Monthly Archives: March 2014

National (Canada) livestreamed science events from Situating Science (two events) and the Perimeter Institute (one event)

The Situating Science (humanities research cluster) is preparing for a couple of events both of which will take place on April 10, 2014 as part of their Lives of Evidence lecture series . The series has been mentioned here before in a couple of previous posts (my Jan. 31, 2014 posting titled: The Press and the Press Release: Inventing the Crystal Meth-HIV Connection and my March 19, 2014 posting titled Patents, Progress, and Commercialized Medicine).

The next Lives of Evidence lectures are (from the March 25, 2014 announcement),

From the ‘Bankruptcy of Science’ to the ‘Death of Evidence’: Science and its Value
Stathis Psillos, Rotman Canada Research Chair in Philosophy of Science, Department of Philosophy, Western University
Thursday, April 10 2014, 5 PM [EST; 2 pm PST]
Room 4101, 4th floor, Desmarais Building , University of Ottawa, 55 Laurier Ave. East, Ottawa, ON
Free. Reception to follow.
“Join” our Facebook event
https://www.facebook.com/events/819874048026027/
U. Ottawa ISSP Distinguished Speakers Lecture Series.
Supported by the Canada Research Chair in Philosophy of Science and University of Ottawa Departments of Philosophy and History.

Those Who Have the Gold Make the Evidence: The Pharmaceutical Industry and Clinical Trials
Joel Lexchin, Professor, School of Health Policy and Management, York University
Thursday, April 10 2014, 7pm [EST; 4 pm PST]
Room 2130, David Chu Centre, Western Student Services Building, Western University. 1151 Richmond St., London, ON.
Free. Reception beforehand.
“Join” our Facebook Event:
https://www.facebook.com/events/252408878265465/
Watch live online here!
Supported by the Rotman Institute of Philosophy, Western University

While it doesn’t appear that the April 10, 2014 Psillos lecture, ‘Bankruptcy of Science’ to the ‘Death of Evidence’, will be livestreamed, he will be reprising it on April 16, 2014 at the University of Toronto and, according to the chatter on the event’s Facebook page, there appears to be a possibility that one will be livestreamed and I will try to confirm that information. I expect they can’t or are having difficulties arranging two livestreamed events on one day and, for some reason, the second of the April 10, 2014 lectures, Lexchin’s ‘Those Who Have the Gold Make the Evidence’ is the one being livestreamed.

Onto the Perimeter Institute and their livestreamed Future of Physics event,on April 2, 2014 (from the March 25, 2014 announcement),

The Future of Physics: Kate Lunau of maclean’s magazine in Conversation with Emerging Talent at Perimeter Institute
Kate Lunau, Science Journalist
WEDNESDAY, April 2, 2014 AT 7:00PM
Perimeter INSTITUTE
31 Caroline STREET North, WATERLOO
The late astronomer and science popularizer Carl Sagan once said: “The great discoveries are almost entirely made by youngsters.” Sagan understood the power of youthful awe and curiosity, unbounded by established ways of thinking.

Exceptional young physicists will discuss what fascinates and motivates them during Perimeter Institute’s April 2 public lecture. A panel of top early-career scientists, moderated by journalist Kate Lunau of Maclean’s magazine, will share their unique perspectives on the big questions and the types of discoveries they believe may shape the future.

Participants will walk the audience through the “typical” day of a theoretical physicist, describe the path that brought them to the Perimeter, and explore the unprecedented challenges and opportunities that face their generation — and the generations of new scientists to follow — through the 21st century.

If you are thinking of attending the event live in Waterloo, it’s too late to get tickets which were awarded via lottery!

Oxford’s 2014 Nanotechnology Summer School

Here’s some information about Oxford’s sixth annual nanotechnology summer programme from a March 25, 2014 news item on Nanowerk (Note: A link has been removed),

The theme of the sixth annual Oxford Nanotechnology Summer School in 2014 will be ‘An Introduction to Bionanotechnology’.

Each year Oxford’s Nanotechnology Summer School focuses on applications of nanotechnologies in a different field. Comprising presentations from leading researchers and practitioners from the University of Oxford and beyond, the Nanotechnology Summer School is essential for anyone with an interest in these topics.

There’s more about the summer school on the University of Oxford’s Nanotechnology Summer School 2014’s course page,

This five-day intensive course provides a thorough introduction to the exciting and emerging field of bionanotechnology. Each of the five days of the Nanotechnology Summer School has a dedicated theme and is led by key researchers in the field. The course will be valuable to those seeking an introduction to current research and applications in the subject.

The first day of the Summer School gives an introduction to cell biology and bionanotechnology. The following four days focus on bioanalytical techniques; applied genomics and proteomics; nanoparticles, nanostructures and biomimetics; and the interaction of nanomaterials with biological systems, respectively.

The full Summer School programme will be as follows:

For those who like to know about the costs and attendance options (from the course page),

Payment

Summer School fees include electronic course materials, tuition, refreshments and three-course lunches. The price does not include accommodation. All courses are VAT exempt. There may also be some social events on certain days of the Summer School.

Student discounts

We offer a discounted fee to students in higher education. The student fee rate for five days of the Nanotechnology Summer School is £680.00. It is not possible to enrol online if you wish to take the course at a discounted rate. To apply at the discounted rate, please contact us for details: email nano@conted.ox.ac.uk.

Alumni Card-holders discount

Alumni Card-holders benefit from a 10% discount* on the Nanotechnology Summer School. If you wish to enrol, please remember to quote the code given in e-Pidge to ensure you receive your discount.

* This offer is subject to availability, cannot be used retrospectively or in conjunction with any other offers or concessions available from either the University of Oxford or the Department for Continuing Education.

Fee options

Programme Fee
Five Days – Standard Fee: £1340.00
Five Days – Student Fee: £680.00
One Day – Standard Rate: £295.00
One Day – Student Rate: £150.00

Here’s how you can apply,

Please note that we cannot accept applications from those who are under 18 years of age.

You can apply for this course in the following ways:

Apply online
enrol onlineto secure your place on this course now
Apply by post, email or fax
PDF application form PDF document.

Terms and Conditions (important: please read before applying) .
Guidance Notes (important: please read before applying) PDF document.

Good luck1

Douglas College (Vancouver, Canada) hosts April 2, 2014 talk “How Do We Know? Scientific information and public policy: GMOs, pesticides and the demise of bees?”

I gather the audience for this event is the Douglas College staff, students, and faculty since it’s being held from 1 – 2:30 pm. There’s more from the March 21, 2014 announcement on the Douglas College website (Note: A link has been removed),

A public talk at Douglas College will seek to unravel the complex and contentious debates surrounding genetically modified crops, pesticide use and declining bee populations. Mark Winston, a Simon Fraser University insect [bees] expert and public commentator, will focus on these issues as he examines how to improve the way science is communicated to the public.

“We are pleased to welcome Dr. Winston to share his insights on the important issue of making scientific communication more effective. He is a great communicator, an expert in his field and an innovator around issues in dialogue,” says Rob McGregor, Executive Director of the Institute of Urban Ecology at Douglas College.

The upcoming talk is titled “How Do We Know? Scientific information and public policy: GMOs, pesticides and the demise of bees.” [emphasis mine] The free, public event takes place on Wednesday, April 2 from 1-2:30pm in the Laura C. Muir Performing Arts Theatre on the Douglas College New Westminster campus (700 Royal Ave., New Westminster).

For those who are not familiar with local geography, the word Vancouver can refer to the city or to the metro area, which includes the municipality of New Westminster where this particular Douglas College campus is located.

One final note, according to the Simon Fraser University (SFU) Centre for Dialogue (where Winston works) notice, a reception will follow.

One tough mother, imitating mother-of-pearl for stronger ceramics

I love mother-of-pearl or nacre as it’s also known,

The iridescent nacre inside a Nautilus shell cut in half. The chambers are clearly visible and arranged in a logarithmic spiral. Photo taken by me -- Chris 73 | Talk 12:40, 5 May 2004 (UTC)

The iridescent nacre inside a Nautilus shell cut in half. The chambers are clearly visible and arranged in a logarithmic spiral.
Photo taken by me — Chris 73 | Talk 12:40, 5 May 2004 (UTC)

We had a mother-of-pearl-covered shell when I was a child, one I loved to hold but ours had a blue-black sheen. Enough of this trip down memory lane, it turns out that nacre has inspired a new type of stronger ceramic material from scientists at the Centre national de la recherche scientifique (CNRS) as a March 24, 2014 news item on ScienceDaily notes,

Whether traditional or derived from high technology, ceramics all have the same flaw: they are fragile. Yet this characteristic may soon be a thing of the past: a team of researchers led by the Laboratoire de Synthèse et Fonctionnalisation des Céramiques (CNRS/Saint-Gobain), in collaboration with the Laboratoire de Géologie de Lyon: Terre, Planètes et Environnement (CNRS/ENS de Lyon/Université Claude Bernard Lyon 1) and the Laboratoire Matériaux: Ingénierie et Science (CNRS/INSA Lyon/Université Claude Bernard Lyon 1), has recently presented a new ceramic material inspired by mother-of-pearl from the small single-shelled marine mollusk abalone.

This material, almost ten times stronger than a conventional ceramic, is the result of an innovative manufacturing process that includes a freezing step. This method appears to be compatible with large-scale industrialization and should not be much more expensive than the techniques already in use.

The CNRS March 21,2014 press release, which originated the news item, describes the properties of nacre which excited the scientists and the way in which they mimicked those properties in a synthetic material,

Toughness, i.e. the ability of a material containing a crack to resist fracture, is considered to be the Achilles heel of ceramics. To compensate for their intrinsic fragilit y, these are sometimes combined with tougher materials such as metals or polymers — generally leading to varying degrees of limitations. For example, polymers cannot resist temperatures above 300°C, which restricts their use in motors or ovens.

A material similar to ceramic, although extremely tough, is found in nature. Mother-of-pearl, which covers the shells of abalone and some bivalves, is 95% composed of calcium carbonate (aragonite), an intrinsically fragile material that is nonetheless very tough. Mother-of-pearl can be seen as a stack of small bricks, welded together with mortar composed of proteins. Its toughness is due to its complex, hierarchical structure where cracks must follow a tortuous path to propagate. It is this structure that inspired the researchers.

As a base ingredient, the team from the Laboratoire de Synthèse et Fonctionnalisation des Céramiques (CNRS/Saint-Gobain) used a common ceramic powder, alumina, in the form of microscopic platelets. To obtain the layered mother-of-pearl structure, they suspended this powder in water. The colloidal suspension (1) was then cooled to obtain controlled ice crystal growth, caus ing alumina to self-assemble in the form of stacks of platelets. The final material was subsequently obtained from a high temperature densification step.

This artificial mother-of-pearl is ten times tougher than a conventional alumina ceramic. This is because a crack has to move round the alumina “bricks” one by one to propagate. This zigzag pathway prevents it from crossing the material easily.

One of the advantages of the process is that it is not exclusive to alumina. Any ceramic powder, as long as it is in the form of platelets, can self-assemble via the same process, which could easily be used on an industrial scale. This bio-inspired material’s toughness for equivalent density could make it possible to produce smaller, lighter parts with no significant increase in costs. This invention could become a material of choice for applications subjected to severe constraints in fields ranging from energy to armor plating.

For those who like their communiqué de presse en français,

Les céramiques, qu’elles soient traditionnelles ou de haute technologie, présentent toutes un défaut : leur fragilité. Ce côté cassant pourrait bientôt disparaître : une équipe de chercheurs, menée par le Laboratoire de synthèse et fonctionnalisation des céramiques (CNRS/Saint-Gobain), en collaboration avec le Laboratoire de géologie de Lyon : Terre, planètes et environnement (CNRS/ENS de Lyon/Université Claude Bernard Lyon 1) et le laboratoire Matériaux : ingénierie et science (CNRS/INSA Lyon/Université Claude Bernard Lyon 1) vient de présenter un nouveau matériau céramique inspiré de la nacre des ormeaux, petits mollusques marins à coquille unique. Ce matériau, près de dix fois plus tenace qu’une céramique classique, est issu d’un procédé de fabrication innovant qui passe par une étape de congélation. Cette méthode semble compatible avec une industrialisation à échelle plus importante, à priori sans surcoût notable par rapport à celles déjà employées. Conservant ses propriétés à des températures d’au moins 600°C, cette nacre artificielle pourrait trouver une foule d’applications dans l’industrie et permettre d’alléger ou de réduire en taille des éléments céramiques des moteurs ou des dispositifs de génération d’énergie. Ces travaux sont publiés le 23 mars 2014 sur le site internet de la revue Nature Materials.

La ténacité, capacité d’un matériau à résister à la rupture en présence d’une fissure, est considérée comme le talon d’Achille des céramiques. Pour pallier leur fragilité intrinsèque, celles-ci sont parfois combinées à d’autres matériaux plus tenaces, métalliques ou polymères. L’adjonction de tels matériaux s’accompagne généralement de limitations plus ou moins sévères. Par exemple, les polymères ne résistent pas à des températures supérieures à 300°C, ce qui limite leur utilisation dans les moteurs ou les fours.

Dans la nature, il existe un matériau proche de la céramique qui est extrêmement tenace : la nacre qui recouvre la coquille des ormeaux et autres bivalves. La nacre est composée à 95 % d’un matériau intrinsèquement fragile, le carbonate de calcium (l’aragonite). Pourtant, sa ténacité est forte. La nacre peut être vue comme un empilement de briques de petite taille, soudées entre elles par un mortier composé de protéines. Sa ténacité tient à sa structure complexe et hiérarchique. La propagation de fissures dans ce type d’architecture est rendue difficile par le chemin tortueux que celles-ci doivent parcourir pour se propager. C’est cette structure qui a inspiré les chercheurs.

Comme ingrédient de base, l’équipe du Laboratoire de synthèse et fonctionnalisation des céramiques (CNRS/Saint-Gobain) a pris une poudre céramique courante, l’alumine, qui se présente sous la forme de plaquettes microscopiques. Pour obtenir la structure lamellée de la nacre, ils ont mis cette poudre en suspension dans de l’eau. Cette suspension colloïdale (1) a été refroidie de manière à obtenir une croissance contrôlée de cristaux de glace. Ceci conduit à un auto-assemblage de l’alumine sous forme d’un empilement de plaquettes. Finalement, le matériau final a été obtenu grâce à une étape de densification à haute température.

Cette nacre artificielle est dix fois plus tenace qu’une céramique classique composée d’alumine. Ceci est dû au fait qu’une fissure, pour se propager, doit contourner une à une les « briques » d’alumine. Ce chemin en zigzag l’empêche de traverser facilement le volume du matériau.

L’un des avantages du procédé est qu’il n’est pas exclusif à l’alumine. N’importe quelle poudre céramique, pour peu qu’elle se présente sous la forme de plaquettes, peut subir le même processus d’auto-assemblage. De plus, l’industrialisation de ce procédé ne devrait pas présenter de difficultés. L’obtention de pièces composées avec ce matériau bio-inspiré ne devrait pas entraîner de grands surcoûts. Sa forte ténacité pour une densité équivalente pourrait permettre de fabriquer des pièces plus petites et légères. Il pourrait devenir un matériau de choix pour les applications soumises à des contraintes sévères dans des domaines allant de l’énergie au blindage.

Here’s a link to and a citation for the research paper which was published in English,

Strong, tough and stiff bioinspired ceramics from brittle constituents by Florian Bouville, Eric Maire, Sylvain Meille, Bertrand Van de Moortèle, Adam J. Stevenson, & Sylvain Deville. Nature Material (2014) doi:10.1038/nmat3915 Published online 23 March 2014

This paper is behind a paywall.

Pretty in violet, a new antimicrobial surface that works in the dark

 Samples of silicone with the various dyes infused. Courtesy: University College of London

Samples of silicone with the various dyes infused. Courtesy: University College of London

A March 25, 2014 news item on Azonano profiles a new antimicrobial surface which works in the dark, as well as, in the light,

Researchers at UCL [University College of London] have developed a new antibacterial material which has potential for cutting hospital acquired infections. The combination of two simple dyes with nanoscopic particles of gold is deadly to bacteria when activated by light – even under modest indoor lighting. And in a first for this type of substance, it also shows impressive antibacterial properties in total darkness.

The UCL March 24, 2014 news release, which originated the news item, describes the current situation with infections in hospitals and the team’s approach to mitigating the problem,

Hospital-acquired infections are a major issue for modern medicine, with pathogens like methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile (C. diff) getting extensive publicity. Although medical establishments have stringent cleaning policies, insist on frequent hand-washing by staff, and have powerful drugs at their disposal, it is difficult to eliminate these infections unless you can make the hospital environment more hostile to microbes. Surfaces, such as door handles, medical equipment, keyboards, pens and so on are an easy route for germs to spread, even onto freshly-cleaned hands.

One possible solution to this is to develop alternative strategies such as antibacterial coatings that make surfaces less accommodating to germs. These surfaces are not like antibacterial fluids that just wash away – the goal is to make a surface which is intrinsically deadly to harmful bacteria.

“There are certain dyes that are known to be harmful to bacteria when subjected to bright light,” explains the study’s corresponding author Ivan Parkin (Head of UCL Chemistry). “The light excites electrons in them, promoting the dye molecules to an excited triplet state and ultimately produces highly reactive oxygen radicals that damage bacteria cell walls. Our project tested new combinations of these dyes along with gold nanoparticles, and simplified ways of treating surfaces which could make the technology easier and cheaper to roll out.”

The UCL news release then goes on to describe the research in some detail,

The team, tested several different combinations of the dyes crystal violet (already used to treat staph infections), methylene blue and nanogold, deposited on the surface of silicone. This flexible rubbery substance is widely used as a sealant, a coating and to build medical apparatus such as tubes, catheters and gaskets, and can also be used as protective casings for things like keyboards and telephones.

While work to create antimicrobial surfaces in the past has often concentrated on complex ways of bonding dyes to the surface, this study took a simpler approach. The researchers used an organic solvent to swell the silicone, allowing the methylene blue and gold nanoparticles to diffuse through the polymer. They then dipped the silicone into a crystal violet solution to form a thin dye layer at the polymer surface.

In their tests, in which infected surfaces were subjected to light levels similar to those measured in hospital buildings, surfaces treated with a combination of crystal violet, methylene blue and nanogold showed the most potent bactericidal effect ever observed in such a surface. Moreover, the treatment did not significantly change the properties of the silicone (for instance, how water repellent it is), and the coating was not affected by rubbing with alcohol wipes, meaning it can stand up to the repeated cleaning that goes on in hospitals, without being worn off.

“Despite contaminating the surface with far more bacteria than you would ever see in a hospital setting, placed under a normal fluorescent light bulb, the entire sample was dead in three to six hours, depending on the type of bacteria,” says the paper’s lead author, Sacha Noimark. “That was an excellent result, but the bigger surprise was the sample which we left in the dark. That sample too showed significant reductions in bacterial load, albeit over longer timescales of about three to eighteen hours. The precise mechanism by which this dark-kill works is not yet clear, though.”

This is the first time a light-activated antimicrobial surface has had any kind of effect in the dark. This, along with its unprecedented performance under hospital lighting conditions, and relatively simple and cost-effective manufacture, means that the technology is extremely promising for future applications.

The team have been granted a patent on the formulation. The work was sponsored through the UCL M3S engineering doctorate centre and co-funded by Ondine Biopharma.

Here’s a link to and a citation for the paper,

Light-activated antimicrobial surfaces with enhanced efficacy induced by a dark-activated mechanism by Sacha Noimark, Elaine Allan, and Ivan P. Parkin. Chem. Sci., 2014, Advance Article DOI: 10.1039/C3SC53186D First published online 05 Mar 2014

This article is behind a paywall. One final note, I believe the difference in publication dates, March 24, 2014 in the news release as opposed to March 5, 2014 as listed on the publication’s website, is due to the probability that the print version was published later.

Ditch toxic ammonia and grow your vertically aligned carbon nanofibers with ambient air say scientists and their high school colleagues

Ditching the ammonia used in the processing of vertically aligned carbon nanofibers is both healthier, occupationally and environmentally, and more profitable as it paves the way to easier manufacturing. Scientists at North Carolina State University (NCSU) working alongside high school students have demonstrated their new technique, according to a March 24, 2014 news item on Nanowerk,

Researchers from North Carolina State University have demonstrated that vertically aligned carbon nanofibers (VACNFs) can be manufactured using ambient air, making the manufacturing process safer and less expensive. VACNFs hold promise for use in gene-delivery tools, sensors, batteries and other technologies.

The March 24, 2014 NCSU news release (also on EurekAlert), which originated the news item, features an image illustrating VACNFs and more details about the research,

Researchers have shown they can grow vertically-aligned carbon nanofibers using ambient air, rather than ammonia gas. Click to enlarge image. (Image free for use. Credit: Anatoli Melechko.)

Researchers have shown they can grow vertically-aligned carbon nanofibers using ambient air, rather than ammonia gas. Click to enlarge image. (Image free for use. Credit: Anatoli Melechko.)

Conventional techniques for creating VACNFs rely on the use of ammonia gas, which is toxic. And while ammonia gas is not expensive, it’s not free.

“This discovery makes VACNF manufacture safer and cheaper, because you don’t need to account for the risks and costs associated with ammonia gas,” says Dr. Anatoli Melechko, an adjunct associate professor of materials science and engineering at NC State and senior author of a paper on the work. “This also raises the possibility of growing VACNFs on a much larger scale.”

In the most common method for VACNF manufacture, a substrate coated with nickel nanoparticles is placed in a vacuum chamber and heated to 700 degrees Celsius. The chamber is then filled with ammonia gas and either acetylene or acetone gas, which contain carbon. When a voltage is applied to the substrate and a corresponding anode in the chamber, the gas is ionized. This creates plasma that directs the nanofiber growth. The nickel nanoparticles free carbon atoms, which begin forming VACNFs beneath the nickel catalyst nanoparticles. However, if too much carbon forms on the nanoparticles it can pile up and clog the passage of carbon atoms to the growing nanofibers.

Ammonia’s role in this process is to keep carbon from forming a crust on the nanoparticles, which would prevent the formation of VACNFs.

“We didn’t think we could grow VACNFs without ammonia or a hydrogen gas,” Melechko says. But he tried anyway.

The researchers had some unlikely collaborators who inspired them to try a new approach (from the news release),

Melechko’s team tried the conventional vacuum technique, using acetone gas. However, they replaced the ammonia gas with ambient air – and it worked. The size, shape and alignment of the VACNFs were consistent with the VACNFs produced using conventional techniques.

“We did this using the vacuum technique without ammonia,” Melechko says. “But it creates the theoretical possibility of growing VACNFs without a vacuum chamber. If that can be done, you would be able to create VACNFs on a much larger scale.”

Melechko also highlights the role of two high school students involved in the work: A. Kodumagulla and V. Varanasi, who are lead authors of the paper. [emphases mine] “This discovery would not have happened if not for their approach to the problem, which was free from any preconceptions,” Melechko says. “I think they’re future materials engineers.”

Kudos to the students! Dr. Melechko should also be lauded for his flexible attitude towards collaboration and research and for his acknowledgment of the students both in this news release and in the published paper where they have lead author status.

Here’s a link to and a citation for the paper,

Aerosynthesis: Growth of Vertically-aligned Carbon Nanofibres with Air DC Plasma by A. Kodumagulla, V. Varanasi, R. C. Pearce, W. C. Wu, D. K. Hensley, J. B. Tracy, T. E. McKnight and A. V. Melechko. Nanomaterials and Nanotechnology DOI: 10.5772/58449

This is an open access paper in an open access journal.

Technion-Israel Institute of Technology and the University of Waterloo (Canada) together at last

A March 18, 2014 University of Waterloo news release describes a new agreement signed at a joint Technion-Israel Institute of Technology-University of Waterloo conference held in Israel.

“As two of the world’s top innovation universities, the University of Waterloo and Technion are natural partners,” said Feridun Hamdullahpur, president and vice-chancellor of the University of Waterloo. “This partnership positions both Waterloo and Technion for accelerated progress in the key areas of quantum information science, nanotechnology, and water. [emphasis mine] These disciplines will help to shape the future of communities, industries, and everyday life.”

The conference to mark the start of the new partnership, and a reciprocal event in Waterloo planned for later in 2014, is funded by a donation to the University of Waterloo from The Gerald Schwartz & Heather Reisman Foundation.

“The agreement between the University of Waterloo and Technion will lead to joint research projects between Israeli and Canadian scientists in areas crucial for making our world a better place,” said Peretz Lavie, president of Technion. “I could not think of a better partner for such projects than the University of Waterloo.”

The new partnership agreement will connect students and faculty from both institutions with global markets through technology transfer and commercialization opportunities with industrial partners in Canada and in Israel.

“This partnership between two global innovation leaders puts in place the conditions to support research breakthroughs and new opportunities for commercialization on an international scale,” said George Dixon, vice-president of research at Waterloo. “University of Waterloo and Technion have a history of research collaboration going back almost 20 years.”

Which one of these items does not fit on the list “quantum information science, nanotechnology, and water?” I pick water. I think they mean water remediation or water desalination or, perhaps, water research.

Given the issues with the lack of potable water in that region the interest in water is eminently understandable. (My Feb. 24, 2014 posting mentions the situation in the Middle East in the context of water desalination research at a new nanotechnology at Oman’s Sultan Qaboos University.)

Caltech’s (California Institute of Technology) microbes improve ultrasound imaging

After last week’s (March 17 – 21, 2014) TED blogging marathon I’m finally catching up on my usual topics such as this California Institute of Technology (Caltech) item about micro-organisms being used to develop better ultrasound images. From a March 20, 2014 Caltech news release,

Ultrasounds – one of the most widely used imaging modalities in medicine – could be greatly improved using nanoscale microorganisms.

This transformative new nanotechnology could have a significant impact on ultrasound technology, and opens the door to a variety of potential imaging applications where the nanometer size is advantageous, e.g., in labeling targets outside the bloodstream; in detecting tumors in the body; and in diagnosing the health of the gastrointestinal system.

HERE’S HOW THEY DID IT

Caltech’s Dr. Mikhail Shapiro was interested in developing nanoscale imaging agents for ultrasound to enable non-invasive imaging of a much broader range of biological and biomedical events in the body.  Turning to nature for inspiration, he and his colleagues at Caltech and UC Berkeley, successfully created the first ultrasound imaging agent based on genetically encoded gas-containing structures.

Shapiro’s team utilized photosynthetic micro-organisms that form gas nanostructures called “gas vesicles,” that the researchers discovered were excellent imaging agents for ultrasound, with several unique properties making them especially useful in biomedical applications.

Previously, most ultrasound imaging agents were based on small gas bubbles, which ultrasound can detect because they have a different density than their surroundings and can resonate with sound waves. Unfortunately, these “microbubbles” could only be synthesized at sizes of several microns (or larger) because of their fundamental physics: the smaller you tried to make them, the less stable they became. As a result, they were always confined to the bloodstream and could only image a limited number of biological targets.

The researchers wanted to find another way of making gas-filled structures that could be nanoscale.  In particular, certain photosynthetic micro-organisms regulate their buoyancy by forming protein-shelled gas nanostructures called “gas vesicles” inside the cell body. These structures interact with gas in a way that is fundamentally different from microbubbles, allowing them to have nanometer size. In this study, they discovered that gas vesicles are excellent imaging agents for ultrasound.

The researchers showed that they were able to easily attach biomolecules to the gas vesicle surface to enable targeting. In addition, because these structures are encoded as genes, they now have a chance to modify these genes to optimize gas vesicles’ ultrasound properties.  Already the team has shown that gas vesicles from different species, which vary in genetic sequence, exhibit different properties that can be used to, for example, distinguish them from each other in an ultrasound image.

Here’s a link to and a citation for the researchers’ paper,

Biogenic gas nanostructures as ultrasonic molecular reporters by Mikhail G. Shapiro, Patrick W. Goodwill, Arkosnato Neogy, Melissa Yin, F. Stuart Foster, David V. Schaffer, & Steven M. Conolly. Nature Nanotechnology (2014) doi:10.1038/nnano.2014.32 Published online 16 March 2014

This paper is behind a paywall.

Call for papers: conference on sound art curation

It’s not exactly data sonification (my Feb. 7, 2014 posting about sound as a way to represent research data) but there’s a call for papers (deadline March 31, 2014) for a conference focused on curating sound art. Lanfranco Aceti, an academic, an artist and a curator whom I met some years ago at a conference sent me a March 20, 2014 announcement,

OCR (Operational and Curatorial Research in Art, Design, Science and Technology) is launching a series of international conferences with international partners.

Sound Art Curating is the first conference to take place in London, May 15-17, 2014 at Goldsmiths and at the Courtauld Institute of Art [both located in London, England].

The call for paper will close March 31, 2014 and it can be accessed at this link:
http://ocradst.org/blog/2014/01/25/histories-theories-and-practices-of-sound-art/

The conference website is available at this link: http://ocradst.org/soundartcurating/

I did get more information about the OCR from their About page,

Operational and Curatorial Research in Contemporary Art, Design, Science and Technology (OCR) is a research center that focuses on research in the fine arts. Its projects are characterized by elements of interdisciplinarity and transdiciplinarity. OCR engages with public and private institutions worldwide in order to foster innovation and best practices through collaborations and synergies.

OCR has two international outlets: the Media Exhibition Platform (MEP), a platform for peer reviewed exhibitions, and Contemporary Art and Culture (CAC), a peer-reviewed publishing platform for academic texts, artists’ books and catalogs.

Lanfranco Aceti is the founder and director of OCR, MEP and CAC, and has worked in the field for over twenty years.

Here’s more about what the organizers are looking for from the Call for Papers webpage,

Traditionally, the curator has been affiliated to the modern museum as the persona who manages an archive, and arranges and communicates knowledge to an audience, according to fields of expertise (art, archaeology, cultural or natural history etc.). However, in the later part of the 20th century the role of the curator changes – first on the art-scene and later in other more traditional institutions – into a more free-floating, organizational and ’constructive’ activity that allows the curator to create and design new wider relations, interpretations of knowledge modalities of communication and systems of dissemination to the wider public.

This shift is parallel to a changing role of the artist, that from producer becomes manager of its own archives, structures for displays, arrangements and recombinatory experiences that design interactive or analog journeys through sound artworks and soundscapes. Museums and galleries, following the impact of sound artworks in public spaces and media based festivals, become more receptive to aesthetic practices that deny the ‘direct visuality’ of the image and bypass, albeit partially, the need for material and tangible objects. Sound art and its related aesthetic practices re-design ways of seeing, imaging and recalling the visual in a context that is not sensory deprived but sensory alternative.

This is a call for studies into the histories, theories and practices of sound art production and sound art curating – where the creation is to be considered not solely that of a single material but of the entire sound art experience and performative elements.

We solicit and encourage submissions from practitioners and theoreticians on sound art and curating that explore and are linked to issues related to the following areas of interest:

  • Curating Interfaces for Sound + Archives
  • Methodologies of Sound Art Curating
  • Histories of Sound Art Curating
  • Theories of Sound Art Curating
  • Practices and Aesthetics of Sound Art
  • Sound in Performance
  • Sound in Relation to Visuals

Chairs: Lanfranco Aceti, Janis Jefferies, Morten Søndergaard and Julian Stallabrass

Conference Organizers: James Bulley, Jonathan Munro, Irene Noy and Ozden Sahin

The event is supported by LARM [Danish interdisciplinary radiophonic project; Note: website is mixed Danish and English language], Kasa Gallery, Goldsmiths, the Courtauld Institute of Art and Sabanci University.

With the participation and support of the Sonics research special interest group at Goldsmiths, chaired by Atau Tanaka and Julian Henriques.

The event is part of the Graduate Festival at Goldsmiths and the Graduate research projects at the Courtauld Institute of Art.

250 words abstract submissions. Please send your submissions to: info@ocradst.org

Deadline: March 31, 2014.

Good luck!

Richard Van Duyne solves mystery of Renoir’s red with surface-enhanced Raman spectroscopy (SERS) and Canadian scientists uncover forgeries

The only things these two items have in common is that they are concerned with visual art. and with solving mysteries The first item concerns research by Richard Van Duyne into the nature of the red paint used in one of Renoir’s paintings. A February 14, 2014 news item on Azonano describes some of the art conservation work that Van Duyne’s (nanoish) technology has made possible along with details about this most recent work,

Scientists are using powerful analytical and imaging tools to study artworks from all ages, delving deep below the surface to reveal the process and materials used by some of the world’s greatest artists.

Northwestern University chemist Richard P. Van Duyne, in collaboration with conservation scientists at the Art Institute of Chicago, has been using a scientific method he discovered nearly four decades ago to investigate masterpieces by Pierre-Auguste Renoir, Winslow Homer and Mary Cassatt.

Van Duyne recently identified the chemical components of paint, now partially faded, used by Renoir in his oil painting “Madame Léon Clapisson.” Van Duyne discovered the artist used carmine lake, a brilliant but light-sensitive red pigment, on this colorful canvas. The scientific investigation is the cornerstone of a new exhibition at the Art Institute of Chicago.

The Art Institute of Chicago’s exhibition is called, Renoir’s True Colors: Science Solves a Mystery. being held from Feb. 12, 2014 – April 27, 2014. Here is an image of the Renoir painting in question and an image featuring the equipment being used,

Renoir-Madame-Leon-Clapisson.Art Institute of Chicago.

Renoir-Madame-Leon-Clapisson.Art Institute of Chicago.

Renoir and surface-enhanced Raman spectroscopy (SERS). Art Institute of Chicago

Renoir and surface-enhanced Raman spectroscopy (SERS). Art Institute of Chicago

The Feb. 13, 2014 Northwestern University news release (also on EurekAlert) by Megan Fellman, which originated the news item, gives a brief description of Van Duyne’s technique and its impact on conservation at the Art Institute of Chicago (Note: A link has been removed),

To see what the naked eye cannot see, Van Duyne used surface-enhanced Raman spectroscopy (SERS) to uncover details of Renoir’s paint. SERS, discovered by Van Duyne in 1977, is widely recognized as the most sensitive form of spectroscopy capable of identifying molecules.

Van Duyne and his colleagues’ detective work informed the production of a new digital visualization of the painting’s original colors by the Art Institute’s conservation department. The re-colorized reproduction and the original painting (presented in a case that offers 360-degree views) can be viewed side by side at the exhibition “Renoir’s True Colors: Science Solves a Mystery” through April 27 [2014] at the Art Institute.

I first wrote about Van Duyne’s technique in my wiki, The NanoTech Mysteries. From the Scientists get artful page (Note: A footnote was removed),

Richard Van Duyne, then a chemist at Northwestern University, developed the technique in 1977. Van Duyne’s technology, based on Raman spectroscopy which has been around since the 1920s, is called surface-enhanced Raman spectroscopy’ or SERS “[and] uses laser light and nanoparticles of precious metals to interact with molecules to show the chemical make-up of a particular dye.”

This next item is about forgery detection. A March 5, 2014 news release on EurekAlert describes the latest developments,

Gallery owners, private collectors, conservators, museums and art dealers face many problems in protecting and evaluating their collections such as determining origin, authenticity and discovery of forgery, as well as conservation issues. Today these problems are more accurately addressed through the application of modern, non-destructive, “hi-tech” techniques.

Dmitry Gavrilov, a PhD student in the Department of Physics at the University of Windsor (Windsor, Canada), along with Dr. Roman Gr. Maev, the Department of Physics Professor at the University of Windsor (Windsor, Canada) and Professor Dr. Darryl Almond of the University of Bath (Bath, UK) have been busy applying modern techniques to this age-old field. Infrared imaging, thermography, spectroscopy, UV fluorescence analysis, and acoustic microscopy are among the innovative approaches they are using to conduct pre-restoration analysis of works of art. Some fascinating results from their applications are published today in the Canadian Journal of Physics.

Since the early 1900s, using infrared imaging in various wave bands, scientists have been able to see what parts of artworks have been retouched or altered and sometimes even reveal the artist’s original sketches beneath layers of the paint. Thermography is a relatively new approach in art analysis that allows for deep subsurface investigation to find defects and past reparations. To a conservator these new methods are key in saving priceless works from further damage.

Gavrilov explains, “We applied new approaches in processing thermographic data, materials spectra data, and also the technique referred to as craquelure pattern analysis. The latter is based on advanced morphological processing of images of surface cracks. These cracks, caused by a number of factors such as structure of canvas, paints and binders used, can uncover important clues on the origins of a painting.”

“Air-coupled acoustic imaging and acoustic microscopy are other innovative approaches which have been developed and introduced into art analysis by our team under supervision of Dr. Roman Gr. Maev. The technique has proven to be extremely sensitive to small layer detachments and allows for the detection of early stages of degradation. It is based on the same principles as medical and industrial ultrasound, namely, the sending a sound wave to the sample and receiving it back. ”

Spectroscopy is a technique that has been useful in the fight against art fraud. It can determine chemical composition of pigments and binders, which is essential information in the hands of an art specialist in revealing fakes. As described in the paper, “…according to the FBI, the value of art fraud, forgery and theft is up to $6 billion per year, which makes it the third most lucrative crime in the world after drug trafficking and the illegal weapons trade.”

One might wonder how these modern applications can be safe for delicate works of art when even flash photography is banned in art galleries. The authors discuss this and other safety concerns, describing both historic and modern-day implications of flash bulbs and exhibit illumination and scientific methods. As the paper concludes, the authors suggest that we can expect that the number of “hi-tech” techniques will only increase. In the future, art experts will likely have a variety of tools to help them solve many of the mysteries hiding beneath the layers.

Here’s a link to and a citation for the paper,

A review of imaging methods in analysis of works of art: Thermographic imaging method in art analysis by D. Gavrilov, R.Gr. Maev, and D.P. Almond. Canadian Journal of Physics, 10.1139/cjp-2013-0128

This paper is open access.