The world’s smallest diode is made from a single molecule

Both the University of Georgia (US) and the American Associates Ben-Gurion University of the Negev (Israel) have issued press releases about a joint research project resulting in the world’s smallest diode.

I stumbled across the April 4, 2016 University of Georgia news release on EurekAlert first,

Researchers at the University of Georgia and at Ben-Gurion University in Israel have demonstrated for the first time that nanoscale electronic components can be made from single DNA molecules. Their study, published in the journal Nature Chemistry, represents a promising advance in the search for a replacement for the silicon chip.

The finding may eventually lead to smaller, more powerful and more advanced electronic devices, according to the study’s lead author, Bingqian Xu.

“For 50 years, we have been able to place more and more computing power onto smaller and smaller chips, but we are now pushing the physical limits of silicon,” said Xu, an associate professor in the UGA College of Engineering and an adjunct professor in chemistry and physics. “If silicon-based chips become much smaller, their performance will become unstable and unpredictable.”

To find a solution to this challenge, Xu turned to DNA. He says DNA’s predictability, diversity and programmability make it a leading candidate for the design of functional electronic devices using single molecules.

In the Nature Chemistry paper, Xu and collaborators at Ben-Gurion University of the Negev describe using a single molecule of DNA to create the world’s smallest diode. A diode is a component vital to electronic devices that allows current to flow in one direction but prevents its flow in the other direction.

Xu and a team of graduate research assistants at UGA isolated a specifically designed single duplex DNA of 11 base pairs and connected it to an electronic circuit only a few nanometers in size. After the measured current showed no special behavior, the team site-specifically intercalated a small molecule named coralyne into the DNA. They found the current flowing through the DNA was 15 times stronger for negative voltages than for positive voltages, a necessary feature of a diode.

“This finding is quite counterintuitive because the molecular structure is still seemingly symmetrical after coralyne intercalation,” Xu said.

A theoretical model developed by Yanantan Dubi of Ben-Gurion University indicated the diode-like behavior of DNA originates from the bias voltage-induced breaking of spatial symmetry inside the DNA molecule after the coralyne is inserted.

“Our discovery can lead to progress in the design and construction of nanoscale electronic elements that are at least 1,000 times smaller than current components,” Xu said.

The research team plans to continue its work, with the goal of constructing additional molecular devices and enhancing the performance of the molecular diode.

The April 4, 2016 American Associates Ben-Gurion University of the Negev press release on EurekAlert covers much of the same ground while providing some new details,

The world’s smallest diode, the size of a single molecule, has been developed collaboratively by U.S. and Israeli researchers from the University of Georgia and Ben-Gurion University of the Negev (BGU).

“Creating and characterizing the world’s smallest diode is a significant milestone in the development of molecular electronic devices,” explains Dr. Yoni Dubi, a researcher in the BGU Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology. “It gives us new insights into the electronic transport mechanism.”

Continuous demand for more computing power is pushing the limitations of present day methods. This need is driving researchers to look for molecules with interesting properties and find ways to establish reliable contacts between molecular components and bulk materials in an electrode, in order to mimic conventional electronic elements at the molecular scale.

An example for such an element is the nanoscale diode (or molecular rectifier), which operates like a valve to facilitate electronic current flow in one direction. A collection of these nanoscale diodes, or molecules, has properties that resemble traditional electronic components such as a wire, transistor or rectifier. The emerging field of single molecule electronics may provide a way to overcome Moore’s Law– the observation that over the history of computing hardware the number of transistors in a dense integrated circuit has doubled approximately every two years – beyond the limits of conventional silicon integrated circuits.

Prof. Bingqian Xu’s group at the College of Engineering at the University of Georgia took a single DNA molecule constructed from 11 base pairs and connected it to an electronic circuit only a few nanometers in size. When they measured the current through the molecule, it did not show any special behavior. However, when layers of a molecule called “coralyne,” were inserted (or intercalated) between layers of DNA, the behavior of the circuit changed drastically. The current jumped to 15 times larger negative vs. positive voltages–a necessary feature for a nano diode. “In summary, we have constructed a molecular rectifier by intercalating specific, small molecules into designed DNA strands,” explains Prof. Xu.

Dr. Dubi and his student, Elinor Zerah-Harush, constructed a theoretical model of the DNA molecule inside the electric circuit to better understand the results of the experiment. “The model allowed us to identify the source of the diode-like feature, which originates from breaking spatial symmetry inside the DNA molecule after coralyne is inserted.”

There’s an April 4, 2016 posting on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) which provides a brief overview and a link to a previous essay, Whatever Happened to the Molecular Computer?

Here’s a link and citation for the paper,

Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation by Cunlan Guo, Kun Wang, Elinor Zerah-Harush, Joseph Hamill, Bin Wang, Yonatan Dubi, & Bingqian Xu. Nature Chemistry (2016) doi:10.1038/nchem.2480 Published online 04 April 2016

This paper is behind a paywall.

Leave a Reply

Your email address will not be published. Required fields are marked *