Category Archives: innovation

Third assessment of The State of Science and Technology and Industrial Research and Development in Canada announced

The last State of Science and Technology and Industrial Research and Development in Canada assessments were delivered in 2006* and 2013 respectively, which seems a shortish gap between assessments, as these things go. On a positive note, this may mean that the government has seen the importance of a more agile approach as the pace of new discoveries is ever quickening. Here’s more from a June 29, 2016 announcement from the Canadian Council of Academies (CCA; received via email),

CCA to undertake third assessment on the State of S&T and IR&D

June 29, 2016 (Ottawa, ON) – The Council of Canadian Academies (CCA) is pleased to announce the launch of a new assessment on the state of science and technology (S&T) and industrial research and development (IR&D) in Canada. This assessment, referred by Innovation, Science and Economic Development Canada (ISED), will be the third installment in the state of S&T and IR&D series by the CCA.

“I’m delighted the government continues to recognize the value of the CCA’s state of S&T and IR&D reports,” said Eric M. Meslin, President and CEO of the Council of Canadian Academies. “An updated assessment will enable policy makers, and others, such as industry leaders, universities, and the private sector, to draw on current Canadian S&T and IR&D data to make evidence-informed decisions.”

The CCA’s reports on the state of S&T and state of IR&D provide valuable data and analysis documenting Canada’s S&T and IR&D strengths and weaknesses. New data will help identify trends that have emerged in the Canadian S&T and IR&D environment in the past four to five years.

Under the guidance of the CCA’s Scientific Advisory Committee, a multidisciplinary, multi-sectoral expert panel is being assembled. It is anticipated that the final report will be released in a two-part sequence, with an interim report released in late 2016 and a final report released in 2017.

To learn more about this and the CCA’s other active assessments, visit Assessments in Progress.

The announcement offers information about the series of assessments,

About the State of S&T and IR&D Assessment Series

Current charge: What is the current state of science and technology and industrial research and development in Canada?

Sponsor: Innovation, Science and Economic Development Canada (ISED)

This assessment will be the third edition in the State of S&T and Industrial R&D assessment series.

Background on the Series

  • In 2006, the CCA completed its first report on The State of Science and Technology in Canada. The findings were integral to the identification of S&T priority areas in the federal government’s 2007 S&T strategy,  Mobilizing Science and Technology to Canada’s Advantage [the original link was not functional; I found the report on an archived page].
  • In 2010 the CCA was again asked to assess the state of S&T in Canada.  The State of Science and Technology in Canada, 2012 updated the 2006 report and provided a thorough analysis of the scientific disciplines and technological applications where Canada excelled in a global context. It also identified Canada’s S&T strengths, regional specializations, and emerging research areas.
  • In 2013, the CCA published The State of Industrial R&D in Canada. This report provided an in-depth analysis of research and development activities in Canadian industries and is one of the most detailed and systematic studies of the state of IR&D ever undertaken in Canada.

I wrote three posts after the second assessment was delivered in 2012. My Sept. 27, 2012 posting was an announcement of its launch and then I offered a two-part critique: part 1 was in a Dec. 28, 2012 posting and part 2 was in a second Dec. 28, 2012 posting. I did not write about the 2013 report on Canada’s industrial research and development efforts.

Given the size of the 2012 assessment of science and technology at 232 pp. (PDF) and the 2013 assessment of industrial research and development at 220 pp. (PDF) with two expert panels, the imagination boggles at the potential size of the 2016 expert panel and of the 2016 assessment combining the two areas.

Given the timing for the interim report (late 2016), I wonder if they are planning to release at the 2016 Canadian Science Policy Conference, which is being held in Ottawa from Nov. 8 – 10, 2016 (for the second year in a row and, I believe, the third time in eight conferences).

*’2012′ changed to ‘2006’ on Oct. 17, 2016.

Cities as incubators of technological and economic growth: from the rustbelt to the brainbelt

An April 10, 2016 news article by Xumei Dong on the timesunion website casts a light on what some feel is an emerging ‘brainbelt’ (Note: Links have been removed),

Albany [New York state, US], in the forefront of nanotechnology research, is one of the fastest-growing cities for tech jobs, according to a new book exploring hot spots of innovation across the globe.

“You have GlobalFoundries, which has thousands of employees working in one of the most modern plants in the world,” says Antoine van Agtmael, the Dutch-born investor who wrote “The Smartest Places on Earth: Why Rustbelts Are the Emerging Hotspots of Global Innovation” with Dutch journalist Fred Bakker.

Their book, mentioned in a Brookings Institution panel discussion last week [April 6, 2016], lists Albany as a leading innovation hub — part of an emerging “brainbelt” in the United States.

The Brookings Institute’s The smartest places on Earth: Why rustbelts are the emerging hotspots of global innovation event page provides more details and includes an embedded video of the event (running time: roughly 1 hour 17 mins.), Note: A link has been removed,

The conventional wisdom in manufacturing has long held that the key to maintaining a competitive edge lies in making things as cheaply as possible, which saw production outsourced to the developing world in pursuit of ever-lower costs. In contradiction to that prevailing wisdom, authors Antoine van Agtmael, a Brookings trustee, and Fred Bakker crisscrossed the globe and found that the economic tide is beginning to shift from its obsession with cheap goods to the production of smart ones.

Their new book, “The Smartest Places on Earth” (PublicAffairs, 2016), examines this changing dynamic and the transformation of “rustbelt” cities, the former industrial centers of the U.S. and Europe, into a “brainbelt” of design and innovation.

On Wednesday, April 6 [2016] Centennial Scholar Bruce Katz and the Metropolitan Policy Program hosted an event discussing these emerging hotspots and how cities such as Akron, Albany, Raleigh-Durham, Minneapolis-St.Paul, and Portland in the United States, and Eindhoven, Malmo, Dresden, and Oulu in Europe are seizing the initiative and recovering their economic strength.

You can find the book here or if a summary and biographies of the authors will suffice, there’s this,

The remarkable story of how rustbelt cities such as Akron and Albany in the United States and Eindhoven in Europe are becoming the unlikely hotspots of global innovation, where sharing brainpower and making things smarter—not cheaper—is creating a new economy that is turning globalization on its head

Antoine van Agtmael and Fred Bakker counter recent conventional wisdom that the American and northern European economies have lost their initiative in innovation and their competitive edge by focusing on an unexpected and hopeful trend: the emerging sources of economic strength coming from areas once known as “rustbelts” that had been written off as yesterday’s story.

In these communities, a combination of forces—visionary thinkers, local universities, regional government initiatives, start-ups, and big corporations—have created “brainbelts.” Based on trust, a collaborative style of working, and freedom of thinking prevalent in America and Europe, these brainbelts are producing smart products that are transforming industries by integrating IT, sensors, big data, new materials, new discoveries, and automation. From polymers to medical devices, the brainbelts have turned the tide from cheap, outsourced production to making things smart right in our own backyard. The next emerging market may, in fact, be the West.

about Antoine van Agtmael and Fred Bakker

Antoine van Agtmael is senior adviser at Garten Rothkopf, a public policy advisory firm in Washington, DC. He was a founder, CEO, and CIO of Emerging Markets Management LLC; previously he was deputy director of the capital markets department of the International Finance Corporation (“IFC”), the private sector oriented affiliate of the World Bank, and a division chief in the World Bank’s borrowing operations. He was an adjunct professor at Georgetown Law Center and taught at the Harvard Institute of Politics. Mr. van Agtmael is chairman of the NPR Foundation, a member of the board of NPR, and chairman of its Investment Committee. He is also a trustee of The Brookings Institution and cochairman of its International Advisory Council. He is on the President’s Council on International Activities at Yale University, the Advisory Council of Johns Hopkins University’s Paul H. Nitze School of Advanced International Studies (SAIS), and a member of the Council on Foreign Relations

Alfred Bakker, until his recent retirement, was a journalist specializing in monetary and financial affairs with Het Financieele Dagblad, the “Financial Times of Holland,” serving as deputy editor, editor-in-chief and CEO. In addition to his writing and editing duties he helped develop the company from a newspaper publisher to a multimedia company, developing several websites, a business news radio channel, and a quarterly business magazine, FD Outlook, and, responsible for the establishment of FD Intelligence

A hard cover copy of the book is $25.99, presumably US currency.

UK’s National Graphene Institute kerfuffle gets bigger

First mentioned here in a March 18, 2016 posting titled: Tempest in a teapot or a sign of things to come? UK’s National Graphene Institute kerfuffle, the ‘scandal’ seems to be getting bigger, from a March 29, 2016 posting on Dexter Johnson’s Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website (Note: A link has been removed),

Since that news story broke, damage control from the NGI [UK National Graphene Institute], the University of Manchester, and BGT Materials, the company identified in the Times article, has been coming fast and furious. Even this blog’s coverage of the story has gotten comments from representatives of BGT Materials and the University of Manchester.

There was perhaps no greater effort in this coordinated defense than getting Andre Geim, a University of Manchester researcher who was a co-discoverer of graphene, to weigh in. …

Despite Geim’s recent public defense, and a full-on PR campaign to turn around the perception that the UK government was investing millions into UK research only to have the fruits of that research sold off to foreign interests, there was news last week that the UK Parliament would be launching an inquiry into the “benefits and disbenefits of the way that graphene’s intellectual property and commercialisation has been managed, including through research and innovation collaborations.”

The timing for the inquiry is intriguing but there have been no public comments or hints that the NGI kerfuffle precipitated the Graphene Inquiry,

The Science and Technology Committee issues a call for written submissions for its inquiry on graphene.

Send written submissions

The inquiry explores the lessons from graphene for research and innovation in other areas, as well as the management and commercialisation of graphene’s intellectual property. Issues include:

  • The research obstacles that have had to be overcome for graphene, including identifying research priorities and securing research funding, and the lessons from this for other areas of research.
  • The factors that have contributed to the successful development of graphene and how these might be applied in other areas, including translating research into innovation, managing/sharing intellectual property, securing development funding, and bringing key stakeholders together.
  • The benefits and disbenefits of the way that graphene’s intellectual property and commercialisation has been managed, including through research and innovation collaborations, and the lessons from this for other areas.

The deadline for submissions is midday on Monday 18 April 2016.

The Committee expects to take oral evidence later in April 2016.

Getting back to the NGI, BGT Materials, and University of Manchester situation, there’s a forceful comment from Daniel Cochlin (identified as a graphene communications and marketing manager at the University of Manchester in an April 2, 2015 posting on Nanoclast) in Dexter’s latest posting about the NGI. From the comments section of a March 29, 2016 posting on the Nanoclast blog,

Maybe the best way to respond is to directly counter some of your assertions.

1. The NGI’s comments on this blog were to counter factual inaccuracies contained in your story. Your Editor-in-Chief and Editorial Director, Digital were also emailed to complain about the story, with not so much as an acknowledgement of the email.
2. There was categorically no ‘coaxing’ of Sir Andre to make comments. He was motivated to by the inaccuracies and insinuations of the Sunday Times article.
3. Members of the Science and Technology Select Committee visited the NGI about ten days before the Sunday Times article and this was followed by their desire to hold an evidence session to discuss graphene commercialisation.
4. The matter of how many researchers work in the NGI is not ‘hotly contested’. The NGI is 75% full with around 130 researchers regularly working there. We would expect this figure to grow by 10-15% within the next few days as other facilities are closed down.
5. Graphene Lighting PLC is the spin-out company set up to produce and market the lightbulb. To describe them as a ‘shadowy spin-out’ is unjustified and, I would suggest, libelous [emphasis mine].
6. Your question about why, if BGT Materials is a UK company, was it not mentioned [emphasis mine] in connection with the lightbulb is confusing – as stated earlier the company set up to manage the lightbulb was Graphene Lighting PLC.

Let’s hope it doesn’t take three days for this to be accepted by your moderators, as it did last time.

*ETA March 31, 2016 at 1530 hours PDT: Dexter has posted response comments in answer to Cochlin’s. You can read them for youself here .* I have a couple of observations (1) The use of the word ‘libelous’ seems a bit over the top. However, it should be noted that it’s much easier to sue someone for libel in England where the University of Manchester is located than it is in most jurisdictions. In fact, there’s an industry known as ‘libel tourism’ where litigious companies and individuals shop around for a jurisdiction such as England where they can easily file suit. (2) As for BGT Materials not being mentioned in the 2015 press release for the graphene lightbulb, I cannot emphasize how unusual that is. Generally speaking, everyone and every agency that had any involvement in developing and bringing to market a new product, especially one that was the ‘first consumer graphene-based product’, is mentioned. When you consider that BGT Materials is a newish company according to its About page,

BGT Materials Limited (BGT), established in 2013, is dedicated to the development of graphene technologies that utilize this “wonder material” to enhance our lives. BGT has pioneered the mass production of large-area, high-quality graphene rapidly achieving the first milestone required for the commercialization of graphene-enhanced applications.

the situation grows more peculiar. A new company wants and needs that kind of exposure to attract investment and/or keep current stakeholders happy. One last comment about BGT Materials and its public relations, Thanasis Georgiou, VP BGT Materials, Visiting scientist at the University of Manchester (more can be found on his website’s About page), waded into the comments section of Dexter’s March 15, 2016 posting and the first about the kerfuffle. Gheorgiou starts out in a relatively friendly fashion but his followup has a sharper tone,

I appreciate your position but a simple email to us and we would clarify most of the issues that you raised. Indeed your article carries the same inaccuracies that the initial Sunday Times article does, which is currently the subject of a legal claim by BGT Materials. [emphasis mine]

For example, BGT Materials is a UK registered company, not a Taiwanese one. A quick google search and you can confirm this. There was no “shadowy Canadian investor”, the company went through a round of financing, as most technology startups do, in order to reach the market quickly.

It’s hard to tell if Gheorgiou is trying to inform Dexter or threaten him in his comment to the March 15, 2016 posting but taken together with Daniel Cochlin’s claim of libel in his comment to the March 29, 2016 posting, it suggests an attempt at intimidation.

These are understandable responses given the stakes involved but moving to the most damaging munitions in your arsenal is usually not a good choice for your first  or second response.

Tempest in a teapot or a sign of things to come? UK’s National Graphene Institute kerfuffle

A scandal-in-the-offing, intellectual property, miffed academics, a chortling businessman, graphene, and much more make this a fascinating story.

Before launching into the main attractions, those unfamiliar with the UK graphene effort might find this background informal useful. Graphene, was first isolated at the University of Manchester in 2004 by scientists Andre Geim* and Konstantin Novoselov, Russian immigrants, both of whom have since become Nobel laureates and knights of the realm. The excitement in the UK and elsewhere is due to graphene’s extraordinary properties which could lead to transparent electronics, foldable/bendable electronics, better implants, efficient and inexpensive (they hope) water filters, and more. The UK government has invested a lot of money in graphene as has the European Union (1B Euros in the Graphene Flagship) in the hope that huge economic benefits will be reaped.

Dexter Johnson’s March 15, 2016 posting on his Nanoclast blog (on the IEEE [Institute for Electrical and Electronics Engineers] website) provides details about the situation (Note: Links have been removed),

A technology that, a year ago, was being lauded as the “first commercially viable consumer product” using graphene now appears to be caught up in an imbroglio over who owns its intellectual property rights. The resulting controversy has left the research institute behind the technology in a bit of a public relations quagmire.

The venerable UK publication The Sunday Times reported this week on what appeared to be a mutiny occurring at the National Graphene Institute (NGI) located at the University of Manchester. Researchers at the NGI had reportedly stayed away from working at the institute’s gleaming new $71 million research facility over fears that their research was going to end up in the hands of foreign companies, in particular a Taiwan-based company called BGT Materials.

The “first commercially viable consumer product” noted in Dexter’s posting was a graphene-based lightbulb which was announced by the NGI to much loud crowing in March 2015 (see my March 30, 2015 posting). The company producing the lightbulb was announced as “… Graphene Lighting PLC is a spin-out based on a strategic partnership with the National Graphene Institute (NGI) at The University of Manchester to create graphene applications.” There was no mention of BGT.

Dexter describes the situation from the BGT perspective (from his March 15, 2016 posting), Note: Links have been removed,

… BGT did not demur when asked by  the Times whether it owned the technology. In fact, Chung Ping Lai, BGT’s CEO, claimed it was his company that had invented the technology for the light bulb and not the NGI. The Times report further stated that Lai controls all the key patents and claims to be delighted with his joint venture with the university. “I believe in luck and I have had luck in Manchester,” Lai told the Times.

With companies outside the UK holding majority stakes in the companies spun out of the NGI—allowing them to claim ownership of the technologies developed at the institute—one is left to wonder what was the purpose of the £50 million (US $79 million) earmarked for graphene research in the UK more than four years ago? Was it to develop a local economy based around graphene—a “Graphene Valley”, if you will? Or was it to prop up the local construction industry through the building of shiny new buildings that reportedly few people occupy? That’s the charge leveled by Andre Geim, Nobel laureate for his discovery of graphene, and NGI’s shining star. Geim reportedly described the new NGI building as: “Money put in the British building industry rather than science.”

Dexter ends his March 15, 2016 posting with an observation  that will seem familiar to Canadians,

Now, it seems the government’s eagerness to invest in graphene research—or at least, the facilities for conducting that research—might have ended up bringing it to the same place as its previous lack of investment: the science is done in the UK and the exploitation of the technology is done elsewhere.

The March 13, 2016 Sunday Times article [ETA on April 3, 2016: This article is now behind a paywall] by Tom Harper, Jon Ungoed-Thomas and Michael Sheridan, which seems to be the source of Dexter’s posting, takes a more partisan approach,

ACADEMICS are boycotting a top research facility after a company linked to China was given access to lucrative confidential material from one of Britain’s greatest scientific breakthroughs.

Some scientists at Manchester University working on graphene, a wonder substance 200 times stronger than steel, refuse to work at the new £61m national institution, set up to find ways to exploit the material, amid concerns over a deal struck between senior university management and BGT Materials.

The academics are concerned that the National Graphene Institute (NGI), which was opened last year by George Osborne, the chancellor, and forms one of the key planks of his “northern powerhouse” industrial strategy, does not have the necessary safeguards to protect their confidential research, which could revolutionise the electronics, energy, health and building industries.

BGT, which is controlled by a Taiwanese businessman, subsequently agreed to work with a Chinese manufacturing company and university to develop similar graphene technology.

BGT says its work in Manchester has been successful and it is “offensive” and “untrue” to suggest that it would unfairly use intellectual property. The university say there is no evidence “whatsoever” of unfair use of confidential information. Manchester says it is understandable that some scientists are cautious about the collaborative environment of the new institute. But one senior academic said the arrangement with BGT had caused the university’s graphene research to descend into “complete anarchy”.

The academic said: “The NGI is a national facility, and why should we use it for a company, which is not even an English [owned] company? How much [intellectual property] is staying in England and how much is going to Taiwan?”

The row highlights concerns that the UK has dawdled in developing one of its greatest discoveries. Nearly 50% of ­graphene-related patents have been filed in China, and just 1% in Britain.

Manchester signed a £5m “research collaboration agreement” with BGT Materials in October 2013. Although the company is controlled by a Taiwanese businessman, Chung-ping Lai, the university does have a 17.5% shareholding.

Manchester claimed that the commercial deal would “attract a significant number of jobs to the city” and “benefit the UK economy”.

However, an investigation by The Sunday Times has established:

Only four jobs have been created as a result of the deal and BGT has not paid the full £5m due under the agreement after two projects were cancelled.

Pictures sent to The Sunday Times by a source at the university last month show that the offices at the NGI [National Graphene Institute], which can accommodate 120 staff, were deserted.

British-based businessmen working with graphene have also told The Sunday Times of their concerns about the institute’s information security. Tim Harper, a Manchester-based graphene entrepreneur, said: “We looked at locating there [at the NGI] but we take intellectual property extremely seriously and it is a problem locating in such a facility.

“If you don’t have control over your computer systems or the keys to your lab, then you’ve got a problem.”

I recommend reading Dexter’s post and the Sunday Times article as they provide some compelling insight into the UK situation vis à vis nanotechnology, science, and innovation.

*’Gheim’ corrected to ‘Geim’ on March 30, 2016.

US Science and Technology Policy Office wants some nanotechnology commercialization success stories

The US Science and Technology Policy Office published a notice on Feb. 2, 2016 on the US Federal Register, ‘Requests for Information: Nanotechnology Commercialization Success’ (PDF request).

 

For anyone who’d like a little more information before clicking onto the PDF link, here’s more from the US Federal Register notice titled: Nanotechnology Commercialization Success Stories,

The purpose of this Request for Information (RFI) is to seek examples of commercialization success stories stemming from U.S. Government-funded nanotechnology research and development (R&D) since the inception of the National Nanotechnology Initiative (NNI) in 2001. The information gathered in response to this RFI may be used as examples to highlight the impact of the Initiative or to inform future activities to promote the commercialization of federally funded nanotechnology R&D. Depending on the nature of the feedback, responses may be used to shape the agenda for a workshop to share best practices and showcase commercial nanotechnology-enabled products and services. Commercial entities, academic institutions, government laboratories, and individuals who have participated in federally funded R&D; collaborated with Federal laboratories; utilized federally funded user facilities for nanoscale fabrication, characterization, and/or simulation; or have otherwise benefited from NNI agency resources are invited to respond.

The deadline is Feb. 29, 2016 and they would prefer contact via email,

 Email: NNISuccessStories@nnco.nano.gov. Include [NNI Success Story] in the subject line of the message.

Mail: Mike Kiley, National Nanotechnology Coordination Office, ATTN: RFI0116, 4201 Wilson Blvd., Stafford II, Suite 405, Arlington, VA 22230. If submitting a response by mail, allow sufficient time for mail processing.

They also have guidelines for the submission,

Submissions are limited to five pages, one of which
we strongly recommend be an overview slide using the template provided at www.nano.gov/NNISuccessStories. Responses must be unclassified and should not contain any sensitive personally identifiable information (such as home address or social security number), or information that might be considered proprietary or confidential). Please include a contact name, e-mail address, and/or phone number in case clarification of details in your submission is required.

The PDF is five pages and you may wish to review the entire document before making your submission.

#BCTECH: being at the Summit (Jan. 18-19, 2016)

#BCTECH Summit 2016*, a joint event between the province of British Columbia (BC, Canada) and the BC Innovation Council (BCIC), a crown corporation formerly known as the Science Council of British Columbia, launched on Jan. 18, 2016. I have written a preview (Jan. 17, 2016 post) and a commentary on the new #BCTECH strategy (Jan. 19, 2016 posting) announced by British Columbia Premier, Christy Clark, on the opening day (Jan. 18, 2016) of the summit.

I was primarily interested in the trade show/research row/technology showcase aspect of the summit focusing (but not exclusively) on nanotechnology. Here’s what I found,

Nano at the Summit

  • Precision NanoSystems: fabricates equipment which allows researchers to create polymer nanoparticles for delivering medications.

One of the major problems with creating nanoparticles is ensuring a consistent size and rapid production. According to Shell Ip, a Precision NanoSystems field application scientist, their NanoAssemblr Platform has solved the consistency problem and a single microfluidic cartridge can produce 15 ml in two minutes. Cartridges can run in parallel for maximum efficiency when producing nanoparticles in greater quantity.

The NanoAssemblr Platform is in use in laboratories around the world (I think the number is 70) and you can find out more on the company’s About our technology webpage,

The NanoAssemblr™ Platform

The microfluidic approach to particle formulation is at the heart of the NanoAssemblr Platform. This well-controlled process mediates bottom-up self-assembly of nanoparticles with reproducible sizes and low polydispersity. Users can control size by process and composition, and adjust parameters such as mixing ratios, flow rate and lipid composition in order to fine-tune nanoparticle size, encapsulation efficiency and much more. The system technology enables manufacturing scale-up through microfluidic reactor parallelization similar to the arraying of transistors on an integrated chip. Superior design ensures that the platform is fast and easy to use with a software controlled manufacturing process. This usability allows for the simplified transfer of manufacturing protocols between sites, which accelerates development, reduces waste and ultimately saves money. Precision NanoSystems’ flagship product is the NanoAssemblr™ Benchtop Instrument, designed for rapid prototyping of novel nanoparticles. Preparation time on the system is streamlined to approximately one minute, with the ability to complete 30 formulations per day in the hands of any user.

The company is located on property known as the Endowment Lands or, more familiarly, the University of British Columbia (UBC).

A few comments before moving on, being able to standardize the production of medicine-bearing nanoparticles is a tremendous step forward which is going to help scientists dealing with other issues. Despite all the talk in the media about delivering nanoparticles with medication directly to diseased cells, there are transport issues: (1) getting the medicine to the right location/organ and (2) getting the medicine into the cell. My Jan. 12, 2016 posting featured a project with Malaysian scientists and a team at Harvard University who are tackling the transport and other nanomedicine) issues as they relate to the lung. As well, I have a Nov. 26, 2015 posting which explores a controversy about nanoparticles getting past the ‘cell walls’ into the nucleus of the cell.

The next ‘nano’ booths were,

  • 4D Labs located at Simon Fraser University (SFU) was initially hailed as a nanotechnology facility but these days they’re touting themselves as an ‘advanced materials’ facility. Same thing, different branding.

They advertise services including hands-on training for technology companies and academics. There is a nanoimaging facility and nanofabrication facility, amongst others.

I spoke with their operations manager, Nathaniel Sieb who mentioned a few of the local companies that use their facilities. (1) Nanotech Security (featured here most recently in a Dec. 29, 2015 post), an SFU spinoff company, does some of their anticounterfeiting research work at 4D Labs. (2) Switch Materials (a smart window company, electrochromic windows if memory serves) also uses the facilities. It is Neil Branda’s (4D Labs Executive Director) company and I have been waiting impatiently (my May 14, 2010 post was my first one about Switch) for either his or someone else’s electrochromic windows (they could eliminate or reduce the need for air conditioning during the hotter periods and reduce the need for heat in the colder periods) to come to market. Seib tells me, I’ll have to wait longer for Switch. (3) A graduate student was presenting his work at the booth, a handheld diagnostic device that can be attached to a smartphone to transmit data to the cloud. While the first application is for diabetics, there are many other possibilities. Unfortunately, glucose means you need to produce blood for the test when I suggested my preference for saliva the student explained some of the difficulties. Apparently, your saliva changes dynamically and frequently and something as simple as taking a sip of orange juice could result in a false reading. Our conversation (mine, Seib’s and the student’s) also drifted over into the difficulties of bringing products to market. Sadly, we were not able to solve that problem in our 10 minute conversation.

  • FPInnovations is a scientific research centre and network for the forestry sector. They had a display near their booth which was like walking into a peculiar forest (I was charmed). The contrast with the less imaginative approaches all around was striking.

FPInnovation helped to develop cellulose nanocrystals (CNC), then called nanocrystalline cellulose (NCC), and I was hoping to be updated about CNC and about the spinoff company Celluforce. The researcher I spoke to was from Sweden and his specialty was business development. He didn’t know much about CNC in Canada and when I commented on how active Sweden has been its pursuit of a CNC application, he noted Finland has been the most active. The researcher noted that making the new materials being derived from the forest, such as CNC, affordable and easily produced for use in applications that have yet to be developed are all necessities and challenges. He mentioned that cultural changes also need to take place. Canadians are accustomed to slicing away and discarding most of the tree instead of using as much of it as possible. We also need to move beyond the construction and pulp & paper sectors (my Feb. 15, 2012 posting featured nanocellulose research in Sweden where sludge was the base material).

Other interests at the Summit

I visited:

  • “The Wearable Lower Limb Anthropomorphic Exoskeleton (WLLAE) – a lightweight, battery-operated and ergonomic robotic system to help those with mobility issues improve their lives. The exoskeleton features joints and links that correspond to those of a human body and sync with motion. SFU has designed, manufactured and tested a proof-of-concept prototype and the current version can mimic all the motions of hip joints.” The researchers (Siamak Arzanpour and Edward Park) pointed out that the ability to mimic all the motions of the hip is a big difference between their system and others which only allow the leg to move forward or back. They rushed the last couple of months to get this system ready for the Summit. In fact, they received their patent for the system the night before (Jan. 17, 2016) the Summit opened.

It’s the least imposing of the exoskeletons I’ve seen (there’s a description of one of the first successful exoskeletons in a May 20, 2014 posting; if you scroll down to the end you’ll see an update about the device’s unveiling at the 2014 World Cup [soccer/football] in Brazil).

Unfortunately, there aren’t any pictures of WLLAE yet and the proof-of-concept version may differ significantly from the final version. This system could be used to help people regain movement (paralysis/frail seniors) and I believe there’s a possibility it could be used to enhance human performance (soldiers/athletes). The researchers still have some significant hoops to jump before getting to the human clinical trial stage. They need to refine their apparatus, ensure that it can be safely operated, and further develop the interface between human and machine. I believe WLLAE is considered a neuroprosthetic device. While it’s not a fake leg or arm, it enables movement (prosthetic) and it operates on brain waves (neuro). It’s a very exciting area of research, consequently, there’s a lot of international competition.

  • Delightfully, after losing contact for a while, I reestablished it with the folks (Sean Lee, Head External Relations and Jim Hanlon, Chief Administrative Officer) at TRIUMF (Canada’s national laboratory for particle and nuclear physics). It’s a consortium of 19 Canadian research institutions (12 full members and seven associate members).

It’s a little disappointing that TRIUMF wasn’t featured in the opening for the Summit since the institution houses theoretical, experimental, and applied science work. It’s a major BC (and Canada) science and technology success story. My latest post (July 16, 2015) about their work featured researchers from California (US) using the TRIUMF cyclotron for imaging nanoscale materials and, on the more practical side, there’s a Mar. 6, 2015 posting about their breakthrough for producing nuclear material-free medical isotopes. Plus, Maclean’s Magazine ran a Jan. 3, 2016 article by Kate Lunau profiling an ‘art/science’ project that took place at TRIUMF (Note: Links have been removed),

It’s not every day that most people get to peek inside a world-class particle physics lab, where scientists probe deep mysteries of the universe. In September [2015], Vancouver’s TRIUMF—home to the world’s biggest cyclotron, a type of particle accelerator—opened its doors to professional and amateur photographers, part of an event called Global Physics Photowalk 2015. (Eight labs around the world participated, including CERN [European particle physics laboratory], in Geneva, where the Higgs boson particle was famously discovered.)

Here’s the local (Vancouver) jury’s pick for the winning image (from the Nov. 4, 2015 posting [Winning Photographs Revealed] by Alexis Fong on the TRIUMF website),

Caption: DESCANT (at TRIUMF) neutron detector array composed of 70 hexagonal detectors Credit: Pamela Joe McFarlane

Caption: DESCANT (at TRIUMF) neutron detector array composed of 70 hexagonal detectors Credit: Pamela Joe McFarlane

With all those hexagons and a spherical shape, the DESCANT looks like a ‘buckyball’ or buckminsterfullerene or C60  to me.

I hope the next Summit features TRIUMF and/or some other endeavours which exemplify, Science, Technology, and Creativity in British Columbia and Canada.

Onto the last booth,

  • MITACS was originally one of the Canadian federal government’s Network Centres for Excellence projects. It was focused on mathematics, networking, and innovation but once the money ran out the organization took a turn. These days, it’s describing itself as (from their About page) “a national, not-for-profit organization that has designed and delivered research and training programs in Canada for 15 years. Working with 60 universities, thousands of companies, and both federal and provincial governments, we build partnerships that support industrial and social innovation in Canada.”Their Jan. 19, 2016 news release (coincidental with the #BCTECH Summit, Jan. 18 – 19, 2016?) features a new report about improving international investment in Canada,

    Opportunities to improve Canada’s attractiveness for R&D investment were identified:

    1.Canada needs to better incentivize R&D by rebalancing direct and indirect support measures

    2.Canada requires a coordinated, client-centric approach to incentivizing R&D

    3.Canada needs to invest in training programs that grow the knowledge economy”

    Oddly, entrepreneurial/corporate/business types never have a problem with government spending when the money is coming to them; it’s only a problem when it’s social services.

    Back to MITACS, one of their more interesting (to me) projects was announced at the 2015 Canadian Science Policy Conference. MITACS has inaugurated a Canadian Science Policy Fellowships programme which in its first year (pilot) will see up up to 10 academics applying their expertise to policy-making while embedded in various federal government agencies. I don’t believe anything similar has occurred here in Canada although, if memory serves, the Brits have a similar programme.

    Finally, I offer kudos to Sherry Zhao, MITACS Business Development Specialist, the only person to ask me how her organization might benefit my business. Admittedly I didn’t talk to a lot of people but it’s striking to me that at an ‘innovation and business’ tech summit, only one person approached me about doing business.  Of course, I’m not a male aged between 25 and 55. So, extra kudos to Sherry Zhao and MITACS.

Christy Clark (Premier of British Columbia), in her opening comments, stated 2800 (they were expecting about 1000) had signed up for the #BCTECH Summit. I haven’t been able to verify that number or get other additional information, e.g., business deals, research breakthroughs, etc. announced at the Summit. Regardless, it was exciting to attend and find out about the latest and greatest on the BC scene.

I wish all the participants great and good luck and look forward to next year’s where perhaps we’ll here about how the province plans to help with the ‘manufacturing middle’ issue. For new products you need to have facilities capable of reproducing your devices at a speed that satisfies your customers; see my Feb. 10, 2014 post featuring a report on this and other similar issues from the US General Accountability Office.

*’BCTECH Summit 2016′ link added Jan. 21, 2016.

#BCTECH: funding and strategy

Yesterday, Jan. 18, 2016, British Columbia’s premier, Christy Clark ,announced the second and third pillars of the #BCTECH strategy:  talent and markets [ETA Jan. 21, 2016: the announcement was made at the #BCTECH Summit, Jan. 18 – 19, 2016]. It was one of a series of announcements about the province’s interest and investment in technology under the #BCTECH banner. The first announcement (first pillar) was the $100M BC Tech Fund in December 2015. Before moving on to pillars two and three, here’s a BC Technology Industry Association (BCTIA) Dec. 8, 2015 news release about the fund,

The Province of British Columbia is creating a $100-million venture capital fund as it builds the foundation for a comprehensive technology strategy aimed at stimulating growth in the fast-moving sector, creating jobs and strengthening a diverse economy.

Premier Christy Clark today announced the new BC Tech Fund as part of the first of three economy-building pillars in the B.C. government’s multi-year #BCTECH Strategy that will drive growth and job creation in the multi-billion dollar tech sector.

“B.C.’s technology sector is consistently growing faster than the overall economy making this the perfect time to catch the wave and help smaller companies join in the ranks of economy builders,” said Premier Clark. “With this fund we’re creating a stronger foundation for B.C.’s technology sector, which is a major employer in communities across the province, to shine on the global stage while creating well-paying jobs back at home for British Columbians.”

The BC Tech Fund will help promising tech companies in B.C.’s tech sector by creating an avenue for capital funding, enabling them to take the next step towards joining the ranks of other job-creating tech companies.

The new fund will also help develop a sustainable venture capital system in the province, building on the success of the B.C. Renaissance Capital Fund (BCRCF), the province’s well developed Angel investment community, and responding to current funding needs.

Capital is one of three pillars in the forthcoming #BCTECH Strategy. This first pillar, announced today, also includes continuing to support B.C.’s competitive tax system and research environment.

The remaining two pillars, talent and markets, include actions to deepen the B.C. technology talent pool by developing and attracting the highest quality talent, and actions to make it easier to access new markets. The complete #BCTECH Strategy will be announced in January.

The BC Tech Fund will be in operation in 2016 following an open procurement process to secure a private sector fund manager to administer it. [emphasis mine] The process for identifying a fund manager begins today with a posting for a Negotiated Request for Proposal (NRFP).

B.C.’s technology sector, a key pillar of the BC Jobs Plan, is consistently growing faster than the economy overall. Its continued growth is integral to diversifying the Province’s economy, strengthening B.C.’s business landscape, and creating jobs in B.C. communities. The BC Jobs Plan builds on the strengths of B.C.’s key sectors and its educated and skilled workforce, keeping the province diverse, strong and growing.

In partnership with the BC Innovation Council, the province is hosting B.C.’s first #BCTECH Summit, Jan. 18-19, 2016, where the #BCTECH Strategy will be released in full. The summit will showcase our tech industry and offer opportunities to connect to this growing sector. To register or learn more, go to: http://bctechsummit.ca/

Quotes:

Amrik Virk, Minister of Technology, Innovation and Citizens’ Services –

“We’ve seen phenomenal growth in the technology sector in recent years. The B.C. Tech Strategy will further increase that growth by giving early-stage companies greater access to the venture capital they need to start off their business on the right footing. The access to capital is the boost entrepreneurs need to build their companies, commercialize and create high-paying, skilled jobs.”

Teresa Wat, Minister of International Trade and Minister Responsible for Asia Pacific Strategy and Multiculturalism –

“Venture capital is a critical building block to stimulating innovative ideas in the marketplace and this new fund reflects our commitment to creating an investment environment that stimulates new economic growth.”

Shirley Bond, Minister of Jobs, Tourism and Skills Training and Responsible for Labour –

“The technology sector is one of eight key sectors identified in the BC Jobs Plan and it is a crucial job creator, supporting innovation and productivity across all industries. All British Columbians stand to benefit from the sector fulfilling its potential.”

Greg Peet, chair, Premier’s Technology Council –

“Government gained a better understanding of what was needed to support growth of the technology sector by speaking with its leaders and influencers. Putting those needs into action has resulted in a strategy that provides promising tech companies with access to the capital they need, and reaffirms government’s commitment to help researchers and innovators succeed in building world class new businesses that create high paying jobs in B.C.”

Bill Tam, president and CEO of the BC Technology Industry Association –

“B.C. is already home to an amazing technology sector, and today’s announcement provides needed support for business development and growth. Government’s venture capital investment is a great start in terms of helping companies expand, and will solidify what many already know: B.C. is the best place to grow a tech company.”

Igor Faletski, chief executive officer, co-founder, Mobify –

“Increasing access to venture capital in British Columbia will be a major boost to many growing technology companies here. At Mobify we know from personal experience how useful early stage programs like the BC Venture Acceleration Program are to startups. The $100 million investment by the B.C. government into the BC Tech Fund will help our companies grow and achieve global leadership even faster.”

Mike Woollatt, chief executive officer, Canadian Venture Capital and Private Equity Association –

“Like B.C., governments around the world recognize that being a strong partner of the venture community reaps rewards for the economy and productivity. This new venture capital fund will be a source of innovations and jobs.”

Paris Gaudet, executive director, Innovation Island –

“Working closely with tech startups delivering the Venture Acceleration Program, I know how venture capital significantly increases a company’s chance of success. That is why I’m thrilled about this announcement as it will propel growth, increase jobs in the tech sector, and expand the number of opportunities available to entrepreneurs.”

Yesterday’s (Jan. 18, 2016) announcement focused largely on the other two pillars of the #BCTECH Strategy, although remarkably few details about any of these pillars have been shared.

Technical briefing or stonewalling?

Four BC government officials were answering questions at the technical briefing but not of them wanted (or was allowed?) to be identified as a specific source for information (i.e., quoted). Since they didn’t have much information to give, it wasn’t much of a problem. Here are the names of the four BC government officials: Bobbi Plecas, Associate Deputy Minister, Corporate Inititiatives; John Jacobson, Deputy Minister, Technology, Innovation, and Citizens’ Services; Shannon Baskerville, Deputy Minister, Deputy Minister’s Office; and Bindi Sawchuk, Executive Director, Investment Capital (job titles are from the BC Government online directory as of Jan. 18, 2016).

Let’s start with the money.  Apparently, the $100M fund will be ‘evergreen’ (somehow the money that goes out will be replenished) but no real details were offered as to how that might be achieved. Perhaps they’re hoping for a ‘return on investment’? They weren’t clear. Also, this fund will be in existence for 15 years. No reason was given for the fund’s end date. The government did consult with industry and the $100M amount was considered the optimal size for the fund, not big enough to scare away private investment but enough to ensure adequate government capitalization. Apparently, the plan is to start disbursing funds in 2016 (?) but they have yet to “secure a private sector fund manager to administer it.”

The second pillar is talent. The BC government is trying to make it easier for companies to bring talent from elsewhere (immigrants) while training more people here. No mention was made of the Syrian refugees currently settling here (other jurisdictions such as the UK and Germany, in their distinctive ways, are extending a special welcome to Syrian scientists as I noted in a Dec. 22, 2015 posting). [ETA Jan. 21, 2016: Arizona State University (US) has established an education fund for Syrian refugee students who want to complete their undergraduate or graduate programmes as per a Dec. 31, 2015 posting on the 2020 Science blog.]

Back to talent and training here, the government wants to embed  computer coding into the education system for K-12 (kindergarten to grade 12). One determined reporter (Canadian Press if memory serves) attempted to find out how much this would cost. No answer was forthcoming although there were many words expended. Whether this failure was due to ignorance (disturbing!) or a reluctance to share (also disturbing!) was impossible to tell. Another reporter (Georgia Straight) asked about equipment (coding can be taught with pen and paper but hardware is better). It seems the BC school system is beginning to resemble school systems in the US where districts with parents who can afford to fundraise have an advantage over other districts. Getting back to the reporter’s question, no answer was forthcoming although the speaker was loquacious.

Another reporter asked if the government had found any jurisdictions doing anything similar regarding computer coding. It seems they did consider other jurisdictions although it was claimed that BC is the first to strike out in this direction. Oddly, no one mentioned Estonia, known in some circles as E-stonia, where the entire school system was online by the late 1990s in an initiative known as the ‘Tiger Leap Foundation’ which also supported computer coding classes in secondary school (there’s more in Tim Mansel’s May 16, 2013 article about Estonia’s then latest initiative to embed computer coding into grade school.) There was a review of various countries’ efforts in a March 31, 2012 article for the Guardian; notice what they had to say about South Korea and there’s a more recent and brief mention of the international situation in an Aug. 31, 2015 article on CBC (Canadian Broadcasting Corporation) news online.

Returning yet again to the #BCTECH Strategy, there was a question about BC teachers being able to teach coding (I think it was Canadian Press again). It doesn’t seem the government has thought that aspect through. The speaker who answered most of these questions talked about the coding camps (another initiative with trainers who have specific skill sets [?]) and also noted there would be professional days to help BC teachers figure how to teach coding in the regular classes. No details were given as to how much training and support the teachers would receive. By contrast, the Estonians trained 60 teachers before implementing the initiative.

Hopefully, BC will take notice and adopt the policy although it is  currently embroiled in a dispute with teachers which has reached Canada’s Supreme Court, from a Jan. 14, 2016 article by Ian Bailey for the Globe and Mail,

Canada’s highest court has agreed to hear an appeal in a dispute that has fuelled the volatile relationship between British Columbia teachers and the provincial government in a case that could affect labour relations across the country.

B.C. Premier Christy Clark was education minister [14 years ago] when the province first stripped the teachers’ contract.

This week’s developments come after a bitter, months-long teachers’ strike in 2014 that ended with a six-year contract that included a 7.25-per-cent raise and a $400-million fund to hire bargaining unit members to address class size and composition issues.

Despite past battles, both Mr. Iker [Jim Iker, president of the BC Teachers’ Federation] and Mr. Bernier [current B.C. Education Minister Mike Bernier] insisted there was a good relationship between teachers and the government.

Mr. Iker said teachers are working well with the Liberals on revisions to curriculum, but it was up to teachers to advocate for more funding to address student needs.

Now, the third pillar of the #BCTECH strategy, new markets. The BC government has decided it is one of the best markets for new technology. I am intrigued but not convinced that the average government bureaucrat is going to make any decisions about adopting new technologies as that requires confidence and risk-taking abilities. Looking at those four bureaucrats none of whom was to be quoted in any story about the #BCTECH Strategy that they are charged with implementing, it seems unlikely that any one of those four (or others of their ilk) would make that kind of decision. To be fair, there are reasons why you don’t want bureaucrats to jump on every new idea as these people are the guardians of public welfare and public monies. The question then becomes, how do you get bureaucrats to take some risks without going overboard? As well, bureaucratic systems are not designed for risk-taking. So the next question is, how do you redesign your bureaucratic system to encourage some risk-taking? It’s not fair to ask people to do this sort of thing if you’re not going to support them. On the plus side, they are eliminating some of the red tape. For projects under $250K, requests for proposals are just two pages.

Disappointingly, the emphasis was largely on data and computer coding. There was some talk about life sciences but no larger vision of science and culture was offered. Creativity was mentioned, which seems odd since the presentations were markedly lacking in that quality. (The presentations at the opening were well done and, at times, even I was stirred [mildly] but no creative ground was broken or even hinted at.) The #BCTECH strategy 2016 document does mention creativity (sort of) on page 25 of the print document,

Promote creative thinking as a core competency across the entire curriculum including technical and business education

As part of this move to embed computer coding classes and creativity into the curriculum, they are introducing (from page 25),

New Applied Design, Skills and Technologies education: an experiential, hands-on learning through design and creation that includes skills and concepts from Information Technology Education

The applied design is being offered from K-9 (from page 25),

Students will have the opportunity to specialize in Information Technology, Technology Education or emerging disciplines.

Interestingly, Emily Carr University of Art + Design was not present at the Tech Summit (no presentation, no keynote address, no booth, no mention in the documents). It should be noted that the Council of Canadian Academies included visual and performing arts in its State of Science and Technology in Canada, 2012 (link to full PDF report).

Hole in the strategy and final comments

Don Mattrick is well known locally as a BC technology success story and he was the Industry Chair for this summit. He is one of the province’s pioneers in the field of video games and, according to Premier Clark, he’d achieved enough financial success that by grade 11 (he was probably 16), he went out to buy a Ferrari for which he had the funds.  He was unsuccessful in his quest to purchase a Ferrari or his next quest to get a loan from the bank. Despite these setbacks, he did found one of the first video games companies in BC, which he later sold to Electronic Arts, a US games and entertainment giant.

In the early 1980s when Mattrick started out, he had very little support there wasn’t a video game industry n Canada. (Hard to believe now but games were leading/bleeding edge.) That lack of support for new, emerging fields can be seen even with this new #BCTECH strategy where Premier Clark announced very clearly that education in the new technology sectors had to be tied to jobs. Sensible but problematic. A ‘Don Mattrick’ type wouldn’t have had a job since the industry wasn’t yet established.

The truly groundbreaking, new technologies are highly disruptive and risky which Clark acknowledged and dismissed (she exhorted people not to give up) in her speech.

With an international race to ‘innovate’, all governments face the issues of disruption and risk taking. Bureaucracies are not designed to engage in those activities. To a large extent, they’ve been designed to control and minimize disruption and risk taking.

I’m sympathetic to the problem, I just wish the BC government had been more forthcoming about the issues and about the details of how they are going to implement this new strategy.

I’m also curious as to whether the government is interested in changing the ‘found a start-up company and sell to a corporate giant’ culture which reigns here in BC. That’s what Don Mattrick and a century or more’s worth of innovative BC entrepreneurs have done.

Finally, I gather Clark wants to commercialize our data further. She talked about opportunities to do that although no details were forthcoming nor was there any mention of privacy issues.

#BCTECH: preview of Summit, Jan. 18 – 19, 2016

It is the first and it is sold out. Fear Not! I have gotten a press pass so I can investigate a bit further. In the meantime, #BCTECH Summit 2016 is a joint venture between the province of British Columbia (BC, Canada) and the BC Innovation Council (BCIC), a crown corporation formerly known as the Science Council of British Columbia.  A Jan 6, 2016 BCIC news release tells the story,

With less than two weeks to go and tickets 95% sold out, world-renowned keynote speakers will reinforce technology’s increasing economic and social impact to more than 2,000 people during B.C.’s first #BCTECH Summit on Jan. 18 & 19, 2016.

With Microsoft confirmed as the title sponsor, the summit will feature numerous dynamic keynote speakers:

  •  Ray Kurzweil, inventor, futurist—described as “the restless genius”, with predictions that will change how people think about the future.
  •  Andrew Wilson, CEO, Electronic Arts—named one of the top people in business by Fortune magazine.
  •  T.K. “Ranga” Rengarajan, corporate vice-president, Microsoft—will explore how technology and the cloud is empowering Canadians and changing how we do business and interact in the digital world.
  •  Elyse Allan, president and CEO, GE Canada—named one of the 25 most powerful people in Canada.
  •  Eric Ries, pioneer of the Lean Startup movement—a new approach to business that’s being adopted around the world; changing the way companies are built and new products are launched.

In addition, panel discussions featuring B.C. business leaders and global thought leaders will explore the latest trends, including fintech, cleantech, big data and cyber security.

A technology showcase will feature B.C.’s most innovative technology at work, including robots, 3D printing and electric cars. A new exhibit, the 4D Portal, will take delegates on a journey of B.C. tech, from deep below the earth’s surface into outer space.

More than 500 high school and post-secondary students will also take part in the summit’s career showcase featuring speakers and exhibitors sharing the latest information about technology as a career choice that pays, on average, 60% more than the B.C. average.

As part of the career showcase, nearly 200 high school students will participate in a coding camp and learn basic coding skills. The coding camp will also be offered via live webcast so schools throughout the province can participate.

A key component of the summit will profile venture capital presentations made by 40 promising small- to medium-sized B.C. companies aiming to attract investors and proceed to the next stage of development.

B.C.’s technology sector, a key pillar of the BC Jobs Plan, is consistently growing faster than the economy overall. Its continued growth is integral to diversifying the Province’s economy, strengthening B.C.’s business landscape and creating jobs in B.C. communities.

The new $100 million venture capital BC Tech Fund, announced Dec. 8, 2015, is the first pillar of the comprehensive #BCTECH Strategy to be released in full at B.C.’s first #BCTECH Summit, Jan. 18 – 19, 2016. The conference is presented by the B.C. government in partnership with the BC Innovation Council (BCIC). To register or learn more, go to: http://bctechsummit.ca

Quotes:

Minister of Technology, Innovation and Citizens’ Services, Amrik Virk –

“Strengthening our technology sector is part of our commitment to support our diverse economy. The summit provides an unprecedented opportunity for like-minded individuals to get together and discuss ways of growing this sector and capitalizing from that growth.”

President and CEO, BCIC, Greg Caws –

“We are pleased to provide British Columbians from across the province with the opportunity to explore how technology impacts our lives and our businesses. Above all, the #BCTECH Summit will be a catalyst for all of us to embrace technology and an innovation mindset.”

President, Microsoft Canada, Janet Kennedy –

“Microsoft is proud to be the title sponsor of the #BCTECH Summit—an event that showcases B.C.’s vibrant technology industry. We are excited about the growth of B.C.’s tech sector and are pleased that we’re expanding our developer presence in Vancouver and supporting Canadian private and public sector organizations through our investments in Canadian data centres.”

Quick Facts:

  •  The technology sector directly employs more than 86,000 people, and wages for those jobs are 60% higher than B.C.’s industrial average.
  •  B.C.’s technology sector is growing faster than the overall economy. In 2013, it grew at a rate of 4.7%, higher than the 3.2% growth observed in the provincial economy.
  •  In 2013, the technology sector added $13.9 billion to B.C.’s GDP.
  •  B.C.’s 9,000 technology companies combined generated $23.3 billion in revenue in 2013.
  •  New technology companies are emerging at increasing rates throughout the province. In 2013, there was an addition of more than 700 new technology companies in B.C., an increase of 8% over the prior year.

I’m not a big fan of Kurzweil’s but the man can sell tickets and, in days past, he did develop some important software. You can find out more about him on his website and critiques can be found here on Quora, as well as, a thoughtful Nov. 5, 2012 piece by Gary Marcus for the New Yorker about Kurzweil’s latest book (“How to Create a Mind: The Secret of Human Thought Revealed”).

As for me, I’m most interested in the trade show/research row/technology showcase. Simon Fraser University sent out a Jan. 14, 2016 news release highlighting its participation in the trade show and summit (weirdly there was nothing from the other major local research institution, the University of British Columbia),

Simon Fraser University is a gold sponsor of the #BCTECH Summit a new two-day event presented by the B.C. government and the BC Innovation Council to showcase the province’s vibrant technology sector

 

Simon Fraser University will be highly visible at the inaugural #BCTECH Summit taking place on January 18-19 at the Vancouver Convention Centre.

 

In addition to technology displays from student entrepreneurs at the SFU Innovates booth, SFU research will be featured at both the Technology Showcase and Research Row. [emphasis mine] SFU representatives will be on hand at the Career Showcase to speak to secondary and post-secondary students who are interested in the industry. And several investment-ready companies affiliated with SFU will be pitching to elite investors.

 

During the summit, entrepreneurs, investors, researchers, students and government will explore new ideas on how to gain a competitive advantage for B.C. The event will spark discussion on directions for the province’s rapidly developing high tech sector, while several streams will illustrate and share new innovations.

 

“This event provides us with an opportunity to showcase how SFU students, faculty, alumni and client companies are stimulating innovation and creating jobs and opportunities for British Columbia,“ says SFU Vice-President Research Joy Johnson. “And it highlights the work we’ve been doing to inspire, develop and support impact-driven innovation and entrepreneurship through SFU Innovates.”

 

SFU Innovates was launched in October to synergize and strengthen the university’s activities and resources related to community and industry engagement, incubation and acceleration, entrepreneurship and social innovation.

 

Johnson will introduce the summit’s keynote address by Eric Ries, Silicon Valley entrepreneur and author of The Lean Startup, on How today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses, on Jan. 18 [2016] at 10:45 a.m.

 

SFU Faculty of Applied Sciences professor Ryan D’Arcy will be a panelist at a session titled Industry Deep Dive – Healthcare, moderated by Paul Drohan, CEO, Life Sciences BC, on Jan. 19 [2016] at 11 a.m. He will share how Surrey’s thriving Innovation Boulevard (IB) is progressing. SFU is a founding partner of IB and contributes via the university’s research strengths in health and technology and its focus on health tech innovation.

 

Steven Jones, an SFU professor of molecular biology and biochemistry, and associate director and head of bioinformatics at the Michael Smith Genome Sciences Centre, BCCA [BC Cancer Agency], will participate on a panel titled Shaping the Future of Health, on Jan. 19 [2016] at 2:15 p.m., to be moderated by the Honourable Terry Lake, Minister of Health.

 

And Igor Faletski, CEO of Mobify (and an SFU alumnus) will participate in the “Why BC?” session to be moderated by Bill Tam, CEO of BCTIA [BC Technology Industry Association], on Jan. 18 [2016] at 11:30 a.m.

 

Students and delegates will also have the opportunity to explore the various research and technology showcases.

 

Backgrounder: SFU Innovations at #BCTECH Summit

 

Research Row

 

4D LABS will showcase how it has helped B.C.’s academic and industry tech clients turn their ideas into innovations. The facility has been instrumental in bringing numerous ideas out of the lab and into the marketplace, advancing a diverse range of technologies, including fuel cells, batteries, biosensors, security devices, pharmaceutical delivery, MEMS, and many more. As B.C.’s premier materials research institute, the open-access, $65 million state-of-the-art facility has helped to advance nearly 50 companies in the local tech sector.

 

• SFU researchers led by JC Liu of the Faculty of Applied Sciences will display their cloud gaming platform, Rhizome, utilizing the latest hardware support for both remote servers and local clients. The platform takes the first step towards bridging online gaming systems and the public cloud, accomplishing ultra-low latency and resulting in a low power consumption gaming experience. Their demo shows that gaming over virtualized cloud can be made possible with careful optimization and integration of different modules. They will also introduce CrowdNavigation, a complementary service to existing navigation systems that combats the “last mile puzzle” and helps drivers to determine the end of routes.

 

Molescope is a hand held tool that uses a smartphone to monitor skin for signs of cancer. The device is based on research that Maryam Sadeghi conducted during her doctoral studies at SFU and commercialized through her company, MetaOptima Inc., a former SFU Venture Connection client. The product was unveiled at the World Congress of Dermatology in 2015 and is also now available at the consumer level. Molescope enables people to monitor their moles and manage skin health.

 

Technology Showcase

 

• Engineering science professors Siamak Arzanpour and Edward Park will showcase their Wearable Lower Limb Anthropomorphic Exoskeleton (WLLAE) – a lightweight, battery-operated and ergonomic robotic system to help those with mobility issues improve their lives. The exoskeleton features joints and links that correspond to those of a human body and sync with motion. SFU has designed, manufactured and tested a proof-of-concept prototype and the current version can mimic all the motions of hip joints. Researchers anticipate the next generation of this system early this year. The prototype will be live-demoed as an example of a breakthrough innovation.

 

Venture Capital Presentations

 

Several SFU-affiliated companies were selected to present investment pitches to local and international venture capitalists at the summit, including:

 

H+ Technology, creator of Holus, an interactive, tabletop holographic platform that converts any digital content from your tablet, smartphone, PC or Mac into a 360-degree holographic experience. H+ was co-founded by three SFU alumni and was a former client company of the SFU incubator at the Harbour Centre campus.

 

Optigo Networks, a VentureLabs® client company that delivers next-generation security for the commercial Internet of Things.

 

Saltworks Technologies Inc., provider of advanced water treatment solutions and a company founded by two graduates of SFU’s Management of Technology MBA program.

 

Semios, a VentureLabs® client company and emerging leader in agricultural technology innovation.

 

VeloMetro Mobility Inc., a former SFU Venture Connection and current VentureLabs® client company with the mission to provide people with human-powered vehicles that parallel automobile functionality for urban use.

 

SFU Innovates Trade Show will include:

 

• H+ Technology (see above)

 

Shield X Technology, creators of Brainshield™, an impact-diverting decal for sports helmets that is the result of six years of R&D at SFU’s School of Mechatronics Systems Engineering at the Surrey campus. An SFU spinout, it is a current VentureLabs® client company.

 

• Acceleration Innovations, creator of Birth Alert, the first ever app-enabled, automatic and wireless contraction-monitoring device. Acceleration Innovations was founded by a team of students from the Technology Entrepreneurship@SFU program.

 

ORA Scents, a mobile device company created by an SFU Beedie School of Business undergrad student, that is introducing the world’s first app-enabled scent diffuser that enables users to create, control and share personalized scents in real-time. [Sounds like oPhone mentioned in my June 18, 2014 posting.)

 

Also presenting at the VentureLabs area within the BC Accelerator Network Pavilion will be: PHEMI Health Systems, Semios, XCo, U R In Control, TeamFit, Instant, Wearable Therapeutics, V7 Entertainment, ThinkValue, and Aspect Biosystems. Lungpacer Medical and Metacreative, both companies formed around SFU faculty research, will also have exhibits.

 

Prize draws will be held for projects from RADIUS Slingshot ventures The Capilano Tea House & Botanical Soda Co. and Naked Snacks.

I’m particularly interested in what 4D Labs is doing these days. (They used to brand themselves as a nanotechnology laboratory but they’ve moved on to what they see as more sophisticated branding. I’m just curious. Have they changed focus or is it nanotechnology under a new name?)

Commercializing nanotechnology: Peter Thiel’s Breakout Labs and Argonne National Laboratories

Breakout Labs

I last wrote about entrepreneur Peter Thiel’s Breakout Labs project in an Oct. 26, 2011 posting announcing its inception. An Oct. 6, 2015 Breakout Labs news release (received in my email) highlights a funding announcement for four startups of which at least three are nanotechnology-enabled,

Breakout Labs, a program of Peter Thiel’s philanthropic organization, the Thiel Foundation, announced today that four new companies advancing scientific discoveries in biomedical, chemical engineering, and nanotechnology have been selected for funding.

“We’re always hearing about bold new scientific research that promises to transform the world, but far too often the latest discoveries are left withering in a lab,” said Lindy Fishburne, Executive Director of Breakout Labs. “Our mission is to help a new type of scientist-entrepreneur navigate the startup ecosystem and build lasting companies that can make audacious scientific discoveries meaningful to everyday life. The four new companies joining the Breakout Labs portfolio – nanoGriptech, Maxterial, C2Sense, and CyteGen – embody that spirit and we’re excited to be working with them to help make their vision a reality.”

The future of adhesives: inspired by geckos

Inspired by the gecko’s ability to scuttle up walls and across ceilings due to their millions of micro/nano foot-hairs,nanoGriptech (http://nanogriptech.com/), based in Pittsburgh, Pa., is developing a new kind of microfiber adhesive material that is strong, lightweight, and reusable without requiring glues or producing harmful residues. Currently being tested by the U.S. military, NASA, and top global brands, nanoGriptech’s flagship product Setex™ is the first adhesive product of its kind that is not only strong and durable, but can also be manufactured at low cost, and at scale.

“We envision a future filled with no-leak biohazard enclosures, ergonomic and inexpensive car seats, extremely durable aerospace adhesives, comfortable prosthetic liners, high performance athletic wear, and widely available nanotechnology-enabled products manufactured less expensively — all thanks to the grippy little gecko,” said Roi Ben-Itzhak, CFO and VP of Business Development for nanoGriptech.

A sense of smell for the digital world

Despite the U.S. Department of Agriculture’s recent goals to drastically reduce food waste, most consumers don’t realize the global problem created by 1.3 billion metric tons of food wasted each year — clogging landfills and releasing unsustainable levels of methane gas into the atmosphere. Using technology developed at MIT’s Swager lab, Cambridge, Ma.-based C2Sense(http://www.c2sense.com/) is developing inexpensive, lightweight hand-held sensors based on carbon nanotubes which can detect fruit ripeness and meat, fish and poultry freshness. Smaller than a half of a business card, these sensors can be developed at very low cost, require very little power to operate, and can be easily integrated into most agricultural supply chains, including food storage packaging, to ensure that food is picked, stored, shipped, and sold at optimal freshness.

“Our mission is to bring a sense of smell to the digital world. With our technology, that package of steaks in your refrigerator will tell you when it’s about to go bad, recommend some recipe options and help build out your shopping list,” said Jan Schnorr, Chief Technology Officer of C2Sense.

Amazing metals that completely repel water

MaxterialTM, Inc. develops amazing materials that resist a variety of detrimental environmental effects through technology that emulates similar strategies found in nature, such as the self-cleaning lotus leaf and antifouling properties of crabs. By modifying the surface shape or texture of a metal, through a method that is very affordable and easy to introduce into the existing manufacturing process, Maxterial introduces a microlayer of air pockets that reduce contact surface area. The underlying material can be chemically the same as ever, retaining inherent properties like thermal and electrical conductivity. But through Maxterial’s technology, the metallic surface also becomes inherently water repellant. This property introduces the superhydrophobic maxterial as a potential solution to a myriad of problems, such as corrosion, biofouling, and ice formation. Maxterial is currently focused on developing durable hygienic and eco-friendly anti-corrosion coatings for metallic surfaces.

“Our process has the potential to create metallic objects that retain their amazing properties for the lifetime of the object – this isn’t an aftermarket coating that can wear or chip off,” said Mehdi Kargar, Co-founder and CEO of Maxterial, Inc. “We are working towards a day when shipping equipment can withstand harsh arctic environments, offshore structures can resist corrosion, and electronics can be fully submersible and continue working as good as new.”

New approaches to combat aging

CyteGen (http://cytegen.com/) wants to dramatically increase the human healthspan, tackle neurodegenerative diseases, and reverse age-related decline. What makes this possible now is new discovery tools backed by the dream team of interdisciplinary experts the company has assembled. CyteGen’s approach is unusually collaborative, tapping into the resources and expertise of world-renowned researchers across eight major universities to focus different strengths and perspectives to achieve the company’s goals. By approaching aging from a holistic, systematic point of view, rather than focusing solely on discrete definitions of disease, they have developed a new way to think about aging, and to develop treatments that can help people live longer, healthier lives.

“There is an assumption that aging necessarily brings the kind of physical and mental decline that results in Parkinson’s, Alzheimer’s, and other diseases. Evidence indicates otherwise, which is what spurred us to launch CyteGen,” said George Ugras, Co-Founder and President of CyteGen.

To date, Breakout Labs has invested in more than two dozen companies at the forefront of science, helping radical technologies get beyond common hurdles faced by early stage companies, and advance research and development to market much more quickly. Portfolio companies have raised more than six times the amount of capital invested in the program by the Thiel Foundation, and represent six Series A valuations ranging from $10 million to $60 million as well as one acquisition.

You can see the original Oct. 6, 2015 Breakout Labs news release here or in this Oct. 7, 2015 news item on Azonano.

Argonne National Labs and Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS)

The US Department of Energy’s Argonne National Laboratory’s Oct. 6, 2015 press release by Greg Cunningham announced two initiatives meant to speed commercialization of nanotechnology-enabled products for the energy storage and other sectors,

Few technologies hold more potential to positively transform our society than energy storage and nanotechnology. Advances in energy storage research will revolutionize the way the world generates and stores energy, democratizing the delivery of electricity. Grid-level storage can help reduce carbon emissions through the increased adoption of renewable energy and use of electric vehicles while helping bring electricity to developing parts of the world. Nanotechnology has already transformed the electronics industry and is bringing a new set of powerful tools and materials to developers who are changing everything from the way energy is generated, stored and transported to how medicines are delivered and the way chemicals are produced through novel catalytic nanomaterials.

Recognizing the power of these technologies and seeking to accelerate their impact, the U.S. Department of Energy’s Argonne National Laboratory has created two new collaborative centers that provide an innovative pathway for business and industry to access Argonne’s unparalleled scientific resources to address the nation’s energy and national security needs. These centers will help speed discoveries to market to ensure U.S. industry maintains a lead in this global technology race.

“This is an exciting time for us, because we believe this new approach to interacting with business can be a real game changer in two areas of research that are of great importance to Argonne and the world,” said Argonne Director Peter B. Littlewood. “We recognize that delivering to market our breakthrough science in energy storage and nanotechnology can help ensure our work brings the maximum benefit to society.”

Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS) will provide central points of contact for companies — ranging from large industrial entities to smaller businesses and startups, as well as government agencies — to benefit from Argonne’s world-class expertise, scientific tools and facilities.

NDW and ACCESS represent a new way to collaborate at Argonne, providing a single point of contact for businesses to assemble tailored interdisciplinary teams to address their most challenging R&D questions. The centers will also provide a pathway to Argonne’s fundamental research that is poised for development into practical products. The chance to build on existing scientific discovery is a unique opportunity for businesses in the nano and energy storage fields.

The center directors, Andreas Roelofs of NDW and Jeff Chamberlain of ACCESS, have both created startups in their careers and understand the value that collaboration with a national laboratory can bring to a company trying to innovate in technologically challenging fields of science. While the new centers will work with all sizes of companies, a strong emphasis will be placed on helping small businesses and startups, which are drivers of job creation and receive a large portion of the risk capital in this country.

“For a startup like mine to have the ability to tap the resources of a place like Argonne would have been immensely helpful,” said Roelofs. “We”ve seen the power of that sort of access, and we want to make it available to the companies that need it to drive truly transformative technologies to market.”

Chamberlain said his experience as an energy storage researcher and entrepreneur led him to look for innovative approaches to leveraging the best aspects of private industry and public science. The national laboratory system has a long history of breakthrough science that has worked its way to market, but shortening that journey from basic research to product has become a growing point of emphasis for the national laboratories over the past couple of decades. The idea behind ACCESS and NDW is to make that collaboration even easier and more powerful.

“Where ACCESS and NDW will differ from the conventional approach is through creating an efficient way for a business to build a customized, multi-disciplinary team that can address anything from small technical questions to broad challenges that require massive resources,” Chamberlain said. “That might mean assembling a team with chemists, physicists, computer scientists, materials engineers, imaging experts, or mechanical and electrical engineers; the list goes on and on. It’s that ability to tap the full spectrum of cross-cutting expertise at Argonne that will really make the difference.”

Chamberlain is deeply familiar with the potential of energy storage as a transformational technology, having led the formation of Argonne’s Joint Center for Energy Storage Research (JCESR). The center’s years-long quest to discover technologies beyond lithium-ion batteries has solidified the laboratory’s reputation as one of the key global players in battery research. ACCESS will tap Argonne’s full battery expertise, which extends well beyond JCESR and is dedicated to fulfilling the promise of energy storage.

Energy storage research has profound implications for energy security and national security. Chamberlain points out that approximately 1.3 billion people across the globe do not have access to electricity, with another billion having only sporadic access. Energy storage, coupled with renewable generation like solar, could solve that problem and eliminate the need to build out massive power grids. Batteries also have the potential to create a more secure, stable grid for countries with existing power systems and help fight global climate disruption through adoption of renewable energy and electric vehicles.

Argonne researchers are pursuing hundreds of projects in nanoscience, but some of the more notable include research into targeted drugs that affect only cancerous cells; magnetic nanofibers that can be used to create more powerful and efficient electric motors and generators; and highly efficient water filtration systems that can dramatically reduce the energy requirements for desalination or cleanup of oil spills. Other researchers are working with nanoparticles that create a super-lubricated state and other very-low friction coatings.

“When you think that 30 percent of a car engine’s power is sacrificed to frictional loss, you start to get an idea of the potential of these technologies,” Roelofs said. “But it’s not just about the ideas already at Argonne that can be brought to market, it’s also about the challenges for businesses that need Argonne-level resources. I”m convinced there are many startups out there working on transformational ideas that can greatly benefit from the help of a place Argonne to bring those ideas to fruition. That is what has me excited about ACCESS and NDW.”

For more information on ACCESS, see: access.anl.gov

For more information on NDW, see: nanoworks.anl.gov

You can read more about the announcement in an Oct. 6, 2015 article by Greg Watry for R&D magazine featuring an interview with Andreas Roelofs.

Nanomaterials, the European Commission, and functionality

A Feb. 17, 2015 news item on Nanowerk features a special thematic issue of Science for Environment Policy, a free news and information service published by the European
Commission’s Directorate-General Environment, which provides the latest environmental policy-relevant research findings (Note: A link has been removed),

Nanomaterials – at a scale of one thousand times smaller than a millimetre – offer the promise of radical technological development. Many of these will improve our quality of life, and develop our economies, but all will be measured against the overarching principle that we do not make some error, and harm ourselves and our environment by exposure to new forms of hazard. This Thematic Issue (“Nanomaterials’ functionality”; free pdf download) explores recent developments in nanomaterials research, and possibilities for safe, practical and resource-efficient applications.

You can find Nanomaterials’ functionality thematic issue here; the issue includes.

Several articles in this Thematic Issue illustrate how nanotechnology is likely to further revolutionise that arena, for example in capturing sunlight and turning it into usable electrical energy. The article ‘Solar cell efficiency boosted with pine tree-like nanotube needle’, describes how light collected from the sun can be bounced around many times inside a nanostructure to improve the chance of it exciting electrons, and ‘Nanotechnology cuts costs and improves efficiency of photovoltaic cells’ shows how electrons that are released can be captured by the large surface area of ‘nano-tree like’ anodes. Together these ensure that more of the sunlight is transformed to captured electrons and electrical power. The article ‘New energy-efficient manufacture of perovskite solar cells’ goes further, and suggests that the existing titanium dioxide that is currently used in solar cells could be replaced by perovskites, yielding quite dramatic improvements in energy conversion, at low device fabrication costs. …

The article ‘New quantum dot process could lead to super-efficient light-producing technology’ describes how anisotropic (elongated, non-spherical) indium-gallenium nitride quantum dots, or proximity to an anisotropic surface, can lead quantum dots to emit polarised light, potentially enabling 3D television screens, optical computers and other applications, at much lower cost. ‘The potential of new building block-like nanomaterials: van der Waals heterostructures’ and ‘Graphene’s health effects summarised in new guide’ touch on the possibility of engineering ‘building block-crystals’ by arranging different 2D nanostructures such as graphene into low dimension crystals, which allows us, for example, to lower the loss of energy in transmitting electricity. There are also quite novel directions underpinning ‘green nanochemistry’ — illustrated by the potential of silk-based electron-beam resists (in the article ‘Making nano-scale manufacturing eco-friendly with silk’) — to be eco-friendly, and have new functionalities.

… [p. 3 PDF]

In addition to highlighting various research areas by mentioning articles included the issue, the editorial makes its case for commercializing nanomaterials and for the European establishment’s precautionary approach to doing so,

European institutions and organisations have been at the forefront of efforts to ensure safe and practical implementation of nanotechnology. Significant efforts have been made to address knowledge gaps through research, the financing of responsible innovation, and the upgrading of the regulatory framework to render it capable of addressing the new challenges. There are solid reasons for institutional attention to the issues. Succinctly put, the passing around and modification of natural nanoparticles and macromolecules (for example, proteins) within our bodies is the foundation of much of life. In doing so we regulate and send signals between cells and organs. It is therefore appropriate that questions should be asked about engineered nanoparticles and how they interact with us, and whether they could lead to unforeseen hazards. Those are substantive issues, and answering them well will support the creative drive towards real innovation for many decades to come, and honour our commitments to future generations. [p. 4 PDF]

This special issue provide links for more information and citations for the research papers the articles are based on.