Put some iron in your perfume and in your drugs

A Nov. 28, 2013 University of Toronto (Ontario, Canada) news release (also on EurekAlert) by Sean Bettan describes a new ‘green’ process, featuring iron, for use in the drug and perfume industries,

University of Toronto researchers have developed a series of techniques to create a variety of very active iron-based catalysts necessary to produce certain compounds used in the drug and perfume industry. The new synthetic methods promise to be safer, more economical and more environmentally friendly than traditional industrial processes.

There’s not much detail in the news release about this interesting work,

“There is a research effort world-wide to make chemical processes more sustainable and green, by replacing the rare, expensive and potentially toxic elements used in hydrogenation, catalytic converters in cars, fuel cells for the efficient conversion of chemical energy into electricity, and silicone coatings, with abundant ions such as iron,” says U of T chemistry professor Robert Morris, principal investigator of a study reported in the November 29 issue of Science. “Iron is about 10,000 times cheaper to obtain than ruthenium. Less than 200 metric tons of platinum-type metals are mined in the world every year and not all of it can be recycled after use. They are not essential to life and can be toxic.”

“We found a way to make the ferrous form of iron behave in a catalytic process much more efficiently than a precious metal.  We did this by finding molecules containing nitrogen, phosphorus, carbon and hydrogen, that bond to, and enhance, the reactivity of iron,” says Morris.

The scientists inexpensively produced varieties of alcohol with different biological properties — which can be used in flavour and drug synthesis — and different smells, a property important to the perfume industry. In one example from the study, the precursor alcohol to a cancer treatment can be made using the hydrogenation process catalyzed by iron. Using iron, the resulting complex is often a better catalyst than the industrial one based on ruthenium.

Here’s a link to and a citation for the paper,

Amine(imine)diphosphine Iron Catalysts for Asymmetric Transfer Hydrogenation of Ketones and Imines by Weiwei Zuo, Alan J. Lough, Young Feng Li, & Robert H. Morris. Science 29 November 2013: Vol. 342 no. 6162 pp. 1080-1083 DOI: 10.1126/science.1244466

This paper is behind a paywall.

Occasionally, I write about green chemistry as I did in a Jan. 10, 2011 posting about a McGill University (Montreal, Quebec, Canada) green chemistry breakthrough and about cinnamon-based green chemistry.

Leave a Reply

Your email address will not be published. Required fields are marked *