Category Archives: mining

Mining uranium from the ocean

We are running short of uranium as terrestrial mining of this element has become more hazardous environmentally. A July 18, 2014 news item on Azonano highlights an ‘ocean mining’ uranium project at the University of Alabama (US),

The U.S. Department of Energy [DOE] selected a University of Alabama [UA] start-up company for an approximate $1.5 million award to refine an alternative material to potentially extract uranium from the ocean.

Uranium, which naturally occurs in seawater and in the Earth’s crust, is the fuel for nuclear power. For decades, scientists have sought a more economical and efficient way to remove it from the ocean, as the terrestrial supply is dwindling and environmentally unfriendly to mine.

A July 17, 2014 University of Alabama news release, which originated the news item, describe the University of Alabama’s unique approach to the problem of extracting uranium from the ocean (Note: A link has been removed),

“Every scientist in the world, except us, who is trying to do this is working with plastics,” said Dr. Gabriela Gurau, a chemist and CEO of the UA-based company, 525 Solutions.

Instead, the UA company is developing an adsorbent, biodegradable material made from the compound chitin, which is found in shrimp shells and in other crustaceans and insects. The researchers have developed transparent sheets, or mats, comprised of tiny chitin fibers, modified for the task. When suspended beneath the ocean’s surface, the mats are designed to withdraw uranium.

“Once you put it in the ocean, it will attract uranium like a magnet, and uranium will stick to it,” said Gurau, a University of Alabama alumna.

If one day implemented, the mats, with uranium attached, would be taken to an industrial plant where the nuclear fuel source would be removed.

Earlier work led by Dr. Robin Rogers, Robert Ramsay Chair of Chemistry at UA and director of UA’s Center for Green Manufacturing, initially proved the concept for extracting uranium using chitin. Rogers is an owner/founder of 525 Solutions and serves as a scientific adviser to the company’s representatives.

“The oceans are estimated to contain more than a thousand times the amount of uranium found in total in any known land deposit,” Rogers said. “Fortunately, the concentration of uranium in the ocean is very, very low, but the volume of the oceans is, of course, very, very high. Assuming we could recover only half of this resource, this much uranium could support 6,500 years of nuclear capacity.”

Removing chitin, in a pure form, from shells had previously proven difficult, but Rogers and his UA colleagues discovered a way to use a relatively new class of solvents, called ionic liquids, for removal. Ionic liquids are liquid salts which have other unique and desirable properties that traditional solvents do not. Rogers is recognized as a world-leader in the field of  ionic liquids.

UA researchers use a time-honored laboratory technique called electrospinning to produce the mats. In this process, the scientists use a specially-prepared, chitin-based, ionic liquid solution, which is loaded in the electrospinning apparatus. Some 30,000 volts of electricity are applied, spinning the fibers into a water bath. After several hours, nanofiber mats, consisting of fibers much thinner than a strand of a spider’s web, form, weaved together into a solid sheet.

The increased surface area the nanomats provide is central to the project, said Dr. Julia Shamshina, the company’s chief technology officer and also a UA alumna.

“The larger the surface area, the larger modifications we can make and the more uranium it will uptake,” Shamshina said. “If you have one very thick fiber and 10 which, when combined, equal the size of the thick fiber, the ten smaller ones will take up hundreds, or even thousands, of times more uranium.”

Rogers extolled the potential environmental benefits of  the company’s approach and addressed cost factors.

“Mining uranium from land is a very dirty, energy intensive process, with a lot of hazardous waste produced,” Rogers said. “If we eliminate land mining by mining from the ocean, we not only clean up the ocean, we eliminate all of the environmental problems with terrestrial mining.

“Research studies have shown that uranium can be extracted from the ocean, but the process remains prohibitively costly,” said Rogers, a  two-time UA graduate. “The search for more effective adsorbents — which is what we’re doing  – is under way and expected to solve this issue.”

Gurau said the two-year grant, from the DOE’s Office of Science through its Small Business Innovation Research and Small Business Technology Transfer programs, will enable the researchers to refine their processes, measure costs and conduct an environmental analysis.

“We need to know if it’s viable from an economic standpoint,” Gurau said. “I think this is a critical step in getting this to the pilot-plant stage.”

Canadian government funding announced for nanotechnology research in Saskatchewan and Alberta

Canada’s Western Economic Diversification and Canada Research Chairs (CRC) programmes both made nanotechnology funding announcements late last week on March 28, 2014.

From a March 28, 2014 news item on CJME radio online,

Funding for nanotechnology was announced at the University of Saskatchewan (U of S) on Friday [March 28, 2014].

Researchers will work on developing nanostructured coatings for parts of artificial joints and even mining equipment.

The $183,946 investment from the Western Economic Diversification Canada will go towards purchasing tailor-made equipment that will help apply the coating.

A March 29, 2014 article by Scott Larson for the Leader-Post provides more details,

In the near future when someone has a hip replacement, the new joint might actually last a lifetime thanks to cutting edge nanotechnology research being done by Qiaoqin Yang and her team. Yang, Canada Research Chair in nanoengineering coating technologies and professor of mechanical engineering at the University of Saskatchewan, has received $183,946 from Western Economic Diversification (WD) to purchase specially made equipment for nanotechnology research.

The equipment will help in developing and testing nanostructured coatings to increase the durability of hard-to-reach industrial and medical components.

“The diamond-based coating is biocompatible and has high wear resistance,” Yang said of the coating material.

There will be four industry-specific coating prototypes tested for projects such as solar energy systems, artificial joints, and mining and oilsands equipment.

Yang said artificial joints usually only last 10-20 years.

I have written about hip and knee replacements and issues with the materials most recently in a Feb. 5, 2013 posting.

As for the CRC announcement about the University of Alberta, here’s more from the March 28, 2014 article by Catherine Griwkowsky for the Edmonton Sun,

The Canadian Research Chairs funding announcement means 11 chair appointments, renewals and tier advancements, part of the 100 faculty who are chair holders at the university.

Carlo Montemagno, Canada Research Chair in Intelligent Nanosystems, said the funding will usher in the next generation in nanotechnology.

“It’s not just the money, it’s the recognition and the visibility that comes with the title,” Montemagno said. “That provides an opportunity for me to be more effective recruiting talent into my laboratory.”

He said the chair position at the University of Alberta allows him to go after riskier projects with a higher impact.

“It provides a nucleating force that allows us to gravitationally pull in talent and resources to position ourselves as global leaders,” Montemagno said.

Previously, he had worked at Cornell University, department head at University of California Los Angeles and dean of engineering at the University of Cincinnati.

Minister of State for Science and Technology Ed Holder said the $88 million will help with Canada’s economic prosperity and will attract more researchers to the country from around the world. …

“I think it’s a huge compliment to what the government of Canada is doing in terms of research and I think it’s a great, great credit to those Canadians who say I can do the best and the greatest research right here in Canada.

He said the success is attracting Canadians back.

Holder, who took over as science boss just over a week ago, said the government has received acknowledgment from granting councils. …

Holder said the proposed budget has an additional $1.5 billion in new money in the budget for research.

Upcoming research projects from the National Institute for Nanotechnology at the University of Alberta:

Artificially engineered system that incorporates the process of photosynthesis in a non-living thing with living elements to convert CO2 emissions to a sellable commodity like rare earth and precious metals.
Extracting minerals and chemicals in waste treatment such as tailings ponds, to clean up polluted water and take out valuable resources.
Cleaning and purifying water with an engineered variant of a molecule 100 times more efficient than current technology, opening land for agricultural development, or industrial plants.

Montemagno has an intriguing turn of phrase “a nucleating force that allows us to gravitationally pull in talent and resources” which I think could be summed up as “money lets us buy what we want with regard to researchers and equipment.” (I first mentioned Montegmagno in a Nov. 19, 2013 post about Alberta’s nanotechnology-focused Ingenuity Lab which he heads.) Holder’s comments are ‘on message’ as they say these days or, as old-timers would say, his comments follow the government’s script.

The listing of the National Institute of Nanotechnology (NINT) projects in Griwkowsky’s article seems a bit enigmatic since there’s no explanation offered as to why these are being included in the newspaper article. The confusion can be cleared up by reading the March 28, 2014 University of Alberta news release,

“Our work is about harnessing the power of ‘n’—nature, nanotechnology and networks,” said Montemagno, one of 11 U of A faculty members who received CRC appointments, renewals or tier advancements. “We use living systems in nature as the inspiration; we use nanotechnology, the ability to manipulate matter at its smallest scale; and we build systems in the understanding that we have to make these small elements work together in complex networks.”

The physical home of this work is Ingenuity Lab, a collaboration between the U of A, the National Institute for Nanotechnology and Alberta Innovates – Technology Futures. Montemagno is the director, and he has assembled a team of top scientists with backgrounds in biochemistry, organic chemistry, neurobiology, molecular biology, physics, computer science, engineering and material science.

Turning CO2 in something valuable

Reducing greenhouse gases is one of the challenges his team is working to address, by capturing carbon dioxide emissions and converting them into high-value chemicals.

Montemagno said the process involves mimicking photosynthesis, using engineered molecules to create a structure that metabolizes CO2. Unlike fermentation and other processes used to convert chemicals, this method is far more energy-efficient, he said.

“You make something that has the same sort of features that are associated with a living process that you want to emulate.”

In another project, Montemagno’s team has turned to cells, viruses and bacteria and how they identify chemicals to react to their environment, with the aim of developing “an exquisite molecular recognition technology” that can find rare precious metals in dilute quantities for extraction. This type of bio-mining is being explored to transform waste from a copper mine into a valuable product, and ultimately could benefit oilsands operations as well.

“The idea is converting waste into a resource and doing it in a way in which you provide more economic opportunity while you’re being a stronger steward of our natural resources.”

Congratulations to the University of Saskatchewan and the University of Alberta!

(A University of British Columbia CRC founding announcement was mentioned in my March 31, 2014 posting about Ed Holder, the new Minister of State (Science and Technology).

Tracking gas, oil, and, possibly, water in wells

A Feb. 24, 2014 Rice University news release (also on EurekAlert) and on Azonano as a Feb. 25, 2014 news item) describes a technique tracks which wells are producing oil or gas in fracking operations,

A tabletop device invented at Rice University can tell how efficiently a nanoparticle would travel through a well and may provide a wealth of information for oil and gas producers.

The device gathers data on how tracers – microscopic particles that can be pumped into and recovered from wells – move through deep rock formations that have been opened by hydraulic fracturing [fracking].

Here’s an image of two Rice scientists playing around with a prototype of their tabletop device,

Rice University chemist Andrew Barron and graduate student Brittany Oliva-Chatelain investigate the prototype of a device that allows for rapid testing of nanotracers for the evaluation of wells subject to hydraulic fracturing. (Credit: Jeff Fitlow/Rice University)

Rice University chemist Andrew Barron and graduate student Brittany Oliva-Chatelain investigate the prototype of a device that allows for rapid testing of nanotracers for the evaluation of wells subject to hydraulic fracturing. (Credit: Jeff Fitlow/Rice University)

The news release goes on to describe the fracking process and explain why the companies don’t know which well is actually producing (Note: Links have been removed),

Drilling companies use fracturing to pump oil and gas from previously unreachable reservoirs. Fluids are pumped into a wellbore under high pressure to fracture rocks, and materials called “proppants,” like sand or ceramic, hold the fractures open. “They’re basically making a crack in the rock and filling it with little beads,” said Rice chemist Andrew Barron, whose lab produced the device detailed in the Royal Society of Chemistry journal Environmental Science Processes and Impacts.

But the companies struggle to know which insertion wells — where fluids are pumped in — are connected to the production wells where oil and gas are pumped out. “They may be pumping down three wells and producing from six, but they have very little idea of which well is connected to which,” he said.

Tracer or sensor particles added to fracturing fluids help solve that problem, but there’s plenty of room for optimization, especially in minimizing the volume of nanoparticles used now, he said. “Ideally, we would take a very small amount of a particle that does not interact with proppant, rock or the gunk that’s been pumped downhole, inject it in one well and collect it at the production well. The time it takes to go from one to the other will tell you about the connectivity underground.”

Barron explained the proppant itself accounts for most of the surface area the nanoparticles encounter, so it’s important to tune the tracers to the type of proppant used.

He said the industry lacks a uniform method to test and optimize custom-designed nanoparticles for particular formations and fluids. The ultimate goal  is to optimize the particles so they don’t clump together or stick to the rock or proppant and can be reliably identified when they exit the production well.

Here’s how the tracers work (from the news release),

The automated device by Barron, Rice alumnus Samuel Maguire-Boyle and their colleagues allows them to run nanotracers through a small model of a geological formation and quickly analyze what comes out the other side.

The device sends a tiny amount of silver nanoparticle tracers in rapid pulses through a solid column, simulating the much longer path the particles would travel in a well. That gives the researchers an accurate look at both how sticky and how robust the particles are.

“We chose silver nanoparticles for their plasmon resonance,” Barron said. “They’re very easy to see (with a spectroscope) making for high-quality data.” He said silver nanoparticles would be impractical in a real well, but because they’re easy to modify with other useful chemicals, they are good models for custom nanoparticles.

“The process is simple enough that our undergraduates make different nanoparticles and very quickly test them to find out how they behave,” Barron said.

The method also shows promise for tracking water from source to destination, which could be valuable for government agencies that want to understand how aquifers are linked or want to trace the flow of elements like pollutants in a water supply, he said.

Barron said the Rice lab won’t oversee production of the test rig, but it doesn’t have to. “We just published the paper, but if companies want to make their own, it includes the instructions. The supplementary material is basically a manual for how to do this,” he said.

You can find the paper with this link and/or citation,

Automated method for determining the flow of surface functionalized nanoparticles through a hydraulically fractured mineral formation using plasmonic silver nanoparticles by Samuel J. Maguire-Boyle, David J. Garner, Jessica E. Heimann, Lucy Gao, Alvin W. Orbaek, and Andrew R. Barron. Environ. Sci.: Processes Impacts, 2014,16, 220-231 DOI: 10.1039/C3EM00718A First published online 07 Jan 2014

This paper has been published in one of the Royal Society’s open access journals.

My final note, one of my more recent posts about fracking highlights some research that was taking place in Texas (Rice University’s home state) at Texas A&M University, see my July 29, 2013 posting.

NanoStruck’s Letter of Intent about gold tailings in Mexico

As I’ve come to expect from Canadian company NanoStruck, there’s not much detail in this Feb. 19, 2014 news item on Nanowerk,

NanoStruck Technologies Inc. announces a non-binding Letter of Intent (“LOI”) signed with Tierra Nuevo Mining Ltd (TNM), a private exploration company with mining assets in Mexico BG Partners Corp., brought this business relationship to NanoStruck.

The Feb. 18, 2014 NanoStruck news release, which originated the news item, describes the property where the Tierra Nuevo Mining would like to test NanoStruck’s technology,

The LOI is to explore the potential of TNM engaging NanoStruck to recover gold and silver from TMN’s tailings material using the NanoMet Technology at TNM’s Noche Buena Mine site, located in Zacatecas state, 10 kilometers northeast of Goldcorp’s Peñasquito Mine. The Noche Buena mine began operations sometime between 1926 and 1930 and was worked continuously until 1992 when it was shut down due to the collapse of metal prices.

Brian Mok, Senior Mining Consultant at BG Partners Corp. said: “This is a great opportunity for NanoStruck to demonstrate its technology and expertise in the mine tailings industry.”

Bundeep Singh Rangar, interim CEO and Chairman of the Board said: “A credible counter-party greatly accelerates the development and go-to-market strategy of our unique mine tailings processing technology.”

I last wrote about NanoStruck and mine tailings in a Feb. 10, 2014 posting titled: 96% of 9.1 grams per metric ton, or 0.32 ounces per ton, of gold recovered in gold tailings tests. As I noted at the time, I am hopeful the company will provide more information as to its technology at some point in the future, preferably sooner rather than later.

96% of 9.1 grams per metric ton, or 0.32 ounces per ton, of gold recovered in gold tailings tests

I’ve written about Canadian company NanoStruck before (Dec. 27, 2013 posting) where I noted there wasn’t much information about their technology. If a Feb. 10, 2014 news item on Azonano is any measure, It seems Nanostruck is preparing to provide more technical information,

NanoStruck Technologies Inc. announces testing of its mine tailings treatment techniques and preliminary results showing recovery rates of gold from mine tailings to be much higher than expected by industry observers.

NanoStruck’s techniques involve nanotechnology and industrial collaboration for specific innovative milling, pryometallurgy and hydrometallurgy processes combined with proprietary organic compounds.

Tests completed over the past three months indicate that the Nanostruck techniques can recover as much as 96% of 9.1 grams per metric ton, or 0.32 ounces per ton, of gold contained in representative gold tailings samples.

I believe the technology mentioned in the news release is NanoStruck’s NanoMet solution (from my Dec. 27, 2013 posting),

Additionally, the Company’s technology can be used to recover precious and base metals from mine tailings, which are the residual material from earlier mining activities. By retrieving valuable metals from old tailing dumps, the Company’s NanoMet solutions boosts the value of existing mining assets and reduces the need for new, costly and potentially environmentally harmful exploration and mining. [emphasis mine]

The Feb. 7, 2014 NanoStruck news release, which originated the Azonano news item, notes,

The testing involved careful roasting of tailings in laboratories. When the Nanostruck techniques were applied to tailings that had been previously roasted at the source site, the recovery rate was 88%, multi-fold higher than previous attempts by other companies using alternative technologies such as cyanide leaching. From the same already roasted sample, for example, conventional Carbon In Leach (CIL) processes had resulted in less than 10 percent recovery of gold. The volume of tailings at the source site, which is owned by an unrelated third party, is estimated to be between 450,000 tons and 500,000 tons. NanoStruck is in discussions with the owners of the source site regarding potential contracts for processing the mine tailings at the source site.

The head assays and sampling were done by SGS SA and optical microscopic study performed by Petrolab Ltd to verify the representativeness of the tailing samples as well as percentage of precious metal contained in them. Recovery rates and processes used were also monitored and verified by certified third party experts and laboratory testing, including electron microscope analysis.

The value of precious metals left in mine tailings in 2012 alone by mining companies such as Anglo American Plc (LON: AAL), Barrick Gold Corp. (TSX: ABX, NYSE: ABX), Goldcorp Inc. (TSX: G, NYSE: GG) and Rio Tinto Group (ASX: RIO), was estimated to be US$20 billion at current market prices. Of that, gold represented more than 80% of the value with approximately 360 tons of gold left behind in tailings due to their micronic size, complex minerology as well as political and environmental concerns related to cyanide leaching.

NanoStruck’s environmentally conscious approach did not involve the use of cyanide leaching. All chemicals and organic substances used were recycled and reused.

More details on the refractory gold tailing samples and specifics of the results will be published in the weeks ahead along with highlights from an environmental impact study as well as a volumetrics and grade survey.

Bundeep Singh Rangar, interim CEO and Chairman of the Board said: “We are very excited to announce these tremendously high recovery rates, involving non-cyanide hydrometallurgy and nanotechnology based processes, that could be transformative for the mining industry.”

Brian Mok, Senior Mining Consultant at BG Partners Corp. said: “High value refractory ore and tailings would be very well suited for this process as well as jurisdictions where the use of toxic materials such as cyanide is undesirable or unacceptable.” [emphasis mine]

It’s good to see more detailed information about the company’s technologies and I look forward to learning more as the company releases more details. For example, NanoStruck has retained a mining consultant, Brian Mok, according to a Jan. 31, 2014 NanoStruck news release,

NanoStruck Technologies Inc. (the “Company” or “NanoStruck”) (CSE:NSK) (OTCQX:NSKTF) (Frankfurt:8NSK) announces the appointment of Mr. Brian Mok as Senior Mining Analyst as a Consultant-In-Residence.

Mr. Mok has been involved with the mining industry for the past 17 years. He is a Senior Mining Analyst at BG Partners Corp., a Canadian-based resource investment group that finances and invests in a portfolio of companies, from where he has been seconded to NanoStruck to help build the Company’s NanoMet solutions that recover precious metals from mine tailings.

Mr. Mok was previously Senior Mining Analyst, Capital Markets Group for Union Securities Ltd.; his focus was on micro and small cap names in Precious Metals, Base Metals and Bulk Commodities.

His previous roles also include Research Associate, Metals & Mining, and Gold for Scotia Capital Inc. Prior to his career in capital markets, Mr. Mok has previously served as a project engineer and a sales engineer in Canada, the USA and Europe. Mr. Mok is a Professional Engineer and a Member of the Association of Professional Engineers of Ontario.

Bundeep Singh Rangar, Chairman of the Board, said: “We are pleased to have Mr. Mok assist us in building the NanoMet proposition, where his understanding of both our technology and the market’s commercial drivers are a real asset for our Company.”

If Mok has been seconded to work with NanoStruck, does that mean that BG Partners owns or is in some way related to NanoStruck?

About the Company

NanoStruck Technologies Inc.is a Canadian Company with a suite of technologies that remove molecular sized particles using patented absorptive organic polymers. These versatile biomaterials are derived from crustacean shells or plant fibers, depending on requirements of their usage. Acting as molecular sponges, the nanometer-sized polymers are custom programmed to absorb specific particles for remediation or retrieval purposes. These could be used to clean out acids, hydrocarbons, pathogens, oils and toxins in water via its NanoPure solutions. Or to recover precious metal particles in mine tailings, such as gold, silver, platinum, palladium and rhodium using the Company’s NanoMet solutions.

By using patented modifications to conventional technologies and adding polymer-based nano-filtration, the Company’s offers environmentally safe NanoPure solutions for water purification. The Company uses Environmental Protection Agency (EPA) and World Health Organization (WHO) guidelines as a benchmark for water quality and safety to conform to acceptable agricultural or drinking water standards in jurisdictions where the technology is used.

Additionally, the Company’s technology can be used to recover precious and base metals from mine tailings, which are the residual material from earlier mining activities. By retrieving valuable metals from old tailing dumps, the Company’s NanoMet solutions boosts the value of existing mining assets and reduces the need for new, costly and potentially environmentally harmful exploration and mining.

The Company’s current business model is based on either selling water remediation plants or leasing out units and charging customers on a price per liter basis with a negotiated minimum payment per annum. For processing mine tailings, the value of precious metal recovered is shared with tailing site owners on a pre-agreed basis.

 

Biomining for rare earth elements with Alberta’s (Canada) Ingenuity Lab

Alberta’s Ingenuity Lab and its biomining efforts are being featured in a Feb. 3, 2014 Nanowerk Spotlight article which was supplied by Ingenuity Lab (Note: A link has been removed),

Scientists at Ingenuity Lab in Edmonton, Alberta are taking cues from nature, as they focus on nanotechnology gains in the area of biomining. Using microorganisms and biomolecules, the group is making significant advances in the recovery of rare earth and precious metals from industrial processes and the environment thanks to superior molecular recognition techniques.

In recent decades, the utility of protein/peptide molecules and their inorganic material recognition and binding abilities has come to light. Combinatorial biology tools have enabled researchers to select peptides for various materials such as ceramics, metal oxides, alloys and pure metals. Even though the binding mechanism of peptides hasn’t yet been fully resolved, studies are ongoing and these peptides continue to be used in many nanotechnology applications.

The Spotlight article further describes the approach being undertaken,

… researchers at Alberta’s first nanotechnology accelerator laboratory (Ingenuity Lab) are looking to take advantage of inorganic binding peptides for mining valuable and rare earth elements/metals that exist in nature or synthetic materials.

Rare earth elements (REE) are sought after materials that facilitate the production of electrical car batteries, high power magnets, lasers, fiber optic technology, MRI contrast agents, fluorescent lightening and much more. Despite increasing demand, mining and processing yields are not enough to satisfy the growing need. This is mainly due to the great loss during mining (25-50%) and beneficiation (10-30%).

Since REEs exist as a mixture in mineral ores, their beneficiation and separation into individual metals requires unique processes. Depending on the chemical form of the metal, different compounds are necessary during beneficiation steps to convert minerals into metal nitrates, oxides, chlorides and fluorides, which would be further extracted individually. Furthermore, this process must be followed with solvent separation to obtain individual metals. These excessive steps not only increase the production cost and energy consumption but also decrease the yield and generate environmental pollution due to the use of various chemicals and organic solvents.

…  Ingenuity Lab is working on generating smart biomaterials composed of inorganic binding peptides coated on the core of magnetic nanoparticles. These smart materials will expose two functions; first they will recognize and bind to a specific REE through the peptide region and they will migrate to magnetic field by the help of Iron Oxide core.

You can find more detail and illustrations in the Spotlight article.

There is biomining research being performed in at least one other lab (in China) as I noted in a Nov. 1, 2013 posting about some work to remove REEs from wastewater and where I noted that China had announced a cap on its exports of REEs.

Tim Harper’s Cientifica emerging technologies and business consultancy offers a white paper (free), Simply No Substitute? [2013?], which contextualizes and provides insight into the situation with REEs and other other critical materials. From Cientifica’s Simply No Substitute? webpage,

There is increasing concern that restricted supplies of certain metals and other critical minerals could hinder the deployment of future technologies. This new white paper by Cientifica and Material Value,  Simply No Substitute? takes a critical look at the current technology and policy landscape in this vital area, and in particular, the attempts to develop substitutes for critical materials.

A huge amount of research and development is currently taking place in academic and industrial research laboratories, with the aim of developing novel, innovative material substitutes or simply to ‘engineer-out’ critical materials with new designs.  As an example, our analysis shows the number of patents related to substitutes for rare earth elements has doubled in the last two years. However, the necessity and effectiveness of this research activity is still unclear and requires greater insight. Certainly, as this white paper details, there is no universal agreement between Governments and other stakeholders on what materials are at risk of future supply disruptions.

In an effort to ensure the interests of end-users are represented across this increasingly complex and rapidly developing issue, the publication proposes the creation of a new industry body. This will benefit not just end-users, but also primary and secondary producers  of critical materials, for who it is currently only feasible to have sporadic and inconsistent interaction with the diverse range of industries that use their materials.

You can download the white paper from here.

Getting back to Ingenuity Lab, there is no research paper mentioned in the Spotlight article. Their website does offer this on the Mining page,

The extraction of oil and gas is key to the economic prosperity of Alberta and Canada. We have the third largest oil reserves in the world behind Saudi Arabia and Venezuela. Not only is our oil and gas sector expected to generate $2.1 trillion in economic activity across Canada over the next 25 years, Canadian employment is expected to grow from 75,000 jobs in 2010 to 905,000 in 2035. However, it’s not without its impacts to the environment. This, we know. There are great strides being made in technology and innovation in this sector, but what if we could do more?

Then, there’s this from the site’s Biomining subpage,

Using a process called biomining, the research team at Ingenuity Lab is engineering new nano particles that have the capability to detect, extract or even bind to rare earth and precious metals that exist in nature or found in man-made materials.

Leveraging off of the incredible advances in targeted medical therapies, active nanoparticle and membrane technologies offer the opportunity to recover valuable resources from mining operations while leading to the remediation of environmentally contaminated soil and water.

Biomining technology offers the opportunity to maximize the utility of our natural resources, establish a new path forward to restore the pristine land and water of our forefathers and redefine Canada’s legacy of societal environmental, and economic prosperity.

Finally, there’s this page (Ingenuity Attracts Attention with Biomining Advances)  which seems to have originated the Spotlight article and is the source of the images in the Spotlight article.  I am curious as to whose attention they’ve attracted although I can certainly understand why various groups and individuals might be,

… Ingenuity’s system will also be able to work in a continuous flow process. There will be a constant input of metal mixture, which could be mine acid drain, tailing ponds or polluted water sources, and smart biomaterial. Biomaterial will be recovered from the end point of the chamber together with the targeted metal. Since the interaction between the peptide and the metal of interest is not covalent bonding, metal will be removed from the material without the need for harsh chemicals. This means valuable materials, currently discarded as waste, will be accessible and the reuse of the smart biomaterial will be an option, lowering the purification cost even more.

These exciting discoveries are welcome news for the mining industry and the environment, but also for communities around the world and generations to come.  Thanks to ingenuity, we will soon be able to maximize the utility of our precious resources as we restore damaged lands and water.

In any event I hope to hear more about this promising work with more details (such as:  At what stage is this work?, Is it scalable?) and the other research being performed at Ingenuity Lab.

Lomiko Mines, graphene, 3D printing, and the World Outlook Financial Conference and the launch of an international sustainable mining institute in Vancouver, Canada

I have two items one of which concerns Lomiko Metals and the other, a new institute focused on extraction launched jointly by the University of British Columbia (UBC), Simon Fraser University (SFU) and l’École Polytechnique de Montréal (EPM).

First, there’s a puzzling Jan. 28, 2014 news item on Nanowerk about Lomiko Metals (a company that extracts graphite flakes from the Quatre Milles property in Québec, and its appearance at the 2014 World Outlook Financial Conference being held in Vancouver,

Lomiko Metals Inc. invite [sic] investors to learn about 3d printing at the World Outlook Conference. Lomiko partner Graphene 3D Lab has reached a significant milestone by filing a provisional patent application for the use of graphene-enhanced material, along with other materials, in 3D Printing. 3D printing or additive manufacturing is the process of creating a three-dimensional, solid object from a digital file, of virtually any shape. 3D printing is achieved using an additive process, whereas successive layers of material are laid down and create different shapes.

Unsure as to whether or not Lomiko Metals would be offering demonstrations of 3D printed items containing graphene at the conference, I sent a query to the company’s Chief Executive Officer, A. Paul Gill who kindly replied with this,

The demonstration being done is by the Conference not by Lomiko.  We were going to do something at our booth but we didn’t want to steal any thunder from the WOC or Tinkinerine which is a 3D Printing manufacturer and is going public through a merger with White Bear Resources. (TSX-V: WBR).

The Jan. 27, 2013 [sic] Lomiko Metals news release, which originated the news item, did have this to say about graphene and 3D printing (Note: I live in dread of accidentally writing 2013 when I mean 2014),

Adding graphene to polymers which are conventionally u sed in 3D printing improves the properties of the polymer in many different ways; it improves the polymers mechanical strength as well as its electrical and thermal conductivity. The method described in the provisional patent application allows consumers to use the polymer, infused with graphene, together with conventional polymers in the same printing process, thereby fabricating functional electronic devices using 3D printing.

New developments in 3D printing will allow for the creation of products with different components, such as printed electronic circuits, sensors, or batteries to be manufactured. 3D Printing is a new and promising manufacturing technology that has garnered much interest, growing from uses in prototyping to everyday products. Today, it is a billion dollar industry growing at a brisk pace.

For those eager to find out about investment opportunities in 2014, here’s the World Financial Outlook Conference website. I was surprised they don’t list the conference dates on the homepage (Jan. 31 – Feb. 1,2014) or any details other than the prices for various categories of registration. There is a Speakers page, which lists John Biehler as their 3D printing expert,

John Biehler is a Vancouver based photographer, blogger, gadget geek, mobile phone nerd, teacher, traveler, 3D printer builder/operator, maker & all around curious person.

He co-founded 3D604.org, a club of 3d printing enthusiasts who meet monthly and help share their knowledge of 3d printing at many events. He has spoken at numerous conferences including SXSW Interactive, Northern Voice, BarCamp and many others.

John is a regular contributor to Miss604.com, the DottoTech radio show, the Province newspaper and London Drugs blogs as well as doing a weekly Tech Tuesday segment on News 1130 radio and many other online, print, radio and television outlets. He is currently writing his first book (about 3D printing) that will be published in 2014 by Que.

You can find the conference agenda here. Biehler’s talk “3D Printing: The Future is Now” is scheduled for Saturday, Feb. 1, 2014 at 10:45 am PDT.

Sustainable extraction

A January 29, 2014 University of British Columbia (UBC) news release announced this (Note: Links have been removed),

International sustainable mining institute launched

A new Canadian institute that will help developing countries benefit from their mining resources in environmentally and socially responsible ways was officially launched in Vancouver today.

The Canadian International Institute for Extractive Industries and Development (CIIEID) is a coalition between the University of British Columbia, Simon Fraser University, and École Polytechnique de Montréal (EPM). Institute Interim Executive Director Bern Klein was joined for the launch in Vancouver by UBC’s Vice President Research & International John Hepburn, SFU President Andrew Petter, and EPM CEO Christophe Guy.

“Nations want to develop their mineral, oil and gas resources,” says Klein, also a professor of mining engineering at UBC. “But many lack the regulatory and policy frameworks to make the most of their natural resources, while also considering the needs of affected communities. We want them to have the capacity to use their resources to enhance livelihoods, improve dialogue and mitigate environmental harm.”

In November 2012 the Department of Foreign Affairs, Trade and Development (then CIDA) announced the award of $25 million to a coalition of the three academic institutions to form the Institute. Since then, the Institute has set up operations and is connecting with partner nongovernmental organizations, governments, professional associations, and industry. It is now beginning program development.

Programming will put the Institute and its partners’ knowledge and resources at the service of foreign governments and local communities. Its work will focus on four main areas: applied research, community engagement, education, and governance of natural resources.

For more information about the Institute, visit the website at: http://ciieid.org.

I have searched the CIIEID website to find out how the government or anyone else for that matter determined that Canadians have any advice about or examples of sustainable extraction to offer any other country.  I remain mystified. Perhaps someone reading this blog would care to enlighten me.

Norwegians hoping to recover leftover oil with nanotechnology-enabled solutions

Sabina Griffith’s Jan. 21, 2013 article for Dailyfusion.net profiles two petroleum-themed research projects funded by the Research Council of Norway,

Two new research projects are receiving funding from the Research Council of Norway to develop nanoparticles that can dislodge leftover oil that remains trapped in reservoirs after conventional recovery has been completed.

Every percentage point of enhanced oil recovery rate represents billions in revenues.

“Nanotechnology is a generic technology with the potential for a wide variety of industrial applications,” says Aase Marie Hundere, Special Adviser at the Research Council and part of the NANO2021 program secretariat. “The petroleum industry is Norway’s largest, with vast international potential. Collaboration with the PETROMAKS 2 program provides an excellent opportunity to attract projects that involve specific users from industry.”

A Jan. 17, 2014 Research Council of Norway news release by Claude R. Olsen/Else Lie. Translation: Darren McKellep/Carol B. Eckmann describes first one project and its proponents,

Plugging errant water paths with gel

One of the problems with reservoirs that have been producing petroleum for an extended period is that the water injected flushes less and less oil out. Eventually the injected water is wasted, flowing through the same water-saturated zones rather than being diverted through new areas still containing mobile oil.

SINTEF [Scandinavia's largest independent research organization] Petroleum Research is heading a project to develop chemical systems that can seal off these zones by sending a solution of nanoparticles and polymers down into the reservoir to the areas where the operator wants to prevent water from flowing. Once they are in position the particles, together with the polymers, will form a gelatinous structure (a gel) that prevents water from flowing through.
It may take the particles weeks or months to make their way through the reservoir, so the project researchers will have to figure out how to keep the gel from forming before the particles have reached their intended destination.

Another critical point will be to discover how the particles are transported through the porous rock: Will they slip through easily to their destination or get caught up in the pore walls along the way?

Together with NTNU, the University of Kansas and a number of petroleum companies, SINTEF will investigate two alternative solutions. Both are based on silica nanoparticles whose surface has been engineered to bind polymers together and form a gel. Developed by SINTEF Materials and Chemistry, the nanoparticles are similar to those used in certain products by Norwegian paint producer Jotun and in other products.

In the first alternative, chemicals will be used to deactivate the surface of the nanoparticles – keeping them passive for weeks or even months – before being activated to bind the polymers together at their destination point.

In the second alternative, active nanoparticles will be packaged into larger nanoparticles that transport them to the point where they are to be released in order to form the gel. The smaller particles will be produced by SINTEF. The University of Kansas has developed the transport particles and is already testing them in field experiments at North American oil reservoirs.

Project manager Torleif Holt of SINTEF Petroleum Research sees great potential for the technology, if successful.

“In the course of our three-and-a-half-year project period, we hope to have learned enough to know whether this method is viable,” he explains. “We would then able to estimate the quantities of nanoparticles needed and have some idea about when this is a financially feasible option.”

Here’s an image of trapped oil, gas, and water,

Functionalised particles to speed up oil flow While the SINTEF project focuses on plugging holes, the NTNU-led project is looking to speed up the flow of oil. Much of a reservoir’s oil remains trapped in small rock pores. NTNU researchers will be customising nanoparticles that can help to dislodge this oil and dramatically increase the amount of oil that can be recovered.  One method will utilise “Janus particles”, which feature a special surface of two different hemispheres: one is hydrophilic (attracted to water), the other hydrophobic (attracted to oil). Down in the reservoir, where both oil and water are found, the nanoparticles will spin like wheels and push the oil forward. “This is an early-stage project,” says project manager Jianying He, an associate professor at the NTNU Nanomechanical Lab. “But the idea is very exciting and has major potential for raising the recovery rate of Norwegian oil.” The petroleum companies Det norske and Wintershall are signed on as partners, and project researchers will be communicating with Statoil as well. The University of Houston is the research partner. The second method involves changing the surface charge of nanoparticles to make them capable of slipping between a reservoir’s oil and rock. If development proceeds as planned, Professor He estimates that the nanoparticles will be on the market in roughly seven years. She sees two challenges to using nanoparticles for enhanced recovery: HSE and production capacity. HSE should not be problematic in this case, as studies show that silica-based particles are not hazardous to the environment. Production capacity, however, may prove to be an obstacle to large-scale utilisation of nanoparticles. Petroleum companies would need millions of tonnes of nanoparticles daily. Currently there is no facility that can produce such quantities.  [downloaded from http://www.forskningsradet.no/en/Newsarticle/Nanotechnology_to_recover_stubborn_oil/1253992231414/p117731575391]

Microscope image of reservoir rock. The rock pores (shown in blue) may contain trapped oil, gas and water. Nanoparticles can be used to recover more of the residual oil. (Photo: Ingrid Anne Munz) [downloaded from http://www.forskningsradet.no/en/Newsarticle/Nanotechnology_to_recover_stubborn_oil/1253992231414/p117731575391]

The news release then describes the other project and its proponents,

Functionalised particles to speed up oil flow

While the SINTEF project focuses on plugging holes, the NTNU [Norges teknisk-naturvitenskapelige universitet; Norwegian University of Science and Technology]-led project is looking to speed up the flow of oil. Much of a reservoir’s oil remains trapped in small rock pores. NTNU researchers will be customising nanoparticles that can help to dislodge this oil and dramatically increase the amount of oil that can be recovered.

One method will utilise “Janus particles”, which feature a special surface of two different hemispheres: one is hydrophilic (attracted to water), the other hydrophobic (attracted to oil). Down in the reservoir, where both oil and water are found, the nanoparticles will spin like wheels and push the oil forward.

“This is an early-stage project,” says project manager Jianying He, an associate professor at the NTNU Nanomechanical Lab. “But the idea is very exciting and has major potential for raising the recovery rate of Norwegian oil.”

The petroleum companies Det norske and Wintershall are signed on as partners, and project researchers will be communicating with Statoil as well. The University of Houston is the research partner.

The second method involves changing the surface charge of nanoparticles to make them capable of slipping between a reservoir’s oil and rock.

If development proceeds as planned, Professor He estimates that the nanoparticles will be on the market in roughly seven years. She sees two challenges to using nanoparticles for enhanced recovery: HSE  [health, safety, and environment?] and production capacity. HSE should not be problematic in this case, as studies show that silica-based particles are not hazardous to the environment.

Production capacity, however, may prove to be an obstacle to large-scale utilisation of nanoparticles. Petroleum companies would need millions of tonnes of nanoparticles daily. Currently there is no facility that can produce such quantities.

I had no idea Norway was so dependent on the petroleum industry. As for the nanoparticles referred to throughout the descriptions for both projects, I’d love to know more about them.

NanoStruck, an Ontario (Canada) water remediation and ‘mining’ company

Located in Mississauga, Ontario (Canada), Nanostruck’s Dec. 20, 2013 news release seems to be functioning as an announcement of its presence rather than any specific company developments,

NanoStruck has a suite of technologies that remove molecular sized particles using patented absorptive organic polymers. The company is sitting on some very incredible and environmently friendly technology.

Organic polymers are nature’s very own sponges. These versatile biomaterials are derived from crustacean shells or plant fibers, depending on requirements of their usage. Acting as molecular sponges, the nanometer-sized polymers are custom programmed toabsorb specific particles for remediation or retrieval purposes. These could be to clean out acids, hydrocarbons, pathogens, oils and toxins in water via its NanoPure solutions. Or to recover precious metal particles in mine tailings, such as gold, silver, platinum, palladium and rhodium using the Company’s NanoMet solutions.

By using patented modifications to conventional technologies and adding polymer-based nano-filtration, the Company’s offers environmentally safe NanoPure solutions for water purification. The Company uses Environmental Protection Agency (EPA) and World Health Organization (WHO) guidelines as a benchmark for water quality and safety to conform to acceptable agricultural or drinking water standards in jurisdictions where the technology is used. The worldwide shortage of cleanwater is highlighted on sites such as http://water.org/water-crisis/water-facts/water/.

The company’s NanoPure technology was first deployed to treat wastewater from a landfill site in January 2012 in Mexico. It has since been successfully treating and producing clean water there that’s certified by Conagua, the federal water commission of Mexico. The company has also created water treatment plants in Canada 

Additionally, the Company’s technology can be used to recover precious and base metals from mine tailings, which are the residual material from earlier mining activities. By retrieving valuable metals from old tailing dumps, the Company’s NanoMet solutions boosts the value of existing mining assets and reduces the need for new, costly and potentially environmentally harmful exploration and mining. 

There is an estimated $1 trillion worth of precious metals already extracted from the ground sitting in old mining sites that form our target market. We are in the process of deploying precious metal recovery plants in South Africa, Mexico and Canada.

The company is also developing new plant-based organic polymers to remove contaminants specific to the oil industry, such as naphthenic acids, which is a growing problem.

 Company information is available at www.nanostruck.ca and some description of the companies polymers are below

General Description of Nano Filtration Materials

Chitosan is a polysaccharide-based biomaterial derived from renewable feedstock such as the shells of crustaceans.  Chitosan displays limited adsorbent properties toward various types of contaminants (i.e. petrochemicals, pharmaceuticals, & agrochemicals).  By comparison, synthetically engineered biomaterials that utilize chitosan building blocks display remarkable sorption properties that are tunable toward various types of water borne contaminants.  Recent advances in materials science have enabled the development of Nano Filtration media with relative ease, low toxicity, and tunable molecular properties for a wide range of environmental remediation applications.  …

From what I can tell, the company has technology that can be used to remediate water (NanoPure) and, in the case of remediating mine tailings (NanoMet), allows for reclamation of the metals. It’s the kind of technology that can make you feel virtuous (reclaiming water) with the potential of paying you handsomely (reclaiming gold, etc.).

As I like to do from time to time, I followed the link to the water organization listed in the news release and found this on Water.org’s About Us page,

The water and sanitation problem in the developing world is far too big for charity alone. We are driving the water sector for new solutions, new financing models, greater transparency, and real partnerships to create lasting change. Our vision: Safe water and the dignity of a toilet for all, in our lifetime.

Co-founded by Matt Damon and Gary White, Water.org is a nonprofit organization that has transformed hundreds of communities in Africa, South Asia, and Central America by providing access to safe water and sanitation.

Water.org traces its roots back to the founding of WaterPartners International in 1990. In July 2009, WaterPartners merged with H2O Africa, resulting in the launch of Water.org. Water.org works with local partners to deliver innovative solutions for long-term success. Its microfinance-based WaterCredit Initiative is pioneering sustainable giving in the sector.

Getting back to NanoStruck, here’s more from their About page,

NanoStruck Technologies Inc. is a Canadian Company with a suite of technologies that remove molecular sized particles using patented absorptive organic polymers. These versatile biomaterials are derived from crustacean shells or plant fibers, depending on requirements of their usage. Acting as molecular sponges, the nanometer-sized polymers are custom programmed toabsorb specific particles for remediation or retrieval purposes. These could be to clean out acids, hydrocarbons, pathogens, oils and toxins in water via its NanoPure solutions. Or to recover precious metal particles in mine tailings, such as gold, silver, platinum, palladium and rhodium using the Company’s NanoMet solutions.

By using patented modifications to conventional technologies and adding polymer-based nano-filtration, the Company’s offers environmentally safe NanoPure solutions for water purification. The Company uses Environmental Protection Agency (EPA) and World Health Organization (WHO) guidelines as a benchmark for water quality and safety to conform to acceptable agricultural or drinking water standards in jurisdictions where the technology is used.

The Company’s current business model is based on either selling water remediation plants or leasing out units and charging customers on a price per liter basis with a negotiated minimum payment per annum. For processing mine tailings, the value of precious metal recovered is shared with tailing site owners on a pre-agreed basis.

I wonder if there are any research papers about the January 2012 work in Mexico. I find there is a dearth of technical information on the company’s website, which is somewhat unusual for a startup company (my experience is that they give you too much technical information in a fashion that is incomprehensible to anyone other than en expert). As well, I’m not familiar with any members of the company’s management team (Our Team webpage) but, surprisingly, there isn’t a Chief Science Officer or someone on the team from the science community. In fact, the entire team seems to have emerged from the business community. If I have time, I’ll see about getting an interview for publication here in 2014. In the meantime, it looks like a company with some interesting potential and I wish it well.

(Note: This is not endorsement or anti-endorsement of the company or its business. This is not my area of expertise.)

“Sensational” 15% can become up to 50% oil recovery rate from dead oil wells with nanoparticle-enhanced water

Texas, the Middle East, and/or Alberta leap to mind before Norway and China when one thinks of research into oil extraction, which makes this June 14, 2013 news item on Nanwerk about a Norway-China collaboration particularly intriguing,

When petroleum companies abandon an oil well, more than half the reservoir’s oil is usually left behind as too difficult to recover. Now, however, much of the residual oil can be recovered with the help of nanoparticles and a simple law of physics.

Oil to be recovered is confined in tiny pores within rock, often sandstone. Often the natural pressure in a reservoir is so high that the oil flows upwards when drilling reaches the rocks containing the oil.

In order to maintain the pressure within a reservoir, oil companies have learned to displace the produced oil by injecting water. This water forces out the oil located in areas near the injection point. The actual injection point may be hundreds or even thousands of metres away from the production well.

Eventually, however, water injection loses its effect. Once the oil from all the easily reached pores has been recovered, water begins emerging from the production well instead of oil, at which point the petroleum engineers have had little choice but to shut down the well.

The petroleum industry and research community have been working for decades on various solutions to increase recovery rates. One group of researchers at the Centre for Integrated Petroleum Research (CIPR) in Bergen, collaborating with researchers in China, has developed a new method for recovering more oil from wells – and not just more, far more. [emphasis mine]

The Chinese scientists had already succeeded in recovering a sensational 15 per cent of the residual oil in their test reservoir when they formed a collaboration with the CIPR researchers to find out what had actually taken place down in the reservoir. Now the Norwegian partner in the collaboration has succeeded in recovering up to 50 per cent of the oil remaining in North Sea rock samples.

The ?, 2013 article (Nanoparticles helping to recover more oil) by Claude R. Olsen/Else Lie. Translation: Darren McKellep/Carol B. Eckmann for the Research Council of Norway, which originated the news item, explains what is left after the easy oil has been extracted and how this news technique squeezes more oil out of the well,

Water in an oil reservoir flows much like the water in a river, accelerating in narrow stretches and slowing where the path widens.

When water is pumped into a reservoir, the pressure difference forces the water away from the injection well and towards the production well through the tiny rock pores. These pores are all interconnected by very narrow tunnel-like passages, and the water accelerates as it squeezes its way through these.

The new method is based on infusing the injection water with particles that are considerably smaller than the tunnel diameters. When the particle-enhanced water reaches a tunnel opening, it will accelerate faster than the particles, leaving the particles behind to accumulate and plug the tunnel entrance, ultimately sealing the tunnel.

This forces the following water to take other paths through the rock’s pores and passages – and in some of these there is oil, which is forced out with the water flow. The result is more oil extracted from the production well and higher profits for the petroleum companies.

The article writers do not provide a description of the nanoparticles but they do describe the genesis of this Norwegian-Sino collaboration,

The idea for this method of oil recovery came from the two Chinese researchers Bo Peng and Ming yuan Li who completed their doctorates in Bergen 10 and 20 years ago, respectively. The University of Bergen and China University of Petroleum in Beijing have been cooperating for over a decade on petroleum research, and this laid the foundation for collaboration on understanding and refining the particle method.

At first it was not known if the particles could be used in seawater, since the Chinese had done their trials with river water and onshore oilfields. Trials in Bergen using rock samples from the North Sea showed that the nanoparticles also work in seawater and help to recover an average of 20?30 per cent, and up to 50 per cent, more residual oil.