Ora Sound, a Montréal-based startup, and its ‘graphene’ headphones

For all the excitement about graphene there aren’t that many products as Glenn Zorpette notes in a June 20, 2017 posting about Ora Sound and its headphones on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website; Note: Links have been removed),

Graphene has long been touted as a miracle material that would deliver everything from tiny, ultralow-power transistors to the vastly long and ultrastrong cable [PDF] needed for a space elevator. And yet, 13 years of graphene development, and R&D expenditures well in the tens of billions of dollars have so far yielded just a handful of niche products. The most notable by far is a line of tennis racquets in which relatively small amounts of graphene are used to stiffen parts of the frame.

Ora Sound, a Montreal-based [Québec, Canada] startup, hopes to change all that. On 20 June [2017], it unveiled a Kickstarter campaign for a new audiophile-grade headphone that uses cones, also known as membranes, made of a form of graphene. “To the best of our knowledge, we are the first company to find a significant, commercially viable application for graphene,” says Ora cofounder Ari Pinkas, noting that the cones in the headphones are 95 percent graphene.


It should be noted that participating in a Kickstarter campaign is an investment/gamble. I am not endorsing Ora Sound or its products. That said, this does look interesting (from the ORA: The World’s First Graphene Headphones Kickstarter campaign webpage),

ORA GQ Headphones uses nanotechnology to deliver the most groundbreaking audio listening experience. Scientists have long promised that one day Graphene will find its way into many facets of our lives including displays, electronic circuits and sensors. ORA’s Graphene technology makes it one of the first companies to have created a commercially viable application for this Nobel-prize winning material, a major scientific achievement.

The GQ Headphones come equipped with ORA’s patented GrapheneQ™ membranes, providing unparalleled fidelity. The headphones also offer all the features you would expect from a high-end audio product: wired/wireless operation, a gesture control track-pad, a digital MEMS microphone, breathable lambskin leather and an ear-shaped design optimized for sound quality and isolated comfort.

They have produced a slick video to promote their campaign,

At the time of publishing this post, the campaign will run for another eight days and has raised $650,949 CAD. This is more than $500,000 dollars over the company’s original goal of $135,000. I’m sure they’re ecstatic but this success can be a mixed blessing. They have many more people expecting a set of headphones than they anticipated and that can mean production issues.

Further, there appears to be only one member of the team with business experience and his (Ari Pinkas) experience includes marketing strategy for a few years and then founding an online marketplace for teachers. I would imagine Pinkas will be experiencing a very steep learning curve. Hopefully, Helge Seetzen, a member of the company’s advisory board will be able to offer assistance. According to Seetzen’s Wikipedia entry, he is a “… German technologist and businessman known for imaging & multimedia research and commercialization,” as well as, having a Canadian educational background and business experience. The rest of the team and advisory board appear to be academics.

The technology

A March 14, 2017 article by Andy Riga for the Montréal Gazette gives a general description of the technology,

A Montreal startup is counting on technology sparked by a casual conversation between two brothers pursuing PhDs at McGill University.

They were chatting about their disparate research areas — one, in engineering, was working on using graphene, a form of carbon, in batteries; the other, in music, was looking at the impact of electronics on the perception of audio quality.

At first glance, the invention that ensued sounds humdrum.

It’s a replacement for an item you use every day. It’s paper thin, you probably don’t realize it’s there and its design has not changed much in more than a century. Called a membrane or diaphragm, it’s the part of a loudspeaker that vibrates to create the sound from the headphones over your ears, the wireless speaker on your desk, the cellphone in your hand.

Membranes are normally made of paper, Mylar or aluminum.

Ora’s innovation uses graphene, a remarkable material whose discovery garnered two scientists the 2010 Nobel Prize in physics but which has yet to fulfill its promise.

“Because it’s so stiff, our membrane gets better sound quality,” said Robert-Eric Gaskell, who obtained his PhD in sound recording in 2015. “It can produce more sound with less distortion, and the sound that you hear is more true to the original sound intended by the artist.

“And because it’s so light, we get better efficiency — the lighter it is, the less energy it takes.”

In January, the company demonstrated its membrane in headphones at the Consumer Electronics Show, a big trade convention in Las Vegas.

Six cellphone manufacturers expressed interest in Ora’s technology, some of which are now trying prototypes, said Ari Pinkas, in charge of product marketing at Ora. “We’re talking about big cellphone manufacturers — big, recognizable names,” he said.

Technology companies are intrigued by the idea of using Ora’s technology to make smaller speakers so they can squeeze other things, such as bigger batteries, into the limited space in electronic devices, Pinkas said. Others might want to use Ora’s membrane to allow their devices to play music louder, he added.

Makers of regular speakers, hearing aids and virtual-reality headsets have also expressed interest, Pinkas said.

Ora is still working on headphones.

Riga’s article offers a good overview for people who are not familiar with graphene.

Zorpette’s June 20, 2017 posting (on Nanoclast) offers a few more technical details (Note: Links have been removed),

During an interview and demonstration in the IEEE Spectrum offices, Pinkas and Robert-Eric Gaskell, another of the company’s cofounders, explained graphene’s allure to audiophiles. “Graphene has the ideal properties for a membrane,” Gaskell says. “It’s incredibly stiff, very lightweight—a rare combination—and it’s well damped,” which means it tends to quell spurious vibrations. By those metrics, graphene soundly beats all the usual choices: mylar, paper, aluminum, or even beryllium, Gaskell adds.

The problem is making it in sheets large enough to fashion into cones. So-called “pristine” graphene exists as flakes, [emphasis mine] perhaps 10 micrometers across, and a single atom thick. To make larger, strong sheets of graphene, researchers attach oxygen atoms to the flakes, and then other elements to the oxygen atoms to cross-link the flakes and hold them together strongly in what materials scientists call a laminate structure. The intellectual property behind Ora’s advance came from figuring out how to make these structures suitably thick and in the proper shape to function as speaker cones, Gaskell says. In short, he explains, the breakthrough was, “being able to manufacture” in large numbers, “and in any geometery we want.”

Much of the R&D work that led to Ora’s process was done at nearby McGill University, by professor Thomas Szkopek of the Electrical and Computer Engineering department. Szkopek worked with Peter Gaskell, Robert-Eric’s younger brother. Ora is also making use of patents that arose from work done on graphene by the Nguyen Group at Northwestern University, in Evanston, Ill.

Robert-Eric Gaskell and Pinkas arrived at Spectrum with a preproduction model of their headphones, as well as some other headphones for the sake of comparison. The Ora prototype is clearly superior to the comparison models, but that’s not much of a surprise. …

… In the 20 minutes or so I had to audition Ora’s preproduction model, I listened to an assortment of classical and jazz standards and I came away impressed. The sound is precise, with fine details sharply rendered. To my surprise, I was reminded of planar-magnetic type headphones that are now surging in popularity in the upper reaches of the audiophile headphone market. Bass is smooth and tight. Overall, the unit holds up quite well against closed-back models in the $400 to $500 range I’ve listened to from Grado, Bowers & Wilkins, and Audeze.

Ora’s Kickstarter campaign page (Graphene vs GrapheneQ subsection) offers some information about their unique graphene composite,


Graphene is a new material, first isolated only 13 years ago. Formed from a single layer of carbon atoms, Graphene is a hexagonal crystal lattice in a perfect honeycomb structure. This fundamental geometry makes Graphene ridiculously strong and lightweight. In its pure form, Graphene is a single atomic layer of carbon. It can be very expensive and difficult to produce in sizes any bigger than small flakes. These challenges have prevented pristine Graphene from being integrated into consumer technologies.


At ORA, we’ve spent the last few years creating GrapheneQ, our own, proprietary Graphene-based nanocomposite formulation. We’ve specifically designed and optimized it for use in acoustic transducers. GrapheneQ is a composite material which is over 95% Graphene by weight. It is formed by depositing flakes of Graphene into thousands of layers that are bonded together with proprietary cross-linking agents. Rather than trying to form one, continuous layer of Graphene, GrapheneQ stacks flakes of Graphene together into a laminate material that preserves the benefits of Graphene while allowing the material to be formed into loudspeaker cones.

Scanning Electron Microscope (SEM) Comparison
Scanning Electron Microscope (SEM) Comparison

If you’re interested in more technical information on sound, acoustics, soundspeakers, and Ora’s graphene-based headphones, it’s all there on Ora’s Kickstarter campaign page.

The Québec nanotechnology scene in context and graphite flakes for graphene

There are two Canadian provinces that are heavily invested in nanotechnology research and commercialization efforts. The province of Québec has poured money into their nanotechnology efforts, while the province of Alberta has also invested heavily in nanotechnology, it has also managed to snare additional federal funds to host Canada’s National Institute of Nanotechnology (NINT). (This appears to be a current NINT website or you can try this one on the National Research Council website). I’d rank Ontario as being a third centre with the other provinces being considerably less invested. As for the North, I’ve not come across any nanotechnology research from that region. Finally, as I stumble more material about nanotechnology in Québec than I do for any other province, that’s the reason I rate Québec as the most successful in its efforts.

Regarding graphene, Canada seems to have an advantage. We have great graphite flakes for making graphene. With mines in at least two provinces, Ontario and Québec, we have a ready source of supply. In my first posting (July 25, 2011) about graphite mines here, I had this,

Who knew large flakes could be this exciting? From the July 25, 2011 news item on Nanowerk,

Northern Graphite Corporation has announced that graphene has been successfully made on a test basis using large flake graphite from the Company’s Bissett Creek project in Northern Ontario. Northern’s standard 95%C, large flake graphite was evaluated as a source material for making graphene by an eminent professor in the field at the Chinese Academy of Sciences who is doing research making graphene sheets larger than 30cm2 in size using the graphene oxide methodology. The tests indicated that graphene made from Northern’s jumbo flake is superior to Chinese powder and large flake graphite in terms of size, higher electrical conductivity, lower resistance and greater transparency.

Approximately 70% of production from the Bissett Creek property will be large flake (+80 mesh) and almost all of this will in fact be +48 mesh jumbo flake which is expected to attract premium pricing and be a better source material for the potential manufacture of graphene. The very high percentage of large flakes makes Bissett Creek unique compared to most graphite deposits worldwide which produce a blend of large, medium and small flakes, as well as a large percentage of low value -150 mesh flake and amorphous powder which are not suitable for graphene, Li ion batteries or other high end, high growth applications.

Since then I’ve stumbled across more information about Québec’s mines than Ontario’s  as can be seen:

There are some other mentions of graphite mines in other postings but they are tangential to what’s being featured:

  • (my Oct. 26, 2015 posting about St. Jean Carbon and its superconducting graphene and
  • my Feb. 20, 2015 posting about Nanoxplore and graphene production in Québec; and
  • this Feb. 23, 2015 posting about Grafoid and its sister company, Focus Graphite which gets its graphite flakes from a deposit in the northeastern part of Québec).


After reviewing these posts, I’ve begun to wonder where Ora’s graphite flakes come from? In any event, I wish the folks at Ora and their Kickstarter funders the best of luck.

Leave a Reply

Your email address will not be published. Required fields are marked *