Monthly Archives: July 2018

The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle

Setting the stage

Not unexpectedly, CRISPR-Cas9  or clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 can be dangerous as these scientists note in a July 16, 2018 news item on phys.org,

Scientists at the Wellcome Sanger Institute have discovered that CRISPR/Cas9 gene editing can cause greater genetic damage in cells than was previously thought. These results create safety implications for gene therapies using CRISPR/Cas9 in the future as the unexpected damage could lead to dangerous changes in some cells.

Reported today (16 July 2018) in the journal Nature Biotechnology, the study also revealed that standard tests for detecting DNA changes miss finding this genetic damage, and that caution and specific testing will be required for any potential gene therapies.

This CRISPR-Cas9 image reminds me of popcorn,

CRISPR-associated protein Cas9 (white) from Staphylococcus aureus based on Protein Database ID 5AXW. Credit: Thomas Splettstoesser (Wikipedia, CC BY-SA 4.0)[ downloaded from https://phys.org/news/2018-07-genome-crisprcas9-gene-higher-thought.html#jCp]

A July 16, 2018 Wellcome Sanger Institute press release (also on EurekAlert), which originated the news item, offers a little more explanation,

CRISPR/Cas9 is one of the newest genome editing tools. It can alter sections of DNA in cells by cutting at specific points and introducing changes at that location. Already extensively used in scientific research, CRISPR/Cas9 has also been seen as a promising way to create potential genome editing treatments for diseases such as HIV, cancer or sickle cell disease. Such therapeutics could inactivate a disease-causing gene, or correct a genetic mutation. However, any potential treatments would have to prove that they were safe.

Previous research had not shown many unforeseen mutations from CRISPR/Cas9 in the DNA at the genome editing target site. To investigate this further the researchers carried out a full systematic study in both mouse and human cells and discovered that CRISPR/Cas9 frequently caused extensive mutations, but at a greater distance from the target site.

The researchers found many of the cells had large genetic rearrangements such as DNA deletions and insertions. These could lead to important genes being switched on or off, which could have major implications for CRISPR/Cas9 use in therapies. In addition, some of these changes were too far away from the target site to be seen with standard genotyping methods.

Prof Allan Bradley, corresponding author on the study from the Wellcome Sanger Institute, said: “This is the first systematic assessment of unexpected events resulting from CRISPR/Cas9 editing in therapeutically relevant cells, and we found that changes in the DNA have been seriously underestimated before now. It is important that anyone thinking of using this technology for gene therapy proceeds with caution, and looks very carefully to check for possible harmful effects.”

Michael Kosicki, the first author from the Wellcome Sanger Institute, said: “My initial experiment used CRISPR/Cas9 as a tool to study gene activity, however it became clear that something unexpected was happening. Once we realised the extent of the genetic rearrangements we studied it systematically, looking at different genes and different therapeutically relevant cell lines, and showed that the CRISPR/Cas9 effects held true.”

The work has implications for how CRISPR/Cas9 is used therapeutically and is likely to re-spark researchers’ interest in finding alternatives to the standard CRISPR/Cas9 method for gene editing.

Prof Maria Jasin, an independent researcher from Memorial Slone Kettering Cancer Centre, New York, who was not involved in the study said: “This study is the first to assess the repertoire of genomic damage arising at a CRISPR/Cas9 cleavage site. While it is not known if genomic sites in other cell lines will be affected in the same way, this study shows that further research and specific testing is needed before CRISPR/Cas9 is used clinically.”

For anyone who’d like to better understand the terms gene editing and CRISPR-Cas9, the Wellcome Sanger Institute provides these explanatory webpages, What is genome editing? and What is CRISPR-Cas9?

For the more advanced, here’s a link and a citation for the paper,

Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements by Michael Kosicki, Kärt Tomberg, & Allan Bradley. Nature Biotechnology DOI: https://doi.org/10.1038/nbt.4192 Published 16 July 2018

This paper appears to be open access.

The kerfuffle

It seems this news has affected the CRISPR market. From a July 16, 2018 article by Cale Guthrie Weissman for Fast Company,

… CRISPR could unknowingly delete or alter non-targeted genes, which could lead to myriad unintended consequences. This is especially frightening, since the technology is going to be used in human clinical trials.

Meanwhile, other scientists working with CRISPR are trying to downplay the findings, telling STAT [a life sciences and business journalism website] that there have been no reported adverse effects similar to what the study describes. The news, however, has brought about a market reaction–at least three publicly traded companies that focus on CRISPR-based therapies are in stock nosedive. Crispr Therapeutics is down by over 6%; Editas fell by over 3%; and Intellia Therapeutics dropped by over 5%. [emphasis mine]

Damage control

Gaetan Burgio (geneticist, Australian National University)  in a July 16, 2018 essay on phys.org (originating from The Conversation) suggests some calm (Note: Links have been removed),

But a new study has called into question the precision of the technique [CRISPR gene editing technology].

The hope for gene editing is that it will be able to cure and correct diseases. To date, many successes have been reported, including curing deafness in mice, and in altering cells to cure cancer.

Some 17 clinical trials in human patients are registered [emphasis mine] testing gene editing on leukaemias, brain cancers and sickle cell anaemia (where red blood cells are misshaped, causing them to die). Before implementing CRISPR technology in clinics to treat cancer or congenital disorders, we must address whether the technique is safe and accurate.

There are a few options for getting around this problem. One option is to isolate the cells we wish to edit from the body and reinject only the ones we know have been correctly edited.

For example, lymphocytes (white blood cells) that are crucial to killing cancer cells could be taken out of the body, then modified using CRISPR to heighten their cancer-killing properties. The DNA of these cells could be sequenced in detail, and only the cells accurately and specifically gene-modified would be selected and delivered back into the body to kill the cancer cells.

While this strategy is valid for cells we can isolate from the body, some cells, such as neurons and muscles, cannot be removed from the body. These types of cells might not be suitable for gene editing using Cas9 scissors.

Fortunately, researchers have discovered other forms of CRISPR systems that don’t require the DNA to be cut. Some CRISPR systems only cut the RNA, not the DNA (DNA contains genetic instructions, RNA convey the instructions on how to synthesise proteins).

As RNA [ribonucleic acid] remains in our cells only for a specific period of time before being degraded, this would allow us to control the timing and duration of the CRISPR system delivery and reverse it (so the scissors are only functional for a short period of time).

This was found to be successful for dementia in mice. Similarly, some CRISPR systems simply change the letters of the DNA, rather than cutting them. This was successful for specific mutations causing diseases such as hereditary deafness in mice.

I agree with Burgio’s conclusion (not included here) that we have a lot more to learn and I can’t help wondering why there are 17 registered human clinical trials at this point.

My name is Steve and I’m a sub auroral ion drift

Photo: The Aurora Named STEVE Couresty: NASA Goddard

That stunning image is one of a series, many of which were taken by amateur photographers as noted in a March 14, 2018 US National Aeronautics and Space Agency (NASA)/Goddard Space Flight Center news release (also on EurekAlert) by Kasha Patel about how STEVE was discovered,

Notanee Bourassa knew that what he was seeing in the night sky was not normal. Bourassa, an IT technician in Regina, Canada, trekked outside of his home on July 25, 2016, around midnight with his two younger children to show them a beautiful moving light display in the sky — an aurora borealis. He often sky gazes until the early hours of the morning to photograph the aurora with his Nikon camera, but this was his first expedition with his children. When a thin purple ribbon of light appeared and starting glowing, Bourassa immediately snapped pictures until the light particles disappeared 20 minutes later. Having watched the northern lights for almost 30 years since he was a teenager, he knew this wasn’t an aurora. It was something else.

From 2015 to 2016, citizen scientists — people like Bourassa who are excited about a science field but don’t necessarily have a formal educational background — shared 30 reports of these mysterious lights in online forums and with a team of scientists that run a project called Aurorasaurus. The citizen science project, funded by NASA and the National Science Foundation, tracks the aurora borealis through user-submitted reports and tweets.

The Aurorasaurus team, led by Liz MacDonald, a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, conferred to determine the identity of this mysterious phenomenon. MacDonald and her colleague Eric Donovan at the University of Calgary in Canada talked with the main contributors of these images, amateur photographers in a Facebook group called Alberta Aurora Chasers, which included Bourassa and lead administrator Chris Ratzlaff. Ratzlaff gave the phenomenon a fun, new name, Steve, and it stuck.

But people still didn’t know what it was.

Scientists’ understanding of Steve changed that night Bourassa snapped his pictures. Bourassa wasn’t the only one observing Steve. Ground-based cameras called all-sky cameras, run by the University of Calgary and University of California, Berkeley, took pictures of large areas of the sky and captured Steve and the auroral display far to the north. From space, ESA’s (the European Space Agency) Swarm satellite just happened to be passing over the exact area at the same time and documented Steve.

For the first time, scientists had ground and satellite views of Steve. Scientists have now learned, despite its ordinary name, that Steve may be an extraordinary puzzle piece in painting a better picture of how Earth’s magnetic fields function and interact with charged particles in space. The findings are published in a study released today in Science Advances.

“This is a light display that we can observe over thousands of kilometers from the ground,” said MacDonald. “It corresponds to something happening way out in space. Gathering more data points on STEVE will help us understand more about its behavior and its influence on space weather.”

The study highlights one key quality of Steve: Steve is not a normal aurora. Auroras occur globally in an oval shape, last hours and appear primarily in greens, blues and reds. Citizen science reports showed Steve is purple with a green picket fence structure that waves. It is a line with a beginning and end. People have observed Steve for 20 minutes to 1 hour before it disappears.

If anything, auroras and Steve are different flavors of an ice cream, said MacDonald. They are both created in generally the same way: Charged particles from the Sun interact with Earth’s magnetic field lines.

The uniqueness of Steve is in the details. While Steve goes through the same large-scale creation process as an aurora, it travels along different magnetic field lines than the aurora. All-sky cameras showed that Steve appears at much lower latitudes. That means the charged particles that create Steve connect to magnetic field lines that are closer to Earth’s equator, hence why Steve is often seen in southern Canada.

Perhaps the biggest surprise about Steve appeared in the satellite data. The data showed that Steve comprises a fast moving stream of extremely hot particles called a sub auroral ion drift, or SAID. Scientists have studied SAIDs since the 1970s but never knew there was an accompanying visual effect. The Swarm satellite recorded information on the charged particles’ speeds and temperatures, but does not have an imager aboard.

“People have studied a lot of SAIDs, but we never knew it had a visible light. Now our cameras are sensitive enough to pick it up and people’s eyes and intellect were critical in noticing its importance,” said Donovan, a co-author of the study. Donovan led the all-sky camera network and his Calgary colleagues lead the electric field instruments on the Swarm satellite.

Steve is an important discovery because of its location in the sub auroral zone, an area of lower latitude than where most auroras appear that is not well researched. For one, with this discovery, scientists now know there are unknown chemical processes taking place in the sub auroral zone that can lead to this light emission.

Second, Steve consistently appears in the presence of auroras, which usually occur at a higher latitude area called the auroral zone. That means there is something happening in near-Earth space that leads to both an aurora and Steve. Steve might be the only visual clue that exists to show a chemical or physical connection between the higher latitude auroral zone and lower latitude sub auroral zone, said MacDonald.

“Steve can help us understand how the chemical and physical processes in Earth’s upper atmosphere can sometimes have local noticeable effects in lower parts of Earth’s atmosphere,” said MacDonald. “This provides good insight on how Earth’s system works as a whole.”

The team can learn a lot about Steve with additional ground and satellite reports, but recording Steve from the ground and space simultaneously is a rare occurrence. Each Swarm satellite orbits Earth every 90 minutes and Steve only lasts up to an hour in a specific area. If the satellite misses Steve as it circles Earth, Steve will probably be gone by the time that same satellite crosses the spot again.

In the end, capturing Steve becomes a game of perseverance and probability.

“It is my hope that with our timely reporting of sightings, researchers can study the data so we can together unravel the mystery of Steve’s origin, creation, physics and sporadic nature,” said Bourassa. “This is exciting because the more I learn about it, the more questions I have.”

As for the name “Steve” given by the citizen scientists? The team is keeping it as an homage to its initial name and discoverers. But now it is STEVE, short for Strong Thermal Emission Velocity Enhancement.

Other collaborators on this work are: the University of Calgary, New Mexico Consortium, Boston University, Lancaster University, Athabasca University, Los Alamos National Laboratory and the Alberta Aurora Chasers Facebook group.

If you live in an area where you may see STEVE or an aurora, submit your pictures and reports to Aurorasaurus through aurorasaurus.org or the free iOS and Android mobile apps. To learn how to spot STEVE, click here.

There is a video with MacDonald describing the work and featuring more images,

Katherine Kornei’s March 14, 2018 article for sciencemag.org adds more detail about the work,

Citizen scientists first began posting about Steve on social media several years ago. Across New Zealand, Canada, the United States, and the United Kingdom, they reported an unusual sight in the night sky: a purplish line that arced across the heavens for about an hour at a time, visible at lower latitudes than classical aurorae, mostly in the spring and fall. … “It’s similar to a contrail but doesn’t disperse,” says Notanee Bourassa, an aurora photographer in Saskatchewan province in Canada [Regina as mentioned in the news release is the capital of the province of Saskatchewan].

Traditional aurorae are often green, because oxygen atoms present in Earth’s atmosphere emit that color light when they’re bombarded by charged particles trapped in Earth’s magnetic field. They also appear as a diffuse glow—rather than a distinct line—on the northern or southern horizon. Without a scientific theory to explain the new sight, a group of citizen scientists led by aurora enthusiast Chris Ratzlaff of Canada’s Alberta province [usually referred to as Canada’s province of Alberta or simply, the province of Alberta] playfully dubbed it Steve, after a line in the 2006 children’s movie Over the Hedge.

Aurorae have been studied for decades, but people may have missed Steve because their cameras weren’t sensitive enough, says Elizabeth MacDonald, a space physicist at NASA Goddard Space Flight Center in Greenbelt, Maryland, and leader of the new research. MacDonald and her team have used data from a European satellite called Swarm-A to study Steve in its native environment, about 200 kilometers up in the atmosphere. Swarm-A’s instruments revealed that the charged particles in Steve had a temperature of about 6000°C, “impressively hot” compared with the nearby atmosphere, MacDonald says. And those ions were flowing from east to west at nearly 6 kilometers per second, …

Here’s a link to and a citation for the paper,

New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere by Elizabeth A. MacDonald, Eric Donovan, Yukitoshi Nishimura, Nathan A. Case, D. Megan Gillies, Bea Gallardo-Lacourt, William E. Archer, Emma L. Spanswick, Notanee Bourassa, Martin Connors, Matthew Heavner, Brian Jackel, Burcu Kosar, David J. Knudsen, Chris Ratzlaff, and Ian Schofield. Science Advances 14 Mar 2018:
Vol. 4, no. 3, eaaq0030 DOI: 10.1126/sciadv.aaq0030

This paper is open access. You’ll note that Notanee Bourassa is listed as an author. For more about Bourassa, there’s his Twitter feed (@DJHardwired) and his YouTube Channel. BTW, his Twitter bio notes that he’s “Recently heartbroken,” as well as, “Seasoned human male. Expert storm chaser, aurora photographer, drone flyer and on-air FM radio DJ.” Make of that what you will.

Graphene flakes bring spintronics a step closer?

Italian researchers are hoping that graphene flakes will be instrumental in the development of spintronics according to a March 14, 2018 news item on phys.org,

Graphene nanoflakes are promising for possible applications in the field of nanoelectronics, and the subject of a study recently published in Nano Letters. These hexagonal nanostructures exhibit quantum effects for modulating current flow. Thanks to their intrinsic magnetic properties, they could also represent a significant step forward in the field of spintronics. The study, conducted via computer analysis and simulations, was led by Massimo Capone.

A March 14, 2018 Scuola Internazionale Superiore di Studi Avanzati (SISSA) press release (also on EurekAlert), which originated the news item, expands on the theme,

“We have been able to observe two key phenomena by analysing the properties of graphene nanoflakes. Both are of great interest for possible future applications” explain Angelo Valli and Massimo Capone, authors of the study together with Adriano Amaricci and Valentina Brosco. The first phenomenon deals with the so-called interference between electrons and is a quantum phenomenon: «In nanoflakes, the electrons interfere with each other in a “destructive” manner if we measure the current in a certain configuration. This means that there is no transmission of current. This is a typically quantum phenomenon, which only occurs at very reduced sizes. By studying the graphene flakes we have understood that it is possible to bring this phenomenon to larger systems, therefore into the nano world and on a scale in which it is observable and can be exploited for possible uses in nanoelectronics». The two researchers explain that in what are called “Quantum interference transistors” destructive interference would be the “OFF” status. For the “ON” status, they say it is sufficient to remove the conditions for interference, thereby enabling the current to flow.

Magnetism and spintronics

But there’s more. In the study, the researchers demonstrated that the nanoflakes present new magnetic properties which are absent, for example, in an entire sheet of graphene: «The magnetism emerges spontaneously at their edges, without any external intervention. This enables the creation of a spin current». The union between the phenomena of quantum interference and of magnetism would allow to obtain almost complete spin polarization, with a huge potential in the field of spintronics, explain the researchers. These properties could be used, for example, in the memorising and processing information technologies, interpreting the spin as binary code. The electron spin, being quantised and having only two possible configurations (which we could call “up” and “down”), is very well suited for this kind of implementation.

Next step: the experimental test

To improve the efficiency of the possible device and the percentage of current polarization the researchers have also developed a protocol that envisages the interaction of the graphene flakes with a surface made of nitrogen and boron. «The results obtained are really interesting. This evidence now awaits the experimental test, to confirm what we have theoretically predicted» concludes Massimo Capone, head of the research and recently awarded the title of Outstanding Referee by the American Physical Society journal; in this way, each year, the journal indicates the male and female scientists who have distinguished themselves for their expertise in collaborating with the journal.

Here’s a link to and a citation for the paper,

Quantum Interference Assisted Spin Filtering in Graphene Nanoflakes by Angelo Valli, Adriano Amaricci, Valentina Brosco, and Massimo Capone. Nano Lett., 2018, 18 (3), pp 2158–2164 DOI: 10.1021/acs.nanolett.8b00453 Publication Date (Web): February 23, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Body-on-a-chip (10 organs)

Also known as human-on-a-chip, the 10-organ body-on-a-chip was being discussed at the 9th World Congress on Alternatives to Animal Testing in the Life Sciences in 2014 in Prague, Czech Republic (see this July 1, 2015 posting for more). At the time, scientists were predicting success at achieving their goal of 10 organs on-a-chip in 2017 (the best at the time was four organs). Only a few months past that deadline, scientists from the Massachusetts Institute of Technology (MIT) seem to have announced a ’10 organ chip’ in a March 14, 2018 news item on ScienceDaily,

MIT engineers have developed new technology that could be used to evaluate new drugs and detect possible side effects before the drugs are tested in humans. Using a microfluidic platform that connects engineered tissues from up to 10 organs, the researchers can accurately replicate human organ interactions for weeks at a time, allowing them to measure the effects of drugs on different parts of the body.

Such a system could reveal, for example, whether a drug that is intended to treat one organ will have adverse effects on another.

A March 14, 2018 MIT news release (also on EurekAlert), which originated the news item, expands on the theme,

“Some of these effects are really hard to predict from animal models because the situations that lead to them are idiosyncratic,” says Linda Griffith, the School of Engineering Professor of Teaching Innovation, a professor of biological engineering and mechanical engineering, and one of the senior authors of the study. “With our chip, you can distribute a drug and then look for the effects on other tissues, and measure the exposure and how it is metabolized.”

These chips could also be used to evaluate antibody drugs and other immunotherapies, which are difficult to test thoroughly in animals because they are designed to interact with the human immune system.

David Trumper, an MIT professor of mechanical engineering, and Murat Cirit, a research scientist in the Department of Biological Engineering, are also senior authors of the paper, which appears in the journal Scientific Reports. The paper’s lead authors are former MIT postdocs Collin Edington and Wen Li Kelly Chen.

Modeling organs

When developing a new drug, researchers identify drug targets based on what they know about the biology of the disease, and then create compounds that affect those targets. Preclinical testing in animals can offer information about a drug’s safety and effectiveness before human testing begins, but those tests may not reveal potential side effects, Griffith says. Furthermore, drugs that work in animals often fail in human trials.

“Animals do not represent people in all the facets that you need to develop drugs and understand disease,” Griffith says. “That is becoming more and more apparent as we look across all kinds of drugs.”

Complications can also arise due to variability among individual patients, including their genetic background, environmental influences, lifestyles, and other drugs they may be taking. “A lot of the time you don’t see problems with a drug, particularly something that might be widely prescribed, until it goes on the market,” Griffith says.

As part of a project spearheaded by the Defense Advanced Research Projects Agency (DARPA), Griffith and her colleagues decided to pursue a technology that they call a “physiome on a chip,” which they believe could offer a way to model potential drug effects more accurately and rapidly. To achieve this, the researchers needed new equipment — a platform that would allow tissues to grow and interact with each other — as well as engineered tissue that would accurately mimic the functions of human organs.

Before this project was launched, no one had succeeded in connecting more than a few different tissue types on a platform. Furthermore, most researchers working on this kind of chip were working with closed microfluidic systems, which allow fluid to flow in and out but do not offer an easy way to manipulate what is happening inside the chip. These systems also require external pumps.

The MIT team decided to create an open system, which essentially removes the lid and makes it easier to manipulate the system and remove samples for analysis. Their system, adapted from technology they previously developed and commercialized through U.K.-based CN BioInnovations, also incorporates several on-board pumps that can control the flow of liquid between the “organs,” replicating the circulation of blood, immune cells, and proteins through the human body. The pumps also allow larger engineered tissues, for example tumors within an organ, to be evaluated.

Complex interactions

The researchers created several versions of their chip, linking up to 10 organ types: liver, lung, gut, endometrium, brain, heart, pancreas, kidney, skin, and skeletal muscle. Each “organ” consists of clusters of 1 million to 2 million cells. These tissues don’t replicate the entire organ, but they do perform many of its important functions. Significantly, most of the tissues come directly from patient samples rather than from cell lines that have been developed for lab use. These so-called “primary cells” are more difficult to work with but offer a more representative model of organ function, Griffith says.

Using this system, the researchers showed that they could deliver a drug to the gastrointestinal tissue, mimicking oral ingestion of a drug, and then observe as the drug was transported to other tissues and metabolized. They could measure where the drugs went, the effects of the drugs on different tissues, and how the drugs were broken down. In a related publication, the researchers modeled how drugs can cause unexpected stress on the liver by making the gastrointestinal tract “leaky,” allowing bacteria to enter the bloodstream and produce inflammation in the liver.

Kevin Healy, a professor of bioengineering and materials science and engineering at the University of California at Berkeley, says that this kind of system holds great potential for accurate prediction of complex adverse drug reactions.

“While microphysiological systems (MPS) featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of MPS technology is revealed by connecting multiple organ chips in an integrated system for in vitro pharmacology. This study beautifully illustrates that multi-MPS “physiome-on-a-chip” approaches, which combine the genetic background of human cells with physiologically relevant tissue-to-media volumes, allow accurate prediction of drug pharmacokinetics and drug absorption, distribution, metabolism, and excretion,” says Healy, who was not involved in the research.

Griffith believes that the most immediate applications for this technology involve modeling two to four organs. Her lab is now developing a model system for Parkinson’s disease that includes brain, liver, and gastrointestinal tissue, which she plans to use to investigate the hypothesis that bacteria found in the gut can influence the development of Parkinson’s disease.

Other applications include modeling tumors that metastasize to other parts of the body, she says.

“An advantage of our platform is that we can scale it up or down and accommodate a lot of different configurations,” Griffith says. “I think the field is going to go through a transition where we start to get more information out of a three-organ or four-organ system, and it will start to become cost-competitive because the information you’re getting is so much more valuable.”

The research was funded by the U.S. Army Research Office and DARPA.

Caption: MIT engineers have developed new technology that could be used to evaluate new drugs and detect possible side effects before the drugs are tested in humans. Using a microfluidic platform that connects engineered tissues from up to 10 organs, the researchers can accurately replicate human organ interactions for weeks at a time, allowing them to measure the effects of drugs on different parts of the body. Credit: Felice Frankel

Here’s a link to and a citation for the paper,

Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies by Collin D. Edington, Wen Li Kelly Chen, Emily Geishecker, Timothy Kassis, Luis R. Soenksen, Brij M. Bhushan, Duncan Freake, Jared Kirschner, Christian Maass, Nikolaos Tsamandouras, Jorge Valdez, Christi D. Cook, Tom Parent, Stephen Snyder, Jiajie Yu, Emily Suter, Michael Shockley, Jason Velazquez, Jeremy J. Velazquez, Linda Stockdale, Julia P. Papps, Iris Lee, Nicholas Vann, Mario Gamboa, Matthew E. LaBarge, Zhe Zhong, Xin Wang, Laurie A. Boyer, Douglas A. Lauffenburger, Rebecca L. Carrier, Catherine Communal, Steven R. Tannenbaum, Cynthia L. Stokes, David J. Hughes, Gaurav Rohatgi, David L. Trumper, Murat Cirit, Linda G. Griffith. Scientific Reports, 2018; 8 (1) DOI: 10.1038/s41598-018-22749-0 Published online:

This paper which describes testing for four-, seven-, and ten-organs-on-a-chip, is open access. From the paper’s Discussion,

In summary, we have demonstrated a generalizable approach to linking MPSs [microphysiological systems] within a fluidic platform to create a physiome-on-a-chip approach capable of generating complex molecular distribution profiles for advanced drug discovery applications. This adaptable, reusable system has unique and complementary advantages to existing microfluidic and PDMS-based approaches, especially for applications involving high logD substances (drugs and hormones), those requiring precise and flexible control over inter-MPS flow partitioning and drug distribution, and those requiring long-term (weeks) culture with reliable fluidic and sampling operation. We anticipate this platform can be applied to a wide range of problems in disease modeling and pre-clinical drug development, especially for tractable lower-order (2–4) interactions.

Congratulations to the researchers!

US National Institute of Occupational Health and Safety (NIOSH) released four new documents for handling nanomaterials

A March 12, 2018 news item on Nanowerk announced the latest from the US National Institute of Occupational Health and Safety (NIOSH) on the safe handling of nanomaterials in the workplace,

Realizing the promise of any scientific advancement requires understanding of its potential human health effects, and its safe and responsible development, even at the level of engineered nanomaterials, which can be nearly atomic-sized. The National Institute for Occupational Safety and Health (NIOSH) launched four new products this week intended to provide options to companies for controlling possible exposure of their workers to nanomaterials on the job.

A March 12, 2018 NIOSH news release, which originated the news item, fills in some details,

Engineered nanomaterials are intentionally produced to have at least one primary dimension less than 100 nanometers (nm). These very small particles have unique shapes and physical and chemical properties. These materials become desirable for specific product applications in areas including medicine, electronics, biomaterials, and consumer products. Workers in industries that use or make these uniquely engineered nanomaterials may inhale nanoparticles on a daily basis, posing a potential respiratory hazard.

“Researching, developing, and utilizing these nano properties is at the heart of new technology, just as worker safety is at the heart of what we do at NIOSH,” said NIOSH Director John Howard, M.D. “The information contained in these new workplace design solution documents provide employers with strategic steps towards making sure their employees stay safe while handling nanomaterials.”

The four new documents provide helpful recommendations on minimizing exposures during common processes and tasks, including:

Each workplace design solutions document provides key tips on the design, use, and maintenance of exposure controls for nanomaterial production, post processing, and use. The poster poses questions that employers and workers should consider before starting work with a nanomaterial. For each question, the poster provides options to reduce exposures to nanomaterials based on the physical form. The poster can be displayed in a lab or work environment, making it an easily accessible reminder of the important health and safety considerations for working with nanomaterials.

To access the products, and for more information about nanotechnology research at NIOSH, please visit https://www.cdc.gov/niosh/topics/nanotech/pubs.html

NIOSH is the federal institute that conducts research and makes recommendations for preventing work-related injuries and illnesses. More information about NIOSH can be found at www.cdc.gov/niosh.

That’s all folks!

‘Lilliputian’ skyscraper: white graphene for hydrogen storage

This story comes from Rice University (Texas, US). From a March 12, 2018 news item on Nanowerk,

Rice University engineers have zeroed in on the optimal architecture for storing hydrogen in “white graphene” nanomaterials — a design like a Lilliputian skyscraper with “floors” of boron nitride sitting one atop another and held precisely 5.2 angstroms apart by boron nitride pillars.

Caption Thousands of hours of calculations on Rice University’s two fastest supercomputers found that the optimal architecture for packing hydrogen into “white graphene” involves making skyscraper-like frameworks of vertical columns and one-dimensional floors that are about 5.2 angstroms apart. In this illustration, hydrogen molecules (white) sit between sheet-like floors of graphene (gray) that are supported by boron-nitride pillars (pink and blue). Researchers found that identical structures made wholly of boron-nitride had unprecedented capacity for storing readily available hydrogen. Credit Lei Tao/Rice University

A March 12, 2018 Rice University news release (also on EurekAlert), which originated the news item, goes into extensive detail about the work,

“The motivation is to create an efficient material that can take up and hold a lot of hydrogen — both by volume and weight — and that can quickly and easily release that hydrogen when it’s needed,”  [emphasis mine] said the study’s lead author, Rouzbeh Shahsavari, assistant professor of civil and environmental engineering at Rice.

Hydrogen is the lightest and most abundant element in the universe, and its energy-to-mass ratio — the amount of available energy per pound of raw material, for example — far exceeds that of fossil fuels. It’s also the cleanest way to generate electricity: The only byproduct is water. A 2017 report by market analysts at BCC Research found that global demand for hydrogen storage materials and technologies will likely reach $5.4 billion annually by 2021.

Hydrogen’s primary drawbacks relate to portability, storage and safety. While large volumes can be stored under high pressure in underground salt domes and specially designed tanks, small-scale portable tanks — the equivalent of an automobile gas tank — have so far eluded engineers.

Following months of calculations on two of Rice’s fastest supercomputers, Shahsavari and Rice graduate student Shuo Zhao found the optimal architecture for storing hydrogen in boron nitride. One form of the material, hexagonal boron nitride (hBN), consists of atom-thick sheets of boron and nitrogen and is sometimes called white graphene because the atoms are spaced exactly like carbon atoms in flat sheets of graphene.

Previous work in Shahsavari’s Multiscale Materials Lab found that hybrid materials of graphene and boron nitride could hold enough hydrogen to meet the Department of Energy’s storage targets for light-duty fuel cell vehicles.

“The choice of material is important,” he said. “Boron nitride has been shown to be better in terms of hydrogen absorption than pure graphene, carbon nanotubes or hybrids of graphene and boron nitride.

“But the spacing and arrangement of hBN sheets and pillars is also critical,” he said. “So we decided to perform an exhaustive search of all the possible geometries of hBN to see which worked best. We also expanded the calculations to include various temperatures, pressures and dopants, trace elements that can be added to the boron nitride to enhance its hydrogen storage capacity.”

Zhao and Shahsavari set up numerous “ab initio” tests, computer simulations that used first principles of physics. Shahsavari said the approach was computationally intense but worth the extra effort because it offered the most precision.

“We conducted nearly 4,000 ab initio calculations to try and find that sweet spot where the material and geometry go hand in hand and really work together to optimize hydrogen storage,” he said.

Unlike materials that store hydrogen through chemical bonding, Shahsavari said boron nitride is a sorbent that holds hydrogen through physical bonds, which are weaker than chemical bonds. That’s an advantage when it comes to getting hydrogen out of storage because sorbent materials tend to discharge more easily than their chemical cousins, Shahsavari said.

He said the choice of boron nitride sheets or tubes and the corresponding spacing between them in the superstructure were the key to maximizing capacity.

“Without pillars, the sheets sit naturally one atop the other about 3 angstroms apart, and very few hydrogen atoms can penetrate that space,” he said. “When the distance grew to 6 angstroms or more, the capacity also fell off. At 5.2 angstroms, there is a cooperative attraction from both the ceiling and floor, and the hydrogen tends to clump in the middle. Conversely, models made of purely BN tubes — not sheets — had less storage capacity.”

Shahsavari said models showed that the pure hBN tube-sheet structures could hold 8 weight percent of hydrogen. (Weight percent is a measure of concentration, similar to parts per million.) Physical experiments are needed to verify that capacity, but that the DOE’s ultimate target is 7.5 weight percent, and Shahsavari’s models suggests even more hydrogen can be stored in his structure if trace amounts of lithium are added to the hBN.

Finally, Shahsavari said, irregularities in the flat, floor-like sheets of the structure could also prove useful for engineers.

“Wrinkles form naturally in the sheets of pillared boron nitride because of the nature of the junctions between the columns and floors,” he said. “In fact, this could also be advantageous because the wrinkles can provide toughness. If the material is placed under load or impact, that buckled shape can unbuckle easily without breaking. This could add to the material’s safety, which is a big concern in hydrogen storage devices.

“Furthermore, the high thermal conductivity and flexibility of BN may provide additional opportunities to control the adsorption and release kinetics on-demand,” Shahsavari said. “For example, it may be possible to control release kinetics by applying an external voltage, heat or an electric field.”

I may be wrong but this “The motivation is to create an efficient material that can take up and hold a lot of hydrogen — both by volume and weight — and that can quickly and easily release that hydrogen when it’s needed, …”  sounds like a supercapacitor. One other comment, this research appears to be ‘in silico’, i.e., all the testing has been done as computer simulations and the proposed materials themselves have yet to be tested.

Here’s a link to and a citation for the paper,

Merger of Energetic Affinity and Optimal Geometry Provides New Class of Boron Nitride Based Sorbents with Unprecedented Hydrogen Storage Capacity by Rouzbeh Shahsavari and Shuo Zhao. Small Vol. 14 Issue 10 DOI: 10.1002/smll.201702863 Version of Record online: 8 MAR 2018

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Flat gallium (gallenene) and nanoelectronics

Another day, another 2D material. A March 9, 2018 news item on ScienceDaily announced the latest thin material from Rice university,

Scientists at Rice University and the Indian Institute of Science, Bangalore, have discovered a method to make atomically flat gallium that shows promise for nanoscale electronics.

The Rice lab of materials scientist Pulickel Ajayan and colleagues in India created two-dimensional gallenene, a thin film of conductive material that is to gallium what graphene is to carbon.

Extracted into a two-dimensional form, the novel material appears to have an affinity for binding with semiconductors like silicon and could make an efficient metal contact in two-dimensional electronic devices, the researchers said.

A March 9, 2018 Rice University news release (also on EurekAlert), which originated the news item, describes the process for creating gallenene,

Gallium is a metal with a low melting point; unlike graphene and many other 2-D structures, it cannot yet be grown with vapor phase deposition methods. Moreover, gallium also has a tendency to oxidize quickly. And while early samples of graphene were removed from graphite with adhesive tape, the bonds between gallium layers are too strong for such a simple approach.

So the Rice team led by co-authors Vidya Kochat, a former postdoctoral researcher at Rice, and Atanu Samanta, a student at the Indian Institute of Science, used heat instead of force.

Rather than a bottom-up approach, the researchers worked their way down from bulk gallium by heating it to 29.7 degrees Celsius (about 85 degrees Fahrenheit), just below the element’s melting point. That was enough to drip gallium onto a glass slide. As a drop cooled just a bit, the researchers pressed a flat piece of silicon dioxide on top to lift just a few flat layers of gallenene.

They successfully exfoliated gallenene onto other substrates, including gallium nitride, gallium arsenide, silicone and nickel. That allowed them to confirm that particular gallenene-substrate combinations have different electronic properties and to suggest that these properties can be tuned for applications.

“The current work utilizes the weak interfaces of solids and liquids to separate thin 2-D sheets of gallium,” said Chandra Sekhar Tiwary, principal investigator on the project he completed at Rice before becoming an assistant professor at the Indian Institute of Technology in Gandhinagar, India. “The same method can be explored for other metals and compounds with low melting points.”

Gallenene’s plasmonic and other properties are being investigated, according to Ajayan. “Near 2-D metals are difficult to extract, since these are mostly high-strength, nonlayered structures, so gallenene is an exception that could bridge the need for metals in the 2-D world,” he said.

Co-authors of the paper are graduate student Yuan Zhang and Associate Research Professor Robert Vajtai of Rice; Anthony Stender, a former Rice postdoctoral researcher and now an assistant professor at Ohio University; Sanjit Bhowmick, Praveena Manimunda and Syed Asif of Bruker Nano Surfaces, Minneapolis; and Rice alumnus Abhishek Singh of the Indian Institute of Science. Ajayan is chair of Rice’s Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The Air Force Office of Scientific Research sponsored the research, with additional support from the Indo-US Science and Technology Forum, the government of India and a Rice Center for Quantum Materials/Smalley-Curl Postdoctoral Fellowship in Quantum Materials.

Here’s a link to and a citation for the paper,

Atomically thin gallium layers from solid-melt exfoliation by Vidya Kochat, Atanu Samanta, Yuan Zhang, Sanjit Bhowmick, Praveena Manimunda, Syed Asif S. Asif, Anthony S. Stender, Robert Vajtai, Abhishek K. Singh, Chandra S. Tiwary, and Pulickel M. Ajayan. Science Advances 09 Mar 2018: Vol. 4, no. 3, e1701373 DOI: 10.1126/sciadv.1701373

This paper appears to be open access.

Know any Canadian scientists (Tier 2 Canada Research Chairs) who’d like to meet with Members of Parliament and Senators?

The folks at the Canadian Science Policy Centre (CSPC) have just announced a pilot project heavily influenced by a successful Australian initiative matching scientists and lawmakers for a day. This is going to cost the participant money and the application deadline is August 31, 2018.

If you’re still interested, from a July 10, 2018 CSPC announcement (received via email),

The Canadian Science Policy Centre (CSPC), in partnership with the Chief Science Advisor of Canada [Mona Nember], is launching a new and exciting pilot program: Science Meets Parliament. This is a unique opportunity that invites scientists and engineers of various disciplines to spend one day on the Hill, shadow an MP or senator, explore their role in modern political decision making, and develop an understanding of the parliamentary process.

For more information about the program, eligibility and the application process, please visit the page on the CSPC website.

CSPC is looking for sponsors for this unique and exciting program. We invite all academic institutions to partner with CSPC to support this program. Please check out the sponsorship page.

I found this on the CSPC’s Science Meets Parliament webpage,

Background

This program is modeled on the acclaimed program run by Science and Technology Australia, now in its 19th year. You can find more information about the Science and Technology Australia’s Science Meets Parliament event by clicking here. We are grateful to our Australian colleagues for allowing us to adopt the name and model.

Objectives

Scientists and politicians desire a mechanism to build close and resilient connections. Strengthening evidence-informed decision-making requires systematic connectivity between the scientific and legislative communities. This program will help to create an open and ongoing channel between the two communities.

This program aims to facilitate a crucial dialogue between scientists and political leaders. Selected scientists from across the country will have the rare opportunity to spend a full day on Parliament Hill shadowing an MP or Senator, attending House committee meetings and Question Period, and sharing your passion for science with Parliamentarians.

The program includes exercises and teleconference workshops leading up to the event as well as an orientation and training session on the day before, hosted by the Institute on Governance in Ottawa’s Byward Market.

Benefits

For Parliamentarians and Senators:

  • Interact with researchers driving science and innovation in Canada
  • Build lasting connections with scientists from diverse regions and specialties
  • Discuss the intersection of science and decision-making on the Hill

For Scientists:

  • Meet with MPs, Senators, their staff, and the Federal political community.
  • Showcase their research and discuss the impact of research outcomes for Canadians
  • Learn about the organization, rationale, and motivations of decision-making in Parliamentary procedures.

Eligibility

For this pilot year, the program is open to researchers who currently hold a Tier II Canada Research Chair and are affiliated with a Canadian post-secondary institution. [emphases mine]

The researchers should come from diverse range of science and engineering disciplines  including all social, medical, and natural Sciences.We expect that 15-20 candidates will be selected. We hope to open the application process to researchers from all career stages in future years.

CSPC will oversee the application process and will base final selection of the Delegates on applicant diversity in terms of geography, language, gender, discipline, and visible minority.

Program

The one day event will include:

  • An informative orientation session that includes information about the business of Parliament and exercises that prepare Delegates to speak with politicians
  • Meetings with Members of Parliament and Senators, the Chief Science Advisor of Canada, and possibly the Minister of Science (subject to her availability)
  • Shadowing a Member of Parliament or Senator during the day
  • Networking reception with MPs, Senators, and staff that will include a closing speech by a guest of honour.

The program will be held on the hill on November 6th [2018]. [emphasis mine] The mandatory orientation session will be in the late afternoon of Monday Nov. 5th. Delegates are highly encouraged to stay in Ottawa for the 10th Canadian Science Policy Conference, CSPC 2018, held from Nov. 7-9. In this unique forum, delegates will have the opportunity to discuss the most pressing issues of science and innovation policy in Canada. For more information about the CSPC 2018, please visit the website: www.cspc2018.ca

The detailed event agenda will be made available in the upcoming weeks.

Mandatory requirements

  1. Registration fee: Accepted delegates will be required to pay $250.00 , which will include breakfast, lunch, the evening networking reception, and admission to the program. All delegates will be responsible for their own travel and accommodation costs. [emphases mine]
  2. Scientists who attend this session are required to either present a lecture at their host institution, and/or write an editorial for the CSPC’s editorial page about their experience, interactions with Parliamentarians, and insights they gained during this experience.

For more information on any of the above please contact info@sciencepolicy.ca

If you are a current Tier 2 Canada Research Chair affiliated with a Canadian institution and would like to apply for this program please click here.

Deadline to apply: Friday, August 31, 2018 at 11:59 PM (PST).

For the curious, here’s a definition of a Tier 2 Canada Research Chair (from the Canada Research Chair Wikipedia entry),

  • Tier 2 Chairs – tenable for five years and renewable once, are for exceptional emerging researchers, acknowledged by their peers as having the potential to lead in their field. Nominees for Tier 2 positions are assistant or associate professors (or they possess the necessary qualifications to be appointed at these levels by the nominating university). For each Tier 2 Chair, the university receives $100,000 annually for five years.

Good luck! And, CSPC folks, thank you for giving those of us on the West Coast a midnight deadline!

Symbiosis (science education initiative) in British Columbia (Canada)

Is it STEM (science, technology, engineering, and mathematics) or is it STEAM (science, technology, engineering, arts, and mathematics)?

It’s STEAM as least as far as Dr. Scott Sampson is concerned. In his July 6, 2018 Creative Mornings Vancouver talk in Vancouver (British Columbia, Canada) he mentioned a major science education/outreach initiative taking place in the province of British Columbia (BC) but intended for all of Canada, Symbiosis There was some momentary confusion as Sampson’s slide deck identified it as a STEM initiative. Sampson verbally added the ‘A’ for arts and henceforth described it as a STEAM initiative. (Part of the difficulty is that many institutions have used the term STEM and only recently come to the realization they might want to add ‘art’ leading to confusion in Canada and the US, if nowhere else, as old materials require updating. Actually, I vote for adding the humanities too so that we can have SHTEAM.)

You’ll notice, should you visit the Symbiosis website, that the STEM/STEAM confusion extends further than Sampson’s slide deck.

Sampson,  “a dinosaur paleontologist, science communicator, and passionate advocate for reimagining cities as places where people and nature thrive, serves (since 2016) as president and CEO of Science World British Columbia” or as they’re known on their website:  Science World at TELUS World of Science. Unwieldy, eh?

The STEM/STEAM announcement

None of us in the Creative Mornings crowd had heard of Symbiosis or Scott Sampson for that matter (apparently, he’s a huge star among the preschool set due to his work on the PBS [US Public Broadcasting Service] children’s show ‘Dinosaur Train’). Regardless, it was good to hear  of this effort although my efforts to learn more about it have been a bit frustrated.

First, here’s what I found: a May 25, 2017 Science World media release (PDF) about Symbiosis,

Science World Introduces Symbiosis
A First-of Its-Kind [sic] Learning Ecosystem forCanada

We live in a time of unprecedented change. High-tech innovations are rapidly transforming 21st century societies and the Canadian marketplace is increasingly dominated by novel, knowledge-based jobs requiring high levels of literacy in science, technology, engineering and math (STEM). Failing to prepare the next generation to be STEM literate threatens the health of our youth, the economy and the places we live. STEM literacy needs to be integrated into the broader context of what it means to be a 21st century citizen. Also important is inclusion of an extra letter, “A,” for art and design, resulting in STEAM. The idea behind Symbiosis is to make STEAM learning accessible across Canada.

Every major Canadian city hosts dozens to hundreds of organizations that engage children and youth in STEAM learning. Yet, for the most part, these organizations operate in isolation. The result is that a huge proportion of Canadian youth, particularly in First Nations and other underserved communities, are not receiving quality STEAM learning opportunities.

In order to address this pressing need, Science World British Columbia (scienceworld.ca) is spearheading the creation of Symbiosis, a deeply collaborative STEAM learning ecosystem. Driven by a diverse network of cross-sector partners, Symbiosis will become a vibrant model for scaling the kinds of learning and careers needed in a knowledge-based economy.

Today [May 25, 2017], Science World is proud to announce that Symbiosis has been selected by STEM Learning Ecosystems, a US-based organization, to formally join a growing movement. In just two years, the STEM Learning Ecosystems  initiative has become a thriving network of hundreds of organizations and thousands of individuals, joined in regional partnerships with the objective of collaborating in new and creative ways to increase equity, quality, and STEM learning outcomes for all youth. Symbiosis will be the first member of this initiative outside the United States.

Symbiosis was selected to become part of the STEM Learning Ecosystem initiative because of a demonstrated [emphasis mine] commitment to cross-sector collaborations in schools and beyond the classroom. As STEM Ecosystems evolve, students will be able to connect what they’ve learned, in and out of school, with real-world, community-based opportunities.

I wonder how Symbiosis demonstrated their commitment. Their website doesn’t seem to have existed prior to 2018 and there’s no information there about any prior activities.

A very Canadian sigh

I checked the STEM Learning Ecosystems website for its Press Room and found a couple of illuminating press releases. Here’s how the addition of Symbiosis was described in the May 25, 2017 press release,

The 17 incoming ecosystem communities were selected because they demonstrate a commitment to cross-sector collaborations in schools and beyond the classroom—in afterschool and summer programs, at home, with local business and industry partners, and in science centers, libraries and other places both virtual and physical. As STEM Ecosystems evolve, students will be able to connect what is learned in and out of school with real-world opportunities.

“It makes complete sense to collaborate with like-minded regions and organizations,” said Matthew Felan of the Great Lakes Bay Regional Alliance STEM Initiative, one of the founding Ecosystems. “STEM Ecosystems provides technical assistance and infrastructure support so that we are able to tailor quality STEM learning opportunities to the specific needs of our region in Michigan while leveraging the experience of similar alliances across the nation.”

The following ecosystem communities were selected to become part of this [US} national STEM Learning Ecosystem:

  • Arizona: Flagstaff STEM Learning Ecosystem
  • California: Region 5 STEAM in Expanded Learning Ecosystem (San Benito, Santa Clara, Santa Cruz, Monterey Counties)
  • Louisiana: Baton Rouge STEM Learning Network
  • Massachusetts: Cape Cod Regional STEM Network
  • Michigan: Michigan STEM Partnership / Southeast Michigan STEM Alliance
  • Missouri: Louis Regional STEM Learning Ecosystem
  • New Jersey: Delran STEM Ecosystem Alliance (Burlington County)
  • New Jersey: Newark STEAM Coalition
  • New York: WNY STEM (Western New York State)
  • New York: North Country STEM Network (seven counties of Northern New York State)
  • Ohio: Upper Ohio Valley STEM Cooperative
  • Ohio: STEM Works East Central Ohio
  • Oklahoma: Mayes County STEM Alliance
  • Pennsylvania: Bucks, Chester, Delaware, Montgomery STEM Learning Ecosystem
  • Washington: The Washington STEM Network
  • Wisconsin: Greater Green Bay STEM Network
  • Canada: Symbiosis, British Columbia, Canada

Yes, somehow a Canadian initiative becomes another US regional community in their national ecosystem.

Then, they made everything better a year later in a May 29, 2018 press release,

New STEM Learning Ecosystems in the United States are:

  • California: East Bay STEM Network
  • Georgia: Atlanta STEAM Learning Ecosystem
  • Hawaii: Hawai’iloa ecosySTEM Cabinet
  • Illinois: South Suburban STEAM Network
  • Kentucky: Southeastern Kentucky STEM Ecosystem
  • Massachusetts: MetroWest STEM Education Network
  • New York: Greater Southern Tier STEM Learning Network
  • North Carolina: STEM SENC (Southeastern North Carolina)
  • North Dakota: North Dakota STEM Ecosystem
  • Texas: SA/Bexar STEM/STEAM Ecosystem

The growing global Community of Practice has added: [emphasis mine]

  • Kenya: Kenya National STEM Learning Ecosystem
  • México: Alianza Para Promover la Educación en STEM (APP STEM)

Are Americans still having fantasies about ‘manifest destiny’? For those unfamiliar with the ‘doctrine’,

In the 19th century, manifest destiny was a widely held belief in the United States that its settlers were destined to expand across North America.  …

They seem to have given up on Mexico but the dream of acquiring Canadian territory rears its head from time to time. Specifically, it happens when Quebec holds a referendum (the last one was in 1995) on whether or not it wishes to remain part of the Canadian confederation. After the last referendum, I’d hoped that was the end of ‘manifest destiny’ but it seems these 21st Century-oriented STEM Learning Ecosystems people have yet to give up a 19th century fantasy. (sigh)

What is Symbiosis?

For anyone interested in the definition of the word, from Wordnik,

symbiosis

Definitions

from The American Heritage® Dictionary of the English Language, 4th Edition

  • n. Biology A close, prolonged association between two or more different organisms of different species that may, but does not necessarily, benefit each member.
  • n. A relationship of mutual benefit or dependence.

from Wiktionary, Creative Commons Attribution/Share-Alike License

  • n. A relationship of mutual benefit.
  • n. A close, prolonged association between two or more organisms of different species, regardless of benefit to the members.
  • n. The state of people living together in community.

As for this BC-based organization, Symbiosis, which they hope will influence Canadian STEAM efforts and learning as a whole, I don’t have much. From the Symbiosis About Us webpage,

A learning ecosystem is an interconnected web of learning opportunities that encompasses formal education to community settings such as out-of-school care, summer programs, science centres and museums, and experiences at home.

​In May 2017, Symbiosis was selected by STEM Learning Ecosystems, a US-based organization, to formally join a growing movement. As the first member of this initiative outside the United States, Symbiosis has demonstrated a commitment to cross-sector collaborations in schools and beyond the classroom. As Symbiosis evolves, students will be able to connect what they’ve learned, in and out of school, with real-world, community-based opportunities.

We live in a time of unprecedented change. High-tech innovations are rapidly transforming 21st century societies and the Canadian marketplace is increasingly dominated by novel, knowledge-based jobs requiring high levels of literacy in science, technology, engineering and math (STEM). Failing to prepare the next generation to be STEM literate threatens the health of our youth, the economy, and the places we live. STEM literacy needs to be integrated into the broader context of what it means to be a 21st century citizen. Also important is inclusion of an extra letter, “A,” for art and design, resulting in STEAM.

In order to address this pressing need, Science World British Columbia is spearheading the creation of Symbiosis, a deeply collaborative STEAM learning ecosystem. Driven by a diverse network of cross-sector partners, Symbiosis will become a vibrant model for scaling the kinds of learning and careers needed in a knowledge-based economy.

Symbiosis:

  • Acknowledges the holistic connections among arts, science and nature
  • ​Is inclusive and equitable
  • Is learner-centered​
  • Fosters curiosity and life-long learning ​​
  • Is relevant—should reflect the community
  • Honours diverse perspectives, including Indigenous worldviews
  • Is partnerships, collaboration, and mentorship
  • ​Is a sustainable, thriving community, with resilience and flexibility
  • Is research-based, data-driven
  • Shares stories of success—stories of people/role models using STEAM and critical thinking to make a difference
  • Provides a  variety of access points that are available to all learners

I was looking for more concrete information such as:

  • what is your budget?
  • which organizations are partners?
  • where do you get your funding?
  • what have you done so far?

I did get an answer to my last question by going to the Symbiosis news webpage where I found these,

We’re hiring!

 7/3/2018 [Their deadline is July 13, 2018]

STAN conference

3/20/2018

Symbiosis on CKPG

3/12/2018

Design Studio #2 in March

2/15/2018

BC Science Outreach Workshop

2/7/2018

Make of that what you will. Also, there is a 2018 copyright notice (at the bottom of the webpages) but no copyright owner is listed.

There is some Symbiosis information

A magazine known as BC Business (!) offers some details in a May 11, 2018 opinion piece, Note: Links have been removed,

… Increasingly, the Canadian marketplace is dominated by novel, knowledge-based jobs requiring high levels of literacy in STEM (science, technology, engineering and math). Here in B.C., the tech sector now employs over 100,000 people, about 5 percent of the province’s total workforce. As the knowledge economy grows, these numbers will rise dramatically.

Yet technology-driven businesses are already struggling to fill many roles that require literacy in STEM. …

Today, STEM education in North America and elsewhere is struggling. One study found that 60 percent of students who enter high school interested in STEM fields change their minds by graduation. Lacking mentoring, students, especially girls, tend to lose interest in STEM. [emphasis mine]Today, only 22 percent of Canadian STEM jobs are held by women. Failing to prepare the next generation to be STEM-literate threatens the prospects of our youth, our economy and the places we live.

More and more, education is no longer confined to classrooms. … To kickstart this future, a “STEM learning ecosystem” movement has emerged in the United States, grounded in deeply collaborative, cross-sector networks of learning opportunities.

Symbiosis will concentrate on a trio of impacts:

1) Dramatically increasing the number of qualified STEM mentors in B.C.—from teachers and scientists to technologists and entrepreneurs;

2) Connecting this diversity of mentors with children and youth through networked opportunities, from classroom visits and on-site shadowing to volunteering and internships; and

3) Creating a digital hub that interweaves communities, hosts a library of resources and extends learning through virtual offerings. [emphases mine]

Science World British Columbia is spearheading Symbiosis, and organizations from many sectors have expressed strong interest in collaborating—among them K-12 education, higher education, industry, government and non-profits. Several of these organizations are founding members of the BC Science Charter, which formed in 2013.

Symbiosis will launch in fall of 2018 with two pilot communities: East Vancouver and Prince George. …

As for why students tend to lose interest in STEM, there’s a rather interesting longitudinal study taking place in the UK which attempts to answer at least some of that question. I first wrote about the ASPIRES study in a January 31, 2012 posting: Science attitude kicks in by 10 years old. This was based on preliminary data and it seemed to be confirmed by an unrelated US study of high school students also mentioned in that posting (scroll down about 40% of the way).

In short, both studies suggested that children are quite to open to science but when it comes time to think about careers, they tend to ‘aspire’ to what they see amongst family and friends. I don’t see that kind of thinking reflected in any of the information I’ve been able to find about Symbiosis and it was not present in Sampson’s, Creative Mornings talk.

However, I noted during Sampson’s talk that he mentioned his father, a professor of psychology at the University of British Columbia and how he had based his career expectations on his father’s career. (Sampson is from Vancouver originally.) Sampson, like his father, was at one point a professor of ‘science’ at a university.

Perhaps one day someone from Symbiosis will look into the ASPIRE studies or even read my blog 🙂

You can find the latest about what is now called the ASPIRES 2 study here. (I will try to post my own update to the ASPIRES projects in the near future).

Best hopes

I am happy to see Symbiosis arrive on the scene and I wish all the best for the initiative. I am less concerned than the BC Business folks about supplying employers with the kind of employees they want to hire and hopeful that Symbiosis will attract not just the students, educators, mentors, and scientists to whom they are appealing but will cast a wider net to include philosophers, car mechanics, hairdressers, poets, visual artists, farmers, chefs, and others in a ‘pursuit of wonder’.

Aside: I was introduced to the phrase ‘pursuit of wonder’ by a friend who sent me a link to José Teodoro’s May 29, 2018 interview with Canadian filmmaker, Peter Mettler for the Brick. Mettler discusses his film about the Northern Lights and the technical challenges he met along the way.

Nanoscale measurements for osteoarthritis biomarker

There’s a new technique for measuring hyaluronic acid (HA), which appears to be associated with osteoarthritis. A March 12, 2018 news item on ScienceDaily makes the announcement,

For the first time, scientists at Wake Forest Baptist Medical Center have been able to measure a specific molecule indicative of osteoarthritis and a number of other inflammatory diseases using a newly developed technology.

This preclinical [emphasis mine] study used a solid-state nanopore sensor as a tool for the analysis of hyaluronic acid (HA).

I looked at the abstract for the paper (citation and link follow at end of this post) and found that it has been tested on ‘equine models’. Presumably they mean horses or, more accurately, members of the horse family. The next step is likely to be testing on humans, i.e., clinical trials.

A March 12, 2018 Wake Forest Baptist Medical Center news release (also on EurekAlert), which originated the news item, provides more details,

HA is a naturally occurring molecule that is involved in tissue hydration, inflammation and joint lubrication in the body. The abundance and size distribution of HA in biological fluids is recognized as an indicator of inflammation, leading to osteoarthritis and other chronic inflammatory diseases. It can also serve as an indicator of how far the disease has progressed.

“Our results established a new, quantitative method for the assessment of a significant molecular biomarker that bridges a gap in the conventional technology,” said lead author Adam R. Hall, Ph.D., assistant professor of biomedical engineering at Wake Forest School of Medicine, part of Wake Forest Baptist.

“The sensitivity, speed and small sample requirements of this approach make it attractive as the basis for a powerful analytic tool with distinct advantages over current assessment technologies.”

The most widely used method is gel electrophoresis, which is slow, messy, semi-quantitative, and requires a lot of starting material, Hall said. Other technologies include mass spectrometry and size-exclusion chromatography, which are expensive and limited in range, and multi-angle light scattering, which is non-quantitative and has limited precision.

The study, which is published in the current issue of Nature Communications, was led by Hall and Elaheh Rahbar, Ph.D., of Wake Forest Baptist, and conducted in collaboration with scientists at Cornell University and the University of Oklahoma.

In the study, Hall, Rahbar and their team first employed synthetic HA polymers to validate the measurement approach. They then used the platform to determine the size distribution of as little as 10 nanograms (one-billionth of a gram) of HA extracted from the synovial fluid of a horse model of osteoarthritis.

The measurement approach consists of a microchip with a single hole or pore in it that is a few nanometers wide – about 5,000 times smaller than a human hair. This is small enough that only individual molecules can pass through the opening, and as they do, each can be detected and analyzed. By applying the approach to HA molecules, the researchers were able to determine their size one-by-one. HA size distribution changes over time in osteoarthritis, so this technology could help better assess disease progression, Hall said.

“By using a minimally invasive procedure to extract a tiny amount of fluid – in this case synovial fluid from the knee – we may be able to identify the disease or determine how far it has progressed, which is valuable information for doctors in determining appropriate treatments,” he said.

Hall, Rahbar and their team hope to conduct their next study in humans, and then extend the technology with other diseases where HA and similar molecules play a role, including traumatic injuries and cancer.

Here’s a link to and a citation for the paper,

Label-free analysis of physiological hyaluronan size distribution with a solid-state nanopore sensor by Felipe Rivas, Osama K. Zahid, Heidi L. Reesink, Bridgette T. Peal, Alan J. Nixon, Paul L. DeAngelis, Aleksander Skardal, Elaheh Rahbar, & Adam R. Hall. Nature Communications volume 9, Article number: 1037 (2018) doi:10.1038/s41467-018-03439-x
Published online: 12 March 2018

This paper is open access.