Monthly Archives: March 2013

Bacteria on a battery can be a good thing

In a joint project between the UK’s University of East Anglia (UEA) and the Pacific Northwest National Laboratory (PNNL) in Washington State (US) researchers have published a paper about their work utilizing bacteria to produce electric currents in batteries. From the Mar. 25, 2013 news item on ScienceDaily,

Scientists at the University of East Anglia have made an important breakthrough in the quest to generate clean electricity from bacteria.

Findings published today in the journal Proceedings of the National Academy of Sciences (PNAS) show that proteins on the surface of bacteria can produce an electric current by simply touching a mineral surface.

The research shows that it is possible for bacteria to lie directly on the surface of a metal or mineral and transfer electrical charge through their cell membranes. This means that it is possible to ‘tether’ bacteria directly to electrodes — bringing scientists a step closer to creating efficient microbial fuel cells or ‘bio-batteries’.

The team collaborated with researchers at Pacific Northwest National Laboratory in Washington State in the US.

Shewanella oneidensis (pictured) is part of a family of marine bacteria. The research team created a synthetic version of this bacteria using just the proteins thought to shuttle the electrons from the inside of the microbe to the rock.

Image: Shewanella oneidensis bacteria, Alice Dohnalkova. (downloaded from http://www.uea.ac.uk/mac/comm/media/press/2013/March/bio-batteries)

Image: Shewanella oneidensis bacteria, Alice Dohnalkova. (downloaded from http://www.uea.ac.uk/mac/comm/media/press/2013/March/bio-batteries)

The Mar. 25, 2013 UEA news release,which originated the news item,  describes the work n some detail (Note: A link has been removed),

They inserted these proteins into the lipid layers of vesicles, which are small capsules of lipid membranes such as the ones that make up a bacterial membrane. Then they tested how well electrons travelled between an electron donor on the inside and an iron-bearing mineral on the outside.

Lead researcher Dr Tom Clarke from UEA’s school of Biological Sciences said: “We knew that bacteria can transfer electricity into metals and minerals, and that the interaction depends on special proteins on the surface of the bacteria. But it was not been clear whether these proteins do this directly or indirectly though an unknown mediator in the environment.

“Our research shows that these proteins can directly ‘touch’ the mineral surface and produce an electric current, meaning that is possible for the bacteria to lie on the surface of a metal or mineral and conduct electricity through their cell membranes.

“This is the first time that we have been able to actually look at how the components of a bacterial cell membrane are able to interact with different substances, and understand how differences in metal and mineral interactions can occur on the surface of a cell.

“These bacteria show great potential as microbial fuel cells, where electricity can be generated from the breakdown of domestic or agricultural waste products.

“Another possibility is to use these bacteria as miniature factories on the surface of an electrode, where chemicals reactions take place inside the cell using electrical power supplied by the electrode through these proteins.”

Biochemist Liang Shi of Pacific Northwest National Laboratory said: “We developed a unique system so we could mimic electron transfer like it happens in cells. The electron transfer rate we measured was unbelievably fast – it was fast enough to support bacterial respiration.”

This work reminds me of the biobattery created at Concordia University (my April 20, 2012 posting) and the work on breathable batteries at the Polish Academy of Sciences (my Mar. 8, 2013 posting).

Interested parties can find a full citation for the UEA/PNNL research paper at the bottom of the ScienceDaily news item here.

Solar cells made even more leaflike with inclusion of nanocellulose fibers

Researchers at the US Georgia  Institute of Technology (Georgia Tech)  and Purdue University (Indiana) have used cellulose nanocrystals (CNC), which is also known as nanocrystalline cellulose (NCC), to create solar cells that have greater efficiency and can be recycled. From the Mar. 26, 2013 news item on Nanowerk,

Georgia Institute of Technology and Purdue University researchers have developed efficient solar cells using natural substrates derived from plants such as trees. Just as importantly, by fabricating them on cellulose nanocrystal (CNC) substrates, the solar cells can be quickly recycled in water at the end of their lifecycle.

The Georgia Tech Mar. 25, 2013 news release, which originated the news item,

The researchers report that the organic solar cells reach a power conversion efficiency of 2.7 percent, an unprecedented figure for cells on substrates derived from renewable raw materials. The CNC substrates on which the solar cells are fabricated are optically transparent, enabling light to pass through them before being absorbed by a very thin layer of an organic semiconductor. During the recycling process, the solar cells are simply immersed in water at room temperature. Within only minutes, the CNC substrate dissolves and the solar cell can be separated easily into its major components.

Georgia Tech College of Engineering Professor Bernard Kippelen led the study and says his team’s project opens the door for a truly recyclable, sustainable and renewable solar cell technology.

“The development and performance of organic substrates in solar technology continues to improve, providing engineers with a good indication of future applications,” said Kippelen, who is also the director of Georgia Tech’s Center for Organic Photonics and Electronics (COPE). “But organic solar cells must be recyclable. Otherwise we are simply solving one problem, less dependence on fossil fuels, while creating another, a technology that produces energy from renewable sources but is not disposable at the end of its lifecycle.”

To date, organic solar cells have been typically fabricated on glass or plastic. Neither is easily recyclable, and petroleum-based substrates are not very eco-friendly. For instance, if cells fabricated on glass were to break during manufacturing or installation, the useless materials would be difficult to dispose of. Paper substrates are better for the environment, but have shown limited performance because of high surface roughness or porosity. However, cellulose nanomaterials made from wood are green, renewable and sustainable. The substrates have a low surface roughness of only about two nanometers.

“Our next steps will be to work toward improving the power conversion efficiency over 10 percent, levels similar to solar cells fabricated on glass or petroleum-based substrates,” said Kippelen. The group plans to achieve this by optimizing the optical properties of the solar cell’s electrode.

The news release also notes the impact that using cellulose nanomaterials could have economically,

There’s also another positive impact of using natural products to create cellulose nanomaterials. The nation’s forest product industry projects that tens of millions of tons of them could be produced once large-scale production begins, potentially in the next five years.

One might almost  suspect that the forest products industry is experiencing financial difficulty.

The researchers’ paper was published by Scientific Reports, an open access journal from the Nature Publishing Group,

Recyclable organic solar cells on cellulose nanocrystal substrates by Yinhua Zhou, Canek Fuentes-Hernandez, Talha M. Khan, Jen-Chieh Liu, James Hsu, Jae Won Shim, Amir Dindar, Jeffrey P. Youngblood, Robert J. Moon, & Bernard Kippelen. Scientific Reports  3, Article number: 1536  doi:10.1038/srep01536 Published 25 March 2013

In closing, the news release notes that a provisional patent has been filed at the US Patent Office.And one final note, I have previously commented on how confusing the reported power conversion rates are. You’ll find a recent comment in my Mar. 8, 2013 posting about Ted Sargent’s work with colloidal quantum dots and solar cells.

The Swiss talk about ‘smart’ food packaging

Biotechnologist Christoph Meili discusses the impact nanotechnology-enabled packaging could have on food in a Mar. 25, 2013 Q&A with Christian Raaflaub (adapted from German by Simon Bradley) for the International Service of the Swiss Broadcasting Corporation (swissinfo.ch),

swissinfo.ch: You argue that the future of packaging will be closely tied to advances in nanotechnology. What additional properties can nanotechnology offer?

Christoph Meili: …

Here I’m talking mostly about the shelf life of food, which can be extended. The amount of information and the quality of information on packaging will also increase. The consumer will learn about the state of the product, whether the food is still edible or if there is oxygen present in the packaging, for example.

Hopefully, this will also lead to a conservation of resources so that better biodegradable packaging is developed.

swissinfo.ch: Are there any smart alternatives to packaging so that we use less in the future?

C.M.: Edible packaging is something on our radar screens. On the other hand it’s important for consumers to be able to differentiate clearly between the product and the packaging. …

They also discuss the problem of people throwing good food away because they cannot confirm it is still edible. In Switzerland, it’s estimated some 2 million tonnes of food is discarded per year (worldwide the figure is 1.3 billion tonnes).

One final question from the interview,

swissinfo.ch: You are a biotechnologist and a molecular biologist but you also work as a risk researcher. What are the possible future health threats of integrating minute nanoparticles in packaging?

C.M.: The question we have to ask ourselves is: can nanoparticles escape from packaging? If so, where do they go? Into food, or are they dispersed into the environment? Or do they transform into something else in the biological cycle?

In active packaging, where a considerable part involves active elements escaping and interacting with foodstuffs, we have to look at what is happening. The migration and dispersion of low-molecular substances is an issue. …

I last mentioned food and nanotechnology-enabled packaging in a Nov. 1, 2012 posting about Canada, nano, and mangoes.

Carbon nanotubes, good vibrations, and quantum computing

Apparently carbon nanotubes can store information within their vibrations and this could have implications for quantum computing, from the Mar. 21, 2013 news release on EurekAlert,

A carbon nanotube that is clamped at both ends can be excited to oscillate. Like a guitar string, it vibrates for an amazingly long time. “One would expect that such a system would be strongly damped, and that the vibration would subside quickly,” says Simon Rips, first author of the publication. “In fact, the string vibrates more than a million times. The information is thus retained up to one second. That is long enough to work with.”

Since such a string oscillates among many physically equivalent states, the physicists resorted to a trick: an electric field in the vicinity of the nanotube ensures that two of these states can be selectively addressed. The information can then be written and read optoelectronically. “Our concept is based on available technology,” says Michael Hartmann, head of the Emmy Noether research group Quantum Optics and Quantum Dynamics at the TU Muenchen. “It could take us a step closer to the realization of a quantum computer.”

The research paper can be found here,

Quantum Information Processing with Nanomechanical Qubits
Simon Rips and Michael J. Hartmann,
Physical Review Letters, 110, 120503 (2013) DOI: 10.1103/PhysRevLett.110.120503
Link: http://prl.aps.org/abstract/PRL/v110/i12/e120503

The paper is behind a paywall.

There are two Good Vibrations songs on YouTube, one by the Beach Boys and one by Marky Mark. I decided to go with this Beach Boys version in part due to its technical description at http://youtu.be/NwrKKbaClME,

FIRST TRUE STEREO version with lead vocals properly placed in the mix. I also restored the original full length of the bridge that was edited out of the released version. An official true stereo mix of the vocal version was not made back in 1967. While there are other “stereo” versions posted, for the most part they are “fake” or poor stereo versions. I tried to make the best judicious decision on sound quality, stereo imaging and mastering while maintaining TRUE STEREO integrity given the source parts available. I hope you enjoy it!

The video,

Is a philosophy of the Higgs and other physics particles a good idea?

Michael  Krämer of the RWTH Aachen University (Germany) muses about philosophy, the Higgs Boson, and more in a Mar. 24, 2013 posting on Jon Butterworth’s Life and Physics blog (Guardian science blogs; Note: A link has been removed),

Many of the great physicists of the 20th century have appreciated the importance of philosophy for science. Einstein, for example, wrote in a letter in 1944:

    I fully agree with you about the significance and educational value of methodology as well as history and philosophy of science. So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest.

At the same time, physics has always played a vital role in shaping ideas in modern philosophy. It appears, however, that we are now faced with the ruins of this beautiful marriage between physics and philosophy. Stephen Hawking has claimed recently that philosophy is “dead” because philosophers have not kept up with science …

Krämer is part of an interdisciplinary (physics and philosophy) project at the LHC (Large Hadron Collider at CERN [European Particle Physics Laboratory]), The Epistemology of the Large Hadron Collider. From the project home page (Note: A link has been removed),

This research collaboration works at the crossroads of physics, philosophy of science, and contemporary history of science. It aims at an epistemological analysis of the recently launched new accelerator experiment at CERN, the Large Hadron Collider (LHC). Central themes are (i) the mechanisms of generating the masses of the particles of the standard model, especially the Higgs-mechanism and the Higgs-particle the LHC has set out to detect; (ii) the ongoing research process with special emphasis on the interaction between a large experiment and a community of theoreticians; and (iii) the implications of an experiment that is characterized by its enormous complexity and the need to be highly selective in data gathering. With the heading “Epistemology of the LHC” the research group intends both a philosophical analysis of the theoretical structures and of the conditions of knowledge production, among them the criteria of acceptance, and a real-time monitoring of the ongoing physical development from the perspective of the history of science. Theresearch group has emerged from a collaboration between a High Energy Working group and the Interdisciplinary Centre for Science and Technology Studies and is based in Wuppertal but also involves external members and collaborators.

Krämer shares some of his ideas and the type of thinking generated when physicists and philosophers collide (I plead guilty to the word play; from Butterworth’s Guardian science blog),

… The relationship between experiment and theory (what impact does theoretical prejudice have on empirical findings?) or the role of models (how can we assess the uncertainty of a simplified representation of reality?) are scientific issues, but also issues from the foundation of philosophy of science. In that sense they are equally important for both fields, and philosophy may add a wider and critical perspective to the scientific discussion. And while not every particle physicist may be concerned with the ontological question of whether particles or fields are the more fundamental objects, our research practice is shaped by philosophical concepts. We do, for example, demand that a physical theory can be tested experimentally and thereby falsified, a criterion that has been emphasized by the philosopher Karl Popper already in 1934. The Higgs mechanism can be falsified, because it predicts how Higgs particles are produced and how they can be detected at the Large Hadron Collider.

On the other hand, some philosophers tell us that falsification is strictly speaking not possible: What if a Higgs property does not agree with the standard theory of particle physics? How do we know it is not influenced by some unknown and thus unaccounted factor, like a mysterious blonde walking past the LHC experiments and triggering the Higgs to decay? (This was an actual argument given in the meeting!)

The meeting Krämer is referring to is this one (from the meeting/conference website),

The first international conference and kick-off meeting of the German Society for Philosophy of Science/Gesellschaft für Wissenschaftsphilosophie (GWP) will take place from 11-14 March 2013 at the University of Hannover under the title:

How Much Philosophy in the Philosophy of Science?

Krämer then highlights some of the discussion that most interested in him (Note: A link has been removed),

… It is very hard for a philosopher to keep up with scientific progress, and how could one integrate various fields without having fully appreciated the essential features of the individual sciences? As Margaret Morrison from the University of Toronto pointed out in her talk, if philosophy steps back too far from the individual sciences, the account becomes too general and isolated from scientific practice. On the other hand, if philosophy is too close to an individual science, it may not be philosophy any longer.

I think philosophy of science should not consider itself primarily as a service to science, but rather identify and answer questions within its own domain. I certainly would not be concerned if my own research went unnoticed by biologists, chemists, or philosophers, as long as it advances particle physics. On the other hand, as Morrison pointed out, science does generate its own philosophical problems, and philosophy may provide some kind of broader perspective for understanding those problems.

It’s well worth reading Krämer’s full post for anyone who’s interested in how physicists (or Krämer) think about the role that philosophy could play (or not) in the field of physics.

The reference to Margaret Morrison from the University of Toronto (U of T) reminded me of the Bubble Chamber blog which is written by U of T historians and philosophers of science. Here’s a July 10, 2012 posting by Mike Thicke about the Higgs Boson and his response to philosopher Wayne Myrvold’s (University of Western Ontario) explanation of the statistics claims being made about the particle at that time,

We can all agree that reasoning and decision making in science is complicated. Scientists reason in many different contexts: in the lab, in their published papers, as career-minded professionals, as interested consumers of science, and as people going about their lives. It’s plausible to think that they reason in different ways in all of these contexts. When we’re discussing their reasoning as scientists, I believe distinguishing between the first three contexts is especially important. While Wayne’s explanation of the statistics behind the Higgs Boson discovery is very interesting, informative, and as far as I can tell correct, I think there are some confusions arising from his failure to make these distinctions.

Thicke does advise reading Myrvold’s July 4, 2012 posting before tackling his riposte.

A twist in my DNA

Professor Hao Yan’s team at Arizona State University (ASU) has created some new 2D and 3D DNA objects according to a Mar. 21, 2013 news release on EurekAlert,

In their latest twist to the technology, Yan’s team made new 2-D and 3-D objects that look like wire-frame art of spheres as well as molecular tweezers, scissors, a screw, hand fan, and even a spider web.

The Yan lab, which includes ASU Biodesign Institute colleagues Dongran Han, Suchetan Pal, Shuoxing Jiang, Jeanette Nangreave and assistant professor Yan Liu, published their results in the March 22 issue of Science.

Here’s where the twist comes in,

The twist in their ‘bottom up,’ molecular Lego design strategy focuses on a DNA structure called a Holliday junction. In nature, this cross-shaped, double-stacked DNA structure is like the 4-way traffic stop of genetics — where 2 separate DNA helices temporality meet to exchange genetic information. The Holliday junction is the crossroads responsible for the diversity of life on Earth, and ensures that children are given a unique shuffling of traits from a mother and father’s DNA.

In nature, the Holliday junction twists the double-stacked strands of DNA at an angle of about 60-degrees, which is perfect for swapping genes but sometimes frustrating for DNA nanotechnology scientists, because it limits the design rules of their structures.

“In principal, you can use the scaffold to connect multiple layers horizontally,” [which many research teams have utilized since the development of DNA origami by Cal Tech’s Paul Rothemund in 2006]. However, when you go in the vertical direction, the polarity of DNA prevents you from making multiple layers,” said Yan. “What we needed to do is rotate the angle and force it to connect.”

Making the new structures that Yan envisioned required re-engineering the Holliday junction by flipping and rotating around the junction point about half a clock face, or 150 degrees. Such a feat has not been considered in existing designs.

“The initial idea was the hardest part,” said Yan. “Your mind doesn’t always see the possibilities so you forget about it. We had to break the conceptual barrier that this could happen.”

In the new study, by varying the length of the DNA between each Holliday junction, they could force the geometry at the Holliday junctions into an unconventional rearrangement, making the junctions more flexible to build for the first time in the vertical dimension. Yan calls the backyard barbeque grill-shaped structure a DNA Gridiron.

“We were amazed that it worked!” said Yan. “Once we saw that it actually worked, it was relatively easy to implement new designs. Now it seems easy in hindsight. If your mindset is limited by the conventional rules, it’s really hard to take the next step. Once you take that step, it becomes so obvious.”

The DNA Gridiron designs are programmed into a viral DNA, where a spaghetti-shaped single strand of DNA is spit out and folded together with the help of small ‘staple’ strands of DNA that help mold the final DNA structure. In a test tube, the mixture is heated, then rapidly cooled, and everything self-assembles and molds into the final shape once cooled. Next, using sophisticated AFM and TEM imaging technology, they are able to examine the shapes and sizes of the final products and determine that they had formed correctly.

This approach has allowed them to build multilayered, 3-D structures and curved objects for new applications.

In addition to the EurekAlert version, you can find the full text, images, and video about the team’s paper in the Mar. 21, 2013 news item on ScienceDaily (a citation and link to the team’s paper is also included) or you can read the original Mar. 21, 2013 ASU news release. (Hao Yan’s work was last mentioned here in an Aug. 7, 2012 post.)

All of this talk of twists reminded me of a song by Tanita Tikaram, Twist in My Sobriety. I found this video of an acoustic performance (two guitars and a bass [the musical instrument not the fish]) which is even more sultry than original hit version,

Happy weekend!

When twice as much (algebra) is good for you

“We find positive and substantial longer-run impacts of double-dose algebra on college entrance exam scores, high school graduation rates and college enrollment rates, suggesting that the policy had significant benefits that were not easily observable in the first couple of years of its existence,” wrote the article’s authors.

The Mar. 21, 2013 news release on EurekAlert which includes the preceding quote recounts an extraordinary story about an approach to teaching algebra that was not enthusiastically adopted at first but first some reason administrators and teachers persisted with it. Chelsey Leu’s Mar. 21, 2013 article (which originated the news release) for UChicago (University of Chicago) News (Note: Links have been removed),

Martin Gartzman sat in his dentist’s waiting room last fall when he read a study in Education Next that nearly brought him to tears.

A decade ago, in his former position as chief math and science officer for Chicago Public Schools [CPS], Gartzman spearheaded an attempt to decrease ninth-grade algebra failure rates, an issue he calls “an incredibly vexing problem.” His idea was to provide extra time for struggling students by having them take two consecutive periods of algebra.

In high schools, ninth-grade algebra is typically the class with the highest failure rate. This presents a barrier to graduation, because high schools usually require three to four years of math to graduate.

Students have about a 20 percent chance of passing the next math level if they don’t first pass algebra, Gartzman said, versus 80 percent for those who do pass. The data are clear: If students fail ninth-grade algebra, the likelihood of passing later years of math, and ultimately of graduating, is slim

Gartzman’s work to decrease algebra failure rates at CPS was motivated by a study of Melissa Roderick, the Hermon Dunlap Smith Professor at UChicago’s School of Social Service Administration. The study emphasized the importance of keeping students academically on track in their freshman year to increase the graduation rate.

Some administrators and teachers resisted the new policy. Teachers called these sessions “double-period hell” because they gathered, in one class, the most unmotivated students who had the biggest problems with math.

Principals and counselors sometimes saw the double periods as punishment for the students, depriving them of courses they may have enjoyed taking and replacing them with courses they disliked.

It seemed to Gartzman that double-period students were learning more math, though he had no supporting data. He gauged students’ progress by class grades, not by standardized tests. The CPS educators had no way of fully assessing their double-period idea. All they knew was that failure rates didn’t budge.

Unfortunately, Leu does not explain why the administrators and teachers continued with the program but it’s a good thing they did (Note: Links have been removed),

“Double-dosing had an immediate impact on student performance in algebra, increasing the proportion of students earning at least a B by 9.4 percentage points, or more than 65 percent,” noted the Education Next article. Although ninth-grade algebra passing rates remained mostly unaffected, “The mean GPA across all math courses taken after freshman year increased by 0.14 grade points on a 4.0 scale.”

They also found significantly increased graduation rates. The researchers concluded on an encouraging note: “Although the intervention was not particularly effective for the average affected student, the fact that it improved high school graduation and college enrollment rates for even a subset of low-performing and at-risk students is extraordinarily promising when targeted at the appropriate students.” [emphasis mine]

Gartzman recalled that reading the article “was mind-blowing for me. I had no idea that the researchers were continuing to study these kids.”

The study had followed a set of students from eighth grade through graduation, while Gartzman’s team could only follow them for a year after the program began. The improvements appeared five years after launching double-dose algebra, hiding them from the CPS team, which had focused on short-term student performance. [emphasis mine]

Gartzman stressed the importance of education policy research. “Nomi and Allensworth did some really sophisticated modeling that only researchers could do, that school districts really can’t do. It validates school districts all over the country who had been investing in double-period strategies.”

I’m not sure I understand the numbers very well (maybe I need a double-dose of numbers). The 9.4% increase for students earning a B sounds good but a mean increase of 0.14 in grade points doesn’t sound as impressive. As for the bit about the program being “not particularly effective for the average affected student,” what kind of student is helped by this program? As for the improvements being seen five years after the program launch. does this mean that students in the program showed improvement five years later (in first year university) or that researchers weren’t able to effectively measure any impact in the grade nine classroom until five years after the program began?

Regardless, it seems there is an improvement and having suffered through my share algebra classes, I applaud the educators for finding a way to help some students, if not all.

Ian Bushfield weighs paper with his lasers

Café Scientifique Vancouver (Canada) will be holding a meeting on the subject of lasers and weighing paper at The Railway Club on the 2nd floor of 579 Dunsmuir St. (at Seymour St.) next Tuesday, from the Mar. 19, 2013 email announcement,

Our next café will happen on Tuesday March 26th, 7:30pm at The Railway Club. Our speaker for the evening will be Ian Bushfield.

The title and abstract for his café is:

“Weighing Paper With Lasers”

Until the 1990s, a narrow band of radiation in the far-infrared had remained largely unexplored. Terahertz radiation’s unique interaction with water molecules and weak interaction with most plastic and fabrics make it an ideal probe for a wide range of applications, from security scanners to death rays. One area of interest is in product testing and quality control. In this talk, Ian Bushfield will describe his masters of physics work in developing a technique to use terahertz radiation to obtain the thickness, weight, and water content of paper, for application in paper manufacturing. These non-contact sensors offer industry a way to improve accuracy and production speed by replacing sensors that rely on physical contact with paper reams. This work was supported by the NSERC Industrial Postgraduate Scholarship, SFU, and the Honeywell Vancouver Centre for Excellence.

We hope to see you there!

Ian Bushfield has his own website,

I am the executive director of the British Columbia Humanist Association and a passionate advocate for science outreach and education. I have recently completed an MSc in Physics and have a BSc in Engineering Physics. I have worked as a research assistant and as a science summer camp instructor.

I gather Bushfield will be focusing on the work he did for his master’s thesis (from Bushfield’s résumé page),

Master of Science in Physics, Simon Fraser University 2011

Given the description for his talk, I don’t imagine Bushfield will be discussing his interest in humanism although I’m sure he’ll be open to questions. I’ve found the meetings at the Railway Club to be pleasantly fueled by beer, burgers, and conversation about science and any other topics attendees care to raise. (Bushfield was last mentioned here in my Feb. 8, 2013 posting about Charles Darwin Day and the February 2013 Café Scientifique meeting.)

Evolution is the best problem-solver

Dr. Jeffrey Karp of Brigham and Women’s Hospital says, “I truly believe evolution is the best problem-solver,” when discussing his medical biomimcry work in this video,

You can find the video and more in a Mar. 20, 2013 news item on Nanowerk which was originated by a Mar. 6, 2013 article by Alisa Zapp Machalek for the US National Institutes of Health (NIH) National Institute of General Medical Sciences (NGMS) Inside Life Science webpage,

Velcro® was inspired by the grappling hooks of burrs. Supersonic jets have structures that work like the nostrils of peregrine falcons in a speed dive. Full-body swimsuits, now banned from the Olympics, lend athletes a smooth, streamlined shape like fish.

Nature’s designs are also giving researchers funded by the National Institutes of Health ideas for new technologies that could help wounds heal, make injections less painful and provide new materials for a variety of purposes.

… scientists [Jeffrey Karp and Robert Langer] discovered, to their surprise, that a [porcupine] quill’s puncture power comes from its barbed tip. Barbs seem to work like the points on a serrated knife, concentrating pressure onto small areas to aid penetration. Because they require significantly less force to puncture skin, barbed shafts don’t hurt as much when they enter flesh as their smooth-tipped counterparts do.

Zapp Machalek goes on to detail work inspired by gecko feet and spider webs, as well as, porcupine quills.