Monthly Archives: March 2016

Vote for* winner for Generation Nano: Small Science, Superheroes

The US National Science Foundation’s (NSF) contest “Generation Nano: Small Science, Superheroes” for high school students has whittled down the entries to three finalists and bringing them to Washington, DC where the winner will announced at the 2016 USA Science & Engineering Festival (April 16 – 17, 2016) according to a March 30, 2016 NSF news release,

The National Science Foundation (NSF) today announced the names of three finalists in its Generation Nano: Small Science, Superheroes competition, sponsored by NSF and its National Nanotechnology Initiative (NNI) and supported by many, including superhero legend Stan Lee.

High school students Madeleine Chang from Bergen County Academies in New Jersey, Vuong Mai from Martha Ellen Stilwell School of the Arts in Georgia and Eric Liu from Thomas Jefferson High School for Science and Technology in Virginia will come to Washington, D.C., to display their comics and compete for prizes at the 2016 USA Science & Engineering Festival in mid-April.

The competition drew submissions from all over the country. All responded to the call to think big — or in this case small — and use nanotechnology to empower their own original superheroes. Chang’s hero “Radio Blitz” disposes of local waste. Mai’s protector “Nine” dons a Nanosuit for strength to save a kidnapping victim. And Liu’s “Nanoman” fights the malignant crab-monster, “Cancer.”

“These three finalists tell a great story — all while they exemplify the combination of a sound technical basis for use of nanotechnology and artistic presentation,” said Lisa Friedersdorf, deputy director of the National Nanotechnology Coordination Office. “I think these comics will inspire other students to learn more about what is possible with nanotechnology.”

When it comes to applications for nanotechnology, “The possibilities abound,” said Mihail C. Roco, NSF senior advisor for science and engineering and key architect of NNI.

“Since these high school students were born, more discoveries have come from nanotechnology than any other field of science, with its discoveries penetrating all aspects of society — new industries, medicine, agriculture and the management of natural resources,” Roco said. “It is so exciting that these kids are getting in on the ground floor of progress. The competition inspires young people to dream high and create solutions in a way that may change their lives and those around them. We need this new talent; the future of emerging technologies, including nanotechnology depends on it.”

Those of us who cannot attend the festival, can vote online,

And remember to vote for your favorite from April 7 to 15.

*ETA March 31, 2016 at 1115 hours PDT: The vote link from the news release does not seem to be operational presumably since we the voting period doesn’t start until April 7, 2016.

Congratulations to the three finalists!

*’or’ switched to ‘for’  in the headline at 1110 hours PDT on March 31, 2016.

Nature-inspired nanotubes from the Lawrence Berkeley National* Laboratory

A March 29, 2016 news item on Nanotechnology Now  announces a new technique for nature-inspired self-assembling polymer nanotubes,

When it comes to the various nanowidgets scientists are developing, nanotubes are especially intriguing. That’s because hollow tubes that have diameters of only a few billionths of a meter have the potential to be incredibly useful, from delivering cancer-fighting drugs inside cells to desalinating seawater.

But building nanostructures is difficult. And creating a large quantity of nanostructures with the same trait, such as millions of nanotubes with identical diameters, is even more difficult. This kind of precision manufacturing is needed to create the nanotechnologies of tomorrow.

Help could be on the way. As reported online the week of March 28 [2016] in the journal Proceedings of the National Academy of Sciences [PNAS], researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a family of nature-inspired polymers that, when placed in water, spontaneously assemble into hollow crystalline nanotubes. What’s more, the nanotubes can be tuned to all have the same diameter of between five and ten nanometers, depending on the length of the polymer chain.

A March 28, 2016 Berkeley Lab news release (also on EurekAlert), which originated the news item, provides more detail,

The polymers have two chemically distinct blocks that are the same size and shape. The scientists learned these blocks act like molecular tiles that form rings, which stack together to form nanotubes up to 100 nanometers long, all with the same diameter.

“This points to a new way we can use synthetic polymers to create complex nanostructures in a very precise way,” says Ron Zuckermann, who directs the Biological Nanostructures Facility in Berkeley Lab’s Molecular Foundry, where much of this research was conducted.

Several other Berkeley Lab scientists contributed to this research, including Nitash Balsara of the Materials Sciences Division and Ken Downing of the Molecular Biophysics and Integrated Bioimaging Division.

“Creating uniform structures in high yield is a goal in nanotechnology,” adds Zuckermann. “For example, if you can control the diameter of nanotubes, and the chemical groups exposed in their interior, then you can control what goes through—which could lead to new filtration and desalination technologies, to name a few examples.”

The research is the latest in the effort to build nanostructures that approach the complexity and function of nature’s proteins, but are made of durable materials. In this work, the Berkeley Lab scientists studied a polymer that is a member of the peptoid family. Peptoids are rugged synthetic polymers that mimic peptides, which nature uses to form proteins. They can be tuned at the atomic scale to carry out specific functions.

For the past several years, the scientists have studied a particular type of peptoid, called a diblock copolypeptoid, because it binds with lithium ions and could be used as a battery electrolyte. Along the way, they serendipitously found the compounds form nanotubes in water. How exactly these nanotubes form has yet to be determined, but this latest research sheds light on their structure, and hints at a new design principle that could be used to build nanotubes and other complex nanostructures.

Diblock copolypeptoids are composed of two peptoid blocks, one that’s hydrophobic one that’s hydrophilic. The scientists discovered both blocks crystallize when they meet in water, and form rings consisting of two to three individual peptoids. The rings then form hollow nanotubes.

Cryo-electron microscopy imaging of 50 of the nanotubes showed the diameter of each tube is highly uniform along its length, as well as from tube to tube. This analysis also revealed a striped pattern across the width of the nanotubes, which indicates the rings stack together to form tubes, and rules out other packing arrangements. In addition, the peptoids are thought to arrange themselves in a brick-like pattern, with hydrophobic blocks lining up with other hydrophobic blocks, and the same for hydrophilic blocks.

“Images of the tubes captured by electron microscopy were essential for establishing the presence of this unusual structure,” says Balsara. “The formation of tubular structures with a hydrophobic core is common for synthetic polymers dispersed in water, so we were quite surprised to see the formation of hollow tubes without a hydrophobic core.”

X-ray scattering analyses conducted at beamline 7.3.3 of the Advanced Light Source revealed even more about the nanotubes’ structure. For example, it showed that one of the peptoid blocks, which is usually amorphous, is actually crystalline.

Remarkably, the nanotubes assemble themselves without the usual nano-construction aids, such as electrostatic interactions or hydrogen bond networks.

“You wouldn’t expect something as intricate as this could be created without these crutches,” says Zuckermann. “But it turns out the chemical interactions that hold the nanotubes together are very simple. What’s special here is that the two peptoid blocks are chemically distinct, yet almost exactly the same size, which allows the chains to pack together in a very regular way. These insights could help us design useful nanotubes and other structures that are rugged and tunable—and which have uniform structures.”

This cryo-electron microscopy image shows the self-assembling nanotubes have the same diameter. The circles are head-on views of nanotubes. The dark-striped features likely result from crystallized peptoid blocks. (Credit: Berkeley Lab)

This cryo-electron microscopy image shows the self-assembling nanotubes have the same diameter. The circles are head-on views of nanotubes. The dark-striped features likely result from crystallized peptoid blocks. (Credit: Berkeley Lab)

Here’s a link to and a citation for the paper,

Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles by Jing Sun, Xi Jiang, Reidar Lund, Kenneth H. Downing, Nitash P. Balsara, and Ronald N. Zuckermann. PNAS 2016 ; published ahead of print March 28, 2016, doi: 10.1073/pnas.1517169113

This paper is behind a paywall.

*’Lawrence Berkeley Laboratory’ changed to ‘Lawrence Berkeley National Laboratory’ on April 3, 2016.

UK’s National Graphene Institute kerfuffle gets bigger

First mentioned here in a March 18, 2016 posting titled: Tempest in a teapot or a sign of things to come? UK’s National Graphene Institute kerfuffle, the ‘scandal’ seems to be getting bigger, from a March 29, 2016 posting on Dexter Johnson’s Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website (Note: A link has been removed),

Since that news story broke, damage control from the NGI [UK National Graphene Institute], the University of Manchester, and BGT Materials, the company identified in the Times article, has been coming fast and furious. Even this blog’s coverage of the story has gotten comments from representatives of BGT Materials and the University of Manchester.

There was perhaps no greater effort in this coordinated defense than getting Andre Geim, a University of Manchester researcher who was a co-discoverer of graphene, to weigh in. …

Despite Geim’s recent public defense, and a full-on PR campaign to turn around the perception that the UK government was investing millions into UK research only to have the fruits of that research sold off to foreign interests, there was news last week that the UK Parliament would be launching an inquiry into the “benefits and disbenefits of the way that graphene’s intellectual property and commercialisation has been managed, including through research and innovation collaborations.”

The timing for the inquiry is intriguing but there have been no public comments or hints that the NGI kerfuffle precipitated the Graphene Inquiry,

The Science and Technology Committee issues a call for written submissions for its inquiry on graphene.

Send written submissions

The inquiry explores the lessons from graphene for research and innovation in other areas, as well as the management and commercialisation of graphene’s intellectual property. Issues include:

  • The research obstacles that have had to be overcome for graphene, including identifying research priorities and securing research funding, and the lessons from this for other areas of research.
  • The factors that have contributed to the successful development of graphene and how these might be applied in other areas, including translating research into innovation, managing/sharing intellectual property, securing development funding, and bringing key stakeholders together.
  • The benefits and disbenefits of the way that graphene’s intellectual property and commercialisation has been managed, including through research and innovation collaborations, and the lessons from this for other areas.

The deadline for submissions is midday on Monday 18 April 2016.

The Committee expects to take oral evidence later in April 2016.

Getting back to the NGI, BGT Materials, and University of Manchester situation, there’s a forceful comment from Daniel Cochlin (identified as a graphene communications and marketing manager at the University of Manchester in an April 2, 2015 posting on Nanoclast) in Dexter’s latest posting about the NGI. From the comments section of a March 29, 2016 posting on the Nanoclast blog,

Maybe the best way to respond is to directly counter some of your assertions.

1. The NGI’s comments on this blog were to counter factual inaccuracies contained in your story. Your Editor-in-Chief and Editorial Director, Digital were also emailed to complain about the story, with not so much as an acknowledgement of the email.
2. There was categorically no ‘coaxing’ of Sir Andre to make comments. He was motivated to by the inaccuracies and insinuations of the Sunday Times article.
3. Members of the Science and Technology Select Committee visited the NGI about ten days before the Sunday Times article and this was followed by their desire to hold an evidence session to discuss graphene commercialisation.
4. The matter of how many researchers work in the NGI is not ‘hotly contested’. The NGI is 75% full with around 130 researchers regularly working there. We would expect this figure to grow by 10-15% within the next few days as other facilities are closed down.
5. Graphene Lighting PLC is the spin-out company set up to produce and market the lightbulb. To describe them as a ‘shadowy spin-out’ is unjustified and, I would suggest, libelous [emphasis mine].
6. Your question about why, if BGT Materials is a UK company, was it not mentioned [emphasis mine] in connection with the lightbulb is confusing – as stated earlier the company set up to manage the lightbulb was Graphene Lighting PLC.

Let’s hope it doesn’t take three days for this to be accepted by your moderators, as it did last time.

*ETA March 31, 2016 at 1530 hours PDT: Dexter has posted response comments in answer to Cochlin’s. You can read them for youself here .* I have a couple of observations (1) The use of the word ‘libelous’ seems a bit over the top. However, it should be noted that it’s much easier to sue someone for libel in England where the University of Manchester is located than it is in most jurisdictions. In fact, there’s an industry known as ‘libel tourism’ where litigious companies and individuals shop around for a jurisdiction such as England where they can easily file suit. (2) As for BGT Materials not being mentioned in the 2015 press release for the graphene lightbulb, I cannot emphasize how unusual that is. Generally speaking, everyone and every agency that had any involvement in developing and bringing to market a new product, especially one that was the ‘first consumer graphene-based product’, is mentioned. When you consider that BGT Materials is a newish company according to its About page,

BGT Materials Limited (BGT), established in 2013, is dedicated to the development of graphene technologies that utilize this “wonder material” to enhance our lives. BGT has pioneered the mass production of large-area, high-quality graphene rapidly achieving the first milestone required for the commercialization of graphene-enhanced applications.

the situation grows more peculiar. A new company wants and needs that kind of exposure to attract investment and/or keep current stakeholders happy. One last comment about BGT Materials and its public relations, Thanasis Georgiou, VP BGT Materials, Visiting scientist at the University of Manchester (more can be found on his website’s About page), waded into the comments section of Dexter’s March 15, 2016 posting and the first about the kerfuffle. Gheorgiou starts out in a relatively friendly fashion but his followup has a sharper tone,

I appreciate your position but a simple email to us and we would clarify most of the issues that you raised. Indeed your article carries the same inaccuracies that the initial Sunday Times article does, which is currently the subject of a legal claim by BGT Materials. [emphasis mine]

For example, BGT Materials is a UK registered company, not a Taiwanese one. A quick google search and you can confirm this. There was no “shadowy Canadian investor”, the company went through a round of financing, as most technology startups do, in order to reach the market quickly.

It’s hard to tell if Gheorgiou is trying to inform Dexter or threaten him in his comment to the March 15, 2016 posting but taken together with Daniel Cochlin’s claim of libel in his comment to the March 29, 2016 posting, it suggests an attempt at intimidation.

These are understandable responses given the stakes involved but moving to the most damaging munitions in your arsenal is usually not a good choice for your first  or second response.

Three part TED Talks series premieres on US public broadcasting stations on March 30, 2016

From a March 29, 2016 announcement received via email,

A special hour of television is happening …, and I’m [Chris Anderson] thrilled to ask you to join me in watching …

On Wednesday night, March 30, we premiere TED Talks: Science & Wonder, a one-hour show on PBS television channels across the US at 10 p.m. Eastern time — and available soon afterward as a full episode online.

This one-hour show distills talks and performances from two full nights of talks on Broadway — featuring views from the frontier of cancer research, movie animation and the very code that defines life itself. It’s a celebration of the scientific spirit — its capacity to inspire wonder, hope and just a little bit of surprise!

It also features three very special short films that celebrate science — including the last ever interview with Dr. Oliver Sacks.

If you’re watching in North America, click here to find the TV station near you.

The US Public Broadcasting Service (PBS) Ted Talks webpage has more information about the three part series and a link to the series website,

TED Talks is a three part PBS series of one-hour television specials recorded at the Town Hall Theater in New York, and features TED Talks from some of the world’s greatest thinkers and doers. The programs also feature performances and short independent films. Hosted by author and comedian Baratunde Thurston, each program highlights speakers and films that focus on a different theme: Science and Wonder, War and Peace, and Education Revolution.


Should you be unfamiliar with TED (technology, entertainment, design), you can find out more here.

Split some water molecules and save solar and wind (energy) for a future day

Professor Ted Sargent’s research team at the University of Toronto has a developed a new technique for saving the energy harvested by sun and wind farms according to a March 28, 2016 news item on Nanotechnology Now,

We can’t control when the wind blows and when the sun shines, so finding efficient ways to store energy from alternative sources remains an urgent research problem. Now, a group of researchers led by Professor Ted Sargent at the University of Toronto’s Faculty of Applied Science & Engineering may have a solution inspired by nature.

The team has designed the most efficient catalyst for storing energy in chemical form, by splitting water into hydrogen and oxygen, just like plants do during photosynthesis. Oxygen is released harmlessly into the atmosphere, and hydrogen, as H2, can be converted back into energy using hydrogen fuel cells.

Discovering a better way of storing energy from solar and wind farms is “one of the grand challenges in this field,” Ted Sargent says (photo above by Megan Rosenbloom via flickr) Courtesy: University of Toronto

Discovering a better way of storing energy from solar and wind farms is “one of the grand challenges in this field,” Ted Sargent says (photo above by Megan Rosenbloom via flickr) Courtesy: University of Toronto

A March 24, 2016 University of Toronto news release by Marit Mitchell, which originated the news item, expands on the theme,

“Today on a solar farm or a wind farm, storage is typically provided with batteries. But batteries are expensive, and can typically only store a fixed amount of energy,” says Sargent. “That’s why discovering a more efficient and highly scalable means of storing energy generated by renewables is one of the grand challenges in this field.”

You may have seen the popular high-school science demonstration where the teacher splits water into its component elements, hydrogen and oxygen, by running electricity through it. Today this requires so much electrical input that it’s impractical to store energy this way — too great proportion of the energy generated is lost in the process of storing it.

This new catalyst facilitates the oxygen-evolution portion of the chemical reaction, making the conversion from H2O into O2 and H2 more energy-efficient than ever before. The intrinsic efficiency of the new catalyst material is over three times more efficient than the best state-of-the-art catalyst.

Details are offered in the news release,

The new catalyst is made of abundant and low-cost metals tungsten, iron and cobalt, which are much less expensive than state-of-the-art catalysts based on precious metals. It showed no signs of degradation over more than 500 hours of continuous activity, unlike other efficient but short-lived catalysts. …

“With the aid of theoretical predictions, we became convinced that including tungsten could lead to a better oxygen-evolving catalyst. Unfortunately, prior work did not show how to mix tungsten homogeneously with the active metals such as iron and cobalt,” says one of the study’s lead authors, Dr. Bo Zhang … .

“We invented a new way to distribute the catalyst homogenously in a gel, and as a result built a device that works incredibly efficiently and robustly.”

This research united engineers, chemists, materials scientists, mathematicians, physicists, and computer scientists across three countries. A chief partner in this joint theoretical-experimental studies was a leading team of theorists at Stanford University and SLAC National Accelerator Laboratory under the leadership of Dr. Aleksandra Vojvodic. The international collaboration included researchers at East China University of Science & Technology, Tianjin University, Brookhaven National Laboratory, Canadian Light Source and the Beijing Synchrotron Radiation Facility.

“The team developed a new materials synthesis strategy to mix multiple metals homogeneously — thereby overcoming the propensity of multi-metal mixtures to separate into distinct phases,” said Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems at Massachusetts Institute of Technology. “This work impressively highlights the power of tightly coupled computational materials science with advanced experimental techniques, and sets a high bar for such a combined approach. It opens new avenues to speed progress in efficient materials for energy conversion and storage.”

“This work demonstrates the utility of using theory to guide the development of improved water-oxidation catalysts for further advances in the field of solar fuels,” said Gary Brudvig, a professor in the Department of Chemistry at Yale University and director of the Yale Energy Sciences Institute.

“The intensive research by the Sargent group in the University of Toronto led to the discovery of oxy-hydroxide materials that exhibit electrochemically induced oxygen evolution at the lowest overpotential and show no degradation,” said University Professor Gabor A. Somorjai of the University of California, Berkeley, a leader in this field. “The authors should be complimented on the combined experimental and theoretical studies that led to this very important finding.”

Here’s a link to and a citation for the paper,

Homogeneously dispersed, multimetal oxygen-evolving catalysts by Bo Zhang, Xueli Zheng, Oleksandr Voznyy, Riccardo Comin, Michal Bajdich, Max García-Melchor, Lili Han, Jixian Xu, Min Liu, Lirong Zheng, F. Pelayo García de Arquer, Cao Thang Dinh, Fengjia Fan, Mingjian Yuan, Emre Yassitepe, Ning Chen, Tom Regier, Pengfei Liu, Yuhang Li, Phil De Luna, Alyf Janmohamed, Huolin L. Xin, Huagui Yang, Aleksandra Vojvodic, Edward H. Sargent. Science  24 Mar 2016: DOI: 10.1126/science.aaf1525

This paper is behind a paywall.

10- to 15-year-olds as superhero cyborgs

It’s not the first time someone’s tried to redesign a prosthetic (an Aug. 7, 2009 posting touched on reimagining prosthetic arms and other topics) but it’s the first project I’ve seen where children are the featured designers. A Jan. 27, 2016 article by Emily Price for The Guardian describes the idea,

In a hidden room in the back of a pier overlooking the San Francisco Bay, a young girl shoots glitter across the room with a flick of her wrist. On the other side of the room, a boy is shooting darts from his wrist – some travelling at least 20ft high, onto a landing above. It feels like a superhero training center or a party for the next generation of X-Men and, in a way, it is.

This is Superhero Cyborgs, an event that brings six children together with 3D design specialists and augmentation experts to create unique prosthetics that will turn each child into a kind of superhero.

The children are aged between 10 and 15 and all have upper-limb differences, having either been born without a hand or having lost a limb. They are spending five days with prosthetics experts and a design team from 3D software firm Autodesk, creating prosthetics that turn a replacement hand into something much more special.

“We started asking: ‘Why are we trying to replicate the functionality of a hand?’ when we could really do anything. Things that are way cooler that hands aren’t able to do,” says Kate Ganim, co-founder and co-director at KidMob, the nonprofit group that organised this project in partnership with San Rafael, California 3D software firm Autodesk. KidMob first ran this type of project at Rhode Island’s Brown University in 2014.

Details of each superhero prosthetic are being posted on the DIY site Instructables and hacking site Project Ignite in the hope that it inspires other groups, schools and individuals to follow suit. “A classroom might work on building a project and then donate a finished hand to someone they know or appoint it to someone in the community who is in need,” O’Rourke said.

I searched the Project Ignite website using the term ‘superhero cyborg’ and did not receive a single hit. I also used the search term on the Instructables website and got many hits but did not see one that resembled any of the project descriptions in Price’s article. Unfortunately, Price did not offer any suggestions for search terms.

Getting back to the project, Jessica Hullinger has written a March 28, 2016 article about Superhero Cyborgs for Fast Company where she follows one of the participants (Note: Links have been removed),

Jordan [Jordan Reeves, a 10-year-old from Columbia, Missouri] was born with a limb difference: her left arm stops just above the elbow. When she found out she was headed to the Superhero Cyborg workshop, she was over the moon. “I was like, ‘Wow, I can’t believe I’m actually doing this,'” she says.

Over the course of five days, she and five other kids between the ages of 10 and 15 worked with design experts and engineers from Autodesk to brainstorm ideas. “Basically, if they could design the prosthetic or body modification of their dreams in a superhero context, what would that look like?” asks Sarah O’Rourke, a senior product marketing manager with Autodesk.

For Jordan, it looks very sparkly. Her plan was to transform her arm into a cannon that spread a delightful cloud of glitter wherever she went. She started with a few sketches. Then she created a 3-D-printed cast of her arm and a plastic cuff made to fit over it, for prototyping purposes. The kids used Autodesk’s 3-D design tools like TinkerCAD and Fusion 360 to test their prototypes. …

“For us, our interest is in getting kids familiar with taking an idea from concept to execution and learning the skills along the way to do that,” says Ganim. “Ideally, it’s not about the end product they end up with out of workshop; it’s more about realizing they’re not just subject to what’s available on the market. It creates this interesting closed loop system where they’re both designer and end user. That is very powerful.”

The workshop is over now but the children will continue for a few months working on their designs and, in some cases, creating prostheses that can have practical applications.

You can find out more about Superhero Cyborgs in a Feb. 7, 2016 posting on the KIDmob website blog,

Sydney: A dual water gun shooter that will automatically refill itself

I got more information on KIDmob on the About page,

KIDmob is the mobile, kid-integrated design firm. We are a Bay Area fiscally sponsored not-for-profit organization that believes design education is an opportunity for creative engagement and community empowerment. We take our passion on the road to bring our innovative approach to local communities around the world.

We engage in the design process through project-based learning. KIDmob workshops use the design process as a beginning curriculum framework on which to build a customized local project brief, based on a partner-identified need. Our workshops facilitate partners in devising imaginative solutions for their community, by their community. We strive to foster local stewardship within all of our projects.

We promote an energetic, hands-on approach to learning – our workshops create an immersive environment of moving, shaking, sketching, whirling, splatting, slicing, sawing, jitterbugging creativity. When we are not swimming in post-it notes, we like to explore all kinds of technologies, from pencils to circuitry mills, as tools for creative expression.

Sensing fuel leaks and fuel-based explosives with a nanofibril composite

A March 28, 2016 news item on Nanowerk highlights some research from the University of Utah (US),

Alkane fuel is a key ingredient in combustible material such as gasoline, airplane fuel, oil — even a homemade bomb. Yet it’s difficult to detect and there are no portable scanners available that can sniff out the odorless and colorless vapor.

But University of Utah engineers have developed a new type of fiber material for a handheld scanner that can detect small traces of alkane fuel vapor, a valuable advancement that could be an early-warning signal for leaks in an oil pipeline, an airliner, or for locating a terrorist’s explosive.

A March 25, 2016 University of Utah news release, which originated the news item, provides a little more detail,

Currently, there are no small, portable chemical sensors to detect alkane fuel vapor because it is not chemically reactive. The conventional way to detect it is with a large oven-sized instrument in a lab.

“It’s not mobile and very heavy,” Zang [Ling Zang, University of Utah materials science and engineering professor] says of the larger instrument. “There’s no way it can be used in the field. Imagine trying to detect the leak from a gas valve or on the pipelines. You ought to have something portable.”

So Zang’s team developed a type of fiber composite that involves two nanofibers transferring electrons from one to the other.

That kind of interaction would then signal the detector that the alkane vapor is present. Vaporsens, a University of Utah spinoff company, has designed a prototype of the handheld detector with an array of 16 sensor materials that will be able to identify a broad range of chemicals including explosives.  This new composite material will be incorporated into the sensor array to include the detection of alkanes. Vaporsens plans to introduce the device on the market in about a year and a half, says Zang, who is the company’s chief science officer.

Such a small sensor device that can detect alkane vapor will benefit three main categories:

  • Oil pipelines. If leaks from pipelines are not detected early enough, the resulting leaked oil could contaminate the local environment and water sources. Typically, only large leaks in pipelines can be detected if there is a drop in pressure. Zang’s portable sensor — when placed along the pipeline — could detect much smaller leaks before they become bigger.
  • Airplane fuel tanks. Fuel for aircraft is stored in removable “bladders” made of flexible fabric. The only way a leak can be detected is by seeing the dyed fuel seeping from the plane and then removing the bladder to inspect it. Zang’s sensors could be placed around the bladder to warn a pilot if a leak is occurring in real time and where it is located.
  • Security. The scanner will be designed to locate the presence of explosives such as bombs at airports or in other buildings. Many explosives, such as the bomb used in the Oklahoma City bombing in 1995, use fuel oils like diesel as one of its major components. These fuel oils are forms of alkane.

The research was funded by the Department of Homeland Security, National Science Foundation and NASA. The lead author of the paper is University of Utah materials science and engineering doctoral student Chen Wang, and [Benjamin] Bunes is the co-author.

Here’s a link to and a citation for the paper,

Interfacial Donor–Acceptor Nanofibril Composites for Selective Alkane Vapor Detection by Chen Wang, Benjamin R. Bunes, Miao Xu, Na Wu, Xiaomei Yang, Dustin E. Gross, and Ling Zang. ACS Sens DOI: 10.1021/acssensors.6b00018 Publication Date (Web): March 09, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Minimalist DNA nanodevices perform bio-analytical chemistry inside live cells

A comparison of minimalist versus baroque architecture is one of the more startling elements in this March 24, 2016 news item on Nanowerk about a scientist working with DNA (deoxyribonucleic acid) nanodevices,

Some biochemistry laboratories fashion proteins into complex shapes, constructing the DNA nanotechnological equivalent of Baroque or Rococo architecture. Yamuna Krishnan, however, prefers structurally minimalist devices.

“Our lab’s philosophy is one of minimalist design,” said Krishnan, a professor of chemistry at the University of Chicago. “It borders on brutalist. Functional with zero bells and whistles. There are several labs that design DNA into wonderful shapes, but inside a living system, you need as little DNA as possible to get the job done.”

That job is to act as drug-delivery capsules or as biomedical diagnostic tools.

A March 24, 2016 University of Chicago news release by Steve Koppes, which originated the news item, provides some background information before launching into the latest news,

In 2011, Krishnan and her group, then at the National Centre for Biological Sciences in Bangalore, India, became the first to demonstrate the functioning of a DNA nanomachine inside a living organism. This nanomachine, called I-switch, measured subcellular pH with a high degree of accuracy. Since 2011, Krishnan and her team have developed a palette of pH sensors, each keyed to the pH of the target organelle.

Last summer, the team reported another achievement: the development of a DNA nanosensor that can measure the physiological concentration of chloride with a high degree of accuracy.

“Yamuna Krishnan is one of the leading practitioners of biologically oriented DNA nanotechnology,” said Nadrian Seeman, the father of the field and the Margaret and Herman Sokol Professor of Chemistry at New York University. “These types of intracellular sensors are unique to my knowledge, and represent a major advance for the field of DNA nanotechnology.”

Chloride sensor

Chloride is the single most abundant, soluble, negatively charged molecule in the body. And yet until the Krishnan group introduced its chloride sensor—called Clensor—there was no effective and practical way to measure intracellular stores of chloride.

“What is especially interesting about this sensor is that it is completely pH independent,” Seeman said, a significant departure from Krishnan’s previous scheme. “She spent a number of years developing pH sensors that work intra-cellularly and provide a fluorescent signal as a consequence of a shift in pH.”

The ability to record chloride concentrations is important for many reasons. Chloride plays an important role in neurobiology, for example. But calcium and sodium—both positively charged ions—tend to grab most of the neurobiological glory because of their role in neuron excitation.

“But if you want your neuron to fire again, you have to bring it back to its normal state. You have to stop it firing,” Krishnan said. This is called “neuronal inhibition,” which chloride does.

“It’s important in order to reset your neuron for a second round of firing, otherwise we would all be able to use our brains only once,” she said.

Under normal circumstances, the transport of chloride ions helps the body produce thin, freely flowing mucus. But a genetic defect results in a life-threatening disease: cystic fibrosis. Clensor’s capacity to measure and visualize protein activity of molecules like the one related to cystic fibrosis transmembrane could lead to high-throughput assays to screen for chemicals that would restore normal functioning of the chloride channel.

Nine diseases

“One could use this to look at chloride ion channel activity in a variety of diseases,” Krishnan said. “Humans have nine chloride ion channels, and the mutation of each of these channels results in nine different diseases.” Among them are osteopetrosis, deafness, muscular dystrophy and Best’s macular dystrophy.

The pH-sensing capabilities of the I-switch, meanwhile, are important because cells contain multiple organelles that maintain specific values of acidity. Cells need these different microenvironments to carry out specialized chemical reactions.

“Each subcellular organelle has a specific resting value of acidity, and that acidity is crucial to its function,” Krishnan said. “When the pH is not the value that it’s meant to be, it results in a range of different diseases.”

There are 70 rare diseases called lysosomal storage disorders, which are progressive and often fatal. Each one—including Batten disease, Niemann-Pick disease, Pompe disease and Tay-Sachs disease—represents a different way a lysosome can go bad. She likened a defective lysosome to a garbage bin that never gets emptied.

“The lysosome is basically responsible for chewing up all the garbage and making sure it’s either reused or got rid of. It’s the most acidic organelle in the cell.” And that acidity is crucial for the degradation process.

Although there are 70 lysosomal storage diseases, small molecule drugs are available for only a few of them. These existing treatments—enzyme-replacement therapies—are expensive and are only palliative treatments. One goal of Krishnan’s group is to demonstrate the utility of their pH sensors to discover new biological insights into these diseases. Developing small molecule drugs—which are structurally simpler and easier to manufacture than traditional biological drugs—could help significantly.

“If we can do this for one or two lysosomal diseases, there’ll be hope for the other 68,” Krishnan said.

Here are links to and citations for the 2015 and 2011 papers,

A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells by Sonali Saha, Ved Prakash, Saheli Halder, Kasturi Chakraborty, & Yamuna Krishnan. Nature Nanotechnology 10, 645–651 (2015)  doi:10.1038/nnano.2015.130 Published online 22 June 2015

An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism by Sunaina Surana, Jaffar M. Bhat, Sandhya P. Koushika, & Yamuna Krishnan. Nature Communications 2, Article number: 340  doi:10.1038/ncomms1340 Published 07 June 2011

The 2015 paper is behind a paywall but the 2011 paper is open access.

Molecular ‘lightbulb’ could mean new form of magnetic resonance imaging (MRI)

A new technique promises to show body chemistry in action according to a March 25, 2016 news item on,

Duke University researchers have taken a major step towards realizing a new form of MRI that could record biochemical reactions in the body as they happen.

In the March 25 issue of Science Advances, they report the discovery of a new class of molecular tags that enhance MRI signals by 10,000-fold and generate detectable signals that last over an hour. The tags are biocompatible and inexpensive to produce, paving the way for widespread use of magnetic resonance imaging (MRI) to monitor metabolic processes of conditions like cancer and heart disease in real time.

“This represents a completely new class of molecules that doesn’t look anything at all like what people thought could be made into MRI tags,” said Warren S. Warren, James B. Duke Professor and Chair of Physics at Duke, and senior author on the study. “We envision it could provide a whole new way to use MRI to learn about the biochemistry of disease.”

A March 25, 2016 Duke University news release (also on EurekAlert), which originated the news item, offers more information about the new technique,

MRI takes advantage of a property called spin, which makes the nuclei in hydrogen atoms act like tiny magnets. Applying a strong magnetic field, followed by a series of radio waves, induces these hydrogen magnets to broadcast their locations. Since most of the hydrogen atoms in the body are bound up in water, the technique is used in clinical settings to create detailed images of soft tissues like organs, blood vessels and tumors inside the body.

But the technique also has the potential to show body chemistry in action, said Thomas Theis, assistant research professor of chemistry at Duke and co-lead author on the paper. “With magnetic resonance in general, you have this unique sensitivity to chemical transformations. You can see them and track them in real time,” Theis said.

MRI’s ability to track chemical transformations in the body has been limited by the low sensitivity of the technique, which makes small numbers of molecules impossible to detect without using unattainably massive magnetic fields.

For the past decade, researchers have been developing methods to “hyperpolarize” biologically important molecules, converting them into what Warren calls magnetic resonance “lightbulbs.”

With this boosted signal, these “lightbulbs” can be detected even in low numbers. “Hyperpolarization gives them 10,000 times more signal than they would normally have if they had just been magnetized in an ordinary magnetic field,” Warren said.

While promising, Warren says these hyperpolarization techniques face two fundamental problems: incredibly expensive equipment — around 3 million dollars for one machine — and most of these molecular lightbulbs burn out in a matter of seconds.

“It’s hard to take an image with an agent that is only visible for seconds, and there are a lot of biological processes you could never hope to see,” said Warren. “We wanted to try to figure out what molecules could give extremely long-lived signals so that you could look at slower processes.”

Jerry Ortiz Jr., a graduate student at Duke and co-lead author on the paper, synthesized a series of molecules containing diazarines, a chemical structure which is composed of two nitrogen atoms bound together in a ring. Diazirines were a promising target for screening because their geometry traps hyperpolarization in a “hidden state” where it cannot relax quickly.

Using a simple and inexpensive approach to hyperpolarization called SABRE-SHEATH, in which the molecular tags are mixed with a spin-polarized form of hydrogen and a catalyst, the researchers were able to rapidly hyperpolarize one of the diazirine-containing molecules, greatly enhancing its magnetic resonance signals for over an hour.

Qiu Wang, assistant professor of chemistry at Duke and co-author on the paper, said this structure is a particularly exciting target for hyperpolarization because it has already been demonstrated as a tag for other types of biomedical imaging.

“It can be tagged on small molecules, macro molecules, amino acids, without changing the intrinsic properties of the original compound,” said Wang. “We are really interested to see if it would be possible to use it as a general imaging tag.”

The scientists believe their SABRE-SHEATH catalyst could be used to hyperpolarize a wide variety of chemical structures at a fraction of the cost of other methods.

“You could envision, in five or ten years, you’ve got the container with the catalyst, you’ve got the bulb with the hydrogen gas. In a minute, you’ve made the hyperpolarized agent, and on the fly you could actually take an image,” Warren said. “That is something that is simply inconceivable by any other method.”

The researchers have provided an artistic representation of the molecular ‘lightbulbs’,

Caption: Duke scientists have discovered a new class of inexpensive and long-lived molecular tags that enhance MRI signals by 10,000-fold. To activate the tags, the researchers mix them with a newly developed catalyst (center) and a special form of hydrogen (gray), converting them into long-lived magnetic resonance 'lightbulbs' that might be used to track disease metabolism in real time. Credit: Thomas Theis, Duke University

Caption: Duke scientists have discovered a new class of inexpensive and long-lived molecular tags that enhance MRI signals by 10,000-fold. To activate the tags, the researchers mix them with a newly developed catalyst (center) and a special form of hydrogen (gray), converting them into long-lived magnetic resonance ‘lightbulbs’ that might be used to track disease metabolism in real time. Credit: Thomas Theis, Duke University

Here’s a link to and a citation for the paper,

Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal 15N2-diazirine molecular tags by Thomas Theis, Gerardo X. Ortiz Jr, Angus W. J. Logan, Kevin E. Claytor, Yesu Feng, William P. Huhn, Volker Blum, Steven J. Malcolmson, Eduard Y. Chekmenev, Qiu Wang, and Warren S. Warren. Science Advances  25 Mar 2016: Vol. 2, no. 3, e1501438 DOI: 10.1126/sciadv.1501438

This paper appears to be open access.

Café Scientifique on March 29, 2016 *(cancelled)* and a fully booked talk on April 14, 2016 in Vancouver, Canada

There are two upcoming science events in Vancouver.

Café Scientifique






*Cancellation notice received via email March 29, 2016 at 1430 hours PDT:

Our sincerest apologies, but we have just received word that The Railway Club is shutting it’s doors for good, effective immediately.  Unfortunately, because of this tonight’s event is cancelled.  We will do our best to re-schedule the talk in the near future once we have found a new venue.

The Tues., March 29, 2016 (tonight) Café Scientifique talk at 7:30 pm,  Café Scientifique, in the back room of The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.]), has one of the more peculiar descriptions for a talk that I’ve seen for this group. From a March 1, 2016 announcement (received via e-mail),

Our speaker for the evening will be Dr. Jerilynn Prior.  Prior is Professor of Endocrinology and Metabolism at the University of British Columbia, founder and scientific director of the Centre for Menstrual Cycle and Ovulation Research (CeMCOR), director of the BC Center of the Canadian Multicenter Osteoporosis Study (CaMOS), and a past president of the Society for Menstrual Cycle Research.  The title of her talk is:


Is Perimenopause Estrogen Deficiency?

Sorting engrained misinformation about women’s midlife reproductive transition

43 years old with teenagers a full-time executive director of a not for profit is not sleeping, she wakes soaked a couple of times a night, not every night but especially around the time her period comes. As it does frequently—it is heavy, even flooding. Her sexual interest is virtually gone and she feels dry when she tries.

Her family doctor offered her The Pill. When she took it she got very sore breasts, ankle swelling and high blood pressure. Her brain feels fuzzy, she’s getting migraines, gaining weight and just can’t cope. . . .

What’s going on? Does she need estrogen “replacement”?  If yes, why when she’s still getting flow? Does The Pill work for other women? What do we know about the what, why, how long and how to help symptomatic perimenopausal women?

This description seems more appropriate for a workshop on women’s health for doctors and/or women going through ‘the change’.

Unveiling the Universe Lecture Series

This is a fully booked event but I suppose there’s always the possibility of a ticket at the last minute. From the 100 Years of General Relativity: From the Big Bang to Black Holes, Gravitational Waves and Interstellar on the University of British Columbia (UBC) website,

We invite you to join us for an evening with renowned theoretical physicist Kip Thorne.

100 years ago, Albert Einstein formulated his wildly successful general theory of relativity—a set of physical laws that attribute gravity to the warping of time and space. It has been tested with high precision in the solar system and in binary pulsars and explains the expansion of the universe. It even predicts black holes and gravitational waves. When combined with quantum theory, relativity provides a tentative framework for understanding the universe’s big-bang birth. And the equations that made Einstein famous have become embedded in our popular culture via, for example, the science fiction movie Interstellar.

In a captivating talk accessible to science enthusiasts of all ages, Professor Kip Thorne will use Interstellar to illustrate some of relativity’s deepest ideas, including black holes and the recent discovery of gravitational waves.

Professor Thorne of the California Institute of Technology is one of the world’s foremost experts on the astrophysics implications of Einstein’s General Theory of Relativity, including black holes—an expertise he used to great effect as scientific advisor to the movieInterstellar. Thorne was also one of the three principal scientists (with Rainer Weiss and Ron Drever) behind the LIGO experiment that recently detected gravitational waves, an achievement most expect will earn them a Nobel Prize.

Here are the details from the event page,


Dr. Kip Thorne

Event Date and Time:

Thu, 2016-04-14 19:0020:30


Science World (1455 Quebec St )

Local Contact:

Theresa Liao

Intended Audience:


Despite the fact that are no tickets, here’s the registration link (in the hope they make a waiting list available) and more logistics,

Free Registration Required

Doors Open at 6:00PM
Lecture begins at 7:00pm

This event is organized by Science World, TRIUMF, and the UBC Department of Physics & Astronomy. It is part of UBC’s Centennial Celebration.

Sadly, I did not receive details and a link for registration in a more timely fashion although I was able to give readers a heads-up in a Jan. 22, 2016 posting. (scroll down about 25% of the way down).