Monthly Archives: December 2014

Gelatin nanoparticles for drug delivery after a stroke

A Dec. 24, 2014 news item on phys.org describes a treatment that could mitigate the effects of a stroke by extending the window of opportunity for recuperative treatments (Note: Links have been removed),

Stroke victims could have more time to seek treatment that could reduce harmful effects on the brain, thanks to tiny blobs of gelatin that could deliver the medication to the brain noninvasively.

University of Illinois researchers and colleagues in South Korea, led by U. of I. electrical and computer engineering senior research scientist Hyungsoo Choi and professor Kyekyoon “Kevin” Kim, published details about the gelatin nanoparticles in the journal Drug Delivery and Translational Research.

A Dec. 23, 2014 University of Illinois at Urbana-Champaign news release, which originated the news item, explains how the gelatin nanoparticles are directed to the injury site (Note: links have been removed),

The researchers found that gelatin nanoparticles could be laced with medications for delivery to the brain, and that they could extend the treatment window for when a drug could be effective. Gelatin is biocompatible, biodegradable, and classified as “Generally Recognized as Safe” by the Food and Drug Administration. Once administered, the gelatin nanoparticles target damaged brain tissue thanks to an abundance of gelatin-munching enzymes produced in injured regions.

The tiny gelatin particles have a huge benefit: They can be administered nasally, a noninvasive and direct route to the brain. This allows the drug to bypass the blood-brain barrier, a biological fence that prevents the vast majority of drugs from entering the brain through the bloodstream.

“Overcoming the difficulty of delivering therapeutic agents to specific regions of the brain presents a major challenge to treatment of most neurological disorders,” said Choi.  “However, if drug substances can be transferred along the olfactory nerve cells, they can bypass the blood-brain barrier and enter the brain directly.”

To test gelatin nanoparticles as a drug-delivery system, the researchers used the drug osteopontin (OPN), which in rats can help to reduce inflammation and prevent brain cell death if administered immediately after a stroke.

“It is crucial to treat ischemic strokes within three hours to improve the chances of recovery. However, a significant number of stroke victims don’t get to the hospital in time for the treatment,” Kim said.

By lacing gelatin nanoparticles with OPN, the researchers found that they could extend the treatment window in rats, so much so that treating a rat with nanoparticles six hours after a stroke showed the same efficacy rate as giving them OPN alone after one hour – 70 percent recovery of dead volume in the brain.

The researchers hope the gelatin nanoparticles, administered through the nasal cavity, can help deliver other drugs to more effectively treat a variety of brain injuries and neurological diseases.

“Gelatin nanoparticles are a delivery vehicle that could be used to deliver many therapeutics to the brain,” Choi said. “They will be most effective in delivering drugs that cannot cross the blood-brain barrier. In addition, they can be used for drugs of high toxicity or a short half-life.“

I expect the next steps will include some human clinical trials. In the meantime for those who are interested, here’s a link to and a citation for the paper,

Gelatin nanoparticles enhance the neuroprotective effects of intranasally administered osteopontin in rat ischemic stroke model by Elizabeth Joachim, Il-Doo Kim, Yinchuan Jin, Kyekyoon (Kevin) Kim, Ja-Kyeong Lee, and Hyungsoo Choi. Drug Delivery and Translational Research Volume 4, Issue 5-6 , pp 395-399 DOI 10.1007/s13346-014-0208-9 Published online Nov. 8, 2014

This paper is behind a paywall.

CONSTELLATIONS: a play about theoretical physics, romance, and multiverses

CONSTELLATIONS by Nicholas Payne was premiered to great acclaim in the UK in 2013 according to the producers of the play’s 2015 US premiere (previews starting Dec. 16, 2014 with the regular run starting Jan. 13, 2015) on Broadway in New York, New York. David Bruggeman in a Dec. 21, 2014 post on his Pasco Phronesis blog describes the production in more detail including some of the financial aspects. He also mentions a very special, Jan. 15, 2014 performance (Note: A link has been removed),

… I first heard from the World Science Festival about the January 15 premiere of Constellations (which includes a post-performance discussion with Brian Greene and playwright Nick Payne), …

Here’s a video made available by the producers. At this stage I imagine it could be described as a preview of the preview,

Here’s a description of the play from the World Science Festival’s CONSTELLATIONS webpage,

The story of Constellations is “boy meets girl” with a scientific twist. A simple encounter between a man (Jake Gyllenhaal) and a woman (Ruth Wilson) leads to a romantic journey that eventually encompasses one of the most profound theories of physics: the idea that we live in a bundle of universes where all possibilities exist. Greene [Brian Greene {physicist and World Science Festival co-founder}] and Payne [playwright] will follow the show with an on-stage discussion about what we know about the multiverse—and what remains a mystery.

For anyone unfamiliar with the ‘multiverse’ concept (from its Wikipedia entry),

The multiverse (or meta-universe) is the hypothetical set of infinite or finite possible universes (including the universe we consistently experience) that together comprise everything that exists: the entirety of space, time, matter, and energy as well as the physical laws and constants that describe them. The various universes within the multiverse are sometimes called parallel universes or “alternate universes”

The structure of the multiverse, the nature of each universe within it and the relationships among the various constituent universes, depend on the specific multiverse hypothesis considered. Multiple universes have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology, and fiction, …

Amusingly, the play was featured in two places I check for news. David Bruggeman’s Pasco Phronesis blog and Elaine Lui’s Lainey Gossip blog. From Lui’s Dec. 22, 2014 posting (Jakey & Ruth?),

The Gossip Genie appears to be ignoring my requests for a Jake Gyllenhaal-Rachel McAdams love situation. Because he’s been spending a lot of time with Ruth Wilson. They’re working on a new play together, Constellations. …

You can get tickets and more information about the play at CONSTELLATIONS on Broadway.

Egypt steps it up nanowise with a Center for Nanotechnology

Dec. 16, 2014 Egypt’s Prime Minister Ibrahim Mahlab along with other ministers and Dr. Ahmed Zewail, Chairman of the board of Zewail City of Science and Technology (this seems to be a campus with a university and a number of research institutes), announced Egypt’s Center for Nanotechnology (from a Zewail City of Science and Technology Dec. 16, 2014 press release),

The Center, funded by the National Bank of Egypt, cost over $ 100 Million and is, till this moment, the biggest research Center Egypt has seen. This center is hailed as a turning point in the development of scientific research in Egypt as it will allow researchers to develop nanoparticles and nanostructured applications that will improve, even revolutionize, many technology and industry sectors including: information technology, energy, environmental science, medicine, and food safety among many others.

During the visit, Dr. Zewail gave Mahlab and the Cabinet members a brief introduction about the City’s constituents, achievements, and how it is going to improve Egypt’s economic development.

Impressed by the magnitude of Zewail City, Mahalab expressed his excitement about the effect this project is going to have on the future of scientific research in Egypt.

Following the opening ceremony, they all moved to the construction site of the soon-to-be Zewail City new premises, in Hadayk October, to evaluate the progress of the construction process. This construction work is the result of the presidential decree issued on April 9, 2014 to allocate 200 acres for Zewail City in 6th of October City. The construction work is expected to be done by the end of 2015, and will approximately cost $ 1.5 billion.

The end of 2015 is a very ambitious goal for completion of this center but these projects can sometimes inspire people to extraordinary efforts and there seems to be quite a bit of excitement about this one if the video is any indication. From a Dec. 22, 2014 posting by Makula Dunbar, which features a CCTV Africa clip, on AFKInsider,

I was interested to learn from the clip that Egypt’s new constitution mandates at least 1% of the GDP (gross domestic product) must be earmarked for scientific research.

As for Ahmed Zewail, in addition to being Chairman of the board of Zewail City of Science and Technology, he is also a professor at the California Institute of Technology (CalTech). From his CalTech biography page (Note: A link has been removed),

Ahmed Zewail is the Linus Pauling Chair professor of chemistry and professor of physics at the California Institute of Technology (Caltech). For ten years, he served as the Director of the National Science Foundation’s Laboratory for Molecular Sciences (LMS), and is currently the Director of the Moore Foundation’s Center for Physical Biology at Caltech.

On April 27, 2009, President Barack Obama appointed him to the President’s Council of Advisors on Science and Technology, and in November of the same year, he was named the First United States Science Envoy to the Middle East.

The CalTech bio page is a bit modest, Zewail’s Wikipedia entry gives a better sense of this researcher’s eminence (Note: Links have been removed),

Ahmed Hassan Zewail (Arabic: أحمد حسن زويل‎, IPA: [ˈæħmæd ˈħæsæn zeˈweːl]; born February 26, 1946) is an Egyptian- American scientist, known as the “father of femtochemistry”, he won the 1999 Nobel Prize in Chemistry for his work on femtochemistry and became the first Egyptian scientist to win a Nobel Prize in a scientific field. …

If you watched the video, you may have heard a reference to ‘other universities’. The comment comes into better focus after reading about the dispute between Nile University and Zewail City (from the Wikipedia entry),

Nile University has been fighting with Zewail City of Science and Technology, established by Nobel laureate Ahmed Zewail, for more than two years over a piece of land that both universities claim to be their own.

A March 22, 2014 ruling turned down challenges to a verdict issued in April 2013 submitted by Zewail City. The court also ruled in favour of the return of Nile University students to the contested buildings.

In a statement released by Nile University’s Student Union before Saturday’s decision, the students stated that the verdict would test the current government’s respect to the judiciary and its rulings.

Zewail City, meanwhile, stressed in a statement released on Saturday that the recent verdict rules on an urgent level; the substantive level of the case is yet to be ruled on. Sherif Fouad, Zewail City’s spokesman and media adviser, said the verdict “adds nothing new.” It is impossible for Zewail City to implement Saturday’s verdict and take Nile University students into the buildings currently occupied by Zewail City students, he said.

If I understand things rightly, the government has pushed forward with this Zewail City initiative (Center for Nanotechnology) while the ‘City’ is still in a dispute over students and buildings with Nile University. This should make for some interesting dynamics (tension) for students, instructors, and administrators of both the institutions and may not result in those dearly hoped for scientific advances that the government is promoting. Hopefully, the institutions will resolve their conflict in the interest of promoting good research.

Treating municipal wastewater and dirty industry byproducts with nanocellulose-based filters

Researchers at Sweden’s Luleå University of Technology have created nanocellulose-based filters in collaboration with researchers at the Imperial College of London (ICL) good enough for use as filters according to a Dec. 23, 2014 news item on Nanowerk,

Prototypes of nano-cellulose based filters with high purification capacity towards environmentally hazardous contaminants from industrial effluents e.g. process industries, have been developed by researchers at Luleå University of Technology. The research, conducted in collaboration with Imperial College in the UK has reached a breakthrough with the prototypes and they will now be tested on a few industries in Europe.

“The bio-based filter of nano-cellulose is to be used for the first time in real-life situations and tested within a process industry and in municipal wastewater treatment in Spain. Other industries have also shown interest in this technology and representatives of the mining industry have contacted me and I have even received requests from a large retail chain in the UK,” says Aji Mathew Associate Professor, Division of Materials Science at Luleå University.

A Dec. 22, 2014 Luleå University of Technology press release, which originated the news item, further describes the research,

Researchers have combined a cheap residue from the cellulose industry, with functional nano-cellulose to prepare adsorbent sheets with high filtration capacity. The sheets have since been constructed to different prototypes, called cartridges, to be tested. They have high capacity and can filter out heavy metal ions from industrial waters, dyes residues from the printing industry and nitrates from municipal water. Next year, larger sheets with a layer of nano-cellulose can be produced and formed into cartridges, with higher capacity.

– Each such membrane can be tailored to have different removal capability depending on the kind of pollutant, viz., copper, iron, silver, dyes, nitrates and the like, she says.

Behind the research, which is funded mainly by the EU, is a consortium of research institutes, universities, small businesses and process industries. It is coordinated by Luleå University led by Aji Mathew. She thinks that the next step is to seek more money from the EU to scale up this technology to industrial level.

– Alfa Laval is very interested in this and in the beginning of 2015, I go in with a second application to the EU framework program Horizon 2020 with goals for full-scale demonstrations of this technology, she says.

Two of Aji Mathews graduate student Peng Liu and Zoheb Karim is also deeply involved in research on nano-filters.

– I focus on how these membranes can filter out heavy metals by measuring different materials such as nanocrystals and nano-fibers to determine their capacity to absorb and my colleague focuses on how to produce membranes, says Peng Liu PhD student in the Department of Materials Science and Engineering at Luleå University of Technology.

I have been following the nanocellulose work at Luleå University of Technology for a few years now. The first piece was a Feb. 15, 2012 post titled, The Swedes, sludge, and nanocellulose fibres, and the next was a Sept. 19, 2013 post titled, Nanocellulose and forest residues at Luleå University of Technology (Sweden). It’s nice to mark the progress over time although I am curious as to the source for the nanocellulose, trees, carrots, bananas?

‘Biomimicry’ patents

The US Patent and Trade Office (USPTO) has issued a new guidance document concerning ‘biomimicry’ patents according to David Bruggeman’s Dec. 20, 2014 post on his Pasco Phronesis blog (Note: Links have been removed),

The United States Patent and Trademark Office (USPTO) has released another guidance memo for patents derived ‘from nature’ (H/T ScienceInsider).  The USPTO released its first memo in March [2014], and between negative public comments and additional court action, releasing new guidance makes sense to me.

The USPTO is requesting comments on the guidance by March 16, 2014 and will be holding a holding a public forum for comments on Jan. 21, 2015. Here’s more detail about the comments from the USPTO 2014 Interim Guidance on Subject Matter Eligibility webpage,

The USPTO has prepared 2014 Interim Guidance on Patent Subject Matter Eligibility (Interim Eligibility Guidance) for USPTO personnel to use when determining subject matter eligibility under 35 U.S.C. 101 in view of recent decisions by the U.S. Supreme Court, including Alice Corp., Myriad, and Mayo.  The Interim Eligibility Guidance supplements the June 25, 2014 Preliminary Examination Instructions issued in view of Alice Corp. and supersedes the March 4, 2014 Procedure for Subject Matter Eligibility Analysis of Claims Reciting or Involving Laws of Nature/Natural Principles, Natural Phenomena, and/or Natural Products issued in view of Mayo and Myriad.  It is expected that the guidance will be updated in view of developments in the case law and in response to public feedback.

Any member of the public may submit written comments on the Interim Eligibility Guidance and claim example sets by electronic mail message over the Internet addressed to 2014_interim_guidance@uspto.gov.  Electronic comments submitted in plain text are preferred, but also may be submitted in ADOBE® portable document format or MICROSOFT WORD® format.  The comments will be available for public inspection here at this Web page.  Because comments will be available for public inspection, information that is not desired to be made public, such as an address or a phone number, should not be included in the comments.  Comments will be accepted until March 16, 2015.

And there is also this about the public forum (from the Interim Guidance page),

A public forum will be hosted at the Alexandria campus of the USPTO on Jan. 21, 2015, to receive public feedback from any interested member of the public.  The Eligibility Forum will be an opportunity for the Office to provide an overview of the Interim Eligibility Guidance and for participants to present their interpretation of the impact of Supreme Court precedent on the complex legal and technical issues involved in subject matter eligibility analysis during examination by providing oral feedback on the Interim Eligibility Guidance and claim example sets.  Individuals will be provided an opportunity to make a presentation, to the extent that time permits.

Date and Location:  The Eligibility Forum will be held on Jan. 21, 2015, from 1pm – 5pm EST, in the Madison Auditorium North (Concourse Level), Madison Building, 600 Dulany Street, Alexandria, VA 22314. The meeting will also be accessible via WebEx.

Requests for Attendance at the Eligibility Forum:  Requests for attendance to the Eligibility Forum should be submitted by electronic mail through the Internet to 2014_interim_guidance@uspto.gov by JAN. 9, 2015.  Requests for attendance must include the attendee’s name, affiliation, title, mailing address, and telephone number.  An Internet e-mail address, if available, should also be provided.

If I understand David’s description of this guidance rightly, the use of something like curcumin (a constituent of turmeric) to heal wounds cannot be patented unless substantive changes have been made to the curcumin. In short, Laws Of Nature/Natural Principles, Natural Phenomena, And/Or Natural Products And/Or Abstract Ideas cannot be patented through the USPTO.

The science behind a firefly’s glow

A Dec. 17, 2014 news item on Nanotechnology Now describes research into the phenomenon of bioluminescence and fireflies,

 Fireflies used rapid light flashes to communicate. This “bioluminescence” is an intriguing phenomenon that has many potential applications, from drug testing and monitoring water contamination, and even lighting up streets using glow-in-dark trees and plants. Fireflies emit light when a compound called luciferin breaks down. We know that this reaction needs oxygen, but what we don’t know is how fireflies actually supply oxygen to their light-emitting cells. Using state-of-the-art imaging techniques, scientists from Switzerland and Taiwan have determined how fireflies control oxygen distribution to light up their cells. The work is published in Physical Review Letters.

A Dec. 17, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne) news release on EurekAlert provides more description of the work,

The firefly’s light-producing organ is called the “lantern”, and it is located in the insect’s abdomen. It looks like a series of tubes progressing into smaller ones and so one, like a tree’s branches growing into twigs. The function of these tubes, called, is to supply oxygen to the cells of the lantern, which contain luciferase and can produce light. However, the complexity of the firefly’s lantern has made it difficult to study this mechanism in depth, and reproduce it for technological applications.

Giorgio Margaritondo at EPFL, Yeukuang Hwu at the Academia Sinica and their colleagues at the National Tsing Hua University in Taiwan have successfully used two sophisticated imaging techniques to overcome the complexity of the firefly lantern and map out how oxygen is supplied to light-emitting cells. The techniques are called synchrotron phase contrast microtomography and transmission x-ray microscopy. They can scan down to the level of a single cell, even allowing researchers to look inside it.

By applying these techniques on live fireflies, the scientists were able to see the entire structure of the lantern for the first time, and to also make quantitative evaluations of oxygen distribution.

The imaging showed that the firefly diverts oxygen from other cellular functions and puts it into the reaction that breaks up luciferin. Specifically, the researchers found that oxygen consumption in the cell decreased, slowing down energy production. At the same time, oxygen supply switched to light-emission.

The study is the first to ever show the firefly’s lantern in such detail, while also providing clear evidence that it is optimized for light emission thanks to the state-of-the-art techniques used by the scientists. But Margaritondo points out another innovation: “The techniques we used have an advantage over, say, conventional x-ray techniques, which cannot easily distinguish between soft tissues. By using an approach based on changes in light intensity (phase-contrast) as opposed to light absorption (x-rays), we were able to achieve high-resolution imaging of the delicate firefly lantern.”

Here’s an image illustrating the work,

Tomographic Reconstruction of Part of the Firefly Lantern;  This detailed microimage shows larger channels branching into smaller ones, supplying oxygen for the firefly's light emission. The smallest channels are ten thousand times smaller than a millimeter and therefore invisible to other experimental probes: this has prevented scientists so far to unlock the mystery of firefly light flashes. Credit: Giorgio Margaritondo/EPFL

Tomographic Reconstruction of Part of the Firefly Lantern; This detailed microimage shows larger channels branching into smaller ones, supplying oxygen for the firefly’s light emission. The smallest channels are ten thousand times smaller than a millimeter and therefore invisible to other experimental probes: this has prevented scientists so far to unlock the mystery of firefly light flashes. Credit: Giorgio Margaritondo/EPFL

Here’s a link to and a citation for the paper,

Firefly Light Flashing: Oxygen Supply Mechanism by Yueh-Lin Tsai, Chia-Wei Li, Tzay-Ming Hong, Jen-Zon Ho, En-Cheng Yang, Wen-Yen Wu, G. Margaritondo, Su-Ting Hsu, Edwin B. L. Ong, and Y. Hwu. Phys. Rev. Lett. 113, 258103 – Published 17 December 2014 DOI:  http://dx.doi.org/10.1103/PhysRevLett.113.258103

This paper is behind a paywall.

Disrupting the arts scene around the world and in Vancouver (Canada)

I have two news bits of news for this post. First, the theme for the 2015 International Symposium on Electronic Arts (ISEA) to be held in Vancouver, Canada from Aug. 14 – 18, 2015 is Disruption and the deadline for submitting proposals for research papers and art installations is Dec. 20, 2014 (ETA Dec. 22, 2014: The deadline for long art or research papers, short art or research papers, art or research extended abstracts with demonstration or poster presentation, panels, workshops, tutorials and institutional presentations has been extended to Jan. 12, 2014; the deadline for artwork submissions remains Dec. 20, 2014). Here’s more about the symposium from the About page,

ISEA is one of the world’s most prominent international arts and technology events, bringing  together scholarly, artistic, and scientific domains in an interdisciplinary discussion and showcase of creative productions applying new technologies in art, interactivity, and electronic and digital media. The event annually brings together artists, designers, academics, technologists, scientists, and general audience in the thousands. The symposium consists of a peer reviewed conference, a series of exhibitions, and various partner events—from large scale interactive artwork in public space to cutting edge electronic music performance.

In the last four years ISEA has been hosted in Istanbul (2011), Albuquerque, New Mexico (2012), and Sydney, Australia (2013), and Dubai (2014). ISEA2015 in Vancouver marks its return to Canada, 20 years since the groundbreaking first Canadian ISEA1995 in Montréal. The Symposium will be held at the Woodward’s campus of Simon Fraser University in downtown Vancouver with exhibitions and events taking place at Emily Carr University of Art + Design and many other sites and venues throughout the city.

The series of ISEA symposia is coordinated by ISEA International. Founded in the Netherlands in 1990, ISEA International (formerly Inter-Society for the Electronic Arts) is an international non-profit organization fostering interdisciplinary academic discourse and exchange among culturally diverse organizations and individuals working with art, science and technology. ISEA International Headquarters is supported by the University of Brighton (UK).

Here’s more from the Theme page,

ISEA2015’s theme of DISRUPTION invites a conversation about the aesthetics of change, renewal, and game-changing paradigms. We look to raw bursts of energy, reconciliation, error, and the destructive and creative forces of the new. Disruption contains both blue sky and black smoke. When we speak of radical emergence we must also address things left behind. Disruption is both incremental and monumental.

In practices ranging from hacking and detournement to inversions of place, time, and intention, creative work across disciplines constantly finds ways to rethink or reconsider form, function, context, body, network, and culture. Artists push, shape, break; designers reinvent and overturn; scientists challenge, disprove and re-state; technologists hack and subvert to rebuild.

Disruption and rupture are fundamental to digital aesthetics. Instantiations of the digital realm continue to proliferate in contemporary culture, allowing us to observe ever-broader consequences of these effects and the aesthetic, functional, social and political possibilities that arise from them.

Within this theme, we want to investigate trends in digital and internet aesthetics and revive exchange across disciplines. We hope to broaden the spheres in which disruptive aesthetics can be explored, crossing into the worlds of science, technology, design, visual art, contemporary and media art, innovation, performance, and sound.

I encourage you to read the whole Theme page if you’re interested in making a proposal as the organizers have outlined many approaches to the main theme. Good luck to everyone making a submission (and that includes me). I will be submitting a proposal  with my co-author, Raewyn Turner, an artist from New Zealand, for Steep (I): a digital poetry of gold nanoparticles. (I’ll be writing more about our Steep project soon (hopefully next week Dec. 22 – 25, 2014.)

For the second bit of news, Emily Carr University of Art + Design received grants for two Canada Research Chairs in Oct. 2014. Here’s more from the Recipients List (Note: I have made some changes to the formatting),

Frid-Jimenez, Amber     Emily Carr University of Art + Design     Canada Research Chair in Art and Design Technology     SSHRC [funding agency: Social Sciences and Humanities Research Council]     [Tier] 2     New [position]
Hertz, Garnet     Emily Carr University of Art + Design     Canada Research Chair in Design and Media Arts     SSHRC     2     New

A Nov. 22, 2014 blog post on Emily Carr University’s The Big Idea blog provides more detail about the appointments,

Emily Carr University of Art + Design is honoured to announce the appointment of Associate Professors Amber Frid-Jimenez and Dr. Garnet Hertz to Canada Research Chairs recently published by the Government of Canada. This historic milestone marks the first Canada Research Chair appointments for Emily Carr University of Art + Design recognizing the institution’s capacity, faculty and contributions-to-date in the fields of art, media and design research. …

… “We are honoured that our University and the work of Dr. Garnet Hertz and Amber Frid-Jimenez are being recognized by the Government of Canada,” said David Bogen, Vice President Academic + Provost, Emily Carr University of Art + Design. “The appointment of our first Canada Research Chairs is significant at every level – for our institution’s culture of research, for our academic programs, and for our students who will work directly with some of today’s greatest artists, designers, and scholars in their prospective fields.” … Associate Professor Amber Frid-Jimenez is an awarding-winning interaction and print designer who has taught design studios and seminars at the Rhode Island School of Design, the Massachusetts Institute of Technology Visual Arts Program, the National Arts Academy (KHiB) in Bergen, Norway, and most recently at Emily Carr University of Art + Design. She holds a Masters in Media Arts and Sciences from the MIT Media Lab where she studied with John Maeda. Associate Professor Dr. Garnet Hertz’s work explores themes of DIY culture and interdisciplinary art/design practices. His work has been shown at several notable international venues including SIGGRAPH, Arts Electronica, and DEAF, and he was awarded the 2008 Oscar Signorini Award in robotic art. He is the founder and director of Dorkbot SoCal, a monthly Los Angeles-based lecture series, has taught at the Art Center College of Design, the University of California, Irvine, and is now Associate Professor at Emily Carr University of Art + Design.

You can find out more about Amber Frid-Jiminez here and about Garnet Hertz here .

Acoustics and carbon nanotubes

Mikhail Koslov from the University of Texas at Dallas has written a Dec. 18, 2014 Nanowerk Spotlight article about his research into carbon nanotubes and their acoustic properties,

Carbon nanotube assemblies enabled design of a hybrid thermo-electromagnetic sound transducer with unique sound generation features that are not available from conventional diaphragm and thermo-acoustic speakers.

EM image of multi-walled carbon nanotube sheet used for thermo-electromagnetic sound transducer. (Image: Mikhail Kozlov, University of Texas at Dallas)

EM image of multi-walled carbon nanotube sheet used for thermo-electromagnetic sound transducer. (Image: Mikhail Kozlov, University of Texas at Dallas)

Kozlov goes on to explain his work in more detail,

… a hybrid thermo-electromagnetic sound transducer (TEMST) [was] fabricated using highly porous multi-walled carbon nanotube sheet that was placed in the proximity of a permanent magnet. Upon electrical AC excitation, thermal response of the material is combined with diaphragm-like sheet oscillations induced by the electromagnetic action of the Lorentz force.

Unlike conventional diaphragm loudspeaker, acoustic spectrum of the TEMST device consists of a superposition of TA and EM responses that can be altered by applied bias voltage. Variation of bias voltage changes spectral intensity and spatial distribution of generated sound.

In particular, propagation direction of the sound can be reversed by switching bias polarity that somewhat resembles voltage-controlled acoustic reflection. Such uncommon behavior was explained by interference of the two contributions being beneficial for diverse sound management applications.

It was found also that amplitude of first TEMST harmonic changes a lot with applied magnetic field, while the second one remains almost field independent. This unusual feature is convenient for magnetic sensing similar to that enabled by Lorentz force magnetometers. The magnetic field detection in the TEMST device is facilitated by the audio sensing system.

Here’s a link to and a citation for the paper,

Thermo-electromagnetic sound transducer based on carbon nanotube sheet by Mikhail Kozlov and Jiyoung Oh. J. Appl. Phys. 116, 094301 (2014); http://dx.doi.org/10.1063/1.4894143 Published online Sept. 2, 2014

This paper is behind a paywall.

Canada Aviation and Space Museum’s Legacy Project (crowdfunding)

Dec. 19, 2014 is the last day for contributing to the Canada Aviation and Space Museum’s crowdfunding campaign for their Legacy Project. Here’s more from the Canada Aviation and Space Museum Foundation’s Legacy Project webpage,

What happens when people divided by generations unite to share our country’s history? The Legacy Project is a documentary being created by Canadian film students and the Canada Aviation and Space Museum. Through first person accounts from Canadian Veterans — airmen and women who served in the RCAF, RAF, WAAF, and the Polish Air Force — as well as from former European civilians, the documentary will showcase the people and stories of the Second World War through the lens of aviation. What began as an oral history project has transformed into a documentary that also includes the personal impact these stories have had on the students who have been involved in the production of the film. Formatted in five separate segments, the documentary can be viewed as a whole or in parts. These segments, along with classroom resources, will be available for download by schools across Canada.

The Museum believes there is a need to better connect today’s youth, who are poised to build the future, with their history and heritage. It is important to capture and understand the legacy that the last living members of the generation that experienced, served in, and lived though the Second World War forged and are leaving behind. The Museum takes the responsibility “to never forget” seriously, and this project endeavours to capture and share this legacy with Canadian students from coast to coast to coast.

The Legacy Project has become a labour of love for the Canada Aviation and Space Museum and the film students who have so far recorded over 35 interviews with Veterans and civilians since filming began two years ago. Funding is required to complete editing, transcription, translation, and dubbing, and to secure the necessary copyright for music and images.

As a Crown corporation, the Museum’s operational costs are covered by taxpayer dollars, but the funding for special projects such as this documentary comes from donors like you. The Museum is passionate about this project and would be grateful for any community support to finalize and distribute the documentary for 2016.

A campaign video has been produced,

You can find the Legacy Project on indiegogo here.

The notice I received form the museum states this about the funds raised so far,

The Museum’s crowdfunding campaign for The Legacy Project, a documentary being created by students, for students, ends tomorrow. So far, over $18,000 has been gratefully received from across Canada, but your help is still needed to reach the fundraising goal of $35,000.

I notice the inidiegogo campaign has a different total and one reason I can think for the disparity is the museum is receiving some of the donations directly. In any event, I wish them good luck and hope they reach their total.

Quantum dots cycling through the food chain

Rice University (Texas, US) researchers have published a study which follows quantum dot nanoparticles as they enter the water supply and are taken up by plant roots and leaves and eaten by caterpillars. From a Dec. 16, 2014 news item on ScienceDaily,

In one of the most comprehensive laboratory studies of its kind, Rice University scientists traced the uptake and accumulation of quantum dot nanoparticles from water to plant roots, plant leaves and leaf-eating caterpillars.

The study, one of the first to examine how nanoparticles move through human-relevant food chains, found that nanoparticle accumulation in both plants and animals varied significantly depending upon the type of surface coating applied to the particles. The research is available online in the American Chemical Society’s journal Environmental Science & Technology.

A Dec. 16, 2014 Rice University news release (also on EurekAlert), which originated the news item, provides insight into some of the issues being addressed with this research (Note: Links have been removed),

“With industrial use of nanoparticles on the rise, there are increasing questions about how they move through the environment and whether they may accumulate in high levels in plants and animals that people eat,” said study co-author Janet Braam, professor and chair of the Department of BioSciences at Rice.

Braam and colleagues studied the uptake of fluorescent quantum dots by Arabidopsis thaliana, an oft-studied plant species that is a relative of mustard, broccoli and kale. In particular, the team looked at how various surface coatings affected how quantum dots moved from roots to leaves as well as how the particles accumulated in leaves. The team also studied how quantum dots behaved when caterpillars called cabbage loopers (Trichoplusia ni) fed upon plant leaves containing quantum dots.

“The impact of nanoparticle uptake on plants themselves and on the herbivores that feed upon them is an open question,” said study first author Yeonjong Koo, a postdoctoral research associate in Braam’s lab. “Very little work has been done in this area, especially in terrestrial plants, which are the cornerstone of human food webs.”

Some toxins, like mercury and DDT, tend to accumulate in higher concentrations as they move up the food chain from plants to animals. It is unknown whether nanoparticles may also be subject to this process, known as biomagnification.

While there are hundreds of types of nanoparticles in use, Koo chose to study quantum dots, submicroscopic bits of semiconductors that glow brightly under ultraviolet light. The fluorescent particles — which contained cadmium, selenium, zinc and sulfur — could easily be measured and imaged in the tests. In addition, the team treated the surface of the quantum dots with three different polymer coatings — one positively charged, one negatively charged and one neutral.

“In industrial applications, nanoparticles are often coated with a polymer to increase solubility, improve stability, enhance properties and for other reasons,” said study co-author Pedro Alvarez, professor and chair of Rice’s Department of Civil and Environmental Engineering. “We expect surface coatings to play a significant role in whether and how nanomaterials may accumulate in food webs.”

Previous lab studies had suggested that the neutral coatings might cause the nanoparticles to aggregate and form clumps that were so large that they would not readily move from a plant’s roots to its leaves. The experiments bore this out. Of the three particle types, only those with charged coatings moved readily through the plants, and only the negatively charged particles avoided clumping altogether. The study also found that the type of coating impacted the plants’ ability to biodegrade, or break down, the quantum dots.

Koo and colleagues found caterpillars that fed on plants containing quantum dots gained less weight and grew more slowly than caterpillars that fed on untainted leaves. By examining the caterpillar’s excrement, the scientists were also able to estimate whether cadmium, selenium and intact quantum dots might be accumulating in the animals. Again, the coating played an important role.

“Our tests were not specifically designed to measure bioaccumulation in caterpillars, but the data we collected suggest that particles with positively charged coatings may accumulate in cells and pose a risk of bioaccumulation,” Koo said. “Based on our findings, more tests should be conducted to determine the extent of this risk under a broader set of ecological conditions.”

The researchers have a couple of images illustrating their work,

The buildup of fluorescent quantum dots in the leaves of Arabidopsis plants is apparent in this photograph of the plants under ultraviolet light. Credit: Y. Koo/Rice University

The buildup of fluorescent quantum dots in the leaves of Arabidopsis plants is apparent in this photograph of the plants under ultraviolet light. Credit: Y. Koo/Rice University

And, there’s a caterpillar,

Cabbage looper

Cabbage looper

Here’s a link to and a citation for the paper,

Fluorescence Reports Intact Quantum Dot Uptake into Roots and Translocation to Leaves of Arabidopsis thaliana and Subsequent Ingestion by Insect Herbivores by Yeonjong Koo, Jing Wang, Qingbo Zhang, Huiguang Zhu, E. Wassim Chehab, Vicki L. Colvin, Pedro J. J. Alvarez, and Janet Braam. Environ. Sci. Technol., Just Accepted Manuscript DOI: 10.1021/es5050562 Publication Date (Web): December 1, 2014

Copyright © 2014 American Chemical Society

This paper is open access but you must be registered on the website.

One final thought about the research, it did take place in a laboratory environment and there doesn’t seem to have been any soil involved so the uptake can not be directly compared (as I understand matters) to the uptake characteristics where plant cultivation requires soil. This seems to have been a study involving hydroponic framing practices.