Université de Montréal (Canada) collaborates with University of Houston (US) for a new theory and better solar cells

Solar cell efficiency is not good as researchers from  l’Université de Montréal (UdeM, located in Quebec, Canada) and the University of Houston (UH, located Texas, US) note in a Jan. 29, 2014 joint UH/UdeM news release written by Lisa Merkl (UH) on EurekAlert,

“Scientists don’t fully understand what is going on inside the materials that make up solar cells. We were trying to get at the fundamental photochemistry or photophysics that describes how these cells work,” Bittner said [Eric Bittner, a John and Rebecca Moores Professor of Chemistry and Physics in UH’s College of Natural Sciences and Mathematics,].

Solar cells are made out of organic semiconductors – typically blends of materials. However, solar cells made of these materials have about 3 percent efficiency. Bittner added that the newer materials, the fullerene/polymer blends, only reach about 10 percent efficiency.

“There is a theoretical limit for the efficiency of the ideal solar cell – the Shockley-Queisser limit. The theory we published describes how we might be able to get above this theoretical limit by taking advantage of quantum mechanical effects,” Bittner said. “By understanding these effects and making use of them in the design of a solar cell, we believe you can improve efficiency.”

Silva [Carlos Silva, an associate professor at the Université de Montréal and Canada Research Chair in Organic Semiconductor Materials] added, “In polymeric semiconductors, where plastics form the active layer of solar cells, the electronic structure of the material is intimately correlated with the vibrational motion within the polymer chain. Quantum-mechanical effects due to such vibrational-electron coupling give rise to a plethora of interesting physical processes that can be controlled to optimize solar cell efficiencies by designing materials that best exploit them.”

Unfortunately, there’s no more information about this model other than this (from the news release),

“Our theoretical model accomplishes things that you can’t get from a molecular model,” he [Bittner] said. “It is mostly a mathematical model that allows us to look at a much larger system with thousands of molecules. You can’t do ordinary quantum chemistry calculations on a system of that size.”

The calculations have prompted a series of new experiments by Silva’s group to probe the outcomes predicted by their model.

Bittner and Silva’s next steps involve collaborations with researchers who are experts in making the polymers and fabricating solar cells.

Here’s a link to and a citation for the paper,

Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor heterojunctions by Eric R. Bittner & Carlos Silva. Nature Communications 5, Article number: 3119 doi:10.1038/ncomms4119 Published 29 January 2014

This article is behind a paywall although you can get a free preview via ReadCube Access.

Leave a Reply

Your email address will not be published. Required fields are marked *