Biosensing devices from Scotland

The timing for Deborah Rowe’s article in the Guardian newspaper is fascinating. Rowe is writing about nanoscale biosensors developed at the University of Edinburgh, research published in Dec. 2013, while her piece, published Sept. 9, 2014, appears less than 10 days before Scotland’s vote (Sept. 18, 2014) on the question of whether or not it should be independent. Also interesting, the published paper is available as open access until the end of Sept. 2014, which seems like a strategic time period to give open access to your paper.

That said, this is an exciting piece of research if you’re particularly interested in biosensors and ways to produce them more cheaply and at a higher volume (from Rowe’s Sept. 9, 2014 article),

An interdisciplinary research team from the Schools of Engineering and Chemistry at the University of Edinburgh (in association with Nanoflex Ltd), has overcome some of the constraints associated with conventional nano-scale electrode arrays, to develop the first precision-engineered nanoelectrode array system with the promise of high-volume and low-cost.*

Such miniaturised electrode arrays have the potential to provide a faster and more sensitive response to, for example, biomolecules than current biosensors. This would make them invaluable components in the increasingly sensitive devices being developed for biomedical sensing and electrochemical applications.

Rowe goes on to describe the researchers’ Microsquare Nanoband Edge Electrode (MNEE) array technology in lucid and brief detail. For those who want more, here’s a link to and a citation for the paper,

Nanoscale electrode arrays produced with microscale lithographic techniques for use in biomedical sensing applications by Jonathan G. Terry, Ilka Schmüser, Ian Underwood, Damion K. Corrigan, Neville J. Freeman, Andrew S. Bunting, Andrew R. Mount, Anthony J. Walton. IET Nanobiotechnology, Volume 7, Issue 4, December 2013, p. 125 – 134
DOI:  10.1049/iet-nbt.2013.0049 , Print ISSN 1751-8741, Online ISSN 1751-875X Published Oct. 29, 2013

Given the timing of the Guardian article and the availability of the paper for free access, I was moved to find information about the funding agencies, from the researchers’ IET paper,

Support from the Scottish Funding Council (SFC) is acknowledged through the Edinburgh Research Partnership in engineering and mathematics (ERPem) and the Edinburgh and St Andrews Chemistry (EaStCHEM) initiatives, along with knowledge transfer funding. Support from the Engineering and Physical Sciences Research Council (EPSRC) of the UK through the IeMRC (Smart Microsystems – FS/01/02/10) Grant is acknowledged. Ilka Schmüser thanks the EPSRC and the University of Edinburgh for financial support.

And, there was this from Rowe’s article,

The work is part of a larger R&D programme on the development of smart sensors at the University of Edinburgh. It involves staff and students from the Schools of Engineering and Chemistry thus providing the required broad set of skills and experience. The resulting MNEE technology is currently being commercialised by Nanoflex Ltd.

So, the funding comes from Scottish and UK sources and the company which is commercializing the MNEE is located in the North West of England in the  Sci-Tech Daresbury Campus (from the company’s LinkedIn page). This certainly illustrates how entwined the Scottish and UK science scenes are entwined as is the commercialization process.

I last mentioned Scotland, science, and the independence vote in a July 8, 2014 posting which covers some of the ‘pro’ and ‘con’ thinking at the time.

Leave a Reply

Your email address will not be published. Required fields are marked *