A new approach to heating: warm the clothing not the room

A Jan. 7, 2015 news item on ScienceDaily describes a new type of textile which could change the way we use heat (energy),

To stay warm when temperatures drop outside, we heat our indoor spaces — even when no one is in them. But scientists have now developed a novel nanowire coating for clothes that can both generate heat and trap the heat from our bodies better than regular clothes. They report on their technology, which could help us reduce our reliance on conventional energy sources, in the ACS journal Nano Letters.

A Jan. 7, 2015 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, provides more information about energy consumption and the researchers’ proposed solution,

Yi Cui [Stanford University] and colleagues note that nearly half of global energy consumption goes toward heating buildings and homes. But this comfort comes with a considerable environmental cost – it’s responsible for up to a third of the world’s total greenhouse gas emissions. Scientists and policymakers have tried to reduce the impact of indoor heating by improving insulation and construction materials to keep fuel-generated warmth inside. Cui’s team wanted to take a different approach and focus on people rather than spaces.

The researchers developed lightweight, breathable mesh materials that are flexible enough to coat normal clothes. When compared to regular clothing material, the special nanowire cloth trapped body heat far more effectively. Because the coatings are made out of conductive materials, they can also be actively warmed with an electricity source to further crank up the heat. The researchers calculated that their thermal textiles could save about 1,000 kilowatt hours per person every year — that’s about how much electricity an average U.S. home consumes in one month.

Here’s a link to and a citation for the paper,

Personal Thermal Management by Metallic Nanowire-Coated Textile by Po-Chun Hsu, Xiaoge Liu, Chong Liu, Xing Xie, Hye Ryoung Lee, Alex J. Welch, Tom Zhao, and Yi Cui. Nano Lett., Article ASAP DOI: 10.1021/nl5036572 Publication Date (Web): November 30, 2014
Copyright © 2014 American Chemical Society

This paper is behind a paywall.

Leave a Reply

Your email address will not be published. Required fields are marked *