CRISPR gene editing technique and patents

I have two items about the CRISPR gene editing technique. The first concerns a new use for the CRISPR technique developed by researchers at Johns Hopkins University School of Medicine described in a Jan. 5, 2015 Johns Hopkins University news release on EurekAlert,

A powerful “genome editing” technology known as CRISPR has been used by researchers since 2012 to trim, disrupt, replace or add to sequences of an organism’s DNA. Now, scientists at Johns Hopkins Medicine have shown that the system also precisely and efficiently alters human stem cells.

“Stem cell technology is quickly advancing, and we think that the days when we can use iPSCs [human-induced pluripotent stem cells] for human therapy aren’t that far away,” says Zhaohui Ye, Ph.D., an instructor of medicine at the Johns Hopkins University School of Medicine. “This is one of the first studies to detail the use of CRISPR in human iPSCs, showcasing its potential in these cells.”

CRISPR originated from a microbial immune system that contains DNA segments known as clustered regularly interspaced short palindromic repeats. The engineered editing system makes use of an enzyme that nicks together DNA with a piece of small RNA that guides the tool to where researchers want to introduce cuts or other changes in the genome.

Previous research has shown that CRISPR can generate genomic changes or mutations through these interventions far more efficiently than other gene editing techniques, such as TALEN, short for transcription activator-like effector nuclease.

Despite CRISPR’s advantages, a recent study suggested that it might also produce a large number of “off-target” effects in human cancer cell lines, specifically modification of genes that researchers didn’t mean to change.

To see if this unwanted effect occurred in other human cell types, Ye; Linzhao Cheng, Ph.D., a professor of medicine and oncology in the Johns Hopkins University School of Medicine; and their colleagues pitted CRISPR against TALEN in human iPSCs, adult cells reprogrammed to act like embryonic stem cells. Human iPSCs have already shown enormous promise for treating and studying disease.

The researchers compared the ability of both genome editing systems to either cut out pieces of known genes in iPSCs or cut out a piece of these genes and replace it with another. As model genes, the researchers used JAK2, a gene that when mutated causes a bone marrow disorder known as polycythemia vera; SERPINA1, a gene that when mutated causes alpha1-antitrypsin deficiency, an inherited disorder that may cause lung and liver disease; and AAVS1, a gene that’s been recently discovered to be a “safe harbor” in the human genome for inserting foreign genes.

Their comparison found that when simply cutting out portions of genes, the CRISPR system was significantly more efficient than TALEN in all three gene systems, inducing up to 100 times more cuts. However, when using these genome editing tools for replacing portions of the genes, such as the disease-causing mutations in JAK2 and SERPINA1 genes, CRISPR and TALEN showed about the same efficiency in patient-derived iPSCs, the researchers report.

Contrary to results of the human cancer cell line study, both CRISPR and TALEN had the same targeting specificity in human iPSCs, hitting only the genes they were designed to affect, the team says. The researchers also found that the CRISPR system has an advantage over TALEN: It can be designed to target only the mutation-containing gene without affecting the healthy gene in patients, where only one copy of a gene is affected.

The findings, together with a related study that was published earlier in a leading journal of stem cell research (Cell Stem Cell), offer reassurance that CRISPR will be a useful tool for editing the genes of human iPSCs with little risk of off-target effects, say Ye and Cheng.

“CRISPR-mediated genome editing opens the door to many genetic applications in biologically relevant cells that can lead to better understanding of and potential cures for human diseases,” says Cheng.

Here’s a link to and citation for the paper by the Johns Hopkins researchers,

Efficient and Allele-Specific Genome Editing of Disease Loci in Human iPSCs by Cory Smith, Leire Abalde-Atristain, Chaoxia He, Brett R Brodsky, Evan M Braunstein, Pooja Chaudhari, Yoon-Young Jang, Linzhao Cheng and Zhaohui Ye. Molecular Therapy (24 November 2014) | doi:10.1038/mt.2014.226

This paper is behind a paywall.

Not mentioned in the Johns Hopkins Medicine news release is a brewing patent battle over the CRISPR technique. A Dec. 31, 2014 post by Glyn Moody for Techdirt lays out the situation (Note: Links have been removed),

Although not many outside the world of the biological sciences have heard of it yet, the CRISPR gene editing technique may turn out to be one of the most important discoveries of recent years — if patent battles don’t ruin it. Technology Review describes it as:

    an invention that may be the most important new genetic engineering technique since the beginning of the biotechnology age in the 1970s. The CRISPR system, dubbed a “search and replace function” for DNA, lets scientists easily disable genes or change their function by replacing DNA letters. During the last few months, scientists have shown that it’s possible to use CRISPR to rid mice of muscular dystrophy, cure them of a rare liver disease, make human cells immune to HIV, and genetically modify monkeys.

Unfortunately, rivalry between scientists claiming the credit for key parts of CRISPR threatens to spill over into patent litigation …

Moody describes three scientists vying for control via their patents,

[A researcher at the MIT-Harvard Broad Institute, Feng] Zhang cofounded Editas Medicine, and this week the startup announced that it had licensed his patent from the Broad Institute. But Editas doesn’t have CRISPR sewn up.

That’s because [Jennifer] Doudna, a structural biologist at the University of California, Berkeley, was a cofounder of Editas, too. And since Zhang’s patent came out, she’s broken off with the company, and her intellectual property — in the form of her own pending patent — has been licensed to Intellia, a competing startup unveiled only last month.

Making matters still more complicated, [another CRISPR researcher, Emmanuelle] Charpentier sold her own rights in the same patent application to CRISPR Therapeutics.

Moody notes,

Whether obvious or not, it looks like the patent granted may complicate turning the undoubtedly important CRISPR technique into products. That, in its turn, will mean delays for life-changing and even life-saving therapies: for example, CRISPR could potentially allow the defective gene that causes serious problems for those with cystic fibrosis to be edited to produce normal proteins, thus eliminating those problems.

It’s dispiriting to think that potentially valuable therapies could be lost to litigation battles particularly since the researchers are academics and their work was funded by taxpayers. In any event, I hope sanity reigns and they are able to avoid actions which will grind research down to a standstill.

Leave a Reply

Your email address will not be published. Required fields are marked *