Monthly Archives: March 2017

Harvesting plants for electricity

A Feb. 27, 2017 article on Nanowerk describes research which could turn living plants into solar cells and panels (Note: Links have been removed),

Plants power life on Earth. They are the original food source supplying energy to almost all living organisms and the basis of the fossil fuels that feed the power demands of the modern world. But burning the remnants of long-dead forests is changing the world in dangerous ways. Can we better harness the power of living plants today?

One way might be to turn plants into natural solar power stations that could convert sunlight into energy far more efficiently. To do this, we’d need a way of getting the energy out in the form of electricity. One company has found a way to harvest electrons deposited by plants into the soil beneath them. But new research (PNAS, “In vivo polymerization and manufacturing of wires and supercapacitors in plants”) from Finland looks at tapping plants’ energy directly by turning their internal structures into electric circuits.

A Feb. 27, 2017 essay by Stuart Thompson for The Conversation (which originated the article) explains the principles underlying the research (Note: A link has been removed),

Plants contain water-filled tubes called “xylem elements” that carry water from their roots to their leaves. The water flow also carries and distributes dissolved nutrients and other things such as chemical signals. The Finnish researchers, whose work is published in PNAS, developed a chemical that was fed into a rose cutting to form a solid material that could carry and store electricity.

Previous experiments have used a chemical called PEDOT to form conducting wires in the xylem, but it didn’t penetrate further into the plant. For the new research, they designed a molecule called ETE-S that forms similar electrical conductors but can also be carried wherever the stream of water travelling though the xylem goes.

This flow is driven by the attraction between water molecules. When water in a leaf evaporates, it pulls on the chain of molecules left behind, dragging water up through the plant all the way from the roots. You can see this for yourself by placing a plant cutting in food colouring and watching the colour move up through the xylem. The researchers’ method was so similar to the food colouring experiment that they could see where in the plant their electrical conductor had travelled to from its colour.

The result was a complex electronic network permeating the leaves and petals, surrounding their cells and replicating their pattern. The wires that formed conducted electricity up to a hundred times better than those made from PEDOT and could also store electrical energy in the same way as an electronic component called a capacitor.

I recommend reading Thompson’s piece in its entirety.

Mimicking the architecture of materials like wood and bone

Caption: Microstructures like this one developed at Washington State University could be used in batteries, lightweight ultrastrong materials, catalytic converters, supercapacitors and biological scaffolds. Credit: Washington State University

A March 3, 2017 news item on Nanowerk features a new 3D manufacturing technique for creating biolike materials, (Note: A link has been removed)

Washington State University nanotechnology researchers have developed a unique, 3-D manufacturing method that for the first time rapidly creates and precisely controls a material’s architecture from the nanoscale to centimeters. The results closely mimic the intricate architecture of natural materials like wood and bone.

They report on their work in the journal Science Advances (“Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing”) and have filed for a patent.

A March 3, 2017 Washington State University news release by Tina Hilding (also on EurekAlert), which originated the news item, expands on the theme,

“This is a groundbreaking advance in the 3-D architecturing of materials at nano- to macroscales with applications in batteries, lightweight ultrastrong materials, catalytic converters, supercapacitors and biological scaffolds,” said Rahul Panat, associate professor in the School of Mechanical and Materials Engineering, who led the research. “This technique can fill a lot of critical gaps for the realization of these technologies.”

The WSU research team used a 3-D printing method to create foglike microdroplets that contain nanoparticles of silver and to deposit them at specific locations. As the liquid in the fog evaporated, the nanoparticles remained, creating delicate structures. The tiny structures, which look similar to Tinkertoy constructions, are porous, have an extremely large surface area and are very strong.

Silver was used because it is easy to work with. However, Panat said, the method can be extended to any other material that can be crushed into nanoparticles – and almost all materials can be.

The researchers created several intricate and beautiful structures, including microscaffolds that contain solid truss members like a bridge, spirals, electronic connections that resemble accordion bellows or doughnut-shaped pillars.

The manufacturing method itself is similar to a rare, natural process in which tiny fog droplets that contain sulfur evaporate over the hot western Africa deserts and give rise to crystalline flower-like structures called “desert roses.”

Because it uses 3-D printing technology, the new method is highly efficient, creates minimal waste and allows for fast and large-scale manufacturing.

The researchers would like to use such nanoscale and porous metal structures for a number of industrial applications; for instance, the team is developing finely detailed, porous anodes and cathodes for batteries rather than the solid structures that are now used. This advance could transform the industry by significantly increasing battery speed and capacity and allowing the use of new and higher energy materials.

Here’s a link to and a citation for the paper,

Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing by Mohammad Sadeq Saleh, Chunshan Hu, and Rahul Panat. Science Advances  03 Mar 2017: Vol. 3, no. 3, e1601986 DOI: 10.1126/sciadv.1601986

This paper appears to be open access.

Finally, there is a video,

3D printed biomimetic blood vessel networks

An artificial blood vessel network that could lead the way to regenerating biologically-based blood vessel networks has been printed in 3D at the University of California at San Diego (UCSD) according to a March 2, 2017 news item on ScienceDaily,

Nanoengineers at the University of California San Diego have 3D printed a lifelike, functional blood vessel network that could pave the way toward artificial organs and regenerative therapies.

The new research, led by nanoengineering professor Shaochen Chen, addresses one of the biggest challenges in tissue engineering: creating lifelike tissues and organs with functioning vasculature — networks of blood vessels that can transport blood, nutrients, waste and other biological materials — and do so safely when implanted inside the body.

A March 2, 2017 UCSD news release (also on EurekAlert), which originated the news item, explains why this is an important development,

Researchers from other labs have used different 3D printing technologies to create artificial blood vessels. But existing technologies are slow, costly and mainly produce simple structures, such as a single blood vessel — a tube, basically. These blood vessels also are not capable of integrating with the body’s own vascular system.

“Almost all tissues and organs need blood vessels to survive and work properly. This is a big bottleneck in making organ transplants, which are in high demand but in short supply,” said Chen, who leads the Nanobiomaterials, Bioprinting, and Tissue Engineering Lab at UC San Diego. “3D bioprinting organs can help bridge this gap, and our lab has taken a big step toward that goal.”

Chen’s lab has 3D printed a vasculature network that can safely integrate with the body’s own network to circulate blood. These blood vessels branch out into many series of smaller vessels, similar to the blood vessel structures found in the body. The work was published in Biomaterials.

Chen’s team developed an innovative bioprinting technology, using their own homemade 3D printers, to rapidly produce intricate 3D microstructures that mimic the sophisticated designs and functions of biological tissues. Chen’s lab has used this technology in the past to create liver tissue and microscopic fish that can swim in the body to detect and remove toxins.

Researchers first create a 3D model of the biological structure on a computer. The computer then transfers 2D snapshots of the model to millions of microscopic-sized mirrors, which are each digitally controlled to project patterns of UV light in the form of these snapshots. The UV patterns are shined onto a solution containing live cells and light-sensitive polymers that solidify upon exposure to UV light. The structure is rapidly printed one layer at a time, in a continuous fashion, creating a 3D solid polymer scaffold encapsulating live cells that will grow and become biological tissue.

“We can directly print detailed microvasculature structures in extremely high resolution. Other 3D printing technologies produce the equivalent of ‘pixelated’ structures in comparison and usually require sacrificial materials and additional steps to create the vessels,” said Wei Zhu, a postdoctoral scholar in Chen’s lab and a lead researcher on the project.

And this entire process takes just a few seconds — a vast improvement over competing bioprinting methods, which normally take hours just to print simple structures. The process also uses materials that are inexpensive and biocompatible.

Chen’s team used medical imaging to create a digital pattern of a blood vessel network found in the body. Using their technology, they printed a structure containing endothelial cells, which are cells that form the inner lining of blood vessels.

The entire structure fits onto a small area measuring 4 millimeters × 5 millimeters, 600 micrometers thick (as thick as a stack containing 12 strands of human hair).

Researchers cultured several structures in vitro for one day, then grafted the resulting tissues into skin wounds of mice. After two weeks, the researchers examined the implants and found that they had successfully grown into and merged with the host blood vessel network, allowing blood to circulate normally.

Chen noted that the implanted blood vessels are not yet capable of other functions, such as transporting nutrients and waste. “We still have a lot of work to do to improve these materials. This is a promising step toward the future of tissue regeneration and repair,” he said.

Moving forward, Chen and his team are working on building patient-specific tissues using human induced pluripotent stem cells, which would prevent transplants from being attacked by a patient’s immune system. And since these cells are derived from a patient’s skin cells, researchers won’t need to extract any cells from inside the body to build new tissue. The team’s ultimate goal is to move their work to clinical trials. “It will take at least several years before we reach that goal,” Chen said.

Here’s a link to and a citation for the paper,

Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture by Wei Zhu, Xin Qu, Jie Zhu, Xuanyi Ma, Sherrina Patel, Justin Liu, Pengrui Wang, Cheuk Sun Edwin Lai, Maling Gou, Yang Xu, Kang Zhang, Shaochen Chen. Biomaterials 124 (April 2017) 106-15 http://dx.doi.org/10.1016/j.biomaterials.2017.01.042

This paper is behind a paywall.

There is also an open access copy here on the university website but I cannot confirm that it is identical to the version in the journal.

Entangling a single photon with a trillion atoms

Polish scientists have cast light on an eighty-year old ‘paradox’ according to a March 2, 2017 news item on plys.org,

A group of researchers from the Faculty of Physics at the University of Warsaw has shed new light on the famous paradox of Einstein, Podolsky and Rosen after 80 years. They created a multidimensional entangled state of a single photon and a trillion hot rubidium atoms, and stored this hybrid entanglement in the laboratory for several microseconds. …

In their famous Physical Review article, published in 1935, Einstein, Podolsky and Rosen considered the decay of a particle into two products. In their thought experiment, two products of decay were projected in exactly opposite directions—or more scientifically speaking, their momenta were anti-correlated. Though not be a mystery within the framework of classical physics, when applying the rules of quantum theory, the three researchers arrived at a paradox. The Heisenberg uncertainty principle, dictating that position and momentum of a particle cannot be measured at the same time, lies at the center of this paradox. In Einstein’s thought experiment, it is possible to measure the momentum of one particle and immediately know the momentum of the other without measurement, as it is exactly opposite. Then, by measuring the position of the second particle, the Heisenberg uncertainty principle is seemingly violated, an apparent paradox that seriously baffled the three physicists.

A March 2, 2017 University of Warsaw press release (also on EurekAlert), which originated the news item, expands on the topic,

Only today we know that this experiment is not, in fact, a paradox. The mistake of Einstein and co-workers was to use one-particle uncertainty principle to a system of two particles. If we treat these two particles as described by a single quantum state, we learn that the original uncertainty principle ceases to apply, especially if these particles are entangled.

In the Quantum Memories Laboratory at the University of Warsaw, the group of three physicists was first to create such an entangled state consisting of a macroscopic object – a group of about one trillion atoms, and a single photon – a particle of light. “Single photons, scattered during the interaction of a laser beam with atoms, are registered on a sensitive camera. A single registered photon carries information about the quantum state of the entire group of atoms. The atoms may be stored, and their state may be retrieved on demand.” – says Michal Dabrowski, PhD student and co-author of the article.

The results of the experiment confirm that the atoms and the single photon are in a joint, entangled state. By measuring position and momentum of the photon, we gain all information about the state of atoms. To confirm this, polish scientists convert the atomic state into another photon, which again is measured using the state-of-the-art camera developed in the Quantum Memories Laboratory. “We demonstrate the Einstein-Podolsky-Rosen apparent paradox in a very similar version as originally proposed in 1935, however we extend the experiment by adding storage of light within the large group of atoms. Atoms store the photon in a form of a wave made of atomic spins, containing one trillion atoms. Such a state is very robust against loss of a single atoms, as information is spread across so many particles.” – says Michal Parniak, PhD student taking part in the study.

The experiment performed by the group from the University of Warsaw is unique in one other way as well. The quantum memory storing the entangled state, created thanks to “PRELUDIUM” grant from the Poland’s National Science Centre and “Diamentowy Grant” from the Polish Ministry of Science and Higher Education, allows for storage of up to 12 photons at once. This enhanced capacity is promising in terms of applications in quantum information processing. “The multidimensional entanglement is stored in our device for several microseconds, which is roughly a thousand times longer than in any previous experiments, and at the same time long enough to perform subtle quantum operations on the atomic state during storage” – explains Dr. Wojciech Wasilewski, group leader of the Quantum Memories Laboratory team.

The entanglement in the real and momentum space, described in the Optica article, can be used jointly with other well-known degrees of freedom such as polarization, allowing generation of so-called hyper-entanglement. Such elaborate ideas constitute new and original test of the fundamentals of quantum mechanics – a theory that is unceasingly mysterious yet brings immense technological progress.

Here’s a link to and a citation for the paper,

Einstein–Podolsky–Rosen paradox in a hybrid bipartite system by Michał Dąbrowski, Michał Parniak, and Wojciech Wasilewski. Optica Vol. 4, Issue 2, pp. 272-275 (2017) •https://doi.org/10.1364/OPTICA.4.000272

This paper appears to be open access.

ArtSci salon at the University of Toronto opens its Cabinet Project on April 6, 2017

I announced The Cabinet Project in a Sept. 1, 2016 posting,

The ArtSci Salon; A Hub for the Arts & Science communities in Toronto and Beyond is soliciting proposals for ‘The Cabinet Project; An artsci exhibition about cabinets‘ to be held *March 30 – May 1* 2017 at the University of Toronto in a series of ‘science cabinets’ found around campus,

Despite being in full sight, many cabinets and showcases at universities and scientific institutions lie empty or underutilized. Located at the entrance of science departments, in proximity of laboratories, or in busy areas of transition, some contain outdated posters, or dusty scientific objects that have been forgotten there for years. Others lie empty, like old furniture on the curb after a move, waiting for a lucky passer-by in need. The ceaseless flow of bodies walking past these cabinets – some running to meetings, some checking their schedule, some immersed in their thoughts – rarely pay attention to them.

My colleague and I made a submission, which was not accepted (drat). In any event, I was somewhat curious as to which proposals had been successfu. Here they are in a March 24, 2017 ArtSci Salon notice (received via email),

Join us to the opening of
The Cabinet Project
on April 6, 2017

* 4:00 PM Introduction and dry reception -THE FIELDS INSTITUTE FOR
RESEARCH IN MATHEMATICAL SCIENCES

* 4:30 – 6:30 Tour of the Exhibition with the artists
* 6:30 – 9:00 Reception at VICTORIA COLLEGE

All Welcome
You can join at any time during the tour

More information can be found at
http://artscisalon.com/the-cabinet-project

RSVP Here

About The Cabinet Project

The Cabinet Project is a distributed exhibition bringing to life historical, anecdotal and imagined stories evoked by scientific objects, their surrounding spaces and the individuals inhabiting them. The goal is to make the intense creativity existing inside science laboratories visible, and to suggest potential interactions between the sciences and the arts. to achieve this goal, 12 artists have turned 10 cabinets across the University of Toronto  into art installations.

Featuring works by: Catherine Beaudette; Nina Czegledy; Dave Kemp & Jonathon Anderson; Joel Ong & Mick Lorusso; Microcollection;  Nicole Clouston; Nicole Liao;  Rick Hyslop;  Stefan Herda; Stefanie Kuzmiski

You can find out about the project, the artists, the program, and more on The Cabinet Project webpage here.

Ishiguro’s robots and Swiss scientist question artificial intelligence at SXSW (South by Southwest) 2017

It seems unexpected to stumble across presentations on robots and on artificial intelligence at an entertainment conference such as South by South West (SXSW). Here’s why I thought so, from the SXSW Wikipedia entry (Note: Links have been removed),

South by Southwest (abbreviated as SXSW) is an annual conglomerate of film, interactive media, and music festivals and conferences that take place in mid-March in Austin, Texas, United States. It began in 1987, and has continued to grow in both scope and size every year. In 2011, the conference lasted for 10 days with SXSW Interactive lasting for 5 days, Music for 6 days, and Film running concurrently for 9 days.

Lifelike robots

The 2017 SXSW Interactive featured separate presentations by Japanese roboticist, Hiroshi Ishiguro (mentioned here a few times), and EPFL (École Polytechnique Fédérale de Lausanne; Switzerland) artificial intelligence expert, Marcel Salathé.

Ishiguro’s work is the subject of Harry McCracken’s March 14, 2017 article for Fast Company (Note: Links have been removed),

I’m sitting in the Japan Factory pavilion at SXSW in Austin, Texas, talking to two other attendees about whether human beings are more valuable than robots. I say that I believe human life to be uniquely precious, whereupon one of the others rebuts me by stating that humans allow cars to exist even though they kill humans.

It’s a reasonable point. But my fellow conventioneer has a bias: It’s a robot itself, with an ivory-colored, mask-like face and visible innards. So is the third participant in the conversation, a much more human automaton modeled on a Japanese woman and wearing a black-and-white blouse and a blue scarf.

We’re chatting as part of a demo of technologies developed by the robotics lab of Hiroshi Ishiguro, based at Osaka University, and Japanese telecommunications company NTT. Ishiguro has gained fame in the field by creating increasingly humanlike robots—that is, androids—with the ultimate goal of eliminating the uncanny valley that exists between people and robotic people.

I also caught up with Ishiguro himself at the conference—his second SXSW—to talk about his work. He’s a champion of the notion that people will respond best to robots who simulate humanity, thereby creating “a feeling of presence,” as he describes it. That gives him and his researchers a challenge that encompasses everything from technology to psychology. “Our approach is quite interdisciplinary,” he says, which is what prompted him to bring his work to SXSW.

A SXSW attendee talks about robots with two robots.

If you have the time, do read McCracken’t piece in its entirety.

You can find out more about the ‘uncanny valley’ in my March 10, 2011 posting about Ishiguro’s work if you scroll down about 70% of the way to find the ‘uncanny valley’ diagram and Masahiro Mori’s description of the concept he developed.

You can read more about Ishiguro and his colleague, Ryuichiro Higashinaka, on their SXSW biography page.

Artificial intelligence (AI)

In a March 15, 2017 EPFL press release by Hilary Sanctuary, scientist Marcel Salathé poses the question: Is Reliable Artificial Intelligence Possible?,

In the quest for reliable artificial intelligence, EPFL scientist Marcel Salathé argues that AI technology should be openly available. He will be discussing the topic at this year’s edition of South by South West on March 14th in Austin, Texas.

Will artificial intelligence (AI) change the nature of work? For EPFL theoretical biologist Marcel Salathé, the answer is invariably yes. To him, a more fundamental question that needs to be addressed is who owns that artificial intelligence?

“We have to hold AI accountable, and the only way to do this is to verify it for biases and make sure there is no deliberate misinformation,” says Salathé. “This is not possible if the AI is privatized.”

AI is both the algorithm and the data

So what exactly is AI? It is generally regarded as “intelligence exhibited by machines”. Today, it is highly task specific, specially designed to beat humans at strategic games like Chess and Go, or diagnose skin disease on par with doctors’ skills.

On a practical level, AI is implemented through what scientists call “machine learning”, which means using a computer to run specifically designed software that can be “trained”, i.e. process data with the help of algorithms and to correctly identify certain features from that data set. Like human cognition, AI learns by trial and error. Unlike humans, however, AI can process and recall large quantities of data, giving it a tremendous advantage over us.

Crucial to AI learning, therefore, is the underlying data. For Salathé, AI is defined by both the algorithm and the data, and as such, both should be publicly available.

Deep learning algorithms can be perturbed

Last year, Salathé created an algorithm to recognize plant diseases. With more than 50,000 photos of healthy and diseased plants in the database, the algorithm uses artificial intelligence to diagnose plant diseases with the help of your smartphone. As for human disease, a recent study by a Stanford Group on cancer showed that AI can be trained to recognize skin cancer slightly better than a group of doctors. The consequences are far-reaching: AI may one day diagnose our diseases instead of doctors. If so, will we really be able to trust its diagnosis?

These diagnostic tools use data sets of images to train and learn. But visual data sets can be perturbed that prevent deep learning algorithms from correctly classifying images. Deep neural networks are highly vulnerable to visual perturbations that are practically impossible to detect with the naked eye, yet causing the AI to misclassify images.

In future implementations of AI-assisted medical diagnostic tools, these perturbations pose a serious threat. More generally, the perturbations are real and may already be affecting the filtered information that reaches us every day. These vulnerabilities underscore the importance of certifying AI technology and monitoring its reliability.

h/t phys.org March 15, 2017 news item

As I noted earlier, these are not the kind of presentations you’d expect at an ‘entertainment’ festival.

Revisiting the scientific past for new breakthroughs

A March 2, 2017 article on phys.org features a thought-provoking (and, for some of us, confirming) take on scientific progress  (Note: Links have been removed),

The idea that science isn’t a process of constant progress might make some modern scientists feel a bit twitchy. Surely we know more now than we did 100 years ago? We’ve sequenced the genome, explored space and considerably lengthened the average human lifespan. We’ve invented aircraft, computers and nuclear energy. We’ve developed theories of relativity and quantum mechanics to explain how the universe works.

However, treating the history of science as a linear story of progression doesn’t reflect wholly how ideas emerge and are adapted, forgotten, rediscovered or ignored. While we are happy with the notion that the arts can return to old ideas, for example in neoclassicism, this idea is not commonly recognised in science. Is this constraint really present in principle? Or is it more a comment on received practice or, worse, on the general ignorance of the scientific community of its own intellectual history?

For one thing, not all lines of scientific enquiry are pursued to conclusion. For example, a few years ago, historian of science Hasok Chang undertook a careful examination of notebooks from scientists working in the 19th century. He unearthed notes from experiments in electrochemistry whose results received no explanation at the time. After repeating the experiments himself, Chang showed the results still don’t have a full explanation today. These research programmes had not been completed, simply put to one side and forgotten.

A March 1, 2017 essay by Giles Gasper (Durham University), Hannah Smithson (University of Oxford) and Tom Mcleish (Durham University) for The Conversation, which originated the article, expands on the theme (Note: Links have been removed),

… looping back into forgotten scientific history might also provide an alternative, regenerative way of thinking that doesn’t rely on what has come immediately before it.

Collaborating with an international team of colleagues, we have taken this hypothesis further by bringing scientists into close contact with scientific treatises from the early 13th century. The treatises were composed by the English polymath Robert Grosseteste – who later became Bishop of Lincoln – between 1195 and 1230. They cover a wide range of topics we would recognise as key to modern physics, including sound, light, colour, comets, the planets, the origin of the cosmos and more.

We have worked with paleographers (handwriting experts) and Latinists to decipher Grosseteste’s manuscripts, and with philosophers, theologians, historians and scientists to provide intellectual interpretation and context to his work. As a result, we’ve discovered that scientific and mathematical minds today still resonate with Grosseteste’s deeply physical and structured thinking.

Our first intuition and hope was that the scientists might bring a new analytic perspective to these very technical texts. And so it proved: the deep mathematical structure of a small treatise on colour, the De colore, was shown to describe what we would now call a three-dimensional abstract co-ordinate space for colour.

But more was true. During the examination of each treatise, at some point one of the group would say: “Did anyone ever try doing …?” or “What would happen if we followed through with this calculation, supposing he meant …”. Responding to this thinker from eight centuries ago has, to our delight and surprise, inspired new scientific work of a rather fresh cut. It isn’t connected in a linear way to current research programmes, but sheds light on them from new directions.

I encourage you to read the essay in its entirety.

The Canadian science scene and the 2017 Canadian federal budget

There’s not much happening in the 2017-18 budget in terms of new spending according to Paul Wells’ March 22, 2017 article for TheStar.com,

This is the 22nd or 23rd federal budget I’ve covered. And I’ve never seen the like of the one Bill Morneau introduced on Wednesday [March 22, 2017].

Not even in the last days of the Harper Conservatives did a budget provide for so little new spending — $1.3 billion in the current budget year, total, in all fields of government. That’s a little less than half of one per cent of all federal program spending for this year.

But times are tight. The future is a place where we can dream. So the dollars flow more freely in later years. In 2021-22, the budget’s fifth planning year, new spending peaks at $8.2 billion. Which will be about 2.4 per cent of all program spending.

He’s not alone in this 2017 federal budget analysis; CBC (Canadian Broadcasting Corporation) pundits, Chantal Hébert, Andrew Coyne, and Jennifer Ditchburn said much the same during their ‘At Issue’ segment of the March 22, 2017 broadcast of The National (news).

Before I focus on the science and technology budget, here are some general highlights from the CBC’s March 22, 2017 article on the 2017-18 budget announcement (Note: Links have been removed,

Here are highlights from the 2017 federal budget:

  • Deficit: $28.5 billion, up from $25.4 billion projected in the fall.
  • Trend: Deficits gradually decline over next five years — but still at $18.8 billion in 2021-22.
  • Housing: $11.2 billion over 11 years, already budgeted, will go to a national housing strategy.
  • Child care: $7 billion over 10 years, already budgeted, for new spaces, starting 2018-19.
  • Indigenous: $3.4 billion in new money over five years for infrastructure, health and education.
  • Defence: $8.4 billion in capital spending for equipment pushed forward to 2035.
  • Care givers: New care-giving benefit up to 15 weeks, starting next year.
  • Skills: New agency to research and measure skills development, starting 2018-19.
  • Innovation: $950 million over five years to support business-led “superclusters.”
  • Startups: $400 million over three years for a new venture capital catalyst initiative.
  • AI: $125 million to launch a pan-Canadian Artificial Intelligence Strategy.
  • Coding kids: $50 million over two years for initiatives to teach children to code.
  • Families: Option to extend parental leave up to 18 months.
  • Uber tax: GST to be collected on ride-sharing services.
  • Sin taxes: One cent more on a bottle of wine, five cents on 24 case of beer.
  • Bye-bye: No more Canada Savings Bonds.
  • Transit credit killed: 15 per cent non-refundable public transit tax credit phased out this year.

You can find the entire 2017-18 budget here.

Science and the 2017-18 budget

For anyone interested in the science news, you’ll find most of that in the 2017 budget’s Chapter 1 — Skills, Innovation and Middle Class jobs. As well, Wayne Kondro has written up a précis in his March 22, 2017 article for Science (magazine),

Finance officials, who speak on condition of anonymity during the budget lock-up, indicated the budgets of the granting councils, the main source of operational grants for university researchers, will be “static” until the government can assess recommendations that emerge from an expert panel formed in 2015 and headed by former University of Toronto President David Naylor to review basic science in Canada [highlighted in my June 15, 2016 posting ; $2M has been allocated for the advisor and associated secretariat]. Until then, the officials said, funding for the Natural Sciences and Engineering Research Council of Canada (NSERC) will remain at roughly $848 million, whereas that for the Canadian Institutes of Health Research (CIHR) will remain at $773 million, and for the Social Sciences and Humanities Research Council [SSHRC] at $547 million.

NSERC, though, will receive $8.1 million over 5 years to administer a PromoScience Program that introduces youth, particularly unrepresented groups like Aboriginal people and women, to science, technology, engineering, and mathematics through measures like “space camps and conservation projects.” CIHR, meanwhile, could receive modest amounts from separate plans to identify climate change health risks and to reduce drug and substance abuse, the officials added.

… Canada’s Innovation and Skills Plan, would funnel $600 million over 5 years allocated in 2016, and $112.5 million slated for public transit and green infrastructure, to create Silicon Valley–like “super clusters,” which the budget defined as “dense areas of business activity that contain large and small companies, post-secondary institutions and specialized talent and infrastructure.” …

… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”

… Among more specific measures are vows to: Use $87.7 million in previous allocations to the Canada Research Chairs program to create 25 “Canada 150 Research Chairs” honoring the nation’s 150th year of existence, provide $1.5 million per year to support the operations of the office of the as-yet-unappointed national science adviser [see my Dec. 7, 2016 post for information about the job posting, which is now closed]; provide $165.7 million [emphasis mine] over 5 years for the nonprofit organization Mitacs to create roughly 6300 more co-op positions for university students and grads, and provide $60.7 million over five years for new Canadian Space Agency projects, particularly for Canadian participation in the National Aeronautics and Space Administration’s next Mars Orbiter Mission.

Kondros was either reading an earlier version of the budget or made an error regarding Mitacs (from the budget in the “A New, Ambitious Approach to Work-Integrated Learning” subsection),

Mitacs has set an ambitious goal of providing 10,000 work-integrated learning placements for Canadian post-secondary students and graduates each year—up from the current level of around 3,750 placements. Budget 2017 proposes to provide $221 million [emphasis mine] over five years, starting in 2017–18, to achieve this goal and provide relevant work experience to Canadian students.

As well, the budget item for the Pan-Canadian Artificial Intelligence Strategy is $125M.

Moving from Kondros’ précis, the budget (in the “Positioning National Research Council Canada Within the Innovation and Skills Plan” subsection) announces support for these specific areas of science,

Stem Cell Research

The Stem Cell Network, established in 2001, is a national not-for-profit organization that helps translate stem cell research into clinical applications, commercial products and public policy. Its research holds great promise, offering the potential for new therapies and medical treatments for respiratory and heart diseases, cancer, diabetes, spinal cord injury, multiple sclerosis, Crohn’s disease, auto-immune disorders and Parkinson’s disease. To support this important work, Budget 2017 proposes to provide the Stem Cell Network with renewed funding of $6 million in 2018–19.

Space Exploration

Canada has a long and proud history as a space-faring nation. As our international partners prepare to chart new missions, Budget 2017 proposes investments that will underscore Canada’s commitment to innovation and leadership in space. Budget 2017 proposes to provide $80.9 million on a cash basis over five years, starting in 2017–18, for new projects through the Canadian Space Agency that will demonstrate and utilize Canadian innovations in space, including in the field of quantum technology as well as for Mars surface observation. The latter project will enable Canada to join the National Aeronautics and Space Administration’s (NASA’s) next Mars Orbiter Mission.

Quantum Information

The development of new quantum technologies has the potential to transform markets, create new industries and produce leading-edge jobs. The Institute for Quantum Computing is a world-leading Canadian research facility that furthers our understanding of these innovative technologies. Budget 2017 proposes to provide the Institute with renewed funding of $10 million over two years, starting in 2017–18.

Social Innovation

Through community-college partnerships, the Community and College Social Innovation Fund fosters positive social outcomes, such as the integration of vulnerable populations into Canadian communities. Following the success of this pilot program, Budget 2017 proposes to invest $10 million over two years, starting in 2017–18, to continue this work.

International Research Collaborations

The Canadian Institute for Advanced Research (CIFAR) connects Canadian researchers with collaborative research networks led by eminent Canadian and international researchers on topics that touch all humanity. Past collaborations facilitated by CIFAR are credited with fostering Canada’s leadership in artificial intelligence and deep learning. Budget 2017 proposes to provide renewed and enhanced funding of $35 million over five years, starting in 2017–18.

Earlier this week, I highlighted Canada’s strength in the field of regenerative medicine, specifically stem cells in a March 21, 2017 posting. The $6M in the current budget doesn’t look like increased funding but rather a one-year extension. I’m sure they’re happy to receive it  but I imagine it’s a little hard to plan major research projects when you’re not sure how long your funding will last.

As for Canadian leadership in artificial intelligence, that was news to me. Here’s more from the budget,

Canada a Pioneer in Deep Learning in Machines and Brains

CIFAR’s Learning in Machines & Brains program has shaken up the field of artificial intelligence by pioneering a technique called “deep learning,” a computer technique inspired by the human brain and neural networks, which is now routinely used by the likes of Google and Facebook. The program brings together computer scientists, biologists, neuroscientists, psychologists and others, and the result is rich collaborations that have propelled artificial intelligence research forward. The program is co-directed by one of Canada’s foremost experts in artificial intelligence, the Université de Montréal’s Yoshua Bengio, and for his many contributions to the program, the University of Toronto’s Geoffrey Hinton, another Canadian leader in this field, was awarded the title of Distinguished Fellow by CIFAR in 2014.

Meanwhile, from chapter 1 of the budget in the subsection titled “Preparing for the Digital Economy,” there is this provision for children,

Providing educational opportunities for digital skills development to Canadian girls and boys—from kindergarten to grade 12—will give them the head start they need to find and keep good, well-paying, in-demand jobs. To help provide coding and digital skills education to more young Canadians, the Government intends to launch a competitive process through which digital skills training organizations can apply for funding. Budget 2017 proposes to provide $50 million over two years, starting in 2017–18, to support these teaching initiatives.

I wonder if BC Premier Christy Clark is heaving a sigh of relief. At the 2016 #BCTECH Summit, she announced that students in BC would learn to code at school and in newly enhanced coding camp programmes (see my Jan. 19, 2016 posting). Interestingly, there was no mention of additional funding to support her initiative. I guess this money from the federal government comes at a good time as we will have a provincial election later this spring where she can announce the initiative again and, this time, mention there’s money for it.

Attracting brains from afar

Ivan Semeniuk in his March 23, 2017 article (for the Globe and Mail) reads between the lines to analyze the budget’s possible impact on Canadian science,

But a between-the-lines reading of the budget document suggests the government also has another audience in mind: uneasy scientists from the United States and Britain.

The federal government showed its hand at the 2017 #BCTECH Summit. From a March 16, 2017 article by Meera Bains for the CBC news online,

At the B.C. tech summit, Navdeep Bains, Canada’s minister of innovation, said the government will act quickly to fast track work permits to attract highly skilled talent from other countries.

“We’re taking the processing time, which takes months, and reducing it to two weeks for immigration processing for individuals [who] need to come here to help companies grow and scale up,” Bains said.

“So this is a big deal. It’s a game changer.”

That change will happen through the Global Talent Stream, a new program under the federal government’s temporary foreign worker program.  It’s scheduled to begin on June 12, 2017.

U.S. companies are taking notice and a Canadian firm, True North, is offering to help them set up shop.

“What we suggest is that they think about moving their operations, or at least a chunk of their operations, to Vancouver, set up a Canadian subsidiary,” said the company’s founder, Michael Tippett.

“And that subsidiary would be able to house and accommodate those employees.”

Industry experts says while the future is unclear for the tech sector in the U.S., it’s clear high tech in B.C. is gearing up to take advantage.

US business attempts to take advantage of Canada’s relative stability and openness to immigration would seem to be the motive for at least one cross border initiative, the Cascadia Urban Analytics Cooperative. From my Feb. 28, 2017 posting,

There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),

In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.

Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.

A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.

It gets better, it seems Microsoft has been positioning itself for a while if Matt Day’s analysis is correct (from my Feb. 28, 2017 posting),

Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),

Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.

The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.

Microsoft last year [2016] opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].

This was all prior to President Trump’s legislative moves in the US, which have at least one Canadian observer a little more gleeful than I’m comfortable with. From a March 21, 2017 article by Susan Lum  for CBC News online,

U.S. President Donald Trump’s efforts to limit travel into his country while simultaneously cutting money from science-based programs provides an opportunity for Canada’s science sector, says a leading Canadian researcher.

“This is Canada’s moment. I think it’s a time we should be bold,” said Alan Bernstein, president of CIFAR [which on March 22, 2017 was awarded $125M to launch the Pan Canada Artificial Intelligence Strategy in the Canadian federal budget announcement], a global research network that funds hundreds of scientists in 16 countries.

Bernstein believes there are many reasons why Canada has become increasingly attractive to scientists around the world, including the political climate in the United States and the Trump administration’s travel bans.

Thankfully, Bernstein calms down a bit,

“It used to be if you were a bright young person anywhere in the world, you would want to go to Harvard or Berkeley or Stanford, or what have you. Now I think you should give pause to that,” he said. “We have pretty good universities here [emphasis mine]. We speak English. We’re a welcoming society for immigrants.”​

Bernstein cautions that Canada should not be seen to be poaching scientists from the United States — but there is an opportunity.

“It’s as if we’ve been in a choir of an opera in the back of the stage and all of a sudden the stars all left the stage. And the audience is expecting us to sing an aria. So we should sing,” Bernstein said.

Bernstein said the federal government, with this week’s so-called innovation budget, can help Canada hit the right notes.

“Innovation is built on fundamental science, so I’m looking to see if the government is willing to support, in a big way, fundamental science in the country.”

Pretty good universities, eh? Thank you, Dr. Bernstein, for keeping some of the boosterism in check. Let’s leave the chest thumping to President Trump and his cronies.

Ivan Semeniuk’s March 23, 2017 article (for the Globe and Mail) provides more details about the situation in the US and in Britain,

Last week, Donald Trump’s first budget request made clear the U.S. President would significantly reduce or entirely eliminate research funding in areas such as climate science and renewable energy if permitted by Congress. Even the National Institutes of Health, which spearheads medical research in the United States and is historically supported across party lines, was unexpectedly targeted for a $6-billion (U.S.) cut that the White House said could be achieved through “efficiencies.”

In Britain, a recent survey found that 42 per cent of academics were considering leaving the country over worries about a less welcoming environment and the loss of research money that a split with the European Union is expected to bring.

In contrast, Canada’s upbeat language about science in the budget makes a not-so-subtle pitch for diversity and talent from abroad, including $117.6-million to establish 25 research chairs with the aim of attracting “top-tier international scholars.”

For good measure, the budget also includes funding for science promotion and $2-million annually for Canada’s yet-to-be-hired Chief Science Advisor, whose duties will include ensuring that government researchers can speak freely about their work.

“What we’ve been hearing over the last few months is that Canada is seen as a beacon, for its openness and for its commitment to science,” said Ms. Duncan [Kirsty Duncan, Minister of Science], who did not refer directly to either the United States or Britain in her comments.

Providing a less optimistic note, Erica Alini in her March 22, 2017 online article for Global News mentions a perennial problem, the Canadian brain drain,

The budget includes a slew of proposed reforms and boosted funding for existing training programs, as well as new skills-development resources for unemployed and underemployed Canadians not covered under current EI-funded programs.

There are initiatives to help women and indigenous people get degrees or training in science, technology, engineering and mathematics (the so-called STEM subjects) and even to teach kids as young as kindergarten-age to code.

But there was no mention of how to make sure Canadians with the right skills remain in Canada, TD’s DePratto {Toronto Dominion Bank} Economics; TD is currently experiencing a scandal {March 13, 2017 Huffington Post news item}] told Global News.

Canada ranks in the middle of the pack compared to other advanced economies when it comes to its share of its graduates in STEM fields, but the U.S. doesn’t shine either, said DePratto [Brian DePratto, senior economist at TD .

The key difference between Canada and the U.S. is the ability to retain domestic talent and attract brains from all over the world, he noted.

To be blunt, there may be some opportunities for Canadian science but it does well to remember (a) US businesses have no particular loyalty to Canada and (b) all it takes is an election to change any perceived advantages to disadvantages.

Digital policy and intellectual property issues

Dubbed by some as the ‘innovation’ budget (official title:  Building a Strong Middle Class), there is an attempt to address a longstanding innovation issue (from a March 22, 2017 posting by Michael Geist on his eponymous blog (Note: Links have been removed),

The release of today’s [march 22, 2017] federal budget is expected to include a significant emphasis on innovation, with the government revealing how it plans to spend (or re-allocate) hundreds of millions of dollars that is intended to support innovation. Canada’s dismal innovation record needs attention, but spending our way to a more innovative economy is unlikely to yield the desired results. While Navdeep Bains, the Innovation, Science and Economic Development Minister, has talked for months about the importance of innovation, Toronto Star columnist Paul Wells today delivers a cutting but accurate assessment of those efforts:

“This government is the first with a minister for innovation! He’s Navdeep Bains. He frequently posts photos of his meetings on Twitter, with the hashtag “#innovation.” That’s how you know there is innovation going on. A year and a half after he became the minister for #innovation, it’s not clear what Bains’s plans are. It’s pretty clear that within the government he has less than complete control over #innovation. There’s an advisory council on economic growth, chaired by the McKinsey guru Dominic Barton, which periodically reports to the government urging more #innovation.

There’s a science advisory panel, chaired by former University of Toronto president David Naylor, that delivered a report to Science Minister Kirsty Duncan more than three months ago. That report has vanished. One presumes that’s because it offered some advice. Whatever Bains proposes, it will have company.”

Wells is right. Bains has been very visible with plenty of meetings and public photo shoots but no obvious innovation policy direction. This represents a missed opportunity since Bains has plenty of policy tools at his disposal that could advance Canada’s innovation framework without focusing on government spending.

For example, Canada’s communications system – wireless and broadband Internet access – falls directly within his portfolio and is crucial for both business and consumers. Yet Bains has been largely missing in action on the file. He gave approval for the Bell – MTS merger that virtually everyone concedes will increase prices in the province and make the communications market less competitive. There are potential policy measures that could bring new competitors into the market (MVNOs [mobile virtual network operators] and municipal broadband) and that could make it easier for consumers to switch providers (ban on unlocking devices). Some of this falls to the CRTC, but government direction and emphasis would make a difference.

Even more troubling has been his near total invisibility on issues relating to new fees or taxes on Internet access and digital services. Canadian Heritage Minister Mélanie Joly has taken control of the issue with the possibility that Canadians could face increased costs for their Internet access or digital services through mandatory fees to contribute to Canadian content.  Leaving aside the policy objections to such an approach (reducing affordable access and the fact that foreign sources now contribute more toward Canadian English language TV production than Canadian broadcasters and distributors), Internet access and e-commerce are supposed to be Bains’ issue and they have a direct connection to the innovation file. How is it possible for the Innovation, Science and Economic Development Minister to have remained silent for months on the issue?

Bains has been largely missing on trade related innovation issues as well. My Globe and Mail column today focuses on a digital-era NAFTA, pointing to likely U.S. demands on data localization, data transfers, e-commerce rules, and net neutrality.  These are all issues that fall under Bains’ portfolio and will impact investment in Canadian networks and digital services. There are innovation opportunities for Canada here, but Bains has been content to leave the policy issues to others, who will be willing to sacrifice potential gains in those areas.

Intellectual property policy is yet another area that falls directly under Bains’ mandate with an obvious link to innovation, but he has done little on the file. Canada won a huge NAFTA victory late last week involving the Canadian patent system, which was challenged by pharmaceutical giant Eli Lilly. Why has Bains not promoted the decision as an affirmation of how Canada’s intellectual property rules?

On the copyright front, the government is scheduled to conduct a review of the Copyright Act later this year, but it is not clear whether Bains will take the lead or again cede responsibility to Joly. The Copyright Act is statutorily under the Industry Minister and reform offers the chance to kickstart innovation. …

For anyone who’s not familiar with this area, innovation is often code for commercialization of science and technology research efforts. These days, digital service and access policies and intellectual property policies are all key to research and innovation efforts.

The country that’s most often (except in mainstream Canadian news media) held up as an example of leadership in innovation is Estonia. The Economist profiled the country in a July 31, 2013 article and a July 7, 2016 article on apolitical.co provides and update.

Conclusions

Science monies for the tri-council science funding agencies (NSERC, SSHRC, and CIHR) are more or less flat but there were a number of line items in the federal budget which qualify as science funding. The $221M over five years for Mitacs, the $125M for the Pan-Canadian Artificial Intelligence Strategy, additional funding for the Canada research chairs, and some of the digital funding could also be included as part of the overall haul. This is in line with the former government’s (Stephen Harper’s Conservatives) penchant for keeping the tri-council’s budgets under control while spreading largesse elsewhere (notably the Perimeter Institute, TRIUMF [Canada’s National Laboratory for Particle and Nuclear Physics], and, in the 2015 budget, $243.5-million towards the Thirty Metre Telescope (TMT) — a massive astronomical observatory to be constructed on the summit of Mauna Kea, Hawaii, a $1.5-billion project). This has lead to some hard feelings in the past with regard to ‘big science’ projects getting what some have felt is an undeserved boost in finances while the ‘small fish’ are left scrabbling for the ever-diminishing (due to budget cuts in years past and inflation) pittances available from the tri-council agencies.

Mitacs, which started life as a federally funded Network Centre for Excellence focused on mathematics, has since shifted focus to become an innovation ‘champion’. You can find Mitacs here and you can find the organization’s March 2016 budget submission to the House of Commons Standing Committee on Finance here. At the time, they did not request a specific amount of money; they just asked for more.

The amount Mitacs expects to receive this year is over $40M which represents more than double what they received from the federal government and almost of 1/2 of their total income in the 2015-16 fiscal year according to their 2015-16 annual report (see p. 327 for the Mitacs Statement of Operations to March 31, 2016). In fact, the federal government forked over $39,900,189. in the 2015-16 fiscal year to be their largest supporter while Mitacs’ total income (receipts) was $81,993,390.

It’s a strange thing but too much money, etc. can be as bad as too little. I wish the folks Mitacs nothing but good luck with their windfall.

I don’t see anything in the budget that encourages innovation and investment from the industrial sector in Canada.

Finallyl, innovation is a cultural issue as much as it is a financial issue and having worked with a number of developers and start-up companies, the most popular business model is to develop a successful business that will be acquired by a large enterprise thereby allowing the entrepreneurs to retire before the age of 30 (or 40 at the latest). I don’t see anything from the government acknowledging the problem let alone any attempts to tackle it.

All in all, it was a decent budget with nothing in it to seriously offend anyone.

Singing posters and talking shirts can communicate with you via car radio or smartphones

Singing posters and talking shirts haven’t gone beyond the prototype stage yet but I imagine University of Washington engineers are hoping this will happen sooner rather than later. In the meantime, they are  presenting their work at a conference according to a March 1, 2017 news item on ScienceDaily,

Imagine you’re waiting in your car and a poster for a concert from a local band catches your eye. What if you could just tune your car to a radio station and actually listen to that band’s music? Or perhaps you see the poster on the side of a bus stop. What if it could send your smartphone a link for discounted tickets or give you directions to the venue?

Going further, imagine you go for a run, and your shirt can sense your perspiration and send data on your vital signs directly to your phone.

A new technique pioneered by University of Washington engineers makes these “smart” posters and clothing a reality by allowing them to communicate directly with your car’s radio or your smartphone. For instance, bus stop billboards could send digital content about local attractions. A street sign could broadcast the name of an intersection or notice that it is safe to cross a street, improving accessibility for the disabled. In addition, clothing with integrated sensors could monitor vital signs and send them to a phone. [emphasis mine]

“What we want to do is enable smart cities and fabrics where everyday objects in outdoor environments — whether it’s posters or street signs or even the shirt you’re wearing — can ‘talk’ to you by sending information to your phone or car,” said lead faculty and UW assistant professor of computer science and engineering Shyam Gollakota.

“The challenge is that radio technologies like WiFi, Bluetooth and conventional FM radios would last less than half a day with a coin cell battery when transmitting,” said co-author and UW electrical engineering doctoral student Vikram Iyer. “So we developed a new way of communication where we send information by reflecting ambient FM radio signals that are already in the air, which consumes close to zero power.”

The UW team has — for the first time — demonstrated how to apply a technique called “backscattering” to outdoor FM radio signals. The new system transmits messages by reflecting and encoding audio and data in these signals that are ubiquitous in urban environments, without affecting the original radio transmissions. Results are published in a paper to be presented in Boston at the 14th USENIX Symposium on Networked Systems Design and Implementation in March [2017].

The team demonstrated that a “singing poster” for the band Simply Three placed at a bus stop could transmit a snippet of the band’s music, as well as an advertisement for the band, to a smartphone at a distance of 12 feet or to a car over 60 feet away. They overlaid the audio and data on top of ambient news signals from a local NPR radio station.

The University of Washington has produced a video demonstration of the technology

A March 1, 2017 University of Washington news release (also on EurekAlert), which originated the news item, explains further (Note: Links have been removed),

“FM radio signals are everywhere. You can listen to music or news in your car and it’s a common way for us to get our information,” said co-author and UW computer science and engineering doctoral student Anran Wang. “So what we do is basically make each of these everyday objects into a mini FM radio station at almost zero power.”

Such ubiquitous low-power connectivity can also enable smart fabric applications such as clothing integrated with sensors to monitor a runner’s gait and vital signs that transmits the information directly to a user’s phone. In a second demonstration, the researchers from the UW Networks & Mobile Systems Lab used conductive thread to sew an antenna into a cotton T-shirt, which was able to use ambient radio signals to transmit data to a smartphone at rates up to 3.2 kilobits per second.

The system works by taking an everyday FM radio signal broadcast from an urban radio tower. The “smart” poster or T-shirt uses a low-power reflector to manipulate the signal in a way that encodes the desired audio or data on top of the FM broadcast to send a “message” to the smartphone receiver on an unoccupied frequency in the FM radio band.

“Our system doesn’t disturb existing FM radio frequencies,” said co-author Joshua Smith, UW associate professor of computer science and engineering and of electrical engineering. “We send our messages on an adjacent band that no one is using — so we can piggyback on your favorite news or music channel without disturbing the original transmission.”

The team demonstrated three different methods for sending audio signals and data using FM backscatter: one simply overlays the new information on top of the existing signals, another takes advantage of unused portions of a stereo FM broadcast, and the third uses cooperation between two smartphones to decode the message.

“Because of the unique structure of FM radio signals, multiplying the original signal with the backscattered signal actually produces an additive frequency change,” said co-author Vamsi Talla, a UW postdoctoral researcher in computer science and engineering. “These frequency changes can be decoded as audio on the normal FM receivers built into cars and smartphones.”

In the team’s demonstrations, the total power consumption of the backscatter system was 11 microwatts, which could be easily supplied by a tiny coin-cell battery for a couple of years, or powered using tiny solar cells.

I cannot help but notice the interest in using this technology is for monitoring purposes, which could be benign or otherwise.

For anyone curious about the 14th USENIX Symposium on Networked Systems Design and Implementation being held March 27 – 29, 2017 in Boston, Massachusetts, you can find out more here.

Magic nano ink

Colour changes © Nature Communications 2017 / MPI [Max Planck Institute] for Intelligent Systems

A March 1, 2017 news item on Nanowerk helps to explain the image seen above (Note: A link has been removed),

Plasmonic printing produces resolutions several times greater than conventional printing methods. In plasmonic printing, colours are formed on the surfaces of tiny metallic particles when light excites their electrons to oscillate. Researchers at the Max Planck Institute for Intelligent Systems in Stuttgart have now shown how the colours of such metallic particles can be altered with hydrogen (Nature Communications, “Dynamic plasmonic colour display”).

The technique could open the way for animating ultra-high-resolution images and for developing extremely sharp displays. At the same time, it provides new approaches for encrypting information and detecting counterfeits.

A March 1, 2017 Max Planck Institute press release, which originated the news item, provides more  history and more detail about the research,

Glass artisans in medieval times exploited the effect long before it was even known. They coloured the magnificent windows of gothic cathedrals with nanoparticles of gold, which glowed red in the light. It was not until the middle of the 20th century that the underlying physical phenomenon was given a name: plasmons. These collective oscillations of free electrons are stimulated by the absorption of incident electromagnetic radiation. The smaller the metallic particles, the shorter the wavelength of the absorbed radiation. In some cases, the resonance frequency, i.e., the absorption maximum, falls within the visible light spectrum. The unabsorbed part of the spectrum is then scattered or reflected, creating an impression of colour. The metallic particles, which usually appear silvery, copper-coloured or golden, then take on entirely new colours.

A resolution of 100,000 dots per inch

Researchers are also taking advantage of the effect to develop plasmonic printing, in which tailor-made square metal particles are arranged in specific patterns on a substrate. The edge length of the particles is in the order of less than 100 nanometres (100 billionths of a metre). This allows a resolution of 100,000 dots per inch – several times greater than what today’s printers and displays can achieve.

For metallic particles measuring several 100 nanometres across, the resonance frequency of the plasmons lies within the visible light spectrum. When white light falls on such particles, they appear in a specific colour, for example red or blue. The colour of the metal in question is determined by the size of the particles and their distance from each other. These adjustment parameters therefore serve the same purpose in plasmonic printing as the palette of colours in painting.

The trick with the chemical reaction

The Smart Nanoplasmonics Research Group at the Max Planck Institute for Intelligent Systems in Stuttgart also makes use of this colour variability. They are currently working on making dynamic plasmonic printing. They have now presented an approach that allows them to alter the colours of the pixels predictably – even after an image has been printed. “The trick is to use magnesium. It can undergo a reversible chemical reaction in which the metallic character of the element is lost,” explains Laura Na Liu, who leads the Stuttgart research group. “Magnesium can absorb up to 7.6% of hydrogen by weight to form magnesium hydride, or MgH2”, Liu continues. The researchers coat the magnesium with palladium, which acts as a catalyst in the reaction.

During the continuous transition of metallic magnesium into non-metallic MgH2, the colour of some of the pixels changes several times. The colour change and the speed of the rate at which it proceeds follow a clear pattern. This is determined both by the size of and the distance between the individual magnesium particles as well as by the amount of hydrogen present.

In the case of total hydrogen saturation, the colour disappears completely, and the pixels reflect all the white light that falls on them. This is because the magnesium is no longer present in metallic form but only as MgH2. Hence, there are also no free metal electrons that can be made to oscillate.

Minerva’s vanishing act

The scientists demonstrated the effect of such dynamic colour behaviour on a plasmonic print of Minerva, the Roman goddess of wisdom, which also bore the logo of the Max Planck Society. They chose the size of their magnesium particles so that Minerva’s hair first appeared reddish, the head covering yellow, the feather crest red and the laurel wreath and outline of her face blue. They then washed the micro-print with hydrogen. A time-lapse film shows how the individual colours change. Yellow turns red, red turns blue, and blue turns white. After a few minutes all the colours disappear, revealing a white surface instead of Minerva.

The scientists also showed that this process is reversible by replacing the hydrogen stream with a stream of oxygen. The oxygen reacts with the hydrogen in the magnesium hydride to form water, so that the magnesium particles become metallic again. The pixels then change back in reverse order, and in the end Minerva appears in her original colours.

In a similar manner the researchers first made the micro image of a famous Van Gogh painting disappear and then reappear. They also produced complex animations that give the impression of fireworks.

The principle of a new encryption technique

Laura Na Liu can imagine using this principle in a new encryption technology. To demonstrate this, the group formed various letters with magnesium pixels. The addition of hydrogen then caused some letters to disappear over time, like the image of Minerva. “As for the rest of the letters, a thin oxide layer formed on the magnesium particles after exposing the sample in air for a short time before palladium deposition,” Liu explains. This layer is impermeable to hydrogen. The magnesium lying under the oxide layer therefore remains metallic − and visible − because light is able to excite the plasmons in the magnesium.

In this way it is possible to conceal a message, for example by mixing real and nonsensical information. Only the intended recipient is able to make the nonsensical information disappear and filter out the real message. For example, after decoding the message “Hartford” with hydrogen, only the words “art or” would remain visible. To make it more difficult to crack such encrypted messages, the group is currently working on a process that would require a precisely adjusted hydrogen concentration for deciphering.

Liu believes that the technology could also be used some day in the fight against counterfeiting. “For example, plasmonic security features could be printed on banknotes or pharmaceutical packs, which could later be checked or read only under specific conditions unknown to counterfeiters.”

It doesn’t necessarily have to be hydrogen

Laura Na Liu knows that the use of hydrogen makes some applications difficult and impractical for everyday use such as in mobile displays. “We see our work as a starting shot for a new principle: the use of chemical reactions for dynamic printing,” the Stuttgart physicist says. It is certainly conceivable that the research will soon lead to the discovery of chemical reactions for colour changes other than the phase transition between magnesium and magnesium dihydride, for example, reactions that require no gaseous reactants.

Here’s a link to and a citation for the paper,

Dynamic plasmonic colour display by Xiaoyang Duan, Simon Kamin, & Na Liu. Nature Communications 8, Article number: 14606 (2017) doi:10.1038/ncomms14606 Published online: 24 February 2017

This paper is open access.