at the University of Zurich in Switzerland, which is a partner institution with the Wyss Institute. As a leader in regenerative heart prostheses, Hoerstrup and his team in Zurich have previously developed regenerative, tissue-engineered heart valves to replace mechanical and fixed-tissue heart valves. In Hoerstrup’s approach, human cells directly deposit a regenerative layer of complex ECM on biodegradable scaffolds shaped as heart valves and vessels. The living cells are then eliminated from the scaffolds resulting in an “off-the-shelf” human matrix-based prostheses ready for implantation.

In the paper, the cross-disciplinary team successfully implanted JetValves in sheep using a minimally invasive technique and demonstrated that the valves functioned properly in the circulation and regenerated new tissue. “In our previous studies, the cell-derived ECM-coated scaffolds could recruit cells from the receiving animal’s heart and support cell proliferation, matrix remodeling, tissue regeneration, and even animal growth. While these valves are safe and effective, their manufacturing remains complex and expensive as human cells must be cultured for a long time under heavily regulated conditions. The JetValve’s much faster manufacturing process can be a game-changer in this respect. If we can replicate these results in humans, this technology could have invaluable benefits in minimizing the number of pediatric re-operations,” said Hoerstrup.

In support of these translational efforts, the Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth. The team is also working towards a GMP-grade version of their customizable, scalable, and cost-effective manufacturing process that would enable deployment to a large patient population. In addition, the new heart valve would be compatible with minimally invasive procedures to serve both pediatric and adult patients.

The project will be led jointly by Parker and Hoerstrup. Parker is a Core Faculty member of the Wyss Institute and the Tarr Family Professor of Bioengineering and Applied Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). Hoerstrup is Chair and Director of the University of Zurich’s Institute for Regenerative Medicine (IREM), Co-Director of the recently founded Wyss Translational Center Zurich and a Wyss Institute Associate Faculty member.

Since JetValves can be manufactured in all desired shapes and sizes, and take seconds to minutes to produce, the team’s goal is to provide customized, ready-to-use, regenerative heart valves much faster and at much lower cost than currently possible.

“Achieving the goal of minimally invasive, low-cost regenerating heart valves could have tremendous impact on patients’ lives across age-, social- and geographical boundaries. Once again, our collaborative team structure that combines unique and leading expertise in bioengineering, regenerative medicine, surgical innovation and business development across the Wyss Institute and our partner institutions, makes it possible for us to advance technology development in ways not possible in a conventional academic laboratory,” said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at HMS and the Vascular Biology Program at Boston Children’s Hospital, as well as Professor of Bioengineering at SEAS.

This scanning electron microscopy image shows how extracellular matrix (ECM) nanofibers generated with JetValve technology are arranged in parallel networks with physical properties comparable to those found in native heart tissue. Credit: Wyss Institute at Harvard University

Here’s a link to and a citation for the paper,

JetValve: Rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement by Andrew K. Capulli, Maximillian Y. Emmert, Francesco S. Pasqualini, b, Debora Kehl, Etem Caliskan, Johan U. Lind, Sean P. Sheehy, Sung Jin Park, Seungkuk Ahn, Benedikt Webe, Josue A. Goss. Biomaterials Volume 133, July 2017, Pages 229–241

This paper is behind a paywall.

Material that sheds like a snake when it’s damaged

Truly water-repellent materials are on the horizon. Or, they would be if one tiny problem was solved. According to a May  3, 2017 news item on ScienceDaily, scientists may have come up with that solution,

Imagine a raincoat that heals a scratch by shedding the part of the outer layer that’s damaged. To create such a material, scientists have turned to nature for inspiration. They report in ACS’ journal Langmuir a water-repellant material that molts like a snake’s skin when damaged to reveal another hydrophobic [water-repellent] layer beneath it.

A May 3, 2017 American Chemical Society (ACS) press release (also on EurekAlert), which originated the news item, expands on the theme,

Lotus leaves, water striders and other superhydrophobic examples from nature have inspired scientists to copy their water-repelling architecture to develop new materials. Such materials are often made by coating a substrate with nanostructures, which can be shored up by adding microstructures to the mix. Superhydrophobic surfaces could be useful in a range of applications including rain gear, medical instruments and self-cleaning car windows. But most of the prototypes so far haven’t been strong enough to stand up to damage by sharp objects. To address this shortcoming, Jürgen Rühe and colleagues again found a potential solution in nature — in snake and lizard skins.

The researchers stacked three layers to create their material: a water-repellant film made with poly-1H,1H,2H,2H-perfluorodecyl acrylate (PFA) “nanograss” on the top, a water-soluble polymer in the middle and a superhydrophobic silicon nanograss film on the bottom. Nanograss consists of tiny needle-like projections sticking straight up. The team scratched the coating and submerged the material in water, which then seeped into the cut and dissolved the polymer. The top layer then peeled off like molted skin and floated away, exposing the bottom, water-repellant film. Although further work is needed to strengthen the top coating so that a scratch won’t be able to penetrate all three layers, the researchers say it offers a new approach to creating self-cleaning and water-repellant materials.

The authors acknowledge support from the German Federal Ministry of Education and Research (BMBF) and VDI/VDE/IT GmbH through project NanoTau.

Here’s a video demonstrating the concept,

Published on May 2, 2017

Scientists turn to snakes and lizards for inspiration to create a new material that sheds its outer layer when scratched.

Finally, a link to and a citation for the paper,

Molting Materials: Restoring Superhydrophobicity after Severe Damage via Snakeskin-like Shedding by Roland Hönes, Vitaliy Kondrashov, and Jürgen Rühe. Langmuir, Article ASAP DOI: 10.1021/acs.langmuir.7b00814 Publication Date (Web): April 14, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Locusts inspire new aerosol-based nanoparticle drug delivery system

Getting medication directly to the brain is a worldwide medical research goal and it seems that a team of scientists at the Washington University at St. Louis (WUSTL) has taken a step forward to accomplishing the goal. From an April 12, 2017 news item on ScienceDaily,

Delivering life-saving drugs directly to the brain in a safe and effective way is a challenge for medical providers. One key reason: the blood-brain barrier, which protects the brain from tissue-specific drug delivery. Methods such as an injection or a pill aren’t as precise or immediate as doctors might prefer, and ensuring delivery right to the brain often requires invasive, risky techniques.

A team of engineers from Washington University in St. Louis has developed a new nanoparticle generation-delivery method that could someday vastly improve drug delivery to the brain, making it as simple as a sniff.

“This would be a nanoparticle nasal spray, and the delivery system could allow a therapeutic dose of medicine to reach the brain within 30 minutes to one hour,” said Ramesh Raliya, research scientist at the School of Engineering & Applied Science.

Caption: Engineers at Washington University have discovered a new technique that could change drug delivery to the brain. They were able to apply a nanoparticle aerosol spray to the antenna of locusts, then track the nanoparticles as they traveled through the olfactory nerves, crossed the blood-brain barrier and accumulated in the brain. This new, non-invasive approach could someday make drug delivery as simple as a sniff for patients with brain injuries or tumors.

Credit: Washington University in St. Louis

An April 12, 2017 WUSTL news release by Erika Ebsworth-Goold (also on EurekAlert), which originated the news item, describes the work in more detail,

“The blood-brain barrier protects the brain from foreign substances in the blood that may injure the brain,” Raliya said. “But when we need to deliver something there, getting through that barrier is difficult and invasive. Our non-invasive technique can deliver drugs via nanoparticles, so there’s less risk and better response times.”

The novel approach is based on aerosol science and engineering principles that allow the generation of monodisperse nanoparticles, which can deposit on upper regions of the nasal cavity via diffusion. Working with Assistant Vice Chancellor Pratim Biswas, chair of the Department of Energy, Environmental & Chemical Engineering and the Lucy & Stanley Lopata Professor, Raliya developed an aerosol consisting of gold nanoparticles of controlled size, shape and surface charge. The nanoparticles were tagged with fluorescent markers, allowing the researchers to track their movement.

Next, Raliya and biomedical engineering postdoctoral fellow Debajit Saha exposed locusts’ antennae to the aerosol, and observed the nanoparticles travel from the antennas up through the olfactory nerves. Due to their tiny size, the nanoparticles passed through the brain-blood barrier, reaching the brain and suffusing it in a matter of minutes.

The team tested the concept in locusts because the blood-brain barriers in the insects and humans have anatomical similarities, and the researchers consider going through the nasal regions to neural pathways as the optimal way to access the brain.

“The shortest and possibly the easiest path to the brain is through your nose,” said Barani Raman, associate professor of biomedical engineering. “Your nose, the olfactory bulb and then olfactory cortex: two relays and you’ve reached the cortex. The same is true for invertebrate olfactory circuitry, although the latter is a relatively simpler system, with supraesophageal ganglion instead of an olfactory bulb and cortex.”

To determine whether or not the foreign nanoparticles disrupted normal brain function, Saha examined the physiological response of olfactory neurons in the locusts before and after the nanoparticle delivery. Several hours after the nanoparticle uptake, no noticeable change in the electrophysiological responses was detected.

“This is only a beginning of a cool set of studies that can be performed to make nanoparticle-based drug delivery approaches more principled,” Raman said.

The next phase of research involves fusing the gold nanoparticles with various medicines, and using ultrasound to target a more precise dose to specific areas of the brain, which would be especially beneficial in brain-tumor cases.

“We want to drug target delivery within the brain using this non-invasive approach,” Raliya said.  “In the case of a brain tumor, we hope to use focused ultrasound so we can guide the particles to collect at that particular point.”

Here’s a link to and a citation for the paper,

Non-invasive aerosol delivery and transport of gold nanoparticles to the brain by Ramesh Raliya, Debajit Saha, Tandeep S. Chadha, Baranidharan Raman, & Pratim Biswas. Scientific Reports 7, Article number: 44718 (2017) doi:10.1038/srep44718 Published online: 16 March 2017

This paper is open access.

I featured another team working on delivering drugs directly to the brain via the olfactory system, except their nanoparticles were gelatin and they were testing stroke medication on rats, in my Sept. 24, 2014 posting.

Energy storage inspired by a fern’s fractal patterns

Australian researchers have come up with a bio-inspired approach to making solar energy storage more viable according to a March 31, 2017 news item on Nanowerk (Note: A link has been removed),

Inspired by an American fern, researchers have developed a groundbreaking prototype that could be the answer to the storage challenge still holding solar back as a total energy solution (Science Express, “Bioinspired fractal electrodes for solar energy storages”).

The breakthrough electrode prototype (right) can be combined with a solar cell (left) for on-chip energy harvesting and storage. (Image: RMIT University)

A March 31, 2017 RMIT University press release, which originated the news item on Nanowerk, provides more detail (Note: A link has been removed),

The new type of electrode created by RMIT University researchers could boost the capacity of existing integrable storage technologies by 3000 per cent.

But the graphene-based prototype also opens a new path to the development of flexible thin film all-in-one solar capture and storage, bringing us one step closer to self-powering smart phones, laptops, cars and buildings.

The new electrode is designed to work with supercapacitors, which can charge and discharge power much faster than conventional batteries. Supercapacitors have been combined with solar, but their wider use as a storage solution is restricted because of their limited capacity.

RMIT’s Professor Min Gu said the new design drew on nature’s own genius solution to the challenge of filling a space in the most efficient way possible – through intricate self-repeating patterns known as “fractals”.

“The leaves of the western swordfern are densely crammed with veins, making them extremely efficient for storing energy and transporting water around the plant,” said Gu, Leader of the Laboratory of Artificial Intelligence Nanophotonics and Associate Deputy Vice-Chancellor for Research Innovation and Entrepreneurship at RMIT.

“Our electrode is based on these fractal shapes – which are self-replicating, like the mini structures within snowflakes – and we’ve used this naturally-efficient design to improve solar energy storage at a nano level.

“The immediate application is combining this electrode with supercapacitors, as our experiments have shown our prototype can radically increase their storage capacity – 30 times more than current capacity limits.

“Capacity-boosted supercapacitors would offer both long-term reliability and quick-burst energy release – for when someone wants to use solar energy on a cloudy day for example – making them ideal alternatives for solar power storage.”

Combined with supercapacitors, the fractal-enabled laser-reduced graphene electrodes can hold the stored charge for longer, with minimal leakage.

The fractal design reflected the self-repeating shape of the veins of the western swordfern, Polystichum munitum, native to western North America.

Lead author, PhD researcher Litty Thekkekara, said because the prototype was based on flexible thin film technology, its potential applications were countless.

“The most exciting possibility is using this electrode with a solar cell, to provide a total on-chip energy harvesting and storage solution,” Thekkekara said.

“We can do that now with existing solar cells but these are bulky and rigid. The real future lies in integrating the prototype with flexible thin film solar – technology that is still in its infancy.

“Flexible thin film solar could be used almost anywhere you can imagine, from building windows to car panels, smart phones to smart watches. We would no longer need batteries to charge our phones or charging stations for our hybrid cars.

“With this flexible electrode prototype we’ve solved the storage part of the challenge, as well as shown how they can work with solar cells without affecting performance. Now the focus needs to be on flexible solar energy, so we can work towards achieving our vision of fully solar-reliant, self-powering electronics.”

The repeating pattern of veins in the leaves of the western swordfern, as seen here magnified 400 times, served as the inspiration for the new high-density electrode(Credit: RMIT University)

Here’s a link to and a citation for the paper,

Bioinspired fractal electrodes for solar energy storages by Litty V. Thekkekara & Min Gu. Scientific Reports 7, Article number: 45585 (2017) doi:10.1038/srep45585 Published online: 31 March 2017

This is an open access paper.

Fractal imagery (from nature or from art or from mathematics) soothes

Jackson Pollock’s work is often cited when fractal art is discussed. I think it’s largely because he likely produced the art without knowing about the concept.

No. 5, 1948 (Jackson Pollock, downloaded from Wikipedia essay about No. 5, 1948)

Richard Taylor, a professor of physics at the University of Oregon, provides more information about how fractals affect us and how this is relevant to his work with retinal implants in a March 30, 2017 essay for The Conversation (h/t Mar. 31, 2017 news item on, Note: Links have been removed),

Humans are visual creatures. Objects we call “beautiful” or “aesthetic” are a crucial part of our humanity. Even the oldest known examples of rock and cave art served aesthetic rather than utilitarian roles. Although aesthetics is often regarded as an ill-defined vague quality, research groups like mine are using sophisticated techniques to quantify it – and its impact on the observer.

We’re finding that aesthetic images can induce staggering changes to the body, including radical reductions in the observer’s stress levels. Job stress alone is estimated to cost American businesses many billions of dollars annually, so studying aesthetics holds a huge potential benefit to society.

Researchers are untangling just what makes particular works of art or natural scenes visually appealing and stress-relieving – and one crucial factor is the presence of the repetitive patterns called fractals.

When it comes to aesthetics, who better to study than famous artists? They are, after all, the visual experts. My research group took this approach with Jackson Pollock, who rose to the peak of modern art in the late 1940s by pouring paint directly from a can onto horizontal canvases laid across his studio floor. Although battles raged among Pollock scholars regarding the meaning of his splattered patterns, many agreed they had an organic, natural feel to them.

My scientific curiosity was stirred when I learned that many of nature’s objects are fractal, featuring patterns that repeat at increasingly fine magnifications. For example, think of a tree. First you see the big branches growing out of the trunk. Then you see smaller versions growing out of each big branch. As you keep zooming in, finer and finer branches appear, all the way down to the smallest twigs. Other examples of nature’s fractals include clouds, rivers, coastlines and mountains.

In 1999, my group used computer pattern analysis techniques to show that Pollock’s paintings are as fractal as patterns found in natural scenery. Since then, more than 10 different groups have performed various forms of fractal analysis on his paintings. Pollock’s ability to express nature’s fractal aesthetics helps explain the enduring popularity of his work.

The impact of nature’s aesthetics is surprisingly powerful. In the 1980s, architects found that patients recovered more quickly from surgery when given hospital rooms with windows looking out on nature. Other studies since then have demonstrated that just looking at pictures of natural scenes can change the way a person’s autonomic nervous system responds to stress.

Are fractals the secret to some soothing natural scenes? Ronan, CC BY-NC-ND

For me, this raises the same question I’d asked of Pollock: Are fractals responsible? Collaborating with psychologists and neuroscientists, we measured people’s responses to fractals found in nature (using photos of natural scenes), art (Pollock’s paintings) and mathematics (computer generated images) and discovered a universal effect we labeled “fractal fluency.”

Through exposure to nature’s fractal scenery, people’s visual systems have adapted to efficiently process fractals with ease. We found that this adaptation occurs at many stages of the visual system, from the way our eyes move to which regions of the brain get activated. This fluency puts us in a comfort zone and so we enjoy looking at fractals. Crucially, we used EEG to record the brain’s electrical activity and skin conductance techniques to show that this aesthetic experience is accompanied by stress reduction of 60 percent – a surprisingly large effect for a nonmedicinal treatment. This physiological change even accelerates post-surgical recovery rates.

Pollock’s motivation for continually increasing the complexity of his fractal patterns became apparent recently when I studied the fractal properties of Rorschach inkblots. These abstract blots are famous because people see imaginary forms (figures and animals) in them. I explained this process in terms of the fractal fluency effect, which enhances people’s pattern recognition processes. The low complexity fractal inkblots made this process trigger-happy, fooling observers into seeing images that aren’t there.

Pollock disliked the idea that viewers of his paintings were distracted by such imaginary figures, which he called “extra cargo.” He intuitively increased the complexity of his works to prevent this phenomenon.

Pollock’s abstract expressionist colleague, Willem De Kooning, also painted fractals. When he was diagnosed with dementia, some art scholars called for his retirement amid concerns that that it would reduce the nurture component of his work. Yet, although they predicted a deterioration in his paintings, his later works conveyed a peacefulness missing from his earlier pieces. Recently, the fractal complexity of his paintings was shown to drop steadily as he slipped into dementia. The study focused on seven artists with different neurological conditions and highlighted the potential of using art works as a new tool for studying these diseases. To me, the most inspiring message is that, when fighting these diseases, artists can still create beautiful artworks.

Recognizing how looking at fractals reduces stress means it’s possible to create retinal implants that mimic the mechanism. Nautilus image via

My main research focuses on developing retinal implants to restore vision to victims of retinal diseases. At first glance, this goal seems a long way from Pollock’s art. Yet, it was his work that gave me the first clue to fractal fluency and the role nature’s fractals can play in keeping people’s stress levels in check. To make sure my bio-inspired implants induce the same stress reduction when looking at nature’s fractals as normal eyes do, they closely mimic the retina’s design.

When I started my Pollock research, I never imagined it would inform artificial eye designs. This, though, is the power of interdisciplinary endeavors – thinking “out of the box” leads to unexpected but potentially revolutionary ideas.

Fabulous essay, eh?

I have previously featured Jackson Pollock in a June 30, 2011 posting titled: Jackson Pollock’s physics and and briefly mentioned him in a May 11, 2010 visual arts commentary titled: Rennie Collection’s latest: Richard Jackson, Georges Seurat & Jackson Pollock, guns, the act of painting, and women (scroll down about 45% of the way).

Worm-inspired gel material and soft robots

The Nereis virens worm inspired new research out of the MIT Laboratory for Atomistic and Molecular Mechanics. Its jaw is made of soft organic material, but is as strong as harder materials such as human dentin. Photo: Alexander Semenov/Wikimedia Commons

What an amazing worm! Here’s more about robots inspired by the Nereis virens worm in a March 20, 2017 news item on Nanowerk,

A new material that naturally adapts to changing environments was inspired by the strength, stability, and mechanical performance of the jaw of a marine worm. The protein material, which was designed and modeled by researchers from the Laboratory for Atomistic and Molecular Mechanics (LAMM) in the Department of Civil and Environmental Engineering (CEE) [at the Massachusetts Institute of Technology {MIT}], and synthesized in collaboration with the Air Force Research Lab (AFRL) at Wright-Patterson Air Force Base, Ohio, expands and contracts based on changing pH levels and ion concentrations. It was developed by studying how the jaw of Nereis virens, a sand worm, forms and adapts in different environments.

The resulting pH- and ion-sensitive material is able to respond and react to its environment. Understanding this naturally-occurring process can be particularly helpful for active control of the motion or deformation of actuators for soft robotics and sensors without using external power supply or complex electronic controlling devices. It could also be used to build autonomous structures.

A March 20, 2017 MIT news release, which originated the news item, provides more detail,

“The ability of dramatically altering the material properties, by changing its hierarchical structure starting at the chemical level, offers exciting new opportunities to tune the material, and to build upon the natural material design towards new engineering applications,” wrote Markus J. Buehler, the McAfee Professor of Engineering, head of CEE, and senior author of the paper.

The research, recently published in ACS Nano, shows that depending on the ions and pH levels in the environment, the protein material expands and contracts into different geometric patterns. When the conditions change again, the material reverts back to its original shape. This makes it particularly useful for smart composite materials with tunable mechanics and self-powered roboticists that use pH value and ion condition to change the material stiffness or generate functional deformations.

Finding inspiration in the strong, stable jaw of a marine worm

In order to create bio-inspired materials that can be used for soft robotics, sensors, and other uses — such as that inspired by the Nereis — engineers and scientists at LAMM and AFRL needed to first understand how these materials form in the Nereis worm, and how they ultimately behave in various environments. This understanding involved the development of a model that encompasses all different length scales from the atomic level, and is able to predict the material behavior. This model helps to fully understand the Nereis worm and its exceptional strength.

“Working with AFRL gave us the opportunity to pair our atomistic simulations with experiments,” said CEE research scientist Francisco Martin-Martinez. AFRL experimentally synthesized a hydrogel, a gel-like material made mostly of water, which is composed of recombinant Nvjp-1 protein responsible for the structural stability and impressive mechanical performance of the Nereis jaw. The hydrogel was used to test how the protein shrinks and changes behavior based on pH and ions in the environment.

The Nereis jaw is mostly made of organic matter, meaning it is a soft protein material with a consistency similar to gelatin. In spite of this, its strength, which has been reported to have a hardness ranging between 0.4 and 0.8 gigapascals (GPa), is similar to that of harder materials like human dentin. “It’s quite remarkable that this soft protein material, with a consistency akin to Jell-O, can be as strong as calcified minerals that are found in human dentin and harder materials such as bones,” Buehler said.

At MIT, the researchers looked at the makeup of the Nereis jaw on a molecular scale to see what makes the jaw so strong and adaptive. At this scale, the metal-coordinated crosslinks, the presence of metal in its molecular structure, provide a molecular network that makes the material stronger and at the same time make the molecular bond more dynamic, and ultimately able to respond to changing conditions. At the macroscopic scale, these dynamic metal-protein bonds result in an expansion/contraction behavior.

Combining the protein structural studies from AFRL with the molecular understanding from LAMM, Buehler, Martin-Martinez, CEE Research Scientist Zhao Qin, and former PhD student Chia-Ching Chou ’15, created a multiscale model that is able to predict the mechanical behavior of materials that contain this protein in various environments. “These atomistic simulations help us to visualize the atomic arrangements and molecular conformations that underlay the mechanical performance of these materials,” Martin-Martinez said.

Specifically, using this model the research team was able to design, test, and visualize how different molecular networks change and adapt to various pH levels, taking into account the biological and mechanical properties.

By looking at the molecular and biological makeup of a the Nereis virens and using the predictive model of the mechanical behavior of the resulting protein material, the LAMM researchers were able to more fully understand the protein material at different scales and provide a comprehensive understanding of how such protein materials form and behave in differing pH settings. This understanding guides new material designs for soft robots and sensors.

Identifying the link between environmental properties and movement in the material

The predictive model explained how the pH sensitive materials change shape and behavior, which the researchers used for designing new PH-changing geometric structures. Depending on the original geometric shape tested in the protein material and the properties surrounding it, the LAMM researchers found that the material either spirals or takes a Cypraea shell-like shape when the pH levels are changed. These are only some examples of the potential that this new material could have for developing soft robots, sensors, and autonomous structures.

Using the predictive model, the research team found that the material not only changes form, but it also reverts back to its original shape when the pH levels change. At the molecular level, histidine amino acids present in the protein bind strongly to the ions in the environment. This very local chemical reaction between amino acids and metal ions has an effect in the overall conformation of the protein at a larger scale. When environmental conditions change, the histidine-metal interactions change accordingly, which affect the protein conformation and in turn the material response.

“Changing the pH or changing the ions is like flipping a switch. You switch it on or off, depending on what environment you select, and the hydrogel expands or contracts” said Martin-Martinez.

LAMM found that at the molecular level, the structure of the protein material is strengthened when the environment contains zinc ions and certain pH levels. This creates more stable metal-coordinated crosslinks in the material’s molecular structure, which makes the molecules more dynamic and flexible.

This insight into the material’s design and its flexibility is extremely useful for environments with changing pH levels. Its response of changing its figure to changing acidity levels could be used for soft robotics. “Most soft robotics require power supply to drive the motion and to be controlled by complex electronic devices. Our work toward designing of multifunctional material may provide another pathway to directly control the material property and deformation without electronic devices,” said Qin.

By studying and modeling the molecular makeup and the behavior of the primary protein responsible for the mechanical properties ideal for Nereis jaw performance, the LAMM researchers are able to link environmental properties to movement in the material and have a more comprehensive understanding of the strength of the Nereis jaw.

Here’s link to and a citation for the paper,

Ion Effect and Metal-Coordinated Cross-Linking for Multiscale Design of Nereis Jaw Inspired Mechanomutable Materials by Chia-Ching Chou, Francisco J. Martin-Martinez, Zhao Qin, Patrick B. Dennis, Maneesh K. Gupta, Rajesh R. Naik, and Markus J. Buehler. ACS Nano, 2017, 11 (2), pp 1858–1868 DOI: 10.1021/acsnano.6b07878 Publication Date (Web): February 6, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.


It’s usually organ-on-a-chip or lab-on-a-chip or human-on-a-chip; this is my first tree-on-a-chip.

Engineers have designed a microfluidic device they call a “tree-on-a-chip,” which mimics the pumping mechanism of trees and other plants. Courtesy: MIT

From a March 20, 2017 news item on,

Trees and other plants, from towering redwoods to diminutive daisies, are nature’s hydraulic pumps. They are constantly pulling water up from their roots to the topmost leaves, and pumping sugars produced by their leaves back down to the roots. This constant stream of nutrients is shuttled through a system of tissues called xylem and phloem, which are packed together in woody, parallel conduits.

Now engineers at MIT [Massachusetts Institute of Technology] and their collaborators have designed a microfluidic device they call a “tree-on-a-chip,” which mimics the pumping mechanism of trees and plants. Like its natural counterparts, the chip operates passively, requiring no moving parts or external pumps. It is able to pump water and sugars through the chip at a steady flow rate for several days. The results are published this week in Nature Plants.

A March 20, 2017 MIT news release by Jennifer Chu, which originated the news item, describes the work in more detail,

Anette “Peko” Hosoi, professor and associate department head for operations in MIT’s Department of Mechanical Engineering, says the chip’s passive pumping may be leveraged as a simple hydraulic actuator for small robots. Engineers have found it difficult and expensive to make tiny, movable parts and pumps to power complex movements in small robots. The team’s new pumping mechanism may enable robots whose motions are propelled by inexpensive, sugar-powered pumps.

“The goal of this work is cheap complexity, like one sees in nature,” Hosoi says. “It’s easy to add another leaf or xylem channel in a tree. In small robotics, everything is hard, from manufacturing, to integration, to actuation. If we could make the building blocks that enable cheap complexity, that would be super exciting. I think these [microfluidic pumps] are a step in that direction.”

Hosoi’s co-authors on the paper are lead author Jean Comtet, a former graduate student in MIT’s Department of Mechanical Engineering; Kaare Jensen of the Technical University of Denmark; and Robert Turgeon and Abraham Stroock, both of Cornell University.

A hydraulic lift

The group’s tree-inspired work grew out of a project on hydraulic robots powered by pumping fluids. Hosoi was interested in designing hydraulic robots at the small scale, that could perform actions similar to much bigger robots like Boston Dynamic’s Big Dog, a four-legged, Saint Bernard-sized robot that runs and jumps over rough terrain, powered by hydraulic actuators.

“For small systems, it’s often expensive to manufacture tiny moving pieces,” Hosoi says. “So we thought, ‘What if we could make a small-scale hydraulic system that could generate large pressures, with no moving parts?’ And then we asked, ‘Does anything do this in nature?’ It turns out that trees do.”

The general understanding among biologists has been that water, propelled by surface tension, travels up a tree’s channels of xylem, then diffuses through a semipermeable membrane and down into channels of phloem that contain sugar and other nutrients.

The more sugar there is in the phloem, the more water flows from xylem to phloem to balance out the sugar-to-water gradient, in a passive process known as osmosis. The resulting water flow flushes nutrients down to the roots. Trees and plants are thought to maintain this pumping process as more water is drawn up from their roots.

“This simple model of xylem and phloem has been well-known for decades,” Hosoi says. “From a qualitative point of view, this makes sense. But when you actually run the numbers, you realize this simple model does not allow for steady flow.”

In fact, engineers have previously attempted to design tree-inspired microfluidic pumps, fabricating parts that mimic xylem and phloem. But they found that these designs quickly stopped pumping within minutes.

It was Hosoi’s student Comtet who identified a third essential part to a tree’s pumping system: its leaves, which produce sugars through photosynthesis. Comtet’s model includes this additional source of sugars that diffuse from the leaves into a plant’s phloem, increasing the sugar-to-water gradient, which in turn maintains a constant osmotic pressure, circulating water and nutrients continuously throughout a tree.

Running on sugar

With Comtet’s hypothesis in mind, Hosoi and her team designed their tree-on-a-chip, a microfluidic pump that mimics a tree’s xylem, phloem, and most importantly, its sugar-producing leaves.

To make the chip, the researchers sandwiched together two plastic slides, through which they drilled small channels to represent xylem and phloem. They filled the xylem channel with water, and the phloem channel with water and sugar, then separated the two slides with a semipermeable material to mimic the membrane between xylem and phloem. They placed another membrane over the slide containing the phloem channel, and set a sugar cube on top to represent the additional source of sugar diffusing from a tree’s leaves into the phloem. They hooked the chip up to a tube, which fed water from a tank into the chip.

With this simple setup, the chip was able to passively pump water from the tank through the chip and out into a beaker, at a constant flow rate for several days, as opposed to previous designs that only pumped for several minutes.

“As soon as we put this sugar source in, we had it running for days at a steady state,” Hosoi says. “That’s exactly what we need. We want a device we can actually put in a robot.”

Hosoi envisions that the tree-on-a-chip pump may be built into a small robot to produce hydraulically powered motions, without requiring active pumps or parts.

“If you design your robot in a smart way, you could absolutely stick a sugar cube on it and let it go,” Hosoi says.

This research was supported, in part, by the Defense Advance Research Projects Agency [DARPA].

This research’s funding connection to DARPA reminded me that MIT has an Institute of Soldier Nanotechnologies.

Getting back to the tree-on-a-chip, here’s a link to and a citation for the paper,

Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip by Jean Comtet, Kaare H. Jensen, Robert Turgeon, Abraham D. Stroock & A. E. Hosoi. Nature Plants 3, Article number: 17032 (2017)  doi:10.1038/nplants.2017.32 Published online: 20 March 2017

This paper is behind a paywall.

The inside scoop on beetle exoskeletons

In the past I’ve covered work on the Namib beetle and its bumps which allow it to access condensation from the air in one of the hottest places on earth and work on jewel beetles and how their structural colo(u)r is derived. Now, there’s research into a beetle’s body armor from the University of Nebraska-Lincoln according to a Feb. 22, 2017 news item on ScienceDaily,

Beetles wear a body armor that should weigh them down — think medieval knights and turtles. In fact, those hard shells protecting delicate wings are surprisingly light, allowing even flight.

Better understanding the structure and properties of beetle exoskeletons could help scientists engineer lighter, stronger materials. Such materials could, for example, reduce gas-guzzling drag in vehicles and airplanes and reduce the weight of armor, lightening the load for the 21st-century knight.

But revealing exoskeleton architecture at the nanoscale has proven difficult. Nebraska’s Ruiguo Yang, assistant professor of mechanical and materials engineering, and his colleagues found a way to analyze the fibrous nanostructure. …

A Feb. 22, 2017 University of Nebraska-Lincoln news release by Gillian Klucas (also on EurekAlert), which originated the news item, describes skeletons and the work in more detail,

The lightweight exoskeleton is composed of chitin fibers just around 20 nanometers in diameter (a human hair measures approximately 75,000 nanometers in diameter) and packed and piled into layers that twist in a spiral, like a spiral staircase. The small diameter and helical twisting, known as Bouligand, make the structure difficult to analyze.

Yang and his team developed a method of slicing down the spiral to reveal a surface of cross-sections of fibers at different orientations. From that viewpoint, the researchers were able to analyze the fibers’ mechanical properties with the aid of an atomic force microscope. This type of microscope applies a tiny force to a test sample, deforms the sample and monitors the sample’s response. Combining the experimental procedure and theoretical analysis, the researchers were able to reveal the nanoscale architecture of the exoskeleton and the material properties of the nanofibers.

Yang holds a piece of the atomic force microscope used to measure the beetle's surface. A small wire can barely be seen in the middle of the piece. Unseen is a two-nano-size probe attached to the wire, which does the actual measuring.

Craig Chandler | University Communication

Yang holds a piece of the atomic force microscope used to measure the beetle’s surface. A small wire can barely be seen in the middle of the piece. Unseen is a two-nano-size probe attached to the wire, which does the actual measuring.

They made their discoveries in the common figeater beetle, Cotinis mutabilis, a metallic green native of the western United States. But the technique can be used on other beetles and hard-shelled creatures and might also extend to artificial materials with fibrous structures, Yang said.

Comparing beetles with differing demands on their exoskeletons, such as defending against predators or environmental damage, could lead to evolutionary insights as well as a better understanding of the relationship between structural features and their properties.

Yang’s co-authors are Alireza Zaheri and Horacio Espinosa of Northwestern University; Wei Gao of the University of Texas at San Antonio; and Cheryl Hayashi of the University of California, Riverside.

Here’s a link to and a citation for the paper,

Exoskeletons: AFM Identification of Beetle Exocuticle: Bouligand Structure and Nanofiber Anisotropic Elastic Properties by Ruiguo Yang, Alireza Zaheri,Wei Gao, Charely Hayashi, Horacio D. Espinosa. Adv. Funct. Mater. vol. 27 (6) 2017 DOI: 10.1002/adfm.201770031 First published: 8 February 2017

This paper is behind a paywall.

Brown recluse spider, one of the world’s most venomous spiders, shows off unique spinning technique

Caption: American Brown Recluse Spider is pictured. Credit: Oxford University

According to scientists from Oxford University this deadly spider could teach us a thing or two about strength. From a Feb. 15, 2017 news item on ScienceDaily,

Brown recluse spiders use a unique micro looping technique to make their threads stronger than that of any other spider, a newly published UK-US collaboration has discovered.

One of the most feared and venomous arachnids in the world, the American brown recluse spider has long been known for its signature necro-toxic venom, as well as its unusual silk. Now, new research offers an explanation for how the spider is able to make its silk uncommonly strong.

Researchers suggest that if applied to synthetic materials, the technique could inspire scientific developments and improve impact absorbing structures used in space travel.

The study, published in the journal Material Horizons, was produced by scientists from Oxford University’s Department of Zoology, together with a team from the Applied Science Department at Virginia’s College of William & Mary. Their surveillance of the brown recluse spider’s spinning behaviour shows how, and to what extent, the spider manages to strengthen the silk it makes.

A Feb. 15, 2017 University of Oxford press release, which originated the news item,  provides more detail about the research,

From observing the arachnid, the team discovered that unlike other spiders, who produce round ribbons of thread, recluse silk is thin and flat. This structural difference is key to the thread’s strength, providing the flexibility needed to prevent premature breakage and withstand the knots created during spinning which give each strand additional strength.

Professor Hannes Schniepp from William & Mary explains: “The theory of knots adding strength is well proven. But adding loops to synthetic filaments always seems to lead to premature fibre failure. Observation of the recluse spider provided the breakthrough solution; unlike all spiders its silk is not round, but a thin, nano-scale flat ribbon. The ribbon shape adds the flexibility needed to prevent premature failure, so that all the microloops can provide additional strength to the strand.”

By using computer simulations to apply this technique to synthetic fibres, the team were able to test and prove that adding even a single loop significantly enhances the strength of the material.

William & Mary PhD student Sean Koebley adds: “We were able to prove that adding even a single loop significantly enhances the toughness of a simple synthetic sticky tape. Our observations open the door to new fibre technology inspired by the brown recluse.”

Speaking on how the recluse’s technique could be applied more broadly in the future, Professor Fritz Vollrath, of the Department of Zoology at Oxford University, expands: “Computer simulations demonstrate that fibres with many loops would be much, much tougher than those without loops. This right away suggests possible applications. For example carbon filaments could be looped to make them less brittle, and thus allow their use in novel impact absorbing structures. One example would be spider-like webs of carbon-filaments floating in outer space, to capture the drifting space debris that endangers astronaut lives’ and satellite integrity.”

Here’s a link to and a citation for the paper,

Toughness-enhancing metastructure in the recluse spider’s looped ribbon silk by
S. R. Koebley, F. Vollrath, and H. C. Schniepp. Mater. Horiz., 2017, Advance Article DOI: 10.1039/C6MH00473C First published online 15 Feb 2017

This paper is open access although you may need to register with the Royal Society of Chemistry’s publishing site to get access.

Effective sunscreens from nature

The dream is to find sunscreens that don’t endanger humans or pollute the environment and it seems that Spanish scientists may have taken a step closer to making that dream a reality (from a Jan. 30, 2017 Wiley Publications press release (also on EurekAlert),

The ideal sunscreen should block UVB and UVA radiation while being safe and stable. In the journal Angewandte Chemie, Spanish scientists have introduced a new family of UVA and UVB filters based on natural sunscreen substances found in algae and cyanobacteria. They are highly stable and enhance the effectivity [sic] of commercial sunscreens.

Good news for sunseekers. Commercial [sic] available sunscreen lotions can very effectively protect from dangerous radiation in the ultraviolet [spectrum], but they need to be applied regularly and in high amounts to develop their full potential. One of the most critical issues is the limited stability of the UV filter molecules. Inspired by nature, Diego Sampedro and his colleagues from La Rioja University in Logrono and collaborators from Malaga University and Alcala University, Madrid, Spain, have screened a natural class of UV-protecting [blocking?] molecules for their possible use in skin protection. They adjusted the nature-given motif [sic] to the requirements of chemical synthesis and found that the molecules could indeed boost the sun protection factor of common formulations.

The natural sunscreen molecules are called microsporine-like amino acids (MAAs) and are widespread in the microbial world, most prominently in marine algae and cyanobacteria. MAAs are small molecules derived from amino acids, thermally stable, and they absorb light in the ultraviolet region, protecting the microbial DNA from radiation damage. Thus they are natural sunscreens, which inspired Sampedro and his colleagues to create [a] new class of organic sunscreen compounds.

Theoretical calculations revealed what is chemically needed for a successful design. “We performed a computer calculation of several basic scaffolds [..] to identify the simplest compound that fulfills the requisites for efficient sunscreens”, the authors write. The result of their search was a set of molecules which were readily synthesized, “avoiding the decorating substituents that come from the biosynthetic route.” Thus the small basic molecules can be tuned to give them more favorable properties.

The authors found that the synthesized compounds are characterized by excellent filter capacities in the relevant UV range. In addition they are photostable, much more than, for example, oxybenzene [sic] which is a widely used sunscreen in commercial formulations. They do not react chemically and dissipate radiation as heat (but not to such an extent that the skin temperature would rise as well). And, most importantly, when tested in real formulations, the sun protection factor (SPF) rose by a factor of more than two. Thus they could be promising targets for more stable, more efficient sunscreen lotions. Good news for your next summer vacation.

There’s some unusual phrasing so, I’m guessing that the writer it not accustomed to writing press releases in English. One other comment, it’s oxybenzone that’s often used as an ingredient in commercial sunscreens.

Here’s a link to and a citation for the paper,

Rational Design and Synthesis of Efficient Sunscreens To Boost the Solar Protection Factor by Raúl Losantos, Ignacio Funes-Ardoiz, Dr. José Aguilera, Prof. Enrique Herrera-Ceballos, Dr. Cristina García-Iriepa, Prof. Pedro J. Campos, and Diego Sampedro. Angewandte Chemie International Edition Volume 56, Issue 10, pages 2632–2635, March 1, 2017 DOI: 10.1002/anie.201611627 Version of Record online: 27 JAN 2017

© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

I have previously featured work on another natural sunscreen. In that case it was to be derived from English ivy (July 22, 2010 posting); there was an update on the English ivy work in a May 30, 2016 posting but the researcher has moved in a different direction looking at wound healing and armour as possible applications for the research.